Abstract: A mobile terminal (20) reduces its power consumption by selectively switching between a diversity mode and a non-diversity mode. The mobile terminal (20) monitors the total output power of two or more of its transmitters (94, 96), and selectively switches between the diversity mode and the non-diversity mode based on the total output power. The mobile terminal (20) may also selectively switch between the diversity and non-diversity modes based on a difference in output power levels between the two or more transmitters (94, 96).
Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a patent (Rule 4.17(H))
— as to the applicant’s entitlement to claim the priority of the earlier application (Rule 4.17(Hi))
The present invention relates generally to mobile communication systems and, more particularly, to methods for reducing power consumption by mobile terminals in mobile communication systems.

A known problem with WCDMA phones is excessive power consumption that results in undesirable current drain and short battery life. When engaged in normal voice communications, a WCDMA phone transmits and receives continuously. This continuous operation is one of the primary reasons for the undesirable current drain in WCDMA phones. Another reason for current drain is the presence of a duplexer in the transmit path that increases path loss.

The total output power of the mobile terminal can be reduced by using transmit diversity. With transmit diversity, the mobile terminal transmits signals on the uplink using two or more transmitters, each connected to their own antennas. Because of the resulting diversity gain, the mobile terminal generally requires less total transmit power when it uses multiple transmitters/antennas than when it uses a single transmitter/antenna. Thus, a mobile terminal using transmit diversity is generally more efficient than a mobile terminal that does not use transmit diversity.

However, this is true only when the mobile terminal operates at a high total output power. The efficiency diminishes when the total output power is low. Typically, a transmitter amplifier current drain level will typically not drop below some minimum level, even when the total output power is decreased below zero (0) dBm. This minimum current drain level is referred to as the "current floor." When two transmitters are used for transmit diversity, this "current floor" is doubled. In this situation, the two transmitter amplifiers draw more current than a single amplifier.

The present invention provides a method of reducing power consumption by selectively enabling and disabling transmit diversity in a mobile terminal based on the output power level of the transmitter. In one exemplary embodiment, the mobile terminal monitors the total output power associated with two transmitters and selectively disables one of the transmitters when the total output power drops below a minimum threshold. Thus, at low total output power levels, the mobile terminal operates in a non-diversity mode using only a single transmitter. When the total output power exceeds the minimum threshold, however, the mobile terminal switches to a diversity mode by enabling two or more transmitters. Once in the desired mode, the mobile terminal may adjust the output power of one or both of its transmitters.
Switching to the diversity mode at high total output power levels permits the mobile terminal to take advantage of the diversity gain to reduce its power consumption. Switching to the non-diversity mode at low total output power levels avoids the current drain associated with maintaining multiple transmitters at a minimum output power level.

In another exemplary embodiment, where the output power level of two transmitters is independently power controlled, the mobile terminal monitors the output power levels of each transmitter. The mobile terminal compares the transmit power levels, and determines whether a difference between the two falls below some minimum threshold. If the difference in output power levels exceeds a maximum allowed difference, the mobile terminal switches to the non-diversity mode by disabling one of the transmitters. Conversely, if the difference in output power levels falls below the maximum allowed difference, the mobile terminal switches to the diversity mode by enabling both of the transmitters.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic diagram of a communication system.

Figure 2 is a flow chart illustrating a method implemented by a mobile terminal to selectively enable and disable transmit diversity.

Figure 3 is a flow chart illustrating an alternative method implemented at a mobile terminal to selectively enable and disable transmit diversity.

Figure 4 is a flow chart illustrating a third exemplary method implemented by a mobile terminal for selectively enabling and disabling transmit diversity.

Figure 5 illustrates an exemplary mobile terminal according to the present invention.

DETAILED DESCRIPTION

The present invention provides a method of reducing power consumption in a mobile terminal capable of operating in a diversity mode using multiple transmitters or in a non-diversity mode using only a single transmitter. Particularly, the mobile terminal monitors the total output power, and selectively switches between the diversity mode and the non-diversity mode based on the total output power. The mobile terminal may also selectively switch between the diversity and non-diversity modes based on a difference in output power levels between the two or more transmitters. Switching between the diversity and non-diversity modes permits the mobile terminal to benefit from diversity gain at high total output power levels, and avoid the current drain associated with maintaining the multiple transmitters at a minimum output power level.

