PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/30423
H04B A2) -

(43) International Publication Date: 17 June 1999 (17.06.99)

(21) International Application Number: PCT/US98/25998 | (81) Designated States: CA, JP, MX, European patent (AT, BE,

(22) International Filing Date: 8 December 1998 (08.12.98)

(30) Priority Data:

60/069,024 10 December 1997 (10.12.97) US

(71) Applicant: AT & T CORP. [US/US]; 32 Avenue of the
Americas, New York, NY 10013-2412 (US).

(72) Inventor: NIKOLAOS, Anerousis; Apartment 10M, 215 W,
95th, New York, NY 10025 (US).

(74) Agents: DWORETSKY, Samuel, H. et al.; AT & T Corp., P.O.
Box 4110, Middletown, NJ 07748 (US).

CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: AUTOMATIC VISUALIZATION OF MANAGED OBJECTS OVER THE WORLD-WIDE-WEB

(57) Abstract

A method and apparatus provide for the automatic visualization of network management information over the world-wide-web
is presented. Network management information is aggregated and stored as Aggregation Managed Objects (AMO) in a Management
Aggregation and Visualization Server (MAVS). The AMO’s contain a list of attributes from which an HTML page is created. Some of the
attributes are pointers which point to Java applets stored in an applet database. The HTML page and appropriate Java applets are retrieved
to a web browser through the MAVS. The use of AMO’s thus provides a user—friendly interface to view the aggregation of management

information.

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cbate d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
1§
IT
JP
KE
KG
Kp

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
Nz
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
VAL

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/30423 PCT/US98/25998

10

15

20

25

30

35

AUTOMATIC VISUALIZATION OF MANAGED OBJECTS
OVER THE WORLD-WIDE-WEB

PRIOR PROVISIONAL PATENT APPLICATION

The present application claims the

benefit of U.S. Provisional Application No.
60/069,024 filed December 10, 1997.

CROSS-REFERENCE TO RELATED APPLICATION

The present application is related
to U.S. Patent Application No. / ,
filed December __, 1598, entitled “AUTOMATIC
AGGREGATION OF NETWORK MANAGEMENT INFORMATION
IN SPATIAL, TEMPORAL AND FUNCTIONAL FORMS”,
and based on U.S. Provisional Application No.
60/069,007 filed December 10, 1997.

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION

The present invention relates to the

automatic visualization of managed objects
oveér the world-wide-web, and more
particularly, to the use of an Aggregation
Managed Object (AMO) to provide a user-
friendly interface to view an aggregation of

management information.

DESCRIPTION OF THE ART
The main challenges in providing
powerful and comprehensive network management
services for today's integrated networks lie
in three main areas: how to provide support
for heterogeneity (components of different

types from different manufacturers),

‘WO 99/30423 9 PCT/US98/25998

scalability (large numbers of network
elements), and easy access to network
management services (aggregation and
visualization of management information).

5 The first challenge, heterogeneity,
is being addressed through standardization
efforts within organizations such as the IETF
and the Network Management Forum. Today, a
number of specifications are available for

10 managing TCP/IP stacks (MIB-2 and RMON), ATM
switches, etc.

There are, however, no widely
established methods for dealing with the
second challenge, that is with the large

15 numbers of network elements (scalability).
Managing large networks requires powerful
abstractions that capture the essentials of
the state of the network rather than the
details. Most approaches for reducing state

20 and event information in commercially
available network management (NM) platforms
are ad-hoc and usually customized for a
particular management problem or network. As
networks grow larger and integrate an ever

25 increasing number of services, the existence
of a scalable network management architecture
becomes critical.

The first generation of network
management tools to face the challenge of the

30 large numbers of network elements
(scalability), such as HP Openview, Sun Net
Manager, IBM Netview, etc., follow closely the
point-to-point management model. According to
this model, a network management application

35 (NM client) connects to a management agent (NM

server) using one of the standard protocols

‘WO 99/30423 3 : PCT/US98/25998

for management such as SNMP or CMIP. The
agent contains information about a network
element or a group of elements. A network
manager retrieves or controls this information

5 Dby issuing “get” and “set” operations.
Especially in SNMP systems that do not support
rich data types, this exchange of management
information is at a very low level. As a
result, all the intelligence for providing

10 more complex NM services resides within the
client (manager). First generation tools are
therefore characterized by complex and
expensive clients. Although these clients
have the capability to maintain a hierarchical

15 topology map and thereby provide easier
navigation through a possibly large network,
the manager still has to employ a low level
management protocol to interact with every
network element. First generation systems

20 offer few capabilities to customize the avail-
able management services beyond the
functionality offered by the underlying NM
protocol such as SNMP or CMIP, or the
interface provided by a vendor-supplied

25 element management system.

