2011/002900 A 1 I I 000 O O A0 10 O 0 0

<

W

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

ot VAP,
(19) World Intellectual Property Organization /g [} 1M1 AN A0 0010000 OO 00
ernational Bureau S,/ ‘ 0 |
. . L. _ S (10) International Publication Number
(43) International Publication Date \,!:,: #
6 January 2011 (06.01.2011) WO 2011/002900 A1

(51) International Patent Classification: (74) Agent: MEYERTONS, HOOD, KIVLIN, KOWERT &

GO6F 9/26 (2006.01) GOETZEL, P.C.; RANKIN, Rory D., P.O. Box 398,

(21) International Application Number: Austin, Texas 78767-0398 (US).
PCT/US2010/040625 (81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,

(22) International Filing Date: 101 2010 (30.06.2010 AO. AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
une (30.06.2010) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
(25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
Lo . HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
(26) Publication Language: Enghsh KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
12/496,335 1 July 2009 (01.07.2009) Us NO, NZ, OM, PE, PG, P, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,

(71) Applicant (for all designated States except US): AD- TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

VANCED MICRO DEVICES, INC. [US/US]; One . o
AMD Place, P.O. Box 3453, Sunnyvale, California 94088 (84) Designated States (unless otherwise indicated, for every

(US). kind of regional protection available): ARIPO (BW, GH,

GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

(72) Inventors; and ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,

(75) Inventors/Applicants (for US orly): HOHMUTH, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

Michael, P. [DE/DE]; Bettina Str. 14, D-01099 Dresden EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

(DE). DANNOWSKI, Uwe, M. [DE/DE]; Cochemer LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SL, SK,

Weg 22, D-01468 Moritzburg (DE). BIEMUELLER, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Sebastian [DE/DE]; Zathaina Str. 30, D-04477 Dresden GW, ML, MR, NE, SN, TD, TG).

(DE). CHRISTIE, David, S. [CA/US]; 6201 Needham .
Lane, Austin, Texas 78739 (US). DIESTELHORST, Yublished:

Stephan [DE/DE]; Ostra-Allee 29, D-01067 Dresden — with international search report (Art. 21(3))
(DE). FRIEBEL, Thomas [DE/DE]; Pahl Str. 8,

D-01099 Dresden (DE).

(54) Title: EXTENDED PAGE SIZE USING AGGREGATED SMALL PAGES

100

Core 1

B
&

L1 Cache
15

Memory 130

6/4

:

110 Interface160

L2 Cache
150

Processor 110

! !

Nework Removable
Storage Device Interface 74 Medium 177,
17

Peripherals 120

FIG. 1

(57) Abstract: A processor including a virtual memory paging mechanism. The virtual memory paging mechanism enables an op-
erating system operating on the processor to use pages of a first size and a second size, the second size being greater than the first
size. The mechanism further enables the operating system to use superpages including two or more contiguous pages of the first
size. The size of a superpage is less than the second size. The processor further includes a page table having a separate entry for
each of the pages included in each superpage. The operating system accesses each superpage using a single virtual address. The
mechanism interprets a single entry in a translation lookaside buffer TLB as referring to a region of memory comprising a set of
pages that correspond to a superpage in response to detecting a superpage enable indicator associated with the entry in the TLB is
asserted.

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
TITLE: EXTENDED PAGE SIZE USING AGGREGATED SMALL PAGES

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] This invention relates to computer processors and, more particularly, to page translation

in a virtual memory environment.

Description of the Related Art

[0002] Modern computer systems take advantage of virtual memory to improve performance.
For example, in order to make efficient use of memory while taking advantage of the even
greater capacity of hard disk storage, processors frequently incorporate a virtual addressing
mechanism in which a virtual address may refer to an address space that is much larger than the
physical size of memory. The virtual addressing mechanism is commonly performed by a
combination of processor hardware and operating system software. In practice, the large virtual
address space is usually broken up into pages. Whenever the processor reads or writes to a
virtual memory address, specialized processor hardware translates the address into either a
physical location on a page (sometimes referred to as a frame) that resides in the physical
memory or a reference to a page (or frame) that is stored on disk. If the reference is to a frame
stored on disk, the operating system moves that frame into physical memory, swapping out a
frame that has not been recently accessed if necessary.

[0003] Address translation using paging typically involves a set of data structures known as page
translation tables. To translate a virtual address into a physical address, the low-order bits of the
virtual address may be mapped directly to the physical address while higher order bits of the
virtual address may be used to index into page translation tables to find the higher order bits of
the physical address. In a hierarchical page table implementation, a processor may partition the
higher order bits of a virtual address into one or more bit-fields, each corresponding to a different
level of hierarchy of the page translation tables. Entries in the page translation tables that map
virtual addresses to physical addresses may generally be referred to as page table entries (PTEs).
[0004] The speed of virtual address translation may be increased by caching PTEs in a CPU
cache know as a translation lookaside buffer (TLB). A TLB may have a fixed number of slots
for storing PTEs. Since accessing a TLB entry is generally faster than performing an address

translation using page translation tables, the size and coverage of the TLB may be an important

1

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
indicator of overall system performance. Coverage of the TLB depends on the size of the page

represented by each TLB entry. Common computer architectures provide only a coarse selection
of virtual memory page sizes. For example, the well known x86-64 architecture provides page
sizes of 4KB, 2MB, and 1GB. Smaller page sizes reduce the effective capacity of the TLB and
increase the miss rate of TLB accesses. Unfortunately, very large pages sizes often result in
inefficient allocation of memory for applications that do not require large data sets. In view of the
above considerations, systems and methods of improving system performance by improving TLB
miss rate and/or increasing TLB effective capacity while maintaining efficient memory usage
may be desired.

