发明名称
一种硫氧镁水泥轻质发泡砖及其制备方法

摘要
本发明涉及一种硫氧镁水泥轻质发泡砖及其制备方法，具体地，其由以下重量份的成分制成：
氧化镁 100 份
碳酸钠溶液 50~85 份
填充料 100~300 份
第一外加剂 0.1~0.5 份
成：第二外加剂 0.5~5 份 其中，第一核心外加剂
增强剂 20~35 份
阻燃剂 10~25 份
发泡剂 5~15 份
有机硅憎水剂 0.5~5 份
为无机酸或无机盐，第二核心外加剂为有机酸或有机盐。本发明的硫氧镁水泥轻质发泡砖抗压、抗折性能优异，耐水性强，保温与阻燃效果好，能够抗返卤、抗泛霜。
1. 一种硫氧镁水泥轻质发泡砖，其特征在于，其由以下重量份的成分制成：
 - 氧化镁 100 份
 - 硫酸镁溶液 50~85 份
 - 填充料 100~300 份
 - 第一外加剂 0.1~0.5 份
 - 第二外加剂 0.5~5 份
 - 增强剂 20~35 份
 - 阻燃剂 10~25 份
 - 发泡剂 5~15 份
 - 有机硅憎水剂 0.5~5 份

 其中，第一核心外加剂为无机酸或无机盐，第二核心外加剂为有机酸或有机盐。

2. 根据权利要求1所述的硫氧镁水泥轻质发泡砖，所述无机酸或无机盐选自磷酸、磷酸二氢钠、磷酸一氢钠、硼酸、硼酸盐中的一种。

3. 根据权利要求1-2任一项所述的硫氧镁水泥轻质发泡砖，所述有机酸或有机盐选自酒石酸、酒石酸盐、乙酸、磷酸、甲酸、甲酸盐、乳酸、甘氨酸、丙二酸、丁二酸中的一种或多种的组合。

4. 根据权利要求1-3任一项所述的硫氧镁水泥轻质发泡砖，氧化镁为菱镁矿或盐湖提取的副产物镁渣经煅烧、研磨后得到的轻烧氧化镁粉末，其细度为200目，其中活性氧化镁成分含量不低于58%。

5. 根据权利要求1-4任一项所述的硫氧镁水泥轻质发泡砖，所述硫酸镁溶液的浓度为20%~35%；优选地，硫酸镁为燃煤机组烟气脱硫废液经三效蒸发结晶技术回收制备的高浓度七水硫酸镁，纯度≥98%。

6. 根据权利要求1-5任一项所述的硫氧镁水泥轻质发泡砖，所述填充料由粉煤灰、秸秆粉与膨胀珍珠岩组成；
 优选地，粉煤灰占填充料总重量的60%~85%，秸秆粉占填充料总重量的5%~20%，膨胀珍珠岩占填充料总重量的10%~20%，更优选地，粉煤灰占填充料总重量的75%，秸秆粉占填充料总重量的10%，膨胀珍珠岩占填充料总重量的15%。

7. 根据权利要求1-6任一项所述的硫氧镁水泥轻质发泡砖，所述增强剂采用中碱玻璃纤维、聚丙烯纤维或植物纤维中的一种或几种的混合物。

8. 根据权利要求1-7任一项所述的硫氧镁水泥轻质发泡砖，所述阻燃剂为氢氧化铝、氢氧化镁以及硼酸锌中的两种或三种的混合物。

9. 根据权利要求1-8任一项所述的硫氧镁水泥轻质发泡砖，所述发泡剂为碳酸氢铵或碳酸铵；所述发泡剂的重量为填充料重量的3%~4.5%。

10. 一种硫氧镁水泥轻质发泡砖的制备方法，其包括以下步骤：
 1) 将硫酸镁以水溶解，配置成浓度为20%~35%的硫酸镁溶液，备用；
 2) 按配方称取各原料；
<table>
<thead>
<tr>
<th>权 利 要 求 书</th>
</tr>
</thead>
<tbody>
<tr>
<td>氧化镁</td>
</tr>
<tr>
<td>硫酸镁溶液</td>
</tr>
<tr>
<td>填充料</td>
</tr>
<tr>
<td>第一外加剂</td>
</tr>
<tr>
<td>第二外加剂</td>
</tr>
<tr>
<td>增强剂</td>
</tr>
<tr>
<td>阻燃剂</td>
</tr>
<tr>
<td>发泡剂</td>
</tr>
<tr>
<td>有机硅憎水剂</td>
</tr>
</tbody>
</table>

