US 20160140289A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2016/0140289 A1

GIBIANSKY et al. 43) Pub. Date: May 19, 2016
(54) VARIANT CALLER (52) US.CL
CPC ... GO6F 19/22 (2013.01); GO6N 7/005
(71) Applicant: (CI;);)nsyl, Inc., South San Francisco, CA (2013.01); GO6N 3/126 (2013.01)
72) Inventors: Andrew Leonidovich GIBIANSKY,
72 Claremont, CA (US); Imran Saeedul 67 ABSTRACT
HAQUE, San Francisco, CA (US);
Jared Robert MAGUIRE, San
Francisco, CA (US); Alexander De Jong Processes and systems for reading variants from a genome
ROBERTSON, San Francisco, CA (US) sample relative to a reference genomic sequence are pro-
vided. An exemplary process includes collecting a set reads
(21) Appl. No.: 14/884,656 and generating a k-mer graph from the reads. For example,
- the k-mer graph can be constructed to represent all possible
(22) Filed: Oct. 15,2015 substrings of the collected reads. The k-mer graph may be
Related U.S. Application Data reduced to a contiguous graph, and a set of possible haplo-
. L types generated from the contiguous graph. The process may
(60) Provisional application No. 62/064,717, filed on Oct. further generate, the error table providing a filter for common
16, 2014. sequencer errors. The process may then generate a set of
Publication Classification diplotypes based on the set of haplotypes and the generated
error table and score the set of diplotypes to identify variants
(51) Int.CL from the reference genome. Scoring the diplotypes may
GOG6F 19/22 (2006.01) include determining a posterior probability for each of the
GO6N 3/12 (2006.01) diplotypes, with the highest scoring diplotype(s) reported as
GO6N 7/00 (2006.01) the result.

Traverse graph to
find all possible paths
(candidate haplotypes)

1 ao

2 /

3 N\
4. GA‘?

5

6

. CT(%

. ATC
. TCA

ACTGATCA

One possible haplotype
(this graph has three)

(('&/}

st

Patent Application Publication = May 19, 2016 Sheet 1 of 7 US 2016/0140289 A1

Process 10

Collect reads, e.g., from a BAM file
12

v

Build k-mer graph
14

v

Reduce k-mer graph to Contig graph
16

!

Generate Haplotypes
18

v

Verify Data
20

v

Haplotype cleaning / error table
generation
22

v

Diplotype generation and scoring
24

v

Results formatting and outputting
26

FIG. 1

Ve "Old

May 19, 2016 Sheet 3 of 7 US 2016/0140289 A1

Patent Application Publication

™,

\ fw.%&

juiod Sunels x\m/

T
N

juiod
duipus 9jqIssod

SR
Con)
fﬁmﬂ/

g¢ 'Old

TN

DL

May 19, 2016 Sheet 4 of 7 US 2016/0140289 A1

Patent Application Publication

(934y3 sey ydeus siy1)
adAlojdey a|qissod auQ

prdy

J¢ "Old

YILVBLOY
Yol "9
A1V S
iV5 7
¥Ol €
2313 ¢
i3¥ "1

(sadAjojdey a1epipued)
syjed ajqissod jje pui
01 ydeud asianeq)

Patent Application Publication

May 19, 2016 Sheet 5 of 7

W

US 2016/0140289 A1

FIG. 3B

FIG. 3A

May 19, 2016 Sheet 6 of 7 US 2016/0140289 A1

Patent Application Publication

)

201
8o1neQ

weld

¥ "Old

SRR

20k
801A8Qg
IVE 8]

)

N——

80+

vel MiomiaN

S80IAIBS
jeusaxg

N
so1neq

udio

5

¥ Y
S80IAIOS [BUIBIXT O] 80BUBIU| O/l =T
sid o1
ot Q11 SS|npony |Soeusiu
S|SPOW B Bleg Buissavoid on
V11 Jeases

01} Wwolshg Jenies

0ot
wolsAg

May 19, 2016 Sheet 7 of 7 US 2016/0140289 A1

Patent Application Publication

9lL¥i

"

Nttt b b mh
P m

0cvi

VRN)

K3

F

G "Old

(v
ABOPEIN
HEY 1
civl F 4
¥
i, RO
vl a0
oo
l0id
s -
govi-
R 3
ARSI
yeyl -

CHVDEAIY

YLyl

00vi
wasAg

US 2016/0140289 Al

VARIANT CALLER

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Application No. 62/064,717, filed on Oct. 16, 2014, entitled
“VARIANT CALLER,” the content of which is hereby incor-
porated by reference in its entirety for all purposes.

FIELD

[0002] This relates generally to processes and systems for
identifying and quantifying variants in DNA sequencer reads,
and in one example, to a variant caller process and system for
identifying variants from a reference genomic sequence
through the use of an error table to remove haplotype errors
and then generating and scoring diplotypes (pairs of haplo-
types) to determine variants.

BACKGROUND

[0003] Variant callers generally determine that there is a
nucleotide difference in a DNA sequence read relative to a
reference genomic sequence. There are several known variant
callers, including those known as Platypus, the Genome
Analysis Toolkit “GATK”, and Freebayes. Platypus, for
example, is a system for variant detection in high-throughput
sequencing data that relies primarily on local realignment of
reads and local assembly thereof. Platypus is described in
greater detail in “Integrating mapping-, assembly- and hap-
lotype-based approaches for calling variants in clinical
sequencing applications,” which is incorporated herein by
reference in its entirety.