[0005] In addition to the above considerations, while improved TLB miss rate and capacity may
provide for certain enhanced capabilities, it may be desirable for processors to be able to
continue to run existing software whenever enhanced capabilities are introduced. Accordingly,

processor enhancements that continue to support legacy paging modes may be desirable.

SUMMARY OF THE INVENTION

[0006] Various embodiments of a processor including a virtual memory paging mechanism are
disclosed. The virtual memory paging mechanism enables an operating system operating on the
processor to use pages of a first size and a second size. The second size is greater than the first
size. The virtual memory paging mechanism further enables the operating system to form
superpages comprising a set of pages including two or more contiguous pages of the first size.
The size of a superpage is less than the second size. The processor further includes a page table
that includes a separate entry for each of the two or more contiguous pages included in each
superpage. The virtual memory paging mechanism enables the operating system to access each
superpage using a single virtual address. The processor further includes a translation lookaside
buffer (TLB). The virtual memory paging mechanism interprets a single entry in the TLB as
referring to a region of memory comprising a set of pages that correspond to a superpage in
response to detecting a superpage enable indicator associated with the entry in the TLB is
asserted. In one embodiment, the size of a superpage is 64 KB.

[0007] In one embodiment, in response to detecting the superpage enable indicator associated
with the entry in the TLB is asserted, the virtual memory paging mechanism interprets an entry in
the page table as referring to a region of memory comprising a portion of a superpage. In a
further embodiment, the superpage enable indicator is software-settable. The virtual memory

paging mechanism issues a page fault in response to detecting that at least one of the at least two

2

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
entries in the page table is missing or includes attributes that are not consistent with

corresponding attributes in other of the at least two entries in the page table.

[0008] In a still further embodiment, the virtual memory paging mechanism simultancously and
independently enables the use of superpages on one or both of a first operating system and a
second operating system operating on the processor. In a still further embodiment, the first
operating system is a guest operating system in a virtualized environment configured to use a
first page table to translate a virtual address in guest address space to a physical address in guest
address space and the second operating system is a host operating system in a virtualized
environment configured to use a second page table to translate a physical address in guest
address space to a physical address in host address space. In a still further embodiment, the
virtual memory paging mechanism enables the operating system to use superpages of two or
more different superpage sizes. In this embodiment, each superpages size is equal to a size of
two or more contiguous, aligned pages of the first size and each superpage size is less than the
second size.

[0009] These and other embodiments will become apparent upon consideration of the following

description and accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a generalized block diagram of one embodiment of a computer system that may
incorporate extended page sizes

[0011] FIG. 2 illustrates one embodiment of an address translation system that may be used in a
system by a processor.

[0012] FIG. 3 illustrates one embodiment of a mapping of entries in a page table and entries in a
TLB to a memory.

[0013] FIG. 4 illustrates one embodiment of the bit-fields contained within a control register that
indicate the status of support for extended page sizes.

[0014] FIG. 5 illustrates one embodiment of the bit-fields contained within a model-specific
register (MSR).

[0015] FIG. 6 illustrates one embodiment of data structure entries that may be used by an
operating system to define superpages.

[0016] FIG. 7 illustrates one embodiment of a paging process that may be executed by a

processor to access a superpage.

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
[0017] FIG. 8 illustrates one embodiment of a process that may be used to check the validity of a

superpage entry read from a page table in a processor that supports superpages.

[0018] FIG. 9 illustrates one embodiment of a process that may be used to configure a processor
to use superpages.

[0019] While the invention is susceptible to various modifications and alternative forms, specific
embodiments are shown by way of example in the drawings and are herein described in detail. It
should be understood, however, that drawings and detailed descriptions thereto are not intended
to limit the invention to the particular form disclosed, but on the contrary, the invention is to
cover all modifications, equivalents and alternatives falling within the spirit and scope of the

present invention as defined by the appended claims.

DETAILED DESCRIPTION

[0020] FIG. 1 is a generalized block diagram of one embodiment of a computer system 100 that
may incorporate extended page sizes. A processor 110 is shown coupled to peripherals 120 and a
physical memory 130. Peripherals 120 may include a storage device 170, a network interface
174, and removable medium 177. The illustrated embodiment is typical of a general-purpose
computer system. However, the illustrated components, particularly processor 110, may be
found in a wide variety of apparatus such as a control system, appliance, automobile, consumer
electronic product, or indeed any device that incorporates computation and stores or processes
data.