3) 将有机硅憎水剂和第一外加剂加入硫酸镁溶液中，进行充分搅拌，得到混合液；
4) 将第二外加剂与填充料依次加入氧化镁中，混合均匀后加入步骤3) 的混合液，继续搅拌至混合均匀；
5) 边搅拌边向步骤4) 所得混合物中依次投入增强剂与阻燃剂，搅拌均匀；
6) 向步骤5) 所得混合物中加入发泡剂搅拌成发泡浆料；
7) 将搅拌好的发泡浆料注入模型中刮平，在温度区间为25～40℃内养护8～10小时后降温脱模，常温下继续养护10～25天。

优选地，步骤6) 为检测步骤5) 所得混合物的温度，至混合物温度降低至55℃~65℃时，加入发泡剂搅拌成发泡浆料。
一种硫氧镁水泥轻质发泡砖及其制备方法

技术领域
[0001] 本发明涉及一种复合建筑材料的配方及其制备工艺领域，具体涉及一种利用镁法脱硫副产物生产的发泡砖及其制备工艺。

背景技术
[0002] 发泡砖根据加工原材的不同分为水泥发泡砖与混凝土发泡砖，其中作为建筑材料的必备品被广泛应用于建筑的各领域，如作为防火墙的绝缘填充、隔声楼面填充、隧道衬管回填等。具有吸音效果好，防火隔热性好，轻质耐震性强，无毒无害，环保节能等特点。
[0003] 随着现代化建设和建筑的不断发展，装配式建筑在我国建筑市场正在逐渐燃起，而建筑材料中常用的传统发泡砖均存在力学强度较差，易变形、开裂，耐水性差等问题，这些问题的存在影响着发泡砖在新一代建筑领域的应用，因此制备出性能优异的发泡砖具有广阔的市场前景。
[0004] 镁法脱硫副产物硫酸镁是将大气污染物SO\textsubscript{2}与MgO反应脱除后转变成的有用资源，其可作为生产发泡砖的主要原料之一。利用镁法脱硫副产物硫酸镁生产发泡砖实现了对废物的利用，节省了生产成本，同时改善了材料的性能。

发明内容
[0005] 本发明主要针对现有发泡砖的缺点，提供一种性能稳定的硫氧镁水泥轻质发泡砖及其制备方法，有效的利用了脱硫副产物与电厂固体废弃物煤灰以及农业废弃秸秆粉，实现了变废为宝，具有较高的应用价值。
[0006] 为了解决上述问题，本发明的一个方面提供了一种硫氧镁水泥轻质发泡砖，其特征在于其由以下重量份的成分制成：

<table>
<thead>
<tr>
<th>成分</th>
<th>重量份</th>
</tr>
</thead>
<tbody>
<tr>
<td>氧化镁</td>
<td>100份</td>
</tr>
<tr>
<td>硫酸镁溶液</td>
<td>50~85份</td>
</tr>
<tr>
<td>填充料</td>
<td>100~300份</td>
</tr>
<tr>
<td>第一外加剂</td>
<td>0.1~0.5份</td>
</tr>
<tr>
<td>第二外加剂</td>
<td>0.5~5份</td>
</tr>
<tr>
<td>增强剂</td>
<td>20~35份</td>
</tr>
<tr>
<td>阻燃剂</td>
<td>10~25份</td>
</tr>
<tr>
<td>发泡剂</td>
<td>5~15份</td>
</tr>
<tr>
<td>有机硅憎水剂</td>
<td>0.5~5份</td>
</tr>
</tbody>
</table>