Second generation NM systems have
tried to address some limitations of the first
generation by providing better customization
options and automation of routine management

30 applications. Tools such as Tivoli's TME 10,
CA's Unicenter TNG and NetExpert are targeted
at the corporate IT infrastructure and offer a
richer set of management services including
end-to-end application management, network

35 services management, software distribution

etc.

WO 99/30423 4 PCT/US98/25998

Although the above tools simplify,
to a large extent, the effort required to
manage large numbers of network elements and
applications, they are customized to work with

5 specific products and network protocols.
Fundamentally, the network manager has little
control over what management services are
presented to him/her and how information is
aggregated, stored and visualized.

10 The third challenge then, a related
area that has received much attention
recently, 1is the one of access to network
management services by the manager
(aggregation and visualization of management

15 information). Large network management
systems collect a tremendous amount of
information from network elements and make it
available to network operators in a myriad of
formats. In order for this information to

20 convey the essence rather than the details of
network state, it must be organized,
summarized and simplified as much as possible.
Similarly, the network manager needs mecha-
nisms that aggregate the control of a large

25 number of network elements into simpler
interfaces.

Traditionally, network management
systems have employed proprietary user inter-
faces to monitor and control a network state.

30 Such systems are often customized for the
specific management problem at hand and then
used by a small group of appropriately trained
people. This has been an acceptable solution
while the only users of network management

35 services were a small number of network

operators. This situation, however, is

‘WO 99/30423 5 PCT/US98/25998

changing rapidly: the Internet is reaching an
increasing number of people and businesses
every day, and broadband access is coming soon
to every home. A large number of networked

5 services are available today for businesses
and consumers, ranging from simple dial-up
network access to virtual networking,
financial services such as online trading and
banking, one step shopping, etc. The

10 increasing complexity of online services of
every form has introduced significant
management requirements on both service
providers and subscribers. Service providers
have realized that the bundling of customer

15 management services can be an important
differentiator for their products. More
customers today require the ability to observe
the operational state of their service in
real-time, collect statistics on service

20 usage, customize parameters of the service,
order additional service or perform proactive
management tasks in anticipation of efforts.
By delegating some aspects of managing a
service to customers, operators can cut down

25 on their customer care costs while providing
competitive and cost effective services.

The increasing availability of
management services has motivated many
researchers to rethink the way these services

30 are provided to consumers. The continuation
of the existing status quo which calls for
customized and complex user interfaces to
service management functions receives
increasing resistance from businesses and

35 consumers that favor portable, lightweight,

standards-based solutions that need the

WO 99/30423 6 PCT/US98/25998

minimum amount of configuration and are simple
to use. Many researchers have proposed to use
the World-Wide Web (WWW) to provide access to
management services. The Web offers the

5 widest possible installed base of compatible
clients (every networked computer is now
equipped with a Web browser) and a portable
execution environment based on Java that
allows Web clients to access arbitrarily

10 complex information services by downloading
the appropriate Java applets.

Access to the management services

has thus been provided using the World-Wide
Web and Java, the most widely available tools

I5 today for remote information access. A
resulting software platform for such access
was named Marvel (for Management AggRegation
and Visualization Environment) which is
detailed in the reference “MARVEL: A Toolkit

20 for building Scalable Web-based Management
Services”, and which is hereby incorporated by
reference. Marvel is a software environment
that allows the network manager to define how
management information collected from network

25 elements is aggregated into more useful
abstractions and finally presented to the
manager. Marvel thus provides scalable
solutions for systems management for small
businesses and large enterprises, network

30 management services for network operators, and
customer network management services for
businesses and consumers.