SUMMARY

[0004] In one example, a computer-implemented process
for reading variants from a genome sample relative to a ref-
erence genomic sequence is provided. The process includes
collecting a set of reads and generating a k-mer graph from
the reads. For example, the k-mer graph can be constructed to
represent all possible substrings of the collected reads. The
k-mer graph may be reduced to a contiguous graph, and a set
of possible haplotypes generated from the contiguous graph.
The process may further generate an error table (e.g., from
many previous samples to identify common sequencer
errors), which provides a filter for common sequencer errors.
The process may then generate a set of diplotypes based on
the set of haplotypes and the error table and score the set of
diplotypes to identify variants from the reference genome.
Scoring the diplotypes may include determining a posterior
probability for each of the diplotypes, with the highest scor-
ing diplotype(s) reported as the result.

[0005] In another example, a computer-implemented pro-
cess for generating an error table of sequence data is provided.
The exemplary process may include, at an electronic device
having at least one processor and memory, determining a set
of possible haplotypes from a set of collected reads from a
genome sample, aligning the set of collected reads to a refer-
ence sample, determining sites where a read of the set of
collected reads has a mismatch from the reference sample,
and adding sites that have a mismatch to an error table. Deter-
mining the set of possible haplotypes may include generating
a k-mer graph from the set of collected reads, reducing the
generated k-mer graph to a contiguous graph, and determin-
ing the set of possible haplotypes from the contiguous graph.

May 19, 2016

[0006] Additionally, systems, electronic devices, graphical
user interfaces, and non-transitory computer readable storage
medium (the storage medium including programs and
instructions for carrying out one or more processes described)
for variant callers and generating error tables are described.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present application can be best understood by
reference to the following description taken in conjunction
with the accompanying drawing figures, in which like parts
may be referred to by like numerals.

[0008] FIG. 1 illustrates an exemplary calling process
according to one embodiment.

[0009] FIGS. 2A-2C schematically illustrate exemplary
processes described with reference to the process of FIG. 1.

[0010] FIGS. 3A and 3B illustrate plots of different read
models.
[0011] FIG. 4 illustrates an exemplary system and environ-

ment in which various embodiments of the invention may
operate.
[0012] FIG. 5 illustrates an exemplary computing system.

DETAILED DESCRIPTION OF THE INVENTION

[0013] The following description is presented to enable a
person of ordinary skill in the art to make and use the various
embodiments. Descriptions of specific devices, techniques,
and applications are provided only as examples. Various
modifications to the examples described herein will be
readily apparent to those of ordinary skill in the art, and the
general principles defined herein may be applied to other
examples and applications without departing from the spirit
and scope of the present technology. Thus, the disclosed
technology is not intended to be limited to the examples
described herein and shown, but is to be accorded the scope
consistent with the claims.

[0014] This relates generally to a variant caller for identi-
fying variants from a reference genomic sequence. In one
example, the variant caller includes a process for generating
an error table to remove errors from haplotypes, generating
diplotypes, and scoring the diplotypes to identify variants
from a reference genomic sequence. Examples of the variant
caller may provide several advancements over known callers
such as Platypus, GATK, Freebayes, and others. For instance,
although not present in every embodiment or example,
advancements may include localization instead of alignment
in reads (e.g., instead of piling up reads for alignment, use all
reads to create one graph) and error calibration via an error
table to guard against common sequencer errors.

[0015] In one embodiment, a variant caller is divided into
several processing stages, with each stage providing its output
as input to the next stage. The below example assumes the use
of Binary Alignment/Map format “bam” or “BAM” format,
which is a binary format for storing sequence data; however,
other data formats (e.g., Sequence Alignment/M AP format or
“SAM” format) are contemplated and possible. In one
example, the processing of each region in each bam file is
entirely separate from all other regions and bam files.
[0016] Broadly speaking, and in one example, to generate a
call for aregion, the following process is performed, which is
illustrated as process 10 in FIG. 1. In conjunction with the
description of process 10, FIGS. 2A-2C will be referenced to
schematically illustrate various aspects of process 10.

US 2016/0140289 Al

[0017] Initially, sequences of interest are obtained at 12.
For example, reads can be collected from the bam file that
overlap with the region of the call in any way. The processing
may include using a short-read aligner, such as BWA,
BOWTIE, MAX, etc., to align reads 210 to a genomic region
220 as illustrated schematically in FIG. 2A. The collected
reads can then be clipped using their associated soft-clipping
information. Auxiliary information from the aligner, e.g.,
base-to-base alignment information, can then be discarded,
and the reads become simply a sequence of bases. (In some
examples, filtering based on mapping quality can be option-
ally performed.)

