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VARLANT CALLER 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application claims priority to U.S. Provisional 
Application No. 62/064,717, filed on Oct. 16, 2014, entitled 
“VARIANT CALLER,” the content of which is hereby incor 
porated by reference in its entirety for all purposes. 

FIELD 

0002 This relates generally to processes and systems for 
identifying and quantifying variants in DNA sequencer reads, 
and in one example, to a variant caller process and system for 
identifying variants from a reference genomic sequence 
through the use of an error table to remove haplotype errors 
and then generating and scoring diplotypes (pairs of haplo 
types) to determine variants. 

BACKGROUND 

0003 Variant callers generally determine that there is a 
nucleotide difference in a DNA sequence read relative to a 
reference genomic sequence. There are several known variant 
callers, including those known as Platypus, the Genome 
Analysis Toolkit “GATK, and Freebayes. Platypus, for 
example, is a system for variant detection in high-throughput 
sequencing data that relies primarily on local realignment of 
reads and local assembly thereof. Platypus is described in 
greater detail in “Integrating mapping-, assembly- and hap 
lotype-based approaches for calling variants in clinical 
sequencing applications, which is incorporated herein by 
reference in its entirety. 

SUMMARY 

0004. In one example, a computer-implemented process 
for reading variants from a genome sample relative to a ref 
erence genomic sequence is provided. The process includes 
collecting a set of reads and generating a k-mer graph from 
the reads. For example, the k-mer graph can be constructed to 
represent all possible substrings of the collected reads. The 
k-mer graph may be reduced to a contiguous graph, and a set 
of possible haplotypes generated from the contiguous graph. 
The process may further generate an error table (e.g., from 
many previous samples to identify common sequencer 
errors), which provides a filter for common sequencer errors. 
The process may then generate a set of diplotypes based on 
the set of haplotypes and the error table and score the set of 
diplotypes to identify variants from the reference genome. 
Scoring the diplotypes may include determining a posterior 
probability for each of the diplotypes, with the highest scor 
ing diplotype(s) reported as the result. 
0005. In another example, a computer-implemented pro 
cess for generating an errortable of sequence data is provided. 
The exemplary process may include, at an electronic device 
having at least one processor and memory, determining a set 
of possible haplotypes from a set of collected reads from a 
genome sample, aligning the set of collected reads to a refer 
ence sample, determining sites where a read of the set of 
collected reads has a mismatch from the reference sample, 
and adding sites that have a mismatch to an error table. Deter 
mining the set of possible haplotypes may include generating 
a k-mer graph from the set of collected reads, reducing the 
generated k-mer graph to a contiguous graph, and determin 
ing the set of possible haplotypes from the contiguous graph. 

May 19, 2016 

0006 Additionally, systems, electronic devices, graphical 
user interfaces, and non-transitory computer readable storage 
medium (the storage medium including programs and 
instructions for carrying out one or more processes described) 
for variant callers and generating error tables are described. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0007. The present application can be best understood by 
reference to the following description taken in conjunction 
with the accompanying drawing figures, in which like parts 
may be referred to by like numerals. 
0008 FIG. 1 illustrates an exemplary calling process 
according to one embodiment. 
0009 FIGS. 2A-2C schematically illustrate exemplary 
processes described with reference to the process of FIG. 1. 
(0010 FIGS. 3A and 3B illustrate plots of different read 
models. 
0011 FIG. 4 illustrates an exemplary system and environ 
ment in which various embodiments of the invention may 
operate. 
0012 FIG. 5 illustrates an exemplary computing system. 

DETAILED DESCRIPTION OF THE INVENTION 

0013 The following description is presented to enable a 
person of ordinary skill in the art to make and use the various 
embodiments. Descriptions of specific devices, techniques, 
and applications are provided only as examples. Various 
modifications to the examples described herein will be 
readily apparent to those of ordinary skill in the art, and the 
general principles defined herein may be applied to other 
examples and applications without departing from the spirit 
and scope of the present technology. Thus, the disclosed 
technology is not intended to be limited to the examples 
described herein and shown, but is to be accorded the scope 
consistent with the claims. 