The following description illustrates the present invention as it is applied to a voice channel in a WCDMA radio communication system; however, the techniques of the present invention may also be used to reduce power consumption in other radio communication systems and devices as well. Additionally, the techniques described herein may be applied to any type of information, such as audio, video, and other data.
Figure 1 illustrates a base station 10 and mobile terminal 20 in a WCDMA communication system. The mobile terminal 20 transmits voice and other signals to the base station 10 over one or more uplink (UL) channels. The mobile terminal 20 also receives voice and other signals from the base station over one or more downlink channels (not shown). In the exemplary embodiment shown in Figure 1, the mobile terminal 20 includes two transmitters for transmit diversity, each connected to its own antenna 100, 102. When operating in diversity mode, the mobile terminal 20 transmits signals to the base station 10 over the uplinks using both transmitters/antennas. When operating in a non-diversity mode, the mobile terminal 20 transmits signals to the base station 10 using only a single transmitter/antenna. As described in more detail later, the mobile terminal 20 can selectively switch between the diversity mode and the non-diversity mode.

Transmit diversity results in diversity gain, which may be used to either improve signal quality or reduce the transmit power required to maintain a desired signal quality. Generally, the total transmit power required to transmit a signal from mobile terminal 20 to base station 10 with a given signal quality is lower when the mobile terminal 20 operates in the diversity mode than in the non-diversity mode. However, the transmitter amplifiers used by the mobile terminal 20 may not allow the current drain of the transmitters to drop below a minimum level, even when the transmitter output power is low. This minimum level, referred to as the “current floor,” may result in an undesirably high current drain at low output power levels. When operating in a diversity mode, the current drain essentially doubles because there are two separate transmitter amplifiers.

According to the present invention, the mobile terminal switches between the diversity mode and the non-diversity mode based on the total output of the transmitters. Particularly, the mobile terminal 20 disables one of its transmitters at very low total output power levels and uses only a single transmitter to communicate with the base station in the non-diversity mode. At high total output power levels, the mobile terminal 20 enables both transmitters and communicates with the base station 10 in the diversity mode.

Figure 2 illustrates an exemplary method 30 implemented by a mobile terminal 20 for selectively enabling and disabling transmit diversity. Initially, the mobile terminal may set a target error rate (block 31). When the mobile terminal 20 is transmitting, the mobile terminal 20 measures the total output power of both transmitters (block 32). The mobile terminal 20 compares the total output power to a minimum threshold (block 34). If the current power level of the mobile terminal 20 is above the threshold, the mobile terminal 20 enables both transmitters (block 36). If the total output power of both transmitters is less than the minimum threshold, the mobile terminal 20 disables one of the transmitters (block 38). Once in the desired mode (i.e., diversity or non-diversity mode), the mobile terminal 20 may adjust the transmit power level to maintain the target error rate (block 40).
Allowing the mobile terminal 20 to adjust the transmit power permits the mobile terminal 20 to optimize the diversity gain benefits. As previously stated, the mobile terminal 20 generally requires less transmit output power when it switches to the diversity mode to maintain a desired signal quality or error rate. Therefore, the mobile terminal 20 can either "spend" the diversity gain benefits by reducing its transmit output power without exceeding the target error rate, or continue to transmit at the lower output powers and benefit from better signal quality.

The mobile terminal 20 may use any criteria known in the art to determine which transmitter to disable when switching to the non-diversity mode. In embodiments where the transmitters are independently power controlled, the mobile terminal 20 may disable the transmitter having the lowest output power level. In other embodiments, the mobile terminal 20 may estimate the channel conditions associated with each transmit antenna, and disable the transmitter corresponding to the antenna with the least favorable channel conditions. Once the selected transmitter is disabled, the mobile terminal 20 transmits signals on the uplink using the selected transmitter.

Figure 3 illustrates an alternate method 50 implemented by the mobile terminal 20 to switch between diversity mode and non-diversity mode in which the mobile terminal transmitters are independently power controlled. In this embodiment, the mobile terminal 20 sets the target error rate for the receive path as a whole (block 51), measures the output power level for each transmitter (block 52), and computes the difference ΔP in the output power levels of the transmitters (block 54). The difference ΔP in the output power levels of the two transmitters is compared to a maximum difference Δ_{MAX} (block 56). If the computed difference ΔP is less than Δ_{MAX}, the mobile terminal 20 enables both transmitters (block 58). Otherwise, the mobile terminal disables the transmitter having the lowest output power level (block 60). Once the mobile terminal 20 is operating in the selected mode, the mobile terminal 20 may adjust the transmit output power of one or both of the transmitters to maintain the target error rate(s) as previously stated (block 62).