[0018] A k-mer graph is then built at 14 from the collected
reads, the k-mer graph representing all possible substrings, of
length k, that are included with the collected reads. An exem-
plary k-mer graph is illustrated in FIG. 2B, where k=3 (in
practice a k between 20 and 30 may be used to ensure that the
k-mers are unique, e.g., happen only in one place). For
example, each read is scanned through to collect k-mers and
k-mer transitions. Each edge is annotated with its associated
probability of transition and each k-mer is annotated with the
number of times it is seen as the origin of an edge. The
probability of transition between k-mers A and B is the num-
ber of times k-mer B following k-mer A is seen divided by the
number of times k-mer A is seen in total.

[0019] The k-mer graph can then be reduced to a contigu-
ous (“contig”) graph at 16 for simplicity of processing. A
contig graph generally illustrates a set of overlapping seg-
ments that together form a region of genomic information.
For example, this step can join two k-mers if they always end
up in the same path. In addition, the k-mer graph is filtered by
discarding any k-mer that is seen less than a threshold number
of times (e.g., less than four times) and discarding any edge
that has a probability lower than a threshold (e.g., lower than
3%). Once the k-mer graph is created, it can be checked for
cycles, i.e., paths that converge on themselves. If the graph
has cycles, it can be discarded, k increased, and the graph
re-built. Thus, in this example, the k-mer graph will be built
without cycles.

[0020] Haplotype generation can then be performed at 18.
For example, once the contig graph is built, starting points for
haplotype candidates can be found by looking at all contigs
with no incoming edges (in-degree 0). These should be con-
tigs at the beginning of a region, though contigs in the middle
of the region can also have this property if they were created
due to noise. Then, taking those contigs as starting points, all
possible paths through the contig graph are enumerated, with
each path ending once it reaches a contig with no out-going
edges (a dead end). Before moving on, all the paths can be
turned into haplotype strings by joining their contigs. A sim-
plified example is illustrated in FIG. 2C, with a starting point
indicated by “1” and running to “6”. Each possible path
generates a possible haplotype, one of which is shown in the
figure.

[0021] Once a set of possible haplotypes are generated, the
exemplary process verifies (through one or more heuristics)
that it has enough data to make a sufficiently good call at 20.
For example, the process checks that each position in the
desired region is covered by enough k-mers, and that there
exists at least one haplotype that covers the entire region. If
any of these checks fail, a no-call can be emitted for the entire
region. It should be understood, that the heuristics can be
adjusted for the desired confidence in the call.

May 19, 2016

[0022] The set of possible haplotypes can further be
“cleaned” at 22 before any scoring process. The haplotypes
that are generated from the contig graph are generally not
suitable for output or scoring. Accordingly, in one example,
before scoring, they go through several correction phases.
First, the haplotypes are clipped to the region of interest; since
the caller uses all overlapping reads, most haplotypes will
originally extend beyond the edges of the region in question.
In one example, to clip the haplotype, it is aligned to the
region in question, and any bases outside the alignment are
discarded. Once haplotypes are clipped, errors in the haplo-
type can be corrected. For example, the process can generate
an error table (described in greater detail below) from many
samples that lists common sequencer errors, and this error
table can be used to remove those errors from a set of possible
haplotypes. These steps may result in a set of haplotypes that
include duplicates, and the duplicates can be dropped.
[0023] Diplotypes can be generated from the haplotypes
and scored at 24. For example, the set of N haplotypes can be
combined with itself in order to generate all possible diplo-
types. For N haplotypes, there will be N(N+1)/2 unique diplo-
types. These diplotypes can then be scored, where the score of
a diplotype 1is equal to its posterior probability,
P(diplotypelreads). The highest-scoring diplotype can be
reported as the result, with the confidence equal to the log of
the ratio between the winning probability and the next best
probability. The Diplotype scoring is described in greater
detail below.
[0024] The results can then be formatted (if needed) and
written out as requested at 26. For example, if the formats are
JavaScript Objection Notation (“json” or “JSON”) or Variant
Call Format (“vcf-full”, no extra processing is necessary in
this example, and the call is simply written out to disk. How-
ever, if the result format is Variant Call Format-Single Nucle-
otide Polymorphism (“vcf-snp”), the results are broken up
into smaller calls, which break up a region into its individual
SNPs and indels. A single call in the vef-snp format consists
of all variation where the different variants are within some
distance of each other (e.g., 10 bases).
[0025] Diplotype Scoring
[0026] Inone example, the above mentioned set of N hap-
lotypes can be combined with itself in order to generate all
possible diplotypes. For N haplotypes, there will be N(N+
1)/2 unique diplotypes. These diplotypes are then scored; the
score of a diplotype is equal to its posterior probability,
P(diplotypelreads). The highest-scoring diplotype can be
reported as the result, with the confidence equal to the log of
the ratio between the winning probability and the next best
probability.
[0027] An exemplary probabilistic scoring model used to
determine the best diplotype out of a list of candidates will
now be described. In one example, the score assigned to each
diplotype is the posterior probability of the diplotype,
P(diplotypelreads). Since the probabilities used for scoring
are typically small, in one implementation log-probabilities
are used. The posterior probability can be decomposed into a
likelihood and a prior:

P(diplotypelreads)=(1/Z)P(reads|diplotype)P(diplo-

type),

where Z=P(reads) is some normalization constant, which is
not computed. Since Z is independent of diplotype, it can be
disregarded for the purposes of comparing two diplotypes.
The prior, P(diplotype), and the likelihood,
P(readsldiplotype), can then be computed separately.