0014. This relates generally to a variant caller for identi 
fying variants from a reference genomic sequence. In one 
example, the variant caller includes a process for generating 
an error table to remove errors from haplotypes, generating 
diplotypes, and scoring the diplotypes to identify variants 
from a reference genomic sequence. Examples of the variant 
caller may provide several advancements over known callers 
such as Platypus, GATK, Freebayes, and others. For instance, 
although not present in every embodiment or example, 
advancements may include localization instead of alignment 
in reads (e.g., instead of piling up reads for alignment, use all 
reads to create one graph) and error calibration via an error 
table to guard against common sequencer errors. 
0015. In one embodiment, a variant caller is divided into 
several processing stages, with each stage providing its output 
as input to the next stage. The below example assumes the use 
of Binary Alignment/Map format “bam” or "BAM format, 
which is a binary format for storing sequence data; however, 
other data formats (e.g., Sequence Alignment/MAP format or 
“SAM format) are contemplated and possible. In one 
example, the processing of each region in each bam file is 
entirely separate from all other regions and bam files. 
0016 Broadly speaking, and in one example, to generate a 
call for a region, the following process is performed, which is 
illustrated as process 10 in FIG. 1. In conjunction with the 
description of process 10, FIGS. 2A-2C will be referenced to 
schematically illustrate various aspects of process 10. 
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0017. Initially, sequences of interest are obtained at 12. 
For example, reads can be collected from the bam file that 
overlap with the region of the call in any way. The processing 
may include using a short-read aligner, Such as BWA, 
BOWTIE, MAX, etc., to align reads 210 to a genomic region 
220 as illustrated schematically in FIG. 2A. The collected 
reads can then be clipped using their associated soft-clipping 
information. Auxiliary information from the aligner, e.g., 
base-to-base alignment information, can then be discarded, 
and the reads become simply a sequence of bases. (In some 
examples, filtering based on mapping quality can be option 
ally performed.) 
0018. A k-mer graph is then built at 14 from the collected 
reads, the k-mer graph representing all possible Substrings, of 
length k, that are included with the collected reads. An exem 
plary k-mer graph is illustrated in FIG. 2B, where k=3 (in 
practiceak between 20 and 30 may be used to ensure that the 
k-mers are unique, e.g., happen only in one place). For 
example, each read is scanned through to collect k-mers and 
k-mer transitions. Each edge is annotated with its associated 
probability of transition and each k-mer is annotated with the 
number of times it is seen as the origin of an edge. The 
probability of transition between k-mers A and B is the num 
ber of times k-mer B following k-mer A is seen divided by the 
number of times k-mer A is seen in total. 

0019. The k-mer graph can then be reduced to a contigu 
ous ("contig') graph at 16 for simplicity of processing. A 
contig graph generally illustrates a set of overlapping seg 
ments that together form a region of genomic information. 
For example, this step can join two k-mers if they always end 
up in the same path. In addition, the k-mer graph is filtered by 
discarding any k-mer that is seen less thana threshold number 
of times (e.g., less than four times) and discarding any edge 
that has a probability lower than a threshold (e.g., lower than 
3%). Once the k-mer graph is created, it can be checked for 
cycles, i.e., paths that converge on themselves. If the graph 
has cycles, it can be discarded, k increased, and the graph 
re-built. Thus, in this example, the k-mer graph will be built 
without cycles. 
0020 Haplotype generation can then be performed at 18. 
For example, once the contig graph is built, starting points for 
haplotype candidates can be found by looking at all contigs 
with no incoming edges (in-degree 0). These should be con 
tigs at the beginning of a region, though contigs in the middle 
of the region can also have this property if they were created 
due to noise. Then, taking those contigs as starting points, all 
possible paths through the contig graph are enumerated, with 
each path ending once it reaches a contig with no out-going 
edges (a dead end). Before moving on, all the paths can be 
turned into haplotype strings by joining their contigs. A sim 
plified example is illustrated in FIG. 2C, with a starting point 
indicated by “1” and running to “6”. Each possible path 
generates a possible haplotype, one of which is shown in the 
figure. 
0021. Once a set of possible haplotypes are generated, the 
exemplary process verifies (through one or more heuristics) 
that it has enough data to make a sufficiently good call at 20. 
For example, the process checks that each position in the 
desired region is covered by enough k-mers, and that there 
exists at least one haplotype that covers the entire region. If 
any of these checks fail, a no-call can be emitted for the entire 
region. It should be understood, that the heuristics can be 
adjusted for the desired confidence in the call. 
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0022. The set of possible haplotypes can further be 
“cleaned at 22 before any scoring process. The haplotypes 
that are generated from the contig graph are generally not 
Suitable for output or scoring. Accordingly, in one example, 
before scoring, they go through several correction phases. 
First, the haplotypes are clipped to the region of interest; since 
the caller uses all overlapping reads, most haplotypes will 
originally extend beyond the edges of the region in question. 
In one example, to clip the haplotype, it is aligned to the 
region in question, and any bases outside the alignment are 
discarded. Once haplotypes are clipped, errors in the haplo 
type can be corrected. For example, the process can generate 
an error table (described in greater detail below) from many 
samples that lists common sequencer errors, and this error 
table can be used to remove those errors from a set of possible 
haplotypes. These steps may result in a set of haplotypes that 
include duplicates, and the duplicates can be dropped. 
0023 Diplotypes can be generated from the haplotypes 
and scored at 24. For example, the set of N haplotypes can be 
combined with itself in order to generate all possible diplo 
types. For Nhaplotypes, there will be N(N+1)/2 unique diplo 
types. These diplotypes can then be scored, where the score of 
a diplotype is equal to its posterior probability, 
P(diplotypelreads). The highest-scoring diplotype can be 
reported as the result, with the confidence equal to the log of 
the ratio between the winning probability and the next best 
probability. The Diplotype scoring is described in greater 
detail below. 
0024. The results can then be formatted (if needed) and 
written out as requested at 26. For example, if the formats are 
JavaScript Objection Notation (ison” or “JSON”) or Variant 
Call Format (“vcf-full, no extra processing is necessary in 
this example, and the call is simply written out to disk. How 
ever, if the result format is Variant Call Format-Single Nucle 
otide Polymorphism (“vcf-snp'), the results are broken up 
into Smaller calls, which break up a region into its individual 
SNPs and indels. A single call in the vcf-snp format consists 
of all variation where the different variants are within some 
distance of each other (e.g., 10 bases). 
(0025. Diplotype Scoring 
0026. In one example, the above mentioned set of N hap 
lotypes can be combined with itself in order to generate all 
possible diplotypes. For N haplotypes, there will be N(N+ 
1)/2 unique diplotypes. These diplotypes are then scored; the 
score of a diplotype is equal to its posterior probability, 
P(diplotypelreads). The highest-scoring diplotype can be 
reported as the result, with the confidence equal to the log of 
the ratio between the winning probability and the next best 
probability. 
0027. An exemplary probabilistic scoring model used to 
determine the best diplotype out of a list of candidates will 
now be described. In one example, the score assigned to each 
diplotype is the posterior probability of the diplotype, 
P(diplotypelreads). Since the probabilities used for scoring 
are typically small, in one implementation log-probabilities 
are used. The posterior probability can be decomposed into a 
likelihood and a prior: 