[0021] Processor 110 is illustrative of any of a variety of processors that may support virtual
memory by providing an address translation function. Processor 110 may include one or more
cores 140 coupled to I/O interface 160 and to a level-2 (L2) cache 150. Core 140 may include a
level-1 (L1) cache 145 coupled to L2 cache 150. Physical memory 130 may typically comprise
RAM, but may also be any type of data storage that is coupled to processor 110 and provides
relatively quick access to data to processes executing on processor 110. In contrast, storage
device 170 may generally store larger amounts of data than physical memory 130, with slower
access times. Common storage devices include hard disk, floppy disk, CD, or any other suitable
data storage device.

[0022] Depending on the intended uses of computer system 100, various other peripherals 120
may be coupled to processor 110 through 1/O interface 160. For instance, peripherals 120 may
include a keyboard, a monitor, speakers, disk drives, input/output ports, etc. Interconnections

between memory 130, peripherals 120, and processor 110 may include address and data buses

4

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
and may comprise shared buses, a switching fabric, or any other suitable interconnection system

for coupling components together in a computer system. In alternative embodiments, computer
system 100 may include more than or fewer than two levels of caches.

[0023] During operation, when core 140 requires access to a page of data for the first time, the
corresponding data may be moved from storage device 170 to memory 130. Core 140 may then
move one or more portions of a page (e.g., cache lines) from memory 130 to L1 cache 145. As
additional cache lines are needed, they may also be moved to L1 cache 145. If there is not
enough space in L1 cache 145, a cache lines may be moved (evicted) to L2 cache 150. Similarly,
as L2 cache 150 becomes full, cache lines may be displaced to memory 130 and as memory 130
becomes full, pages may be displaced to storage device 170. Techniques for determining which
portion of a page to move when a particular cache becomes full are well known in the art. Each
of these techniques may be referred to as a cache replacement policy or a cache algorithm.

[0024] FIG. 2 illustrates one embodiment of an address translation system 200 that may be used
in system 100 by processor 110. System 200 includes a translation lookaside buffer (TLB) 210,
a page table 220, and a disk 230. In one embodiment, TLB 210 and page table 220 may be
incorporated into processor 110 and disk 230 may be any of a variety of storage devices similar
to storage device 170. During operation, processor 110 may obtain a virtual address 240 for a
desired page from a process executing an instruction that reads or writes to a virtual memory
location.

[0025] Processor 110 may then attempt to identify a physical address that corresponds to virtual
address 240 by consulting the entries in TLB 210. If the virtual-to-physical translation is present
in TLB 210, referred to as a TLB hit, the physical address 250 including a frame number may be
returned to processor 110. If the virtual-to-physical translation is not present in TLB 210,
referred to as a TLB miss, processor 110 may then attempt to identify a physical address that
corresponds to virtual address 240 by consulting the entries in page table 220. If the virtual-to-
physical translation is present in page table 220, referred to as a page table hit, the translation
entry may be written to TLB 210. Subsequently, processor 110 may retry the access by
consulting the entries in TLB 210, where the desired entry may now be found. If the virtual-to-
physical translation is not present in page table 220, referred to as a page table miss, processor
110 may declare a page fault. A page fault may cause the desired page to be retrieved from disk
230 and a corresponding entry to be written to page table 220. After page table 220 has been
updated, processor 110 may retry the access by consulting the entries in TLB 210. Since TLB

210 has not yet been updated, a TLB miss will occur. However, processor 110 may then

5

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
consulting the entries in page table 220 where a page table hit may occur and the translation

entry may be written to TLB 210. Subsequently, processor 110 may retry the access by
consulting the entries in TLB 210, where the desired entry may now be found. If the desired
page cannot be retrieved from disk 230, for example, if the desired access is invalid, then a
segmentation fault or other similar error may be declared and handled by software such as the
operating system executing on processor 110.

[0026] Entries in page table 220 may translate virtual addresses to physical addresses using any
of a variety of formats. Generally speaking, a virtual address includes a number of bits fields that
are used as an index into page table 220 and a set of low order bits that are used as an offset into
the page identified by page table 220. In various embodiments, page table 220 may include one
or more levels, each of which is indexed by a particular bit field of the virtual address.
Accordingly, the format of the higher-order bit fields in the virtual address depends on the size of
the page and the number levels in page table 220. Irrespective of the number of page table
levels, page table entries and corresponding TLB entries may be used to translate virtual
addresses into physical addresses including a physical frame number.

[0027] Processors that support virtual addressing may use virtual addresses of various lengths in
a variety of operating modes. Such operating modes may define the way that the operating
system and the processor interpret the bit-fields in the virtual address as well as the way that the
bit-fields are used in the translation of a virtual address to a physical address. In one
embodiment, processor 110 maintains backward compatibility with the operating modes of
processors that are compatible with the x86 architecture.