US 2016/0140289 Al

[0028] In order to compute the prior, it can be assumed, in
this example, that most regions are similar to the reference.
The probability of a diplotype is then the probability that the
diplotype was generated via a biological mutation from the
reference. This example assumes that this is simply the prod-
uct of probabilities of the haplotypes being generated from
the reference (which should be understood to not be entirely
accurate due to selection, but generally sufficient). Thus, the
probability of a diplotype can be expressed as:

P(diplotype)=P(haplotype_1)P(haplotype_2)

[0029] The probability of a haplotype being generated is
the sum of the probabilities of it being generated in all the
possible ways, where each possible alignment of the haplo-
type to the reference corresponds to a different way of gen-
erating the haplotype. However, doing a sum over all align-
ments can be computationally intractable, so this example
assumes that the majority of the probability mass is contained
in a single alignment, the one that has the highest probability.
Thus, in order to compute P(haplotype), the process aligns the
haplotype to the reference. The match, mismatch, gap-open,
and gap-extend parameters used during alignment corre-
spond to log-probabilities of those events happening due to
biological mutations. Since alignment maximizes the score, it
will maximize the log probability, thus yielding the highest-
probability alignment. For instance, a one-base change hap-
pens approximately every thousand bases, so the mismatch
parameter will be log(1/1000).

[0030] The computation of the likelihood
P(readsldiplotype) uses a similar process. First, the example
assumes that all reads are independent, which allows the
likelihood to be rewritten as:

P(reads|diplotype)=product_i{P(read_ildiplotype)}

[0031] Then, the example assumes that a read can come
either from the two haplotypes of a diplotype (with equal
probability) or that it could be generated randomly from
somewhere else in the genome (with very low probability).
The second case effectively models aligner error and rare
outliers. Thus, the probability of a read can be expressed as:
P(read|diplotype)=epsilon P(read is random)+(0.5-
epsilon)P(read lhaplotype_1)+(0.5—epsilon)P
(readlhaplotype_2).

[0032] The probability of a read being randomly generated
is equal to each base being generated; since there are four
equally likely bases:

P(read is random)~=0.25 "len(read).

[0033] The probability of a read given a haplotype can be
found using alignment. This example assumes that the hap-
lotype is the true sequence of the underlying genome, and that
the read is generated from this sequence using an errorful
sequencing process. Thus, the alignment parameters should
be the rates of sequencer error; the mismatch parameter, for
instance, should be the log of the probability that a sequencer
makes a one base change at an arbitrary base. Like with the
prior, the process computes the best alignment, and uses the
score as the probability.

[0034] It should be understood by those of ordinary skill in
the art that other scoring processes may be used instead of or
in addition to that described here, e.g., including other param-
eters, values, assumptions, and computational processes.

May 19, 2016

[0035] Error Table Generation

[0036] Generally, and in one example, the error table acts
like a filter to guard against common sequencer error, which
can make some regions very difficult to call otherwise. In one
example, in order to generate the error table, several hundred
(for example, 100-300, or more) samples that contain data for
the same region are used. In this example, error table genera-
tion for a given region goes through the following steps:

[0037] 1. For each sample, align the reads to the refer-
ence. For each base in the reference, count the number of
times different variants are seen there (variants being the
four bases, different length deletions, and different
insertions). This process can be done separately for the
forwards and backwards reads.

[0038] 2. Find sites where there is more than some
threshold of variation, that is, where more than some
threshold percent of reads have a non-reference allele.
For example, the threshold can be 1%. These sites are
candidate sites to go into the error table.

[0039] 3. Next, the error table sites are filtered. Exem-
plary steps in filtering will be described in greater detail
below, in the next section.

[0040] 4. The filters remove some of the sites from the
error table. After the filtering, the sites are compared to
Single Nucleotide Polymorphism Database “dbSNP”
(and potentially multiple dbSNP Variant Caller Formats
“VCFs”). Any sites that occur in dbSNP and are com-
mon can be removed from the error table.

[0041] 5. The error table is written to disk as a large
JSON file, where the record for each site indicates the
reference base and the frequency of each alternate base.
Any alternate bases with frequency greater than, e.g.,
1%, may be filtered. The cutoff for filtering can be con-
figurable in the system itself, so being in the error table
is not enough to guarantee filtering. However, the cutoff
is fairly similar. For example, the process can filter any-
thing with greater than 1.5% frequency that is in the
error table.

[0042] The error table can be generated once per region of
interest and then stored for later use.

[0043] Error Table Filtering Statistics

[0044] As mentioned in step 3 (above) of the error table
generation process, high-variance sites are all candidates for
the error table. Candidate sites can be filtered out through a
series of statistical tests (as well as through comparison to
dbSNP). The following describes an exemplary procedure
used for filtering the candidate error table sites, including two
exemplary tests.

[0045] First, for each site, a Hardy-Weinberg test statistic
can be computed. This can be done by very naive genotyping:
for example, if a base is seen in a sample less than 20% ofthe
reads, it is considered homozygous reference (“HOM REF”);
if it is seen between 20% to 75% of the reads it is considered
heterozygous (“HET”); if it is seen greater than 75% of the
reads it is considered homozygous alternate (“HOM ALT”).
Then, the samples are binned in to these three categories
(HOM REF, HET, and HOM ALT), and a Hardy-Weinberg
test is done using the standard Chi-Squared statistic against
an alpha of 0.5%. Thus, if there is a chance that this site in the
error table could have come from a real SNP, it is considered
for removal from the error table.