[0007] 其中，第一外加剂为无机酸或无机盐，第二外加剂为有机酸或有机盐。
[0008] 在本发明的技术方案中，所述无机酸或无机盐选自磷酸、磷酸二氢钠、磷酸一氢
钠、硼酸、硼酸盐中的一种。
[0011] 在本发明的技术方案中，所述有机酸或有机盐选自酒石酸、酒石酸盐、水杨酸、磺基水杨酸、甲酸、甲酸盐、乳酸、甘氨酸、丙二酸、丁二酸中的一种或多种的组合。
[0012] 在本发明的技术方案中，氧化镁为菱镁矿或盐湖提取锂副产物镁渣经煅烧、研磨后得到的轻烧氧化镁粉末，其细度为200目，其中活性氧化镁成分含量不低于58%。
[0013] 在本发明的技术方案中，所述硫酸镁溶液的浓度为20%～35%。本发明所用的硫酸镁为燃煤机组镍法脱硫废液经三效蒸发结晶技术回收制备的高浓度七水硫酸镁，纯度≥98%
[0014] 在本发明的技术方案中，所述填充料由粉煤灰、秸秆粉与膨胀珍珠岩组成；
[0015] 进一步的，其中粉煤灰占填充料总重量的60%～85%，秸秆粉占填充料总重量的5%～20%，膨胀珍珠岩占填充料总重量的10%～20%。
[0016] 进一步的，其中粉煤灰占填充料总重量的75%，秸秆粉占填充料总重量的10%，膨胀珍珠岩占填充料总重量的15%。
[0017] 在本发明的技术方案中，所述增强剂采用中碱玻璃纤维、聚丙烯纤维或植物纤维中的一种或几种的混合物。
[0018] 进一步地，所述中碱玻璃纤维、聚丙烯纤维或植物纤维的长度为60mm以上。
[0019] 在本发明的技术方案中，所述阻燃剂为氢氧化铝、氢氧化镁以及硼酸锌中的两种或三种的混合物。
[0020] 在本发明的技术方案中，所述发泡剂为碳酸氢铵或碳酸铵。
[0021] 在本发明的技术方案中，所述发泡剂的重量为填充料重量的3%～4.5%。
[0022] 本发明的另一个方面提供了一种硫氧镁水泥轻质发泡砖的制备方法，其包括以下步骤：
[0023] 1) 将硫酸镁以水溶解，配置成浓度为20%～35%的硫酸镁溶液，备用；
[0024] 2) 按配方称取各原料：
 氧化镁 100 份
 硫酸镁溶液 50~85 份
 填充料 100~300 份
 第一外加剂 0.1~0.5 份
[0025] 第二外加剂 0.5~5 份
 增强剂 20~35 份
 阻燃剂 10~25 份
 发泡剂 5~15 份
 有机硅憎水剂 0.5~5 份
[0026] 3) 将有机硅憎水剂和第一外加剂加入硫酸镁溶液中，进行充分搅拌，得到混合液；
[0027] 4) 将第二外加剂与填充料依次加入氧化镁中，混合均匀后加入步骤3)的混合液，继续搅拌至混合均匀；
5) 边搅拌边向步骤4) 所得混合物中依次投入增强剂与阻燃剂，搅拌均匀；
6) 向步骤5) 所得混合物中加入发泡剂搅拌成发泡浆料；
7) 将搅拌好的发泡浆料注入模型中刮平，至温度区间为25〜40℃ 内养护8〜10小时后降温脱模，常温下继续养护10〜25天。