P(diplotype reads)=(1/Z)P(reads diplotype) P(diplo 
type), 

where Z=P(reads) is some normalization constant, which is 
not computed. Since Z is independent of diplotype, it can be 
disregarded for the purposes of comparing two diplotypes. 
The prior, P(diplotype), and the likelihood, 
P(reads diplotype), can then be computed separately. 
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0028. In order to compute the prior, it can be assumed, in 
this example, that most regions are similar to the reference. 
The probability of a diplotype is then the probability that the 
diplotype was generated via a biological mutation from the 
reference. This example assumes that this is simply the prod 
uct of probabilities of the haplotypes being generated from 
the reference (which should be understood to not be entirely 
accurate due to selection, but generally sufficient). Thus, the 
probability of a diplotype can be expressed as: 

P(diplotype)=P(haplotype 1) P(haplotype 2) 

0029. The probability of a haplotype being generated is 
the sum of the probabilities of it being generated in all the 
possible ways, where each possible alignment of the haplo 
type to the reference corresponds to a different way of gen 
erating the haplotype. However, doing a sum over all align 
ments can be computationally intractable, so this example 
assumes that the majority of the probability mass is contained 
in a single alignment, the one that has the highest probability. 
Thus, in order to compute P(haplotype), the process aligns the 
haplotype to the reference. The match, mismatch, gap-open, 
and gap-extend parameters used during alignment corre 
spond to log-probabilities of those events happening due to 
biological mutations. Since alignment maximizes the score, it 
will maximize the log probability, thus yielding the highest 
probability alignment. For instance, a one-base change hap 
pens approximately every thousand bases, so the mismatch 
parameter will be log(1/1000). 
0030 The computation of the likelihood 
P(reads diplotype) uses a similar process. First, the example 
assumes that all reads are independent, which allows the 
likelihood to be rewritten as: 

P(reads diplotype)-product i{P(read idiplotype) 

0031. Then, the example assumes that a read can come 
either from the two haplotypes of a diplotype (with equal 
probability) or that it could be generated randomly from 
somewhere else in the genome (with very low probability). 
The second case effectively models aligner error and rare 
outliers. Thus, the probability of a read can be expressed as: 

P(read diplotype)=epsilon P(read is random)+(0.5- 
epsilon)P(read haplotype 1)+(0.5-epsilon)P 
(readhaplotype 2). 

0032. The probability of a read being randomly generated 
is equal to each base being generated; since there are four 
equally likely bases: 

P(read is random)--0.25 len(read). 