The MARVEL architecture consists of

lightweight clients and a hierarchy of

35 Management Aggregation and Visualization

Servers (MAVS). The minimum requirement for a

‘WO 99/30423 7 PCT/US98/25998

MARVEL client is to have a Java Runtime
Environment (JRE). All the necessary code to
access management services provided by AMOs
can be downloaded in real-time from the MAVS.

5 In addition, if the client has the capability
to display the Hypertext Markup Language
(HTML) it can use the visualization features
provided by the MAVS that aggregate attribute
specific user interfaces (applets) on HTML

10 pages. This is why Web browsers are the ideal
MARVEL clients. In addition, the MARVEL
architecture benefits from the fact that Web
browsers are very widespread. By making the
minimum number of assumptions for the client,

15 MARVEL provides network management services of
arbitrary complexity to practically every user
on the Internet.

WO 99/30423 8 PCT/US98/25998

SUMMARY OF THE INVENTION
. Accordingly, the present invention,
which can use the Marvel platform (which in
one embodiment uses a Java-enable Web
5 Browser), provides a management information
model that allows the aggregation of
management information to reduce complexity,
and further provides a distributed object
services model (based on the MAVS described
10 below) that allows the definition of rich data
types and management services and the storage
of management information in a distributed
database of aggregated information.
Through the management information
15 model, the network manager can define how
management information, collected from network
elements, is aggregated into more useful
abstractions and finally presented.
Aggregation of the information can be
20 accomplished in spatial, temporal and
functional forms. To allow for aggregations,
network elements are grouped according to a
specified criteria, and an aggregation rule
specifying what information is sought is
25 applied to the group. On the basis of the
aggregation rule, attribute values of the
network elements are retrieved and a filter
function is applied. The filter function
determines a current value of the attribute
30 across all of the network elements to which
the aggregation rule is applied. The current
value of the attribute is then stored in an
Aggregation Managed Object (AMO).
Through the distributed object
35 services model the AMO can be stored,

retrieved and automatically visualized over a

WO 99/30423 9 PCT/US98/25998

10

15

20

25

30

35

distributed computing environment such as the
world-wide~web. Each AMO contains a list of
attributes which corresponds to network
management information aggregated according to
the aggregation rule. To visualize the
information contained within the AMO, a web
browser contacts the distributed object
services model (having an HTTP server) which
in turn creates an HTML page on the basis of
the attributes contained within the AMO. Some
of the attributes contained within the AMO are
pointers which point to Java applets stored in
an applet database. The Java applets are
retrieved and inserted into the HTML page for
viewing.

The present invention, including its
features and advantages, will become more
apparent from the following detailed
description with reference to the accompanying

drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates an example of a
group hierarchy in a network with 8 managed
elements A to H, according to an embodiment of

the present invention.

Figure 2 illustrates an example
where network elements are organized into
different groups according to various levels
of aggregation, according to an embodiment of

the present invention.

Figure 3 illustrates a 3-level

architecture for generating computed views of

WO 99/30423

10

15

20

25

30

35

10 PCT/US98/25998

management information, according to an

embodiment of the present invention.

Figure 4 illustrates a flow chart
for a method of computing an aggregated
attribute value, according to an embodiment of
the present invention.

Figure 5 illustrates another example
of the attribute value computation procedure
along with a partial apparatus implementation
of the Marvel software environment, according

to an embodiment of the present invention.

Figure 6 illustrates an example of
the apparatus structure of the Management
Aggregation and Visualization Server (MAVS),
according to an embodiment of the present

invention.

Figure 7 illustrates an example of
an indirect object visualization procedure
through an HTTP server, according to an

embodiment of the present invention.

DETAILED DESCRIPTION
Figures 1 through 7 illustrate a

method and apparatus for providing a
management information model and a distributed
object services model. The models allow for
the automatic aggregation of network
management information in spatial, temporal
and functional forms, and the automatic
visualization of managed objects over the
world-wide-web. Network management

information is aggregated in the form of at

WO 99/30423 n PCT/US98/25998

least one attribute name-value pair and stored
in an Aggregation Managed Object (AMO). The
AMO is likewise stored in the database of a
special management agent, the Management

5 Aggregation and Visualization Server (MAVS)
which allows a network manager to access
network information stored in the AMOs.