[0028] One approach to increasing the coverage of a TLB and reducing the odds of a TLB miss
1S to increase the size of the pages represented by each entry in the TLB. Processor 110 may be
configured to use extended page sizes via control register settings that are described below. FIG.
3 illustrates one embodiment of a mapping of entries in a page table 310 and entries in a TLB
350 to a memory 330. In the illustrated embodiment, page table entries may correspond to 4KB
pages and TLB entries may correspond to larger page sizes, for example, 64 KB pages. Page
table 310 may include page table entries 301-318, etc. TLB 350 may include entries 351-357,
etc. Memory 330 may include pages 331-348, ctc. Each of entries 301-318 may correspond to a
4KB page. As shown, entry 301 corresponds to page 331, entry 302 corresponds to page 332,
and so on. Each of entries 351-357 may correspond to a 64KB page. For example, as shown,
entry 352 corresponds to a region of memory including pages 331-346, which may be referred to

as a superpage. Superpages, as used herein, may refer to a region of memory including two or

6

10

15

20

25

WO 2011/002900 PCT/US2010/040625
more contiguous, aggregated, aligned, 4 KB pages. In addition, for convenience and without loss

of generality, in the discussions that follow, any portion of a physical frame that is located in L1
cache, L2 cache, or memory may be referred to as being in memory in contrast to frames that are
located in a storage device. Processor 110 and the operating system that executes thereon may
use a variety of data structures to determine whether or not superpages are supported, whether or
not superpages are enabled, which TLB entries correspond to small (e.g. 4KB) pages and which
TLB entries correspond to superpages as described below.

[0029] FIG. 4 illustrates one embodiment of the bit-fields contained within a control register 400
that indicate the status of support for extended page sizes. Control register 400 may correspond
to a control register 4 (CR4) in a processor incorporating the x86 architecture. CR4 registers
include a number of bits that define the capabilities of a processor. As shown register 400
includes two bits 401 and 402 that are related to superpages. Bit 401, referred to as the page size
extension or PSE bit, indicates whether pages are 4KB or the standard larger page size of 4 MB,
or 2 MB if physical address extension (PAE) is enabled. If bit 401 is not asserted, a page size of
4 KB is enabled. In addition, register 400 includes bit 402, referred to as the extended paging
mode (XPM) support bit, which if set indicates that extended mode page sizes are supported.
[0030] In one embodiment, processor 110 may support a single extended page size. For
example, an extended page size of 64 KB may be supported. In alternative embodiments, more
than one extended page size may be supported. A variety of mechanisms may be provided to
determine which extended page sizes are supported. The following section illustrates one such
mechanism.

[0031] FIG. 5 illustrates one embodiment of the bit-fields contained within a model-specific
register (MSR) 500. MSR 500 includes a number of bits that define the extended mode page
sizes that are supported by a processor. In one embodiment, as shown, register 500 includes bits
501-508. Assuming that extended page sizes are supported as indicated by the values of bits 401
and 402 as described above, the pages sizes that are supported are indicated by values of bits

501-508 as indicated in Table 1.

501 8 KB

10

15

20

WO 2011/002900 PCT/US2010/040625

502 16 KB
503 32 KB
504 64 KB
505 128 KB
506 256 KB
507 512KB
508 1 MB
TABLE 1

[0032] In one embodiment, register 500 may be a read only register. Accordingly, as shown in
Table 1, register 500 indicates that a single selected extended page size is supported. In one
embodiment, only one of bits 501-508 may be set indicating which single extended page size is
supported. In an alternative embodiment, more than one of bits 501-508 may be set indicating
that more than one extended page size is supported. In a still further embodiment, register 500
may be writable, enabling various page sizes to by dynamically enabled and disabled by
software.

[0033] It is noted that extended paging mode may be enabled separately in the host mode and the
guest mode of virtualized machine environment such as Secure Virtual Machines (SVM). For
example, when switching between a host operating system and a guest operating system, values
of OS-specific versions of registers 400 and 500 may be saved and restored to a data structure
know as a virtual machine control block (VMCB).

[0034] By checking the values set in registers 400 and 500, software executing on processor 110
may determine what, if any, extended page sizes are supported. Software may then use a number
of additional mechanisms to define superpages.

[0035] FIG. 6 illustrates one embodiment of data structure entries that may be used by an
operating system to define superpages. In the figure, a page table entry 352 and a page-attribute-
table (PAT) entry 630 are shown. In one embodiment, each entry in a page table includes
identifier bits that refer to an entry in the PAT that describes the format of the referring page
table entry. For example, page table entry 352 includes bits 603, 604, and 607 that together form

an index to a particular entry in the PAT such as, for example, entry 630. In one embodiment,
8

10

15

20

WO 2011/002900 PCT/US2010/040625
bit 603 may correspond to the page write through (PWT) bit, bit 604 may correspond to the page

cache disable (PCD) bit, and bit 607 may correspond to the page attribute table (PAT) bit of the
x86 architecture.

[0036] Within PAT entry 630, a bit may be designated to indicate whether or not superpages are
enabled. For example, as shown in FIG. 6, a superpage bit 634 is shown within PAT entry 630.
In one embodiment, if bit 634 is set to’1’, a page table entry that references this page attribute
entry is part of a superpage group of page table entries and a TLB entry that references this page
attribute entry describes a superpage. Otherwise, if bit 634 is not set to “1°, a page table entry or
a TLB entry that references this page attribute entry describes a 4KB page.