0033. The probability of a read given a haplotype can be 
found using alignment. This example assumes that the hap 
lotype is the true sequence of the underlying genome, and that 
the read is generated from this sequence using an errorful 
sequencing process. Thus, the alignment parameters should 
be the rates of sequencer error, the mismatch parameter, for 
instance, should be the log of the probability that a sequencer 
makes a one base change at an arbitrary base. Like with the 
prior, the process computes the best alignment, and uses the 
score as the probability. 
0034. It should be understood by those of ordinary skill in 
the art that other scoring processes may be used instead of or 
in addition to that described here, e.g., including other param 
eters, values, assumptions, and computational processes. 
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0035 Error Table Generation 
0036 Generally, and in one example, the error table acts 
like a filter to guard against common sequencer error, which 
can make Some regions very difficult to call otherwise. In one 
example, in order to generate the error table, several hundred 
(for example, 100-300, or more) samples that contain data for 
the same region are used. In this example, error table genera 
tion for a given region goes through the following steps: 

0037 1. For each sample, align the reads to the refer 
ence. For each base in the reference, count the number of 
times different variants are seen there (variants being the 
four bases, different length deletions, and different 
insertions). This process can be done separately for the 
forwards and backwards reads. 

0038 2. Find sites where there is more than some 
threshold of variation, that is, where more than some 
threshold percent of reads have a non-reference allele. 
For example, the threshold can be 1%. These sites are 
candidate sites to go into the error table. 

0039. 3. Next, the error table sites are filtered. Exem 
plary steps in filtering will be described in greater detail 
below, in the next section. 

0040. 4. The filters remove some of the sites from the 
error table. After the filtering, the sites are compared to 
Single Nucleotide Polymorphism Database “dbSNP” 
(and potentially multiple dbSNPVariant Caller Formats 
“VCFs). Any sites that occur in dbSNP and are com 
mon can be removed from the error table. 

0041 5. The error table is written to disk as a large 
JSON file, where the record for each site indicates the 
reference base and the frequency of each alternate base. 
Any alternate bases with frequency greater than, e.g., 
1%, may be filtered. The cutoff for filtering can be con 
figurable in the system itself, so being in the error table 
is not enough to guarantee filtering. However, the cutoff 
is fairly similar. For example, the process can filterany 
thing with greater than 1.5% frequency that is in the 
error table. 

0042. The error table can be generated once per region of 
interest and then stored for later use. 
0043. Error Table Filtering Statistics 
0044 As mentioned in step 3 (above) of the error table 
generation process, high-variance sites are all candidates for 
the error table. Candidate sites can be filtered out through a 
series of statistical tests (as well as through comparison to 
dbSNP). The following describes an exemplary procedure 
used for filtering the candidate error table sites, including two 
exemplary tests. 
0045 First, for each site, a Hardy-Weinberg test statistic 
can be computed. This can be done by very naive genotyping: 
for example, if a base is seen in a sample less than 20% of the 
reads, it is considered homozygous reference (“HOMREF): 
if it is seen between 20% to 75% of the reads it is considered 
heterozygous (“HET); if it is seen greater than 75% of the 
reads it is considered homozygous alternate (“HOMALT). 
Then, the samples are binned in to these three categories 
(HOMREF, HET, and HOM ALT), and a Hardy-Weinberg 
test is done using the standard Chi-Squared Statistic against 
an alpha of 0.5%. Thus, if there is a chance that this site in the 
error table could have come from a real SNP, it is considered 
for removal from the error table. 
0046) However, these sites are not immediately removed 
from the error table in this example. In order to be removed 
from the error table, they must also pass a Bayes factor test. 
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The Bayes factor test computes the ratio of probabilities of the 
data given two different models, an SNP model and a noise 
model, as follows: 

B=P(dataSNP model), P(datalinoise model) 

0047. If the Bayes factor is high (e.g., greater than 10), the 
data has a higher probability of being from the SNP model, 
and thus the site is removed from the error table. 