For the purposes of the present

invention, the following methods of

10 aggregation are distinguished:

Spatial aggregation, where information is
collected from a number of components and a
summarization function (filter) is applied.
For example, the ingress traffic to a network

15 region can be computed by summing traffic
information collected from switches at the
border of the region.

Temporal aggregation, where information
is collected periodically to form a time

20 series of various granularities (minutes,
hours, etc.) or, for example, provide an
autocorrelation measurement.

Functional aggregation, where information
from different functional areas of a

25 management system is combined to construct a
functional view of a network element or
service. A subscriber's profile that contains
the subscriber billing information, CPE
hardware configuration, performance

30 measurements, etc., is an example of

functionally aggregated information.
The Network Element Grouping
Model

35 The main difficulty behind creating
aggregations is the need to specify and

WO 99/30423 = PCT/US98/25998

15

20

25

30

35

maintain a (possibly) long list of components
over which the aggregation is computed.
Sometimes different aggregations are computed
over the same group of components (which share
a set of commonalities such as location,
functionality, etc.) and for this reason a
network element grouping model can be
beneficial to reducing the overall amount of
information required to specify aggregations.

According to the network element
grouping model, and referring to Figures 1 and
2, the network consists of a number of
interconnected network elements (NEs) .

Network elements are physical devices such as
routers, printers, workstations, etc.

Usually, the manufacturer of each of these
elements provides an element management agent
(EMA) - a rudimentary facility to manage
(monitor and control) one or more instances of
their equipment in a network.

Collections of the network elements
are defined as groups. Users can dynamically
define groups based on any factor that makes
sense. For example, groups can be formed
according to geographical or location criteria
(e.g., a group of all NEs in a building,
campus, state, etc.), or functionality (e.g.,
a group of all ATM switches), or some
combination such as all ATM switches in the
New York City area.

It is also possible to define a
group with other groups as members. Thus,
every network grouping hierarchy forms a tree
with leaves being network elements. Groups
are not necessarily disjoint. Every group is

characterized by a level indicator that

‘WO 99/30423 13 PCT/US98/25998

corresponds to the depth of the tree where the
particular group belongs. Level 0 is reserved
for the leaves of a hierarchy which (from a
network management standpoint) represent the

5 element management agents. A group at Level 1
corresponds to a set of element management
agents. A group at Level 2 may contain groups
of Level 1 and perhaps one or more EMAs
(contained in Level 0). 1In general, a group

10 at level n is allowed to contain groups of any
level lower than n, i.e., level n-1, n-2, ...,
level 0 inclusive. Some times it is
convenient to refer to a group of Level 0
which, however, really implies an element

15 management agent (or at least one network
element) .

For example, Figure 1 demonstrates
an example of a network with 8 managed
elements A through H. Each one of these

20 elements A through H contains an EMA. Two
groups of four elements each, Gl1.1 and G1.2
have been created. 1Information for these
groups 1is stored in objects J and K,
respectively, which are in turn stored in a

25 special management agent (i.e., the MAVS,
explained in further detail below).
Furthermore, a second level group G2.1 can be
created which consists of the management
agent (s) that contain objects J and K.

30 Information about this group is stored in
object L. L' s attributes are computed from
the attributes of objects J and K, which in
turn, are computed respectively from
attributes in network elements A-D and E-H.

35 A group can be a point of

aggregation of information about its

WO 99/30423 PCT/US98/25998

10

15

20

25

30

35

subordinates. For example, Figure 2
demonstrates an example where network elements
M through Z and AA (of a Level 0 origin) are
first organized into groups G1l, G2 and G3 that
compose the first level of aggregation. Group
G4 is defined as the union of Gl and G2, and
similarly G5 as the union of G2 and G3. Once
the group hierarchy has been defined, the
manager can define higher-level management
views and services by referring to groups
rather than individual network elements. As
the simplest example, assume that an attribute
ErrorCount¥ is defined on some EMAs,
representing the number of unrecognized
packets arriving at the corresponding network
element. A new attribute “ErrorCount® can be
defined in a managed object representing Gl to
represent the total number of errored packets
received within the group. The latter can be
computed by summing the ¥ ErrorCount®
attributes retrieved from every member of GI1.
In general, attributes defined using
groups of level n are computed by expanding
these groups recursively to a list of
management agaents. The appropriate
information is collected from each one of
these agents to compute the attribute’s value.
Similarly, control operations on an attribute
are performed by expanding the group
definition into a set of management agents and
performing a control operation on each one of

these agents.