[0037] In an alternative embodiment, instead of using bits 603, 604, and 607 as an index to an
entry in the PAT where bit 634 serves as a superpage bit, another bit of page table entry 352 may
be used as a superpage bit. For example, one of the AVL bits, such as bit 11 of page table entry
352 or the PAT bit, bit 607, may be used as a superpage bit. If an AVL bit is used, it may be
necessary to configure a processor to support XPM to allow hardware to interpret the AVL bit.
[0038] Within page table entry 352, a bit field 640 including bits 612-616, etc. is also shown.
Bit field 640 may be used to indicate which superpage size is enabled. In one embodiment, bit

field 640 values as shown in Table 2 indicate which superpage size is enabled.

8 KB 612 b’0
16 KB 612-613 b’01
32 KB 612-614 b’011
64 KB 612-615 b’0111
128 KB 612-616 b’01111
256 KB 612-617 b’011111
512 KB 612-618 b’0111111
1 MB 612-619 b’01111111
TABLE 2

[0039] Any of bits 612-619 that are not part of bit field 640 may be part of the physical frame
number. For example, if 64 KB superpages are enabled, bits 612-615 are reserved as bit field

640 to indicate the superpage size that is enabled while higher order bits 616, 617, etc. are part of
9

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
the physical frame number. In alternative embodiment, any of a variety of other bits from page

table entry 352 may be used by an operating system to define the enabled superpage size(s).
[0040] It is noted that in one embodiment, extended paging mode may be defined separately in
the host mode and the guest mode of virtualized machine environment such as Secure Virtual
Machines (SVM). For example, when switching between a host operating system and a guest
operating system, values of OS-specific versions of page tables and page attribute tables may be
maintained. It is further noted that in some embodiments that incorporate virtualized machines, a
first set of superpages may be used in translating virtual addresses in a guest operating system
address space to physical addresses in the guest operating system address space and a second set
of superpages may be used in translating physical addresses in a guest operating system address
space to physical addresses in the host operating system address space. Page tables used in such
systems may be referred to as nested page tables.

[0041] As noted above, a superpage comprises two or more contiguous, aggregated, aligned, 4
KB pages. It is further noted that in one embodiment, the operating system that uses superpages
may be required to consistently fill a set of page table entries that describe such a set of 4 KB
pages to form a superpage region by replicating a superpage entry into each entry of the set. The
following consistency requirements apply to this embodiment.

[0042] The individual page table entries may be required to adhere to the format described above
in order to indicate that they are part of a superpage entry. If processor 110 reads an individual
page table entry that does not adhere to the format described above, the superpage may be
declared invalid and the page table entry in question may be interpreted as one describing a 4 KB
page. The TLB may remove conflicting entries when an inconsistent entry is read. Further, if
processor 110 attempts to set an accessed and/or a dirty (A/D) bit in an inconsistent entry, a page
fault may be generated.

[0043] In a further embodiment, valid superpages may require that a complete set of page table
entries be present in the page table according to a set of rules that form a contract between
processor 110 and the operating system that executes thereon. For example, if 64 KB superpages
are enabled, there must be sixteen 4 KB page table entries to form a valid superpage. If not, a
page fault may occur during a memory access even if the access is directed to a 4 KB page for
which a valid page table entry does exist. In a still further embodiment, the physical frame
numbers and/or the caching attributes of each individual 4 KB entry comprising the superpage
entry may be required to be identical. Otherwise the behavior of the processor 110 may be

undefined. In a still further embodiment, the protection attributes of each individual 4 KB entry

10

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
comprising the superpage entry may be required to be identical. If not, a page fault may occur

during a memory access even if the access is directed to a 4 KB page for which a valid page table
entry does exist. If the rules described above are followed, an operating system may sequentially
upgrade individual page table entries comprising a superpage by ignoring some number of
spurious (but otherwise harmless) page faults. In an alternative embodiment, the operating
system may take the page table offline during the update process so as to avoid spurious page
faults.

[0044] In another embodiment, updating the A/D bits of a page table entry may require that the
first (i.e. lowest address) entry belonging to a superpage set of entries be updated first. If the first
entry does not have the superpage bits set or if other inconsistencies as described above are
present, a page fault may occur. In an alternative embodiment, updating the A/D bits of a page
table entry may only require that any one of the entries that belong to a superpage set of entries
be updated. Such updates, referred to as ”sparse” updates, may require the operating system to
sequentially scan the entries or perform a logical ‘OR’ operation on the relevant bits of all of the
entries in a set of superpage entries in order to find a valid superpage. Updating a dirty bit in any
entry may require that an accessed bit in the entry also be updated at the same time.

[0045] FIG. 7 illustrates one embodiment of a paging process 700 that may be executed by
processor 110 to access a superpage. Process 700 may begin when a virtual address of a
superpage is obtained (block 710). Once a virtual address is available, the TLB may be accessed
to check for a matching entry (block 720). If there is a TLB hit (decision block 725), the virtual
address may be translated to a physical address (block 770) such as by using the physical frame
number found in the TLB and the offset from the virtual address. Once the physical address is
known, the corresponding superpage may be accessed in memory (block 780). The paging
process is complete at block 790.