0.048. The two models are models of the read fraction 
distributions. If the frequency of an allele is 20%, the allele 
may be noise, and the distribution of frequencies in the 
samples will all be around 20% —that is, in each sample, 
about 20% of the reads will have this allele. Alternatively, the 
allele may be real, in which case some samples will have close 
to 100% of the allele, some samples will have 0%, and some 
samples will have 50% (corresponding to HOMALT HOM 
REF, and HET). 
0049. These two models have a different number of 
parameters. Generally, in the noise model the probability of 
observing noise in a read (which corresponds to the observed 
allele frequency) is needed, and in the SNP model, the prob 
ability of HOMALT HOMREF, and HET samples (which 
only two parameters, since these two must Sum to one) is 
needed. In order to compare models with different numbers of 
parameters, the parameters can be integrated out. Thus, to 
compute P(datalinoise model), the process can integrate 
P(datalnoise model, noise probability) over all possible val 
ues of the noise probability (from 0 to 1). Similarly, in order 
to compute P(dataSNP model) the process can integrate 
P(dataSNP model, hom ref proportion, het proportion) over 
all possible values of the hom ref and het proportions (the 
hom alt proportion is one minus those two). (The area of 
integration is constrained such that the Sum of those three is 
exactly one and none of them are outside the 0, 1 range.) 
This integration can be implemented using Scientific Python 
“SciPy numerical integration functions (or equivalent). 
0050. Both of the models (the noise and SNP model) are 
based on the assumption that reads are being taken from some 
sort of Bernoulli distribution; either the process sees the allele 
in question, or it does not, with some probability p. For the 
noise model, the p is the parameter (the noise probability), 
and the process integrates over that p. The probability 
P(datalinoise model, p) can be computed by using the bino 
mial distribution probability mass function, where p is the 
probability the process is seeing the allele in question. The X 
and n parameters to the PMF are simply how many times that 
allele was seen and how many reads total in the sample. This 
allows for computing the probability of a given sample, and 
multiplying all those probabilities together over all the 
samples in the dataset provides the overall probability of the 
model given aparameterp. (Note: In order to avoid underflow 
in the exemplary calculations, the process may multiply each 
probability by 10; thus, the probability computed is scaled by 
10N, where N is the number of samples in the data set.) 
0051. For the SNP model, the exemplary process includes 
three binomial distributions, one for the chance that the 
sample is HOMREF, one for HET, and one for HOMALT. 
However, in each case, the process does not know the prob 
ability p, because even if the sample is a HOMREF or a HOM 
ALT, contamination could still yield some reference. Simi 
larly, for the case of a HET, contamination and other effects 
(such as mapping quality) could yield a p that is not exactly 
50%. To combat this, the process may let p be a random 
variable with a beta distribution; integrating over all possible 
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values of p gives the beta-binomial distribution, which can be 
used instead of a simple binomial in these three cases in the 
SNP model. In order to model the prior information (that is 
HOMREF, HET, or HOMALT), the process can use alpha 
and beta parameters for the beta prior that appropriately skew 
our distributions. For the HOMREF and HOMALT cases the 
process and use alpha=20 and beta=1 (or vice versa), which 
yields a plot like that shown in FIG. 3A. For the HET case the 
process can use alpha=20 and beta=20, which yields a plot 
like that shown in FIG. 3B. 

0.052 Any sites that fail the Bayes factor test are assumed 
to be noise that happens to be in Hardy-Weinberg proportions, 
and is thus kept in the error table. 
0053. In addition to the Bayes factor test, and in one 
example, in order for a site to be kept from the error table, it 
must pass a Strand Bias test. The Strand Bias test is fairly 
straightforward: the reads for the reference and for the allele 
are aggregated over all the samples, while keeping track of 
which strand the counts are on. The overall allele frequency p 
is also computed. Then, compute the probability of the for 
ward reads (assuming that they come from a binomial distri 
bution with probability p), and compute the same probability 
for the backward reads. If the ratio of those probabilities is 
very high or very low, it indicates that the distribution of the 
alleles is very biased towards one strand or the other. Thus, if 
the log of that ratio has magnitude greater than some thresh 
old (e.g., greater than 10), the site is deemed Strand biased and 
included in the error table. 

0054 Accordingly, in one example, if a site passes the 
Hardy-Weinberg test, the Bayes factor test, and the Strand 
Bias test, then it is removed from the error table candidate 
sites. 

0055. It should be recognized that various other tests, or 
combination of tests, may be employed to generate (or filter) 
the error table. Further, other variables or thresholds may be 
employed with the examples described herein to determine 
differences between sequencer errors and real variations. 
0056 
0057 The following sections describe the practical instal 
lation and usage of an exemplary variant caller and tools that 
may be provided with it. The exemplary variant caller 
described herein can be implemented as a standard Python 
package (in one example, the only dependency is the C++ 
library seqan for sequence alignment); of course, one of ordi 
nary skill will recognize that other programming languages, 
data formats, and the like are possible and contemplated. 
0058. In one example, the exemplary variant caller relies 
on a pre-built error table (e.g., as described herein) for error 
correction. In order to generate the error table, the process 
collects a plurality of samples (e.g., several hundred samples 
or more) with data for the regions for calling. An error table 
can then be generated for a specific region (such as chr1:100 
200) via the following exemplary command: 

Command-Line Interface: 

python -m kcall gen-table 
--reference ?path?to/hg19.fa 
--output my error-table.err 
--from clirectory with bam/files 
-threads SNTHREADS 
--region chr1:100-200 
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0059 Alternatively, the process can provide a *.bed file: 

python -m kcall gen-table 
--reference ?path?to/hg19.fa 
--output my error-table.err 
--from clirectory with bam/files 
--threads SNTHREADS 
--bed path?tomy/bed file.bed 

0060 Finally, with a list of *.bam files instead of a direc 
tory, the process can provide that list instead to --from: 

python -m kcall gen-table 
--reference ?path?to/hg19.fa 
--output my error-table.err 
--from path? to/list-of-bam-files.txt 
--threads SNTHREADS 
--bed path?tomy/bed file.bed 