在本发明的技术方案中，步骤6) 为检测步骤5) 所得混合物的温度，至混合物温度降低至55℃〜65℃时，加入发泡剂搅拌成发泡浆料。

有益效果
1) 本发明的硫氧镁水泥轻质发泡砖抗压、抗折性能优异，耐水性强，保温与阻燃效果好，能够抗返卤、抗泛霜。
2) 本发明的硫氧镁水泥轻质发泡砖制备方法简单，仅包括简单的混合、搅拌等步骤即可完成，不需要复杂设备。
3) 本发明的硫氧镁水泥轻质发泡砖中使用了多种经济环保材料，例如秸秆、粉煤灰，脱硫废液提取得到的硫酸镁等为主要原料，有效达到了废物利用、节能环保的目的。
4) 本发明采用两种复配外加剂，核心外加剂的种类和加入方法改善了硫氧镁水泥的水化相，产生了一种新的不溶性晶须水化相，进而使其强度、柔韧性与抗水性能明显优于普通硫氧镁水泥轻质砖。
5) 本发明意外地发现憎水剂的加入顺序对水泥发泡砖的吸水率产生影响，在硫酸镁溶液中加入憎水剂能够降低吸水率，产生良好的抗水性。

具体实施方式
为了说明本发明的特点，以下通过实施例对本发明作进一步具体阐述，这些实施例仅用于举例说明的目的，并不限制本发明的范围。

实施例1硫氧镁水泥轻质发泡砖的制备方法
1) 将硫酸镁以水溶解，配置成浓度为20%的硫酸镁溶液，备用；
2) 按配方称取各原料：

<table>
<thead>
<tr>
<th>成分</th>
<th>重量（份）</th>
</tr>
</thead>
<tbody>
<tr>
<td>氧化镁</td>
<td>100</td>
</tr>
<tr>
<td>硫酸镁溶液</td>
<td>55</td>
</tr>
<tr>
<td>填充料（粉煤灰：秸秆粉：膨胀珍珠岩（重量比）=15：2：3）</td>
<td>147份</td>
</tr>
<tr>
<td>四硼酸钠</td>
<td>0.2</td>
</tr>
<tr>
<td>碳酸钠</td>
<td>1.5</td>
</tr>
<tr>
<td>中碱玻璃纤维</td>
<td>20</td>
</tr>
<tr>
<td>氢氧化铝</td>
<td>13</td>
</tr>
<tr>
<td>硫酸氢铵</td>
<td>5</td>
</tr>
<tr>
<td>有机硅憎水剂</td>
<td>1</td>
</tr>
</tbody>
</table>

3) 将有机硅憎水剂和四硼酸钠加入硫酸镁溶液中，进行充分搅拌，得到混合液；
4) 将碳酸钠与填充料依次加入氧化镁中，混合均匀后加入步骤3) 的混合液，继
继续搅拌至混合均匀；