Figure 4 illustrates a third method 70 that can be implemented by the mobile terminal 20 to selectively enable and disable transmit diversity. This embodiment combines elements of the methods 30 and 50 shown in Figures 2 and 3. In method 70, the mobile terminal 20 sets the target error rate (block 71) and measures the output power for both transmitters (block 72). The mobile terminal 20 computes the total output power level and compares the total output power level to a minimum threshold (block 74). If the total output power level of both transmitters is less than the minimum threshold, the mobile terminal 20 disables one of the transmitters (block 76).

As previously noted, the mobile terminal transmitters may be independently power controlled, and thus, permit the mobile terminal 20 to selectively disable the transmitter having the lowest output power level. Returning to block 74, if the combined output power is greater than the minimum threshold (block 74), the mobile terminal computes the difference ΔP in the
output power level of the two transmitters (block 80) and compares the difference ΔP to a maximum allowed difference Δ_{MAX} (block 82). If the power difference ΔP between the two transmitters exceeds Δ_{MAX}, the mobile terminal 20 disables one of the transmitters (block 76). Otherwise, the mobile terminal 20 enables both transmitters (block 78). As above, the mobile terminal 20 may adjust the transmit power of the selected transmitter(s) to maintain the target error rate(s).

Figure 5 illustrates some of the component parts of mobile terminal 20 configured according to one exemplary embodiment of the present invention. The mobile terminal 20 comprises a radio frequency section 90 and a digital section 110. The radio frequency section 90 comprises a receiver front end circuit 92, a first transmitter front end circuit 94, a second transmitter front end circuit 96, and a duplexer 98 that couples both the first transmitter front end circuit 94 and the receiver front end circuit 92 to a shared antenna 100. The second transmitter front end circuit 96 connects to an antenna 102.

The first and second transmitter front end circuits 94, 96 upconvert, filter, and amplify signals output by the digital section 110 for transmission via antenna 100 and/or antenna 102. Particularly, the first transmitter front end circuit 94 transmits the signals over the uplink when the mobile terminal 20 operates in the non-diversity mode. In the diversity mode, both the first and second front end circuits 94, 96 are used to transmit signals over the uplink channel. Respective D-to-A converters (not shown) convert signals output to the first and second transmitter front end circuits 94, 96. Receiver front end circuit 64 downconverts the receive signals to baseband frequency, and then filters and amplifies the received signal. An A-to-D converter (not shown) converts the receive signal to digital form for processing in digital section 110.

The digital section 110 comprises a baseband processor 112 and control circuits 114. The baseband processor 112 and control circuits 114 may comprise one or more processors or processing circuits. The baseband processor 112 processes signals transmitted and received by the mobile terminal 20. For transmitted signals, the baseband processor 112 encodes, modulates, and spreads transmitted signals. On the receiver side, the baseband processor 112 despreads, demodulates, and decodes the received signal. The baseband processor 112 also implements a vocoder 116 to encode and decode speech signals.

The control circuits 114 control the overall operation of the mobile terminal 20, and include transmit diversity control logic (TCL) 118 for dynamically switching between the diversity and diversity modes as previously described. Particularly, the TCL 118 may cause the control circuit 114 to generate control signals to enable/disable the first and second transmitter front ends 94, 96. A first control signal may be used to enable/disable the first transmitter front end circuit 94 and a second control signal may be used to enable/disable the second transmitter front end circuit 96. Other control signals may be generated to adjust the power of one or both of the first and second transmitter front end circuits 94, 96 to maintain a desired target error rate.
as previously described. The control circuit 114 may generate the control signals based on the total output power of the first and second transmitter front ends 94, 96, and/or based on a difference in output power levels between the first and second transmitter front ends 94, 96 as previously described.

The present invention provides a method and apparatus for substantially reducing power consumption in a WCDMA terminal, but may be applied to other communication terminals. When applied to a mobile terminal, the present invention results in longer battery life and talk times, and may also beneficially reduce overall interference in the network.

The present invention may, of course, be carried out in other ways than those specifically set forth herein without departing from essential characteristics of the invention. The present embodiments are to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.
What is claimed is:

1. A method of reducing power consumption in a code division multiple access terminal (20) having first and second transmitters (94, 96), the method comprising:
 - calculating a total output power level for first and second transmitters (94, 96); and
 - switching between transmitting in a diversity mode and a non-diversity mode based on the total output power level.