--dbSnp dbSnip.vcf 

0061. If a user desires to parallelize the error table genera 
tion over several nodes in a cluster, the process can spawn a 
separate job for each region in the *.bed file. The process can 
then combine all of the generated pieces into a single table. 
Since the error table is a simple son format, the process can 
use the jq tool to do this: 
# Assume all your error table pieces are stored in pieces/as 
json files.cat pieces/jsonliq -s add combined table.json' 
0062. With an error table generated, the process can run 
the Kcall variant caller with the following command: 

python -m kcall call 
--reference ?path?to/hg19.fa 
--errors my error-table.json 
--bam pathitosample.bam 
--threads SNTHREADS 
--bed path? to bed/file.bed 
--Output-ison output.json 
--Output-vcf-full full.vcf 

--Output-vcf-Smp Smp.wcf 

0063. The exemplary variant caller can provide output in 
at least three formats, for example:json, Vcf-Smp, and Vcf-full, 
under the corresponding flags shown above. The process may 
have any Subset of these flags; if none are provided, the 
process outputs the Vcf-Snp format to standard out. The son 
format is generally the simplest, and simply yields a JSON 
file with a dictionary where each key is a string describing the 
region (such as “chr1:100-200) and the value is either a 
string describing the no-call reason (if the region was no 
called) or a dictionary with diplotype and confidence keys 
providing the sequences for the region. The Vcf-full format 
outputs the same information as a VCF, where each region 
corresponds to exactly one row. Note that while information 
about no-calls is available from the VCFs (because the geno 
type GT field will be ./.), the no-call reason is available from 
the JSON output format. Finally, the vcf-snp format breaks up 
the output VCF via individual haplotype calls, joining 
together SNPS if they are closer than a few bases apart. This 
generates calls similar to GATK and Freebayes. 
0064. Once exemplary variant caller has generated calls, 
the process can compare them to another set of calls. For 
example, the variant caller may include an integrated com 
parison tool for this purpose, which finds base-by-base dif 
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ferences indexed by their location in the reference genome. 
This allows the process to compare VCFs with different out 
put formats, so a call set can easily be compared to Freebayes, 
GATK1, or GATK2 call sets. In order to compare two VCFs, 
the following command can be used: 

python -m kcall compare first vicf.vcfsecond Vcf.vcf 
--reference ?path?to/hg19.fa 
--Output output.diff 
--stats output.stats 
--name SSAMPLE NAME 
--bed path to bed/file.bed 

0065. The generated output is contained in two tab-sepa 
rated tables (output.diff and output. stats) above. These two 
TSV files contain the differences between the two call sets 
and some statistics about the frequency of the differences, 
respectively. 
0.066 Exemplary Architecture and Processing Environ 
ment: 