5) 边搅拌边向步骤4) 所得混合物中依次投入中碱玻璃纤维与氢氧化铝，搅拌均匀；

6) 至混合物温度降低至55℃~65℃时，向步骤5) 所得混合物中加入碳酸氢铵搅拌成发泡浆料；

7) 将搅拌好的发泡浆料注入模具中刮平，在温度区间为25~40℃内养护8~10小时后降温脱模，常温下继续养护10~25天。

实施例2硫氧镁水泥轻质发泡砖的制备方法

1) 将硫酸镁以水溶解，配置成浓度为20%的硫酸镁溶液，备用；

2) 按配方称取各原料：

氧化镁 100 份
硫酸镁溶液 70 份
填充料（粉煤灰：粘秆粉：膨胀珍珠岩（重量比）=15：2：3）200 份
四硼酸钠 0.3 份

3) 将有机硅憎水剂和四硼酸钠加入硫酸镁溶液中，进行充分搅拌，得到混合液；

4) 将酒石酸钠与填充料依次加入氧化镁中，混合均匀后加入步骤3) 的混合液，继续搅拌至混合均匀；

5) 边搅拌边向步骤4) 所得混合物中依次投入中碱玻璃纤维与氢氧化铝，搅拌均匀；

6) 至混合物温度降低至55℃~65℃时，向步骤5) 所得混合物中加入碳酸氢铵搅拌成发泡浆料；

7) 将搅拌好的发泡浆料注入模具中刮平，在温度区间为25~40℃内养护8~10小时后降温脱模，常温下继续养护10~25天。

实施例3硫氧镁水泥轻质发泡砖的制备方法

1) 将硫酸镁以水溶解，配置成浓度为20%的硫酸镁溶液，备用；

2) 按配方称取各原料：

氧化镁 100 份
硫酸镁溶液 83 份

填充料（粉煤灰：粘秆粉：膨胀珍珠岩（重量比）=15：2：3）280 份
四硼酸钠 0.4 份
酒石酸钠 3.5 份
中碱玻璃纤维 35 份

[0061] 氢氧化铝 25 份
 碳酸氢铵 12 份
 有机硅憎水剂 2.5 份

[0062] 3）将有机硅憎水剂和四硼酸钠加入硫酸镁溶液中，进行充分搅拌，得到混合液；
[0063] 4）将酒石酸钠与填充料依次加入氧化镁中，混合均匀后加入步骤3）的混合液，继续搅拌至混合均匀；
[0064] 5）边搅拌边向步骤4）所得混合物中依次投入中碱玻璃纤维与氢氧化铝，搅拌均匀；
[0065] 6）至混合物温度降低至55℃～65℃时，向步骤5）所得混合物中加入碳酸氢铵搅拌成发泡浆料；
[0066] 7）将搅拌好的发泡浆料注入模型中刮平，在温度区间为25℃～40℃内养护8～10小时后降温脱模，常温下继续养护10～25天。

[0067] 实施例4硫氧镁水泥轻质发泡砖的制备方法
[0068] 实施例4与实施例3的区别仅在于以磷酸二氢钠代替硼酸钠，以水杨酸钠代替酒石酸钠。

[0069] 实施例5硫氧镁水泥轻质发泡砖的制备方法
[0070] 实施例5与实施例3的区别仅在于将四硼酸钠与酒石酸钠一起加入硫酸镁溶液中。

[0072] 实施例6硫氧镁水泥轻质发泡砖的制备方法
[0073] 实施例6与实施例3的区别仅在于四硼酸钠与酒石酸钠一起加入氧化镁中干混。

[0074] 对实施例1-6中的发泡砖28天的性能进行测试，

[0075] 28天抗压强度的实验方法为：空气中养护28天后将试件利用抗压夹具在压力试验机上进行抗压强度测试，测试时采用的加载速度为5mm/min,计算公式如下：

\[f_c = \frac{F_{\text{max}}}{A} \]

公式中：\(f_c \)为抗压强度 (MPa), \(F_{\text{max}} \)为试件受压破坏时的最大荷载 (kN), \(A \)为承压面积 (mm²)。

[0078] 28天抗折强度的实验方法为：空气中养护28天后将试件利用抗折夹具在试验机上进行三点弯曲试验，两支点间跨距100mm, 计算公式如下：

\[f_b = \frac{3PL}{2bh^2} \]

公式中：\(f_b \)为抗折强度 (MPa), \(P \)为最大破坏荷载 (N), \(L \)为两支点间的跨距 (mm), \(b \)为受力高度 (mm), \(h \)为为试件高度 (mm)。

[0081] 软化系数的实验方法将养护28天的试件浸泡于水中120天后取出，擦干表面水分，测试其抗压强度，计算公式如下：
\[R_j = \frac{R(w,n)}{R(A,28)} \]

公式中：\(R_j \) 为软化系数；\(R(w,n) \) 为浸泡水中\(n \)天的抗压强度 (MPa)；\(R(A,28) \) 为养护28天的抗压强度 (MPa)。