[0046] However, these sites are not immediately removed
from the error table in this example. In order to be removed
from the error table, they must also pass a Bayes factor test.

US 2016/0140289 Al

The Bayes factor test computes the ratio of probabilities of the
data given two different models, an SNP model and a noise
model, as follows:

B=P(datalSNP model)/P(datalnoise model)

[0047] Ifthe Bayes factor is high (e.g., greater than 10), the
data has a higher probability of being from the SNP model,
and thus the site is removed from the error table.

[0048] The two models are models of the read fraction
distributions. If the frequency of an allele is 20%, the allele
may be noise, and the distribution of frequencies in the
samples will all be around 20% —that is, in each sample,
about 20% of the reads will have this allele. Alternatively, the
allele may bereal, in which case some samples will have close
to 100% of the allele, some samples will have 0%, and some
samples will have 50% (corresponding to HOM ALT, HOM
REF, and HET).

[0049] These two models have a different number of
parameters. Generally, in the noise model the probability of
observing noise in a read (which corresponds to the observed
allele frequency) is needed, and in the SNP model, the prob-
ability of HOM ALT, HOM REF, and HET samples (which
only two parameters, since these two must sum to one) is
needed. In order to compare models with different numbers of
parameters, the parameters can be integrated out. Thus, to
compute P(datalnoise model), the process can integrate
P(datalnoise model, noise probability) over all possible val-
ues of the noise probability (from O to 1). Similarly, in order
to compute P(datalSNP model) the process can integrate
P(datalSNP model, hom ref proportion, het proportion) over
all possible values of the hom ref and het proportions (the
hom alt proportion is one minus those two). (The area of
integration is constrained such that the sum of those three is
exactly one and none of them are outside the [0, 1] range.)
This integration can be implemented using Scientific Python
“SciPy” numerical integration functions (or equivalent).

[0050] Both of the models (the noise and SNP model) are
based on the assumption that reads are being taken from some
sort of Bernoulli distribution; either the process sees the allele
in question, or it does not, with some probability p. For the
noise model, the p is the parameter (the noise probability),
and the process integrates over that p. The probability
P(datalnoise model, p) can be computed by using the bino-
mial distribution probability mass function, where p is the
probability the process is seeing the allele in question. The x
and n parameters to the PMF are simply how many times that
allele was seen and how many reads total in the sample. This
allows for computing the probability of a given sample, and
multiplying all those probabilities together over all the
samples in the dataset provides the overall probability of the
model given a parameter p. (Note: In order to avoid underflow
in the exemplary calculations, the process may multiply each
probability by 10; thus, the probability computed is scaled by
10"N, where N is the number of samples in the data set.)

[0051] For the SNP model, the exemplary process includes
three binomial distributions, one for the chance that the
sample is HOM REF, one for HET, and one for HOM ALT.
However, in each case, the process does not know the prob-
ability p, because even if the sample is a HOM REF ora HOM
ALT, contamination could still yield some reference. Simi-
larly, for the case of a HET, contamination and other effects
(such as mapping quality) could yield a p that is not exactly
50%. To combat this, the process may let p be a random
variable with a beta distribution; integrating over all possible

May 19, 2016

values of p gives the beta-binomial distribution, which can be
used instead of a simple binomial in these three cases in the
SNP model. In order to model the prior information (that is
HOM REF, HET, or HOM ALT), the process can use alpha
and beta parameters for the beta prior that appropriately skew
our distributions. For the HOM REF and HOM ALT cases the
process and use alpha=20 and beta=1 (or vice versa), which
yields a plot like that shown in FIG. 3A. For the HET case the
process can use alpha=20 and beta=20, which yields a plot
like that shown in FIG. 3B.

[0052] Any sites that fail the Bayes factor test are assumed
to be noise that happens to be in Hardy-Weinberg proportions,
and is thus kept in the error table.

[0053] In addition to the Bayes factor test, and in one
example, in order for a site to be kept from the error table, it
must pass a Strand Bias test. The Strand Bias test is fairly
straightforward: the reads for the reference and for the allele
are aggregated over all the samples, while keeping track of
which strand the counts are on. The overall allele frequency p
is also computed. Then, compute the probability of the for-
ward reads (assuming that they come from a binomial distri-
bution with probability p), and compute the same probability
for the backward reads. If the ratio of those probabilities is
very high or very low, it indicates that the distribution of the
alleles is very biased towards one strand or the other. Thus, if
the log of that ratio has magnitude greater than some thresh-
old (e.g., greater than 10), the site is deemed strand biased and
included in the error table.

[0054] Accordingly, in one example, if a site passes the
Hardy-Weinberg test, the Bayes factor test, and the Strand
Bias test, then it is removed from the error table candidate
sites.

[0055] It should be recognized that various other tests, or
combination of tests, may be employed to generate (or filter)
the error table. Further, other variables or thresholds may be
employed with the examples described herein to determine
differences between sequencer errors and real variations.