0067. An exemplary environment and system in which 
certain aspects and examples of the systems and processes 
described herein may operate. As shown in FIG. 4, in some 
examples, the system can be implemented according to a 
client-server model. The system can include a client-side 
portion executed on a user device 102 and a server-side por 
tion executed on a server system 110. User device 102 can 
include any electronic device. Such as a desktop computer, 
laptop computer, tablet computer, PDA, mobile phone (e.g., 
Smartphone), or the like. 
0068. User devices 102 can communicate with server sys 
tem 110 through one or more networks 108, which can 
include the Internet, an intranet, or any other wired or wireless 
public or private network. The client-side portion of the 
exemplary system on user device 102 can provide client-side 
functionalities, such as user-facing input and output process 
ing and communications with server System 110. Server sys 
tem 110 can provide server-side functionalities for any num 
ber of clients residing on a respective user device 102. 
Further, server system 110 can include one or caller servers 
114 that can include a client-facing I/O interface 122, one or 
more processing modules 118, data and model storage 120, 
and an I/O interface to external services 116. The client 
facing I/O interface 122 can facilitate the client-facing input 
and output processing for caller servers 114. The one or more 
processing modules 118 can include various issue and candi 
date scoring models as described herein. In some examples, 
caller server 114 can communicate with external services 
124. Such as text databases, Subscriptions services, govern 
ment record services, and the like, through network(s) 108 for 
task completion or information acquisition. The I/O interface 
to external services 116 can facilitate Such communications. 
0069. Server system 110 can be implemented on one or 
more standalone data processing devices or a distributed net 
work of computers. In some examples, server system 110 can 
employ various virtual devices and/or services of third-party 
service providers (e.g., third-party cloud service providers) to 
provide the underlying computing resources and/or infra 
structure resources of server system 110. 
0070 Although the functionality of the caller server 114 is 
shown in FIG. 4 as including both a client-side portion and a 
server-side portion, in Some examples, certain functions 
described herein (e.g., with respect to user interface features 
and graphical elements) can be implemented as a standalone 
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application installed on a user device. In addition, the division 
of functionalities between the client and server portions of the 
system can vary in different examples. For instance, in some 
examples, the client executed on user device 102 can be a thin 
client that provides only user-facing input and output process 
ing functions, and delegates all other functionalities of the 
system to a backend server. 
0071. It should be noted that server system 110 and clients 
102 may further include any one of various types of computer 
devices, having, e.g., a processing unit, a memory (which 
may include logic or software for carrying out some or all of 
the functions described herein), and a communication inter 
face, as well as other conventional computer components 
(e.g., input device, such as a keyboard/touch screen, and 
output device, such as display). Further, one or both of server 
system 110 and clients 102 generally includes logic (e.g. http 
web server logic) or is programmed to format data, accessed 
from local or remote databases or other sources of data and 
content. To this end, server system 110 may utilize various 
web data interface techniques such as Common Gateway 
Interface (CGI) protocol and associated applications (or 
“scripts), Java R “servlets, i.e., Java R applications running 
on server system 110, or the like to present information and 
receive input from clients 102. Server system 110, although 
described herein in the singular, may actually comprise plural 
computers, devices, databases, associated backend devices, 
and the like, communicating (wired and/or wireless) and 
cooperating to perform some or all of the functions described 
herein. Server system 110 may further include or communi 
cate with account servers (e.g., email servers), mobile serv 
ers, media servers, and the like. 
0072. It should further be noted that although the exem 
plary methods and systems described herein describe use of a 
separate server and database systems for performing various 
functions, other embodiments could be implemented by stor 
ing the Software or programming that operates to cause the 
described functions on a single device or any combination of 
multiple devices as a matter of design choice so long as the 
functionality described is performed. Similarly, the database 
system described can be implemented as a single database, a 
distributed database, a collection of distributed databases, a 
database with redundant online or offline backups or other 
redundancies, or the like, and can include a distributed data 
base or storage network and associated processing intelli 
gence. Although not depicted in the figures, server system 110 
(and other servers and services described herein) generally 
include Such art recognized components as are ordinarily 
found in server systems, including but not limited to proces 
sors, RAM, ROM, clocks, hardware drivers, associated stor 
age, and the like (see, e.g., FIG. 5, discussed below). Further, 
the described functions and logic may be included in Soft 
ware, hardware, firmware, or combination thereof. 
0073 FIG. 5 depicts an exemplary computing system 
1400 configured to perform any one of the above-described 
processes, including the various calling and scoring models. 
In this context, computing system 1400 may include, for 
example, a processor, memory, storage, and input/output 
devices (e.g., monitor, keyboard, disk drive, Internet connec 
tion, etc.). However, computing system 1400 may include 
circuitry or other specialized hardware for carrying out some 
or all aspects of the processes. In some operational settings, 
computing system 1400 may be configured as a system that 
includes one or more units, each of which is configured to 
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carry out some aspects of the processes either in Software, 
hardware, or some combination thereof. 
0074 FIG. 5 depicts computing system 1400 with a num 
ber of components that may be used to perform the above 
described processes. The main system 1402 includes a moth 
erboard 1404 having an input/output (“I/O”) section 1406, 
one or more central processing units (“CPU”) 1408, and a 
memory section 1410, which may have a flash memory card 
1412 related to it. The I/O section 1406 is connected to a 
display 1424, a keyboard 1414, a disk storage unit 1416, and 
a media drive unit 1418. The media drive unit 1418 can 
read/write a computer-readable medium 1420, which can 
contain programs 1422 and/or data. 
0075. At least some values based on the results of the 
above-described processes can be saved for Subsequent use. 
Additionally, a non-transitory computer-readable medium 
can be used to store (e.g., tangibly embody) one or more 
computer programs for performing any one of the above 
described processes by means of a computer. The computer 
program may be written, for example, in a general-purpose 
programming language (e.g., Pascal, C, C++, Python, Java) or 
Some specialized application-specific language. 
0076 Various exemplary embodiments are described 
herein. Reference is made to these examples in a non-limiting 
sense. They are provided to illustrate more broadly applicable 
aspects of the disclosed technology. Various changes may be 
made and equivalents may be substituted without departing 
from the true spirit and scope of the various embodiments. In 
addition, many modifications may be made to adapt a par 
ticular situation, material, composition of matter, process, 
process act(s) or step(s) to the objective(s), spirit or scope of 
the various embodiments. Further, as will be appreciated by 
those with skill in the art, each of the individual variations 
described and illustrated herein has discrete components and 
features that may be readily separated from or combined with 
the features of any of the other several embodiments without 
departing from the scope or spirit of the various embodi 
ments. All such modifications are intended to be within the 
Scope of claims associated with this disclosure. 
What is claimed is: 
1. A computer-implemented method for determining vari 

ants from a genome sample relative to a reference genomic 
sequence, the method comprising: 

at an electronic device having at least one processor and 
memory: 
accessing an error table of sequence data from previ 

ously sequenced samples; 
determining a set of possible haplotypes from a set of 

collected reads from a genome sample: 
generating a set of diplotypes based on the set of possible 