2. The method of claim 1 wherein switching between transmitting in a diversity mode and a non-diversity mode comprises enabling both the first and second transmitters (94, 96) if the total output power level exceeds a predetermined power level.

3. The method of claim 1 further comprising adjusting the total output power to maintain a desired target error rate.

4. The method of claim 1 wherein switching between transmitting in a diversity mode and a non-diversity mode comprises disabling one of the first and second transmitters (94, 96) if the total output power level falls below a predetermined power level.

5. The method of claim 4 wherein disabling one of the first and second transmitters (94, 96) comprises disabling the transmitter with the least favorable channel conditions.

6. The method of claim 4 wherein disabling one of the first and second transmitters (94, 96) comprises disabling the transmitter with the lowest output power.

7. The method of claim 1 further comprising computing a difference between the output power levels of the first and second transmitters (94, 96) if the total output power level falls below a predetermined power level.

8. The method of claim 7 wherein switching between transmitting in a diversity mode and a non-diversity mode comprises enabling both the first and second transmitters (94, 96) if the total output power level exceeds a predetermined power level and the computed difference falls below a predetermined value.

9. The method of claim 7 wherein switching between transmitting in a diversity mode and a non-diversity mode comprises disabling one of the first and second transmitters (94, 96) if the total output power level falls below a predetermined power level and the computed difference exceeds a predetermined value.
10. The method of claim 9 wherein disabling one of the first and second transmitters (94, 96) comprises disabling the transmitter with the least favorable channel conditions.

11. The method of claim 9 wherein disabling one of the first and second transmitters (94, 96) comprises disabling the transmitter with the lowest output power.

12. A method of reducing power consumption in a code division multiple access terminal (20) having first and second transmitters (94, 96), the method comprising:
 - computing a difference between output power levels of first and second transmitters (94, 96); and
 - switching between a diversity mode and a non-diversity mode based on the computed difference.

13. The method of claim 12 further comprising adjusting the total output power to maintain a desired target error rate.

14. The method of claim 12 wherein switching between transmitting in a diversity mode and a non-diversity mode comprises enabling both the first and second transmitters (94, 96) if the computed difference exceeds a predetermined value.

15. The method of claim 12 wherein switching between transmitting in a diversity mode and a non-diversity mode comprises disabling one of the first and second transmitters (94, 96) if the computed difference falls below a predetermined value.

16. The method of claim 15 wherein disabling one of the first and second transmitters (94, 96) comprises disabling the transmitter with the least favorable channel conditions.

17. The method of claim 15 wherein disabling one of the first and second transmitters (94, 96) comprises disabling the transmitter with the lowest output power.

18. A code division multiple access terminal (20) comprising:
 - first and second transmitters (94, 96) configured to transmit signals; and
 - a control circuit (114) configured to:
 - calculate a total output power level for the first and second transmitters (94, 96); and
 - selectively enable and disable the first and second transmitters (94, 96) based on the total output power level to switch between a diversity mode and a non-diversity mode.
19. The terminal of claim 18 wherein the control circuit (114) is further configured to adjust the total output power to maintain a desired target error rate.

20. The terminal of claim 18 wherein the control circuit (114) is configured to enable both the first and second transmitters (94, 96) if the total output power level exceeds a predetermined power level.

21. The terminal of claim 18 wherein the control circuit (114) is configured to selectively disable one of the first and second transmitters (94, 96) if the total output power level falls below a predetermined power level.

22. The terminal of claim 21 wherein the control circuit (114) is configured to selectively disable the transmitter with the least favorable channel conditions.

23. The terminal of claim 21 wherein the control circuit (114) is configured to selectively disable the transmitter with the lowest output power.

24. The terminal of claim 18 wherein the control circuit (114) is further configured to: compute a difference between the output power levels of the first and second transmitters (94, 96) if the total output power level falls below a predetermined power level; and selectively enable and disable the first and second transmitters (94, 96) based on the total output power level and on the computed difference to switch between the diversity mode and the non-diversity mode.

25. The terminal of claim 24 wherein the control circuit (114) is configured to enable both the first and second transmitters (94, 96) if the total output power level exceeds a predetermined power level and if the computed difference falls below a predetermined value.