[0056]

[0057] The following sections describe the practical instal-
lation and usage of an exemplary variant caller and tools that
may be provided with it. The exemplary variant caller
described herein can be implemented as a standard Python
package (in one example, the only dependency is the C++
library seqan for sequence alignment); of course, one of ordi-
nary skill will recognize that other programming languages,
data formats, and the like are possible and contemplated.

[0058] In one example, the exemplary variant caller relies
on a pre-built error table (e.g., as described herein) for error
correction. In order to generate the error table, the process
collects a plurality of samples (e.g., several hundred samples
or more) with data for the regions for calling. An error table
can then be generated for a specific region (such as chrl:100-
200) via the following exemplary command:

Command-Line Interface:

python -m keall gen-table
--reference /path/to/hgl9.fa
--output my__error-table.err
--from /directory/with/bam/files
-threads SNTHREADS
--region chrl1:100-200

--dbsnp dbsnp.vef

US 2016/0140289 Al

[0059] Alternatively, the process can provide a *.bed file:

python -m keall gen-table
--reference /path/to/hgl9.fa
--output my__error-table.err
--from /directory/with/bam/files
--threads SNTHREADS
--bed /path/to/my/bedfile.bed
--dbsnp dbsnp.vef

[0060] Finally, with a list of *.bam files instead of a direc-
tory, the process can provide that list instead to --from:

python -m keall gen-table
--reference /path/to/hgl9.fa
--output my__error-table.err
--from/path/to/list-of-bam-files.txt
--threads SNTHREADS
--bed /path/to/my/bedfile.bed
--dbsnp dbsnp.vef

[0061] Ifauser desires to parallelize the error table genera-
tion over several nodes in a cluster, the process can spawn a
separate job for each region in the *.bed file. The process can
then combine all of the generated pieces into a single table.
Since the error table is a simple json format, the process can
use the jq tool to do this:

Assume all your error table pieces are stored in pieces/as
json files.cat pieces/* jsonljq -s add>combined table json”
[0062] With an error table generated, the process can run
the Kcall variant caller with the following command:

python -m keall call
--reference /path/to/hgl9.fa
--errors my__error-table.json
--bam /path/to/sample.bam
--threads SNTHREADS
--bed /path/to/bed/file.bed
--output-json output.json
--output-vef-full full.vef

--output-vef-snp snp.vef

[0063] The exemplary variant caller can provide output in
atleast three formats, for example: json, vef-snp, and vef-full,
under the corresponding flags shown above. The process may
have any subset of these flags; if none are provided, the
process outputs the vef-snp format to standard out. The json
format is generally the simplest, and simply yields a JSON
file with a dictionary where each key is a string describing the
region (such as “chrl:100-200) and the value is either a
string describing the no-call reason (if the region was no-
called) or a dictionary with diplotype and confidence keys
providing the sequences for the region. The vef-full format
outputs the same information as a VCF, where each region
corresponds to exactly one row. Note that while information
about no-calls is available from the VCF's (because the geno-
type GT field will be ./.), the no-call reason is available from
the JSON output format. Finally, the vef-snp format breaks up
the output VCF via individual haplotype calls, joining
together SNPS if they are closer than a few bases apart. This
generates calls similar to GATK and Freebayes.

[0064] Once exemplary variant caller has generated calls,
the process can compare them to another set of calls. For
example, the variant caller may include an integrated com-
parison tool for this purpose, which finds base-by-base dif-

May 19, 2016

ferences indexed by their location in the reference genome.
This allows the process to compare VCFs with different out-
put formats, so a call set can easily be compared to Freebayes,
GATK1, or GATK2 call sets. In order to compare two VCFs,
the following command can be used:

python -m keall compare first_vef.vef second_vefvef
--reference /path/to/hgl9.fa
--output output.diff
--stats output.stats
--name $SAMPLE_ NAME
--bed /path/to/bed/file.bed

[0065] The generated output is contained in two tab-sepa-
rated tables (output.diff and output. stats) above. These two
TSV files contain the differences between the two call sets
and some statistics about the frequency of the differences,

respectively.

[0066] Exemplary Architecture and Processing Environ-
ment:

[0067] An exemplary environment and system in which

certain aspects and examples of the systems and processes
described herein may operate. As shown in FIG. 4, in some
examples, the system can be implemented according to a
client-server model. The system can include a client-side
portion executed on a user device 102 and a server-side por-
tion executed on a server system 110. User device 102 can
include any electronic device, such as a desktop computer,
laptop computer, tablet computer, PDA, mobile phone (e.g.,
smartphone), or the like.