The Information Model

Management information in a large

network today is usually distributed between

WO 99/30423 15 PCT/US98/25998

the management information databases of
network elements and, as a consequence,
represents small aspects of the configuration
or operation of those elements rather than of

5 the network as a whole. Network managers, and
the management applications they use today,
require access to a much higher level of
management information and services. The
present invention thus uses an object-oriented

10 information model where the value of an
object's attribute can be defined as an
arbitrary computation over other attribute
values of other objects. Attribute values can
be information residing inside element

I5 management agents or other computed
attributes. The emphasis of the model is in
providing a technology-independent
specification framework in which these
computations can be described. Using this

20 model, the network manager can define new
managed objects that represent computed views
(i.e., aggregations) of network management
information. Computed views can represent a
summary of lower level configuration and

25 performance information, or a more detailed
view of a particular management parameter.

Referring to Figure 3, objects (such

as objects J, K and L of Levels 1 and 2 shown
in Figure 1) representing computed views of

30 network management information can be regarded
as implementing a "middleware management
services" layer 10. This layer 10 extracts
information from managed elements 20 (such as
elements A through Z and AA of Level 0 as

35 shown in Figures 1 and 2) using a standards-

based management protocol 30 (e.g., SNMP, CMIP

WO 99/30423 16 PCT/US98/25998

10

15

20

25

30

35

or DMI), processes this information according
to the computed view specification and makes
it available to management applications 40
using a distributed computing environment 50.
Objects within the management middleware layer
10 can follow the SNMP or 0OSI structure for
management information (in which case they are
accessed using the corresponding management
protocol), or a proprietary format that
exports management services to a legacy
distributed computing environment such as
CORBA or Java. The model of the present
invention only specifies the way that an
attribute value is computed from a set of com-
ponents and for this reason it can be used as
an extension to standards-based models for
structuring management information such as
SNMP, SMI and GDMO. However, the model also
fits well with a distributed computing
environment such as CORBA, since the notion of
computed views for network management is
closely related to the notion of higher level
management services that can be more ef-
ficiently implemented in this framework.

The object-oriented information
model is followed so as to allow storage of
aggregated management information, as this
information model captures in a natural way
the types of management aggregations that need
to be created and the complex relationships
with the information components from which

these aggregations are generated.

The Aggregation Managed Object

Aggregations (i.e., computed views)

are constructed through an information

‘WO 99/30423 17 PCT/US98/25998

aggregation process applied to management
information collected from the network
elements at Level 0. Every computed view in
the information model framework is stored in

5 an Aggregation Managed Object (AMO) and has
one or more of the following components:

1. A monitoring view which
contains information that has been
collected from the network and pro-

10 cessed to represent a higher-level

view of the network state;

2. A control view which represents
a control interface to higher-level
network management services; and

15 3. An event view, which represents

notifications that are generated by
the object following the occurrence
of a series of other (elementary)
events.

20 In order to define a view, the
network manager specifies an aggregation rule
with which an attribute value of the view is
computed. The aggregation rule can be
specified declaratively, in which case a

25 description of the aggregation is provided in
a structured language, or explicitly, in which
case the manager provides a piece of code that
will be executed to compute the attribute's
value. The computed attributes are stored

30 within the Aggregation Managed Object and thus
represent the network state corresponding to
the monitoring and control views.

The Aggregated Managed Objects are
stored in the database of a special management

35 agent (the MAVS - Management Aggregation and

Visualization Server) which is described in

‘WO 99/30423 18 PCT/US98/25998

further detail below. AMOs however do not
abide to a specific network management
standard either in terms of structure or
protocol for accessing them. AMOs are

5 distributed between MAVS for scalability,
based on a variety of criteria (usually to
reduce communication overhead between the AMOs
that are heavily interdependent). The
distribution of AMOs to MAVS can be

10 independent of the grouping hierarchy shown in
the network element grouping model.