[0046] If there is a TLB miss (decision block 725), the page table(s) may be accessed to check
for a matching entry (block 730). If there is a page table miss (decision block 735), a page fault
may be declared (block 760). If there is a page table hit (decision block 735), and the page table
entry corresponds to a 4 Kbyte page (decision block 740), process 700 may continue at block
770. If there is a page table hit (decision block 735), and the page table entry does not
correspond to a 4 Kbyte page (decision block 740), the validity of the set of page table entries
that together correspond to the targeted superpage may be verified (block 745). If the set of page
table entries is not valid (decision block 750), a page fault may be declared (block 760). In one

embodiment, a page fault may terminate the access request. In other embodiments, depending

11

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
on the cause of the page fault, the access may continue. For example, under certain

circumstances as described above, the access request may be assumed to be a 4 KB page access
request. In other circumstances, page faults may be ignored and the superpage access allowed to
continue as if the page table entries are valid. If the set of page table entries is valid (decision
block 750), the virtual address may be translated to a physical address (block 770) such as by
using the physical frame number found in the TLB and the offset from the virtual address. Once
the physical address is known, the corresponding superpage may be accessed in memory (block
780). The paging process is complete at block 790.

[0047] FIG. 8 illustrates one embodiment of a process 800 that may be used to check the validity
of a superpage entry read from a page table in a processor that supports superpages. Process 800
may begin when a superpage page-table entry is received (block 810). The set of superpage
entries may be checked for consistency. If the formats of all of the entries in the set are
inconsistent (decision block 820), or there is a missing entry in the set (decision block 830), or if
the protection attributes of entries in the set of entries are mismatched (decision block 840), a
page fault may be declared(block 825).

[0048] If the formats of all of the entries in the set are consistent (decision block 820), there are
no missing entries in the set (decision block 830), and if the protection attributes of entries in the
set of entries are matched (decision block 840), but there are mismatched physical frame
numbers in the set of entries (decision block 850) or mismatched caching attributes in the set of
entries (decision block 860), paging behavior may be undefined. If there are no mismatched
physical frame numbers (decision block 850) or mismatched caching attributes (decision block
860) in the set of entries, the paging process may be completed (block 870).

[0049] FIG. 9 illustrates one embodiment of a process that may be used to configure a processor
to use superpages. Process 900 may begin with a check of processor hardware capabilities to
determine if extended page sizes are supported (decision block 910). For example, in one
embodiment, a bit in a control status register may indicate whether or not extended page sizes are
supported. If extended page sizes are not supported, an error may be returned (block 920). If
extended page sizes are supported, another check may be performed to determine what sizes of
superpages are supported (block 930). For example, in one embodiment, a bit field in a model-
specific register may indicate what extended page sizes are supported. Next, one or more desired
pages sizes may be selected (block 940). A superpage indicator may be set by software (block
950). For example, a bit in a page attribute table entry that is used to define the format of page

table entries for superpages may be set to a value indicating enablement of superpages. Once

12

10

15

20

25

WO 2011/002900 PCT/US2010/040625
superpages are enabled, a first entry of a set of entries that correspond to a superpage may be

written into a page table (970). In one embodiment, the format specified by the page attribute
table entry described above may be used for the first and subsequent entries in the page table.
Next, the remaining entries of the set of entries that correspond to a superpage may be written
into the page table (block 980). One a consistent set of entries that correspond to a contiguous,
aligned set of 4 KB pages has been written into the page table, a corresponding superpage is
available for access (block 990), completing process 900.

[0050] It is noted that the foregoing flow charts are for purposes of discussion only. In
alternative embodiments, the elements depicted in the flow charts may occur in a different order,
or in some cases concurrently. Additionally, some of the flow chart elements may not be present
in various embodiments, or may be combined with other elements. All such alternatives are
contemplated.

[0051] It is noted that the above-described embodiments may comprise software. In such an
embodiment, the program instructions, which implement the methods and/or mechanisms, may
be conveyed or stored on a computer accessible medium. Numerous types of media which are
configured to store program instructions are available and include hard disks, floppy disks, CD-
ROM, DVD, flash memory, Programmable ROMs (PROM), random access memory (RAM), and
various other forms of volatile or non-volatile storage. Still other forms of media configured to
convey program instructions for access by a computing device include terrestrial and non-
terrestrial communication links such as network, wireless, and satellite links on which electrical,
electromagnetic, optical, or digital signals may be conveyed. Thus, various embodiments may
further include receiving, sending or storing instructions and/or data implemented in accordance
with the foregoing description upon a computer accessible medium.

[0052] Although the embodiments above have been described in considerable detail, numerous
variations and modifications will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace

all such variations and modifications.

13

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
WHAT IS CLAIMED IS

1. A processor comprising;:
a virtual memory paging mechanism, wherein the virtual memory paging mechanism is
configured to enable an operating system operating on the processor to:
use pages of a first size and pages of a second size, the second size being greater
than the first size;
form superpages comprising a set of pages including two or more contiguous
pages of the first size, wherein a size of a superpage is less than the second
size; and
a page table that includes a separate entry for each of the two or more contiguous pages

included in each superpage.