[0068] User devices 102 can communicate with server sys-
tem 110 through one or more networks 108, which can
include the Internet, an intranet, or any other wired or wireless
public or private network. The client-side portion of the
exemplary system on user device 102 can provide client-side
functionalities, such as user-facing input and output process-
ing and communications with server system 110. Server sys-
tem 110 can provide server-side functionalities for any num-
ber of clients residing on a respective user device 102.
Further, server system 110 can include one or caller servers
114 that can include a client-facing I/O interface 122, one or
more processing modules 118, data and model storage 120,
and an I/O interface to external services 116. The client-
facing 1/O interface 122 can facilitate the client-facing input
and output processing for caller servers 114. The one or more
processing modules 118 can include various issue and candi-
date scoring models as described herein. In some examples,
caller server 114 can communicate with external services
124, such as text databases, subscriptions services, govern-
ment record services, and the like, through network(s) 108 for
task completion or information acquisition. The I/O interface
to external services 116 can facilitate such communications.
[0069] Server system 110 can be implemented on one or
more standalone data processing devices or a distributed net-
work of computers. In some examples, server system 110 can
employ various virtual devices and/or services of third-party
service providers (e.g., third-party cloud service providers) to
provide the underlying computing resources and/or infra-
structure resources of server system 110.

[0070] Although the functionality of the caller server 114 is
shown in FIG. 4 as including both a client-side portion and a
server-side portion, in some examples, certain functions
described herein (e.g., with respect to user interface features
and graphical elements) can be implemented as a standalone

US 2016/0140289 Al

application installed on a user device. In addition, the division
of functionalities between the client and server portions of the
system can vary in different examples. For instance, in some
examples, the client executed on user device 102 can be a thin
client that provides only user-facing input and output process-
ing functions, and delegates all other functionalities of the
system to a backend server.

[0071] It should be noted that server system 110 and clients
102 may further include any one of various types of computer
devices, having, e.g., a processing unit, a memory (which
may include logic or software for carrying out some or all of
the functions described herein), and a communication inter-
face, as well as other conventional computer components
(e.g., input device, such as a keyboard/touch screen, and
output device, such as display). Further, one or both of server
system 110 and clients 102 generally includes logic (e.g., http
web server logic) or is programmed to format data, accessed
from local or remote databases or other sources of data and
content. To this end, server system 110 may utilize various
web data interface techniques such as Common Gateway
Interface (CGI) protocol and associated applications (or
“scripts”), Java® “servlets,” i.e., Java® applications running
on server system 110, or the like to present information and
receive input from clients 102. Server system 110, although
described herein in the singular, may actually comprise plural
computers, devices, databases, associated backend devices,
and the like, communicating (wired and/or wireless) and
cooperating to perform some or all of the functions described
herein. Server system 110 may further include or communi-
cate with account servers (e.g., email servers), mobile serv-
ers, media servers, and the like.

[0072] It should further be noted that although the exem-
plary methods and systems described herein describe use of a
separate server and database systems for performing various
functions, other embodiments could be implemented by stor-
ing the software or programming that operates to cause the
described functions on a single device or any combination of
multiple devices as a matter of design choice so long as the
functionality described is performed. Similarly, the database
system described can be implemented as a single database, a
distributed database, a collection of distributed databases, a
database with redundant online or offline backups or other
redundancies, or the like, and can include a distributed data-
base or storage network and associated processing intelli-
gence. Although not depicted in the figures, server system 110
(and other servers and services described herein) generally
include such art recognized components as are ordinarily
found in server systems, including but not limited to proces-
sors, RAM, ROM, clocks, hardware drivers, associated stor-
age, and the like (see, e.g., FIG. 5, discussed below). Further,
the described functions and logic may be included in soft-
ware, hardware, firmware, or combination thereof.

[0073] FIG. 5 depicts an exemplary computing system
1400 configured to perform any one of the above-described
processes, including the various calling and scoring models.
In this context, computing system 1400 may include, for
example, a processor, memory, storage, and input/output
devices (e.g., monitor, keyboard, disk drive, Internet connec-
tion, etc.). However, computing system 1400 may include
circuitry or other specialized hardware for carrying out some
or all aspects of the processes. In some operational settings,
computing system 1400 may be configured as a system that
includes one or more units, each of which is configured to

May 19, 2016

carry out some aspects of the processes either in software,
hardware, or some combination thereof.

[0074] FIG. 5 depicts computing system 1400 with a num-
ber of components that may be used to perform the above-
described processes. The main system 1402 includes a moth-
erboard 1404 having an input/output (“I/O”) section 1406,
one or more central processing units (“CPU”) 1408, and a
memory section 1410, which may have a flash memory card
1412 related to it. The I/O section 1406 is connected to a
display 1424, a keyboard 1414, a disk storage unit 1416, and
a media drive unit 1418. The media drive unit 1418 can
read/write a computer-readable medium 1420, which can
contain programs 1422 and/or data.

[0075] At least some values based on the results of the
above-described processes can be saved for subsequent use.
Additionally, a non-transitory computer-readable medium
can be used to store (e.g., tangibly embody) one or more
computer programs for performing any one of the above-
described processes by means of a computer. The computer
program may be written, for example, in a general-purpose
programming language (e.g., Pascal, C, C++, Python, Java) or
some specialized application-specific language.

[0076] Various exemplary embodiments are described
herein. Reference is made to these examples in a non-limiting
sense. They are provided to illustrate more broadly applicable
aspects of the disclosed technology. Various changes may be
made and equivalents may be substituted without departing
from the true spirit and scope of the various embodiments. In
addition, many modifications may be made to adapt a par-
ticular situation, material, composition of matter, process,
process act(s) or step(s) to the objective(s), spirit or scope of
the various embodiments. Further, as will be appreciated by
those with skill in the art, each of the individual variations
described and illustrated herein has discrete components and
features that may be readily separated from or combined with
the features of any of the other several embodiments without
departing from the scope or spirit of the various embodi-
ments. All such modifications are intended to be within the
scope of claims associated with this disclosure.