测试结果如下：

<table>
<thead>
<tr>
<th>技术指标</th>
<th>实施例1</th>
<th>实施例2</th>
<th>实施例3</th>
<th>实施例4</th>
<th>实施例5</th>
<th>实施例6</th>
</tr>
</thead>
<tbody>
<tr>
<td>表观密度 (g/cm³)</td>
<td>320</td>
<td>260</td>
<td>240</td>
<td>322</td>
<td>326</td>
<td>318</td>
</tr>
<tr>
<td>抗压强度 (MPa)</td>
<td>50.2</td>
<td>53.1</td>
<td>55.6</td>
<td>52.9</td>
<td>42.3</td>
<td>38.6</td>
</tr>
<tr>
<td>抗折强度 (MPa)</td>
<td>14.2</td>
<td>14.9</td>
<td>14.6</td>
<td>14.5</td>
<td>12.5</td>
<td>11.9</td>
</tr>
<tr>
<td>软化系数</td>
<td>0.91</td>
<td>0.90</td>
<td>0.93</td>
<td>0.92</td>
<td>0.69</td>
<td>0.72</td>
</tr>
<tr>
<td>返卤泛霜现象</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td>导热系数 W (M.K)</td>
<td>0.15</td>
<td>0.13</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>燃烧性能</td>
<td>不燃</td>
<td>不燃</td>
<td>不燃</td>
<td>不燃</td>
<td>不燃</td>
<td>不燃</td>
</tr>
</tbody>
</table>

实施例7增强剂对发泡砖的影响

按照实施例3的方法制备，测试不同种类增强剂以及不同纤维长度增强剂对于发泡砖性能的影响。通过28天的抗压强度和抗折强度进行评价，试验结果证明通过加入中碱玻璃纤维或聚丙烯纤维能够增强发泡砖的抗压强度以及抗折强度。纤维的长度对试验结果也存在影响，出乎预料的是纤维长度与抗压强度并非完全呈现正比例增长。
实施例8有机硅憎水剂对发泡砖性能的影响

按实施例3的方法制备，并测试有机硅憎水剂加入顺序对于发泡砖性能的影响。通过吸水率试验和观察水泥发泡砖的返卤泛霜现象评价有机硅憎水剂用量以及加入顺序对水泥发泡砖影响。通过试验结果可以得出有机硅憎水剂的加入能有效降低发泡砖的吸水率，同时抑制返卤泛霜现象。不同用量的有机硅憎水剂均具有降低吸水率的作用，相对于每100份氧化镁，加入有机硅憎水剂的用量在0.5重份以上时能够达到6%以下的吸水率。而在不同的步骤加入憎水剂对发泡砖性能也有影响，出乎预料地，加入硫酸镁水溶液中的效果明显优于加入氧化镁中或者加入水泥浆中。

其中，含水率公式 = (湿重-干重) / 湿重 × 100％
<table>
<thead>
<tr>
<th>技术指标</th>
<th>实施例 3</th>
<th>第 1 组</th>
<th>第 2 组</th>
<th>第 3 组</th>
<th>第 4 组</th>
<th>第 5 组</th>
<th>第 6 组</th>
<th>第 7 组</th>
</tr>
</thead>
<tbody>
<tr>
<td>有机硅憎水剂</td>
<td>有</td>
<td>无</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>有</td>
<td>有</td>
</tr>
<tr>
<td>用量（以重量份计，相对于每 100 份氧化镁）</td>
<td>2.5</td>
<td>\</td>
<td>0.5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>加入顺序</td>
<td>步骤 3）加入硫酸镁溶液中</td>
<td>步骤 3）加入硫酸镁溶液中</td>
<td>步骤 3）加入硫酸镁溶液中</td>
<td>步骤 3）加入硫酸镁溶液中</td>
<td>步骤 4）加入氧化镁中干混</td>
<td>步骤 5）加入</td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸水率%</td>
<td>5.2</td>
<td>10.2</td>
<td>6.0</td>
<td>5.1</td>
<td>5.2</td>
<td>5.2</td>
<td>6.2</td>
<td>7.9</td>
</tr>
<tr>
<td>返卤泛霜现象</td>
<td>无</td>
<td>有</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
<td>无</td>
</tr>
</tbody>
</table>