2. The processor of claim 1, wherein the virtual memory paging mechanism is further
configured to enable the operating system operating on the processor to access each superpage

using a single virtual address.

3. The processor of claim 1, wherein the size of a superpage is 64 KB.

4. The processor of claim 2, further comprising a translation lookaside buffer (TLB),
wherein the virtual memory paging mechanism is configured to interpret a single entry in the
TLB as referring to a region of memory comprising a set of pages that correspond to a superpage
in response to detecting a superpage enable indicator associated with the entry in the TLB is

asserted.

5. The processor of claim 4, wherein the virtual memory paging mechanism is further
configured to interpret an entry in the page table as referring to a region of memory comprising a
portion of a superpage, in response to detecting a superpage enable indicator associated with the

entry in the page table is asserted.

6. The processor of claim 4, wherein the superpage enable indicator is software-settable.

14

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625
7. The processor of claim 2, wherein the virtual memory paging mechanism is further

configured to issue a page fault in response to detecting that at least one of the at least two entries
in the page table is missing or includes attributes that are not consistent with corresponding

attributes in other of the at least two entries in the page table.

8. The processor of claim 1, wherein the virtual memory paging mechanism is further
configured to simultaneously and independently enable the use of superpages on one or both of a

first operating system and a second operating system operating on the processor.

9. The processor of claim 8, wherein the first operating system is a guest operating system
in a virtualized environment configured to use a first page table to translate a virtual address in
guest address space to a physical address in guest address space and the second operating system
is a host operating system in a virtualized environment configured to use a second page table to

translate a physical address in guest address space to a physical address in host address space.

10. The processor of claim 1, wherein the virtual memory paging mechanism is further
configured to enable the operating system to use superpages of two or more different superpage
sizes, wherein each superpages size is equal to a size of two or more contiguous, aligned pages of

the first size and wherein each superpage size is less than the second size.

11. A method for virtual memory paging in a processor, the method comprising:
enabling an operating system operating on the processor to use pages of a first size and
pages of a second size, the second size being greater than the first size; and
enabling the operating system to form superpages comprising a set of pages including two
or more contiguous pages of the first size, wherein a size of a superpage is less
than the second size; and
including a separate entry in a page table for each of the two or more contiguous pages

included in each superpage.

12. The method of claim 11, further comprising enabling the operating system operating on

the processor to access each superpage using a single virtual address.

13. The method of claim 11, wherein the size of a superpage is 64 KB.

15

10

15

20

25

30

WO 2011/002900 PCT/US2010/040625

14. The method of claim 12, further comprising interpreting a single entry in a TLB as
referring to a region of memory comprising a set of pages that correspond to a superpage in
response to detecting a superpage enable indicator associated with the entry in the TLB is

asserted.

15. The method of claim 14, further comprising interpreting an entry in the page table as
referring to a region of memory comprising a portion of a superpage in response to detecting a

superpage enable indicator associated with the entry in the page table is asserted.

16. The method of claim 14, wherein the superpage enable indicator is software-settable.

17. The method of claim 12, further comprising issuing a page fault in response to detecting
that at least one of the at least two entries in the page table is missing or includes attributes that
are not consistent with corresponding attributes in other of the at least two entries in the page

table.

18. The method of claim 11, further comprising simultaneously and independently enabling
the use of superpages on one or both of a first operating system and a second operating system

operating on the processor.

19. The method of claim 18, wherein the first operating system is a guest operating system in
a virtualized environment configured to use a first page table to translate a virtual address in
guest address space to a physical address in guest address space and the second operating system
is a host operating system in a virtualized environment configured to use a second page table to

translate a physical address in guest address space to a physical address in host address space.

20. The method of claim 11, further comprising enabling the operating system to use
superpages of two or more different superpage sizes, wherein each superpages size is equal to a
size of two or more contiguous, aligned pages of the first size and wherein each superpage size is

less than the second size.

16

PCT/US2010/040625

WO 2011/002900

1/9

0T fowsapy

L

l 'Ol
021 sleseyduad
- _ 0L
LLL WNIpay pLLedepau| 921naQ abelois
3|genowoy YOMIBN

!

!

[
ayoed 1

0L lossaoold

gTeoRLaI| O]

A

:

ShL

00L ‘\

aYoed L

(e

¥l 210D

PCT/US2010/040625

WO 2011/002900

2/9

¢ Old

a1um ajqe] abeyd

ecisid

(

ssIy 9jqe | abed

A

2Z 9lqe] abed

H @|qe abed
A

alm gL }

SSIN 11 OLedlL

i

06z SSaippy [eashud WH AL

»i
«

002 ||\

0v¢ SS9IppY [BNHIA

PCT/US2010/040625

WO 2011/002900

3/9

€ Old

0T Klowo

OLE a|qe abeq

A

A

A

A

A

A

A

A

A

90¢ Ahu3

5ot Ahu3

A

A

A

T0¢ Anu3

PCT/US2010/040625

WO 2011/002900

4/9

1q Loddns apow
buibed papusix3 :NdX

11q suoisuaIxg
971§ abed 3Sd

¥ Old

o

Y

007 Ja1sibay jonuo)

PCT/US2010/040625

WO 2011/002900

579

g 9ol
sebed gy |
Buisn Buibed papuaixg
sobed gy Z1§
Buisn buibed papueixy
sabed gy 952
buisn buibed papuaix]
sobed gy 8Z1
Buisn buibed papuaixg
sabed gy ¥9
Buisn buibed pepusix3
sebed gy z¢
Buisn buibed papusix3
sobed gy 91
Buisn Buibed papuelx3
sebed gy g
butsn Buibed papuaix]
Lycle(v|919(L]8
ojojojofo0|0}j0f}o0
GIG[S|9|G[S]19]6
f Y