haplotypes and the error table, wherein the set of 
possible haplotypes is filtered by the error table: 

scoring the set of diplotypes; and 
outputting variants based on scoring the set of diplo 

types. 
2. The method of claim 1, further comprising: 
generating a k-mer graph from a set of collected reads: 
reducing the generated k-mer graph to a contiguous graph; 

and 
generating the set of possible haplotypes from the contigu 

ous graph. 
3. The method of claim 1, wherein scoring the set of diplo 

types further comprises determining a posterior probability 
for each diplotype. 
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4. The method of claim 1, further comprising generating 
the error table, wherein generating the error table comprises: 

aligning reads to a reference sample: 
determining sites where a read has a mismatch from the 

reference sample; and 
adding sites that have a mismatch to the error table. 
5. The method of claim 4, wherein generating the error 

table further comprises filtering sites from the error table that 
are not associated with sequencer error. 

6. The method of claim 4, wherein generating the error 
table further comprises: 

filtering sites from the error table that fail the threshold 
using one or more of a Hardy-Weinberg test, Bayes 
Factor test, or a Strand Bias Test. 

7. A computer-implemented method for generating an 
error table of sequence data, the method comprising: 

at an electronic device having at least one processor and 
memory: 
determining a set of possible haplotypes from a set of 

collected reads from a genome sample: 
aligning the set of collected reads to a reference sample: 
determining sites where a read of the set of collected 

reads has a mismatch from the reference sample; and 
adding sites that have a mismatch to an error table. 

8. The method of claim 7, wherein determining the set of 
possible haplotypes comprises: 

generating a k-mer graph from the set of collected reads: 
reducing the generated k-mer graph to a contiguous graph; 

and 
determining the set of possible haplotypes from the con 

tiguous graph. 
9. A non-transitory computer-readable storage medium 

comprising computer-executable instructions for 
accessing an error table of sequence data from previously 

sequenced samples; 
determining a set of possible haplotypes from a set of 

collected reads from a genome sample: 
generating a set of diplotypes based on the set of possible 

haplotypes and the error table, wherein the set of pos 
sible haplotypes is filtered by the error table: 

scoring the set of diplotypes; and 
outputting variants based on scoring the set of diplotypes. 
10. The non-transitory computer-readable storage medium 

of claim 9, further comprising: 
generating a k-mer graph from a set of collected reads: 
reducing the generated k-mer graph to a contiguous graph; 

and 
generating the set of possible haplotypes from the contigu 

ous graph. 
11. The non-transitory computer-readable storage medium 

of claim 9, wherein scoring the set of diplotypes further 
comprises determining a posterior probability for each diplo 
type. 

12. The non-transitory computer-readable storage medium 
of claim 9, further comprising generating the error table, 
wherein generating the error table comprises: 

aligning reads to a reference sample: 

May 19, 2016 

determining sites where a read has a mismatch from the 
reference sample; and 

adding sites that have a mismatch to the error table. 
13. The non-transitory computer-readable storage medium 

of claim 12, wherein generating the error table further com 
prises filtering sites from the error table that are not associated 
with sequencer error. 

14. The non-transitory computer-readable storage medium 
of claim 12, wherein generating the error table further com 
prises: 

filtering sites from the error table that fail the threshold 
using one or more of a Hardy-Weinberg test, Bayes 
Factor test, or a Strand Bias Test. 

15. A system comprising: 
one or more processors; 
memory; and 
one or more programs, wherein the one or more programs 

are stored in the memory and configured to be executed 
by the one or more processors, the one or more programs 
including instructions for: 
accessing an error table of sequence data from previ 

ously sequenced samples; 
determining a set of possible haplotypes from a set of 

collected reads from a genome sample: 
generating a set of diplotypes based on the set of possible 

haplotypes and the error table, wherein the set of 
possible haplotypes is filtered by the error table: 

scoring the set of diplotypes; and 
outputting variants based on scoring the set of diplo 

types. 
16. The system of claim 9, further comprising: 
generating a k-mer graph from a set of collected reads: 
reducing the generated k-mer graph to a contiguous graph; 

and 
generating the set of possible haplotypes from the contigu 

ous graph. 
17. The system of claim 9, wherein scoring the set of 

diplotypes further comprises determining a posterior prob 
ability for each diplotype. 

18. The system of claim 9, further comprising generating 
the error table, wherein generating the error table comprises: 

aligning reads to a reference sample: 
determining sites where a read has a mismatch from the 

reference sample; and 
adding sites that have a mismatch to the error table. 
19. The system of claim 18, wherein generating the error 

table further comprises filtering sites from the error table that 
are not associated with sequencer error. 

20. The system of claim 18, wherein generating the error 
table further comprises: 

filtering sites from the error table that fail the threshold 
using one or more of a Hardy-Weinberg test, Bayes 
Factor test, or a Strand Bias Test. 
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