26. The terminal of claim 24 wherein the control circuit (114) is configured to disable one of the first and second transmitters (94, 96) if the total output power level falls below a predetermined power level and if the computed difference exceeds a predetermined value.

27. The terminal of claim 26 wherein the control circuit (114) is configured to selectively disable the transmitter with the least favorable channel conditions.

28. The terminal of claim 26 wherein the control circuit (114) is configured to selectively disable the transmitter with the lowest output power.
29. A code division multiple access terminal (20) comprising:
first and second transmitters (94, 96) to transmit signals; and
a control circuit (114) configured to:
compute a difference between output power levels of the first and second
transmitters (94, 96); and
selectively enable and disable the first and second transmitters (94, 96) based on
the computed difference to switch between the diversity mode and the non-
diversity mode.

30. The terminal of claim 29 wherein the control circuit (114) is configured to enable both the
first and second transmitters (94, 96) if the computed difference exceeds a predetermined
value.

31. The terminal of claim 29 wherein the control circuit (114) is configured to disable one of
the first and second transmitters (94, 96) if the computed difference falls below a predetermined
value.

32. The terminal of claim 31 wherein the control circuit (114) is configured to selectively
disable the transmitter with the least favorable channel conditions.

33. The terminal of claim 31 wherein the control circuit (114) is configured to selectively
disable the transmitter with the lowest output power.

34. The terminal of claim 29 wherein the control circuit (114) is further configured to adjust
the output power levels of one or both of the first and second transmitters (94, 96) to maintain a
desired target error rate.
SET TARGET ERROR RATE

MEASURE TOTAL OUTPUT POWER OF BOTH TRANSMITTERS

TOTAL POWER <= THRESHOLD?

YES

DISABLE ONE OF THE TRANSMITTERS

ADJUST TRANSMIT POWER TO MAINTAIN TARGET ERROR RATE

NO

ENABLE BOTH TRANSMITTERS

FIG. 2
SET TARGET ERROR RATE

MEASURE OUTPUT POWER FOR EACH TRANSMITTER

COMPUTE POWER DIFFERENTIAL ΔP

$\Delta P \geq \Delta_{MAX}$?

YES

DISABLE TRANSMITTER HAVING LOWEST OUTPUT POWER

NO

ENABLE BOTH TRANSMITTERS

ADJUST TRANSMIT POWER TO MAINTAIN TARGET ERROR RATE

FIG. 3
FIG. 4

1. Set target error rate
2. Measure output power for both transmitters
3. Is total output power less than or equal to threshold?
 - No: Compute power differential \(\Delta P \)
 - Yes: Disable transmitters

4. If \(\Delta P \geq \Delta_{\text{MAX}} \), disable both transmitters;
 otherwise, enable both transmitters.
5. Adjust transmit power to maintain target error rate.
INTERNATIONAL SEARCH REPORT

PCT/US2007/077076

A. CLASSIFICATION OF SUBJECT MATTER

INV. H04B7/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, COMPENDEX, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 02/074644 A (ERICSSON TELEFON AB L M [SE]) 24 January 2002 (2002-01-24) abstract figure 14 page 1 page 8, line 17 - page 9, line 7 page 18, line 22 - page 20, line 14</td>
<td>1-34</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

\[\text{X}\] See patent family annex

* Special categories of cited documents

1A* document defining the general state of the art which is not considered to be of particular relevance

1E* earlier document but published on or after the international filing date

1L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

1O* document referring to an oral disclosure, use, exhibition or other means

1P* document published prior to the international filing date but later than the priority date claimed

1T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

1X* document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

1Y* document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

1S* document member of the same patent family

Date of the actual completion of the international search: 21 December 2007

Date of mailing of the international search report: 03/01/2008

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV RUISWijk
tel (+31-70) 340-2040, Tx 31 651 epo ml, Fax (+31-70) 340-3016

Authorized officer: Cabanas Prieto, Ana
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6584330 B1</td>
</tr>
<tr>
<td>WO 0011806 A</td>
<td>02-03-2000</td>
<td>AU 5681099 A</td>
</tr>
<tr>
<td>US 2006276227 A1</td>
<td>07-12-2006</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1829246 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070094000 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006069321 A2</td>
</tr>
<tr>
<td>WO 2005114853 A</td>
<td>01-12-2005</td>
<td>CA 2566329 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20070007961 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005250452 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006033834 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006009168 A1</td>
</tr>
</tbody>
</table>