006 Ja1sibay auoadg auyoely

PCT/US2010/040625

WO 2011/002900

6/9

9 Old
1q obediadng 11/
4%
ﬁ : J
0£9 Anuz 1vd
(~ - A
€09 | ¥09 109 ¢l9jeLl9|¥L9[§L91919 mus

26¢ Anu3 s|qe abed

WO 2011/002900

Obtain Virtual Address.
110

Y

Check TLB for
matching entry. 720

TLB hit? 725

Yes

No

7/9

/

Check page table for
matching entry. 730

Page table

PCT/US2010/040625

Paging
Process 700

hit? 735

4Kbyte

A

Y

Translate virtual
address to physical
address. 770

A\ 4
Access page or
superpage in memory.
180

Y

Gging Complete. @

Yes

page-table entry?
140

No

Verify validity of all page
entries corresponding to the
superpage. 745

Page table
valid? 750

FIG. 7

A 4

Declare page fault. L)

WO 2011/002900

Receive superpage
page-table entry. 810

Inconsistent PTE

Yes

8/9

/ -

PCT/US2010/040625

format? 820

issing entry

Yes

in page table?
830

Mismatched

Yes

protection attributes?
840

Mismatched

Yes

physical frame

Gging Complete. _89

Y

Behavior undefined.
862

FIG. 8

Y

Qeclare page fault. %

WO 2011/002900 PCT/US2010/040625

9/9

(=) — "

Are extended
page sizes supported?
910

No

Check MSR for available superpage sizes. 930

Y

Select desired superpage size(s). 940

Y

Enable superpage bit. 950

Y

Write first page table entry for desired
superpage into page table. 970

Y

Fill remaining entries in page table
corresponding to desired superpage . 980

A
4 Y

< Superpage available for access. 990 > (Retum Error 920>

FIG. 9

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 10/40625

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOGF 9/26 (2010.01)
USPC - 711/206

According to International Patent Classification (IPC) or to both national c_:lassiﬁcation and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by ¢
IPC(8): GO6F 9/26 (2010.01)
USPC: 711/206

lassification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 711/100, 200, 202, 206, 208, 209, 221, £12.059; 717/100, 136, 140, 141, 151, 154, 162, 165, 166; 718/1, 100;

370/351, 389, 400, 851; 386/46, 124

Electronic data base consulted during the international search (name of
Electronic databases: PubWEST(PGPB, USPT, USOC, EPAB, JPAB

data base and, where practicable, search terms used)
); Google Scholar

Search Terms Used: superpages, page table, adaptive page size, cloud, virtualization, Xen, contiguous, adjacent, address,

heterogeneous, guest etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 2009/0013149 A1 (UHLIG et al.) 08 January 2009 (08.01.2009) Entire document, especially: | 1-20
Abstract; para [0002], (0013], {0049], [0067], [0072], [0079], [0081]-[0084]; Figs. 7, 12

Y US 6,112,285 A (GANAPATHY et al.) 29 August 2000 (29.08.2000) Entire document, 1-20
especially: Abstract; col 1, in 40-41, 54; col 3, In 43-46; col 4, In 47-51; col 6, In 13-17; co!l 9, In
57-58; col 22, In 42-46; Fig. 4

A US 2007/0180215 A1 (CASCAVAL et al.) 02 August 2007 (02.08.2007) Entire document 1-20

A US 2008/0288742 A1 (HEPKIN et al.) 20 Novembd_ar 2008 (20.11.2008) Entire document 1-20

A US 2006/0174053 A1 (ANDERSON et al.) 03 August 2006 (03.08.2006) Entire document 1-20

A US 2007/0067604 A1 (ELNOZAHY et al.) 22 March 2007 (22.03.2007) Entire document 1-20

A An article entitled "Disaggregated Memory for Expansion and Sharing in Blade Servers® (LIM et | 1-20
al.), In ACM SIGARCH Computer Architecture News [online], vol 37, number 3, pages 267-278.
Published June, 2009, Retrieved from the Internet <URL:
http://www.eecs.umich.edu/~twenisch/papers/isca09-disaggregate.pdf>

D Further documents are listed in the continuation of Box C.

]

*

A"

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later than
the priority date claimed

“E”

“

“Q”

upr

“T” later document published after the international filing date or priority

date and not in conflict with the a;:ﬁlication but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

wyr

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination

being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

09 August 2010 (09.08.2010)

Date of mailing of the international search report

30 AUG 2010

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. g71.273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: §71-272-4300
PCT OSP: 571-272-7774

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - drawings
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report