What is claimed is:

1. A computer-implemented method for determining vari-
ants from a genome sample relative to a reference genomic
sequence, the method comprising:

at an electronic device having at least one processor and

memory:

accessing an error table of sequence data from previ-
ously sequenced samples;

determining a set of possible haplotypes from a set of
collected reads from a genome sample;

generating a set of diplotypes based on the set of possible
haplotypes and the error table, wherein the set of
possible haplotypes is filtered by the error table;

scoring the set of diplotypes; and

outputting variants based on scoring the set of diplo-
types.

2. The method of claim 1, further comprising:

generating a k-mer graph from a set of collected reads;

reducing the generated k-mer graph to a contiguous graph;

and

generating the set of possible haplotypes from the contigu-

ous graph.

3. The method of claim 1, wherein scoring the set of diplo-
types further comprises determining a posterior probability
for each diplotype.

US 2016/0140289 Al

4. The method of claim 1, further comprising generating
the error table, wherein generating the error table comprises:

aligning reads to a reference sample;

determining sites where a read has a mismatch from the

reference sample; and

adding sites that have a mismatch to the error table.

5. The method of claim 4, wherein generating the error
table further comprises filtering sites from the error table that
are not associated with sequencer error.

6. The method of claim 4, wherein generating the error
table further comprises:

filtering sites from the error table that fail the threshold

using one or more of a Hardy-Weinberg test, Bayes
Factor test, or a Strand Bias Test.

7. A computer-implemented method for generating an
error table of sequence data, the method comprising:

at an electronic device having at least one processor and

memory:

determining a set of possible haplotypes from a set of
collected reads from a genome sample;

aligning the set of collected reads to a reference sample;

determining sites where a read of the set of collected
reads has a mismatch from the reference sample; and

adding sites that have a mismatch to an error table.

8. The method of claim 7, wherein determining the set of
possible haplotypes comprises:

generating a k-mer graph from the set of collected reads;

reducing the generated k-mer graph to a contiguous graph;

and

determining the set of possible haplotypes from the con-

tiguous graph.

9. A non-transitory computer-readable storage medium
comprising computer-executable instructions for

accessing an error table of sequence data from previously

sequenced samples;

determining a set of possible haplotypes from a set of

collected reads from a genome sample;

generating a set of diplotypes based on the set of possible

haplotypes and the error table, wherein the set of pos-
sible haplotypes is filtered by the error table;

scoring the set of diplotypes; and

outputting variants based on scoring the set of diplotypes.

10. The non-transitory computer-readable storage medium
of claim 9, further comprising:

generating a k-mer graph from a set of collected reads;

reducing the generated k-mer graph to a contiguous graph;

and

generating the set of possible haplotypes from the contigu-

ous graph.

11. The non-transitory computer-readable storage medium
of claim 9, wherein scoring the set of diplotypes further
comprises determining a posterior probability for each diplo-
type.

12. The non-transitory computer-readable storage medium
of claim 9, further comprising generating the error table,
wherein generating the error table comprises:

aligning reads to a reference sample;

May 19, 2016

determining sites where a read has a mismatch from the

reference sample; and

adding sites that have a mismatch to the error table.

13. The non-transitory computer-readable storage medium
of claim 12, wherein generating the error table further com-
prises filtering sites from the error table that are not associated
with sequencer error.

14. The non-transitory computer-readable storage medium
of claim 12, wherein generating the error table further com-
prises:

filtering sites from the error table that fail the threshold

using one or more of a Hardy-Weinberg test, Bayes
Factor test, or a Strand Bias Test.

15. A system comprising:

one or More processors;

memory; and

one or more programs, wherein the one or more programs

are stored in the memory and configured to be executed

by the one or more processors, the one or more programs

including instructions for:

accessing an error table of sequence data from previ-
ously sequenced samples;

determining a set of possible haplotypes from a set of
collected reads from a genome sample;

generating a set of diplotypes based on the set of possible
haplotypes and the error table, wherein the set of
possible haplotypes is filtered by the error table;

scoring the set of diplotypes; and

outputting variants based on scoring the set of diplo-
types.

16. The system of claim 9, further comprising:

generating a k-mer graph from a set of collected reads;

reducing the generated k-mer graph to a contiguous graph;
and

generating the set of possible haplotypes from the contigu-

ous graph.

17. The system of claim 9, wherein scoring the set of
diplotypes further comprises determining a posterior prob-
ability for each diplotype.

18. The system of claim 9, further comprising generating
the error table, wherein generating the error table comprises:

aligning reads to a reference sample;

determining sites where a read has a mismatch from the

reference sample; and

adding sites that have a mismatch to the error table.

19. The system of claim 18, wherein generating the error
table further comprises filtering sites from the error table that
are not associated with sequencer error.

20. The system of claim 18, wherein generating the error
table further comprises:

filtering sites from the error table that fail the threshold

using one or more of a Hardy-Weinberg test, Bayes
Factor test, or a Strand Bias Test.

#* #* #* #* #*