Aggregated network management

information is contained within every AMO in a
list of attributes. Every attribute is

I5 ~associated with a list of groups to determine
the information components over which the
attribute value is computed. In order to
compute the value of the attribute, the list
of groups is further expanded into a list of

20 AMOs or pointers to information within element
management agents. When the appropriate
attribute value from each one of these objects
is retrieved, a filter function is applied to
calculate the final value. The filter

25 function operates on the collected attribute
values and stores the result as the current
value of the attribute. For example, the
operation SUM sums all the retrieved values
and stores the result as the new attribute

30 value. The operation NULL stores all the
retrieved values in an array indexed by each
retrieved attribute. More complex filter
functions may, for example, compute the mean
and standard deviation of a distributed data

35 set, extract topological information to create

a topology map, etc.

WO 99/30423 PCT/US98/25998

More formally, the attribute value

can be expressed using the following formula:

V = f{(G) 1) 01 ’ a] 9), (Gz s 02] az)a-"s(Gn > On 2 an)}
5 (EQ 1)

where f is the filter function, G; is a group,
a; is the component attribute's name and o; 1s
an object selection predicate (i.e.,

10 aggregation rule). The latter is used to
select the AMOs or MOs within the group from
which the attribute value will be collected.
Note that an attribute need not be computed
exclusively from components of the same type.

15 Referring to Figures 4 and 5, an
example of the attribute value computation
procedure is illustrated. 1In this example,
the attribute value V is computed from
information components in groups G; and G;.

20 The procedure works as follows: First, G; and
Gz are resolved into a list of element
management agents. For each agent in group G,
the object selection predicate o, identifies
the managed objects that contain the required

25 information. From each such object, we obtain
only the values of attributes that correspond
to the attribute selection predicate a;. The
group Gz is processed similarly. The result of
the collection process from all the agents of

30 Gy and G; is stored in a temporary table
structure (i.e., Intermediate Attribute List)
that identifies the origin of the attribute,
its type and its value. The table is then
used as input to the filter function which

35 calculates the new value of V.

WO 99/30423 PCT/US98/25998

20

Filter functions can be specified by
referénce, in which case the required code
segment is loaded dynamically from an external
function library. The benefit of this

5 ~approach is that library functions need not be
integrated with the MAVS, which allows the
definition of new functions or the improvement
of existing ones without disrupting the
operation of the management system.

10 Thus summarizing, the information
model achieves aggregations in a variety of
ways. Spatial aggregations of an attribute
can be accomplished through grouping and
filtering. Temporal aggregations of an

15 attribute, on the other hand, can be
accomplished by using special filter
functions. For example, a sliding window
filter can store a collected attribute value
as a time-series. It is also possible to

20 define new attributes using filter functions
that operate on the stored time-series such as
delta functions, cross-correlation functions,
etc. And lastly, Functional aggregations of
an attribute can be achieved by combining into

25 a single AMO attributes whose value is
computed from a variety of information

sources.
For a settable attribute, there also

exists a mapping function that describes how
30 the value set by the manager is to be
propagated to the underlying components. The
simplest mapping function is the one that
distributes the same value to all of its
component attributes. It can be used for

35 simple on-off operations or control operations

WO 99/30423 21 PCT/US98/25998

that require setting the same value to a group

of devices.

A Refresh Policy specifies how the
attribute value is computed. Computations may

5 Dbe made either on a synchronous or
asynchronous basis. In the synchronous basis
the value is computed dynamically upon an
operational command or query, such as in a get
operation of the attribute's value. In the

10 asynchronous basis, the value is computed and
stored according to an update condition. The
latter can be a time interval, in which case
the value is computed by periodically
"pulling” information from the component

I5 objects. It is also possible to link the
computation of an attribute's value with the
occurrence of an event. For example, an event
could be an indication that one of the
component attributes has changed its value.

20 In an eager policy, the attribute's value is
recomputed each time any of its components
change. The choice of the update condition
must be made with great care: Infrequent
updates introduce the danger that the computed

25 information is out of date. On the other
hand, an eager policy may trigger very
frequent computations of an attribute's value,
some of which may not even be necessary (if
the value is accessed at slower time scales).

30 The manager sets the update condition taking
into consideration the sensitivity of
management applications that use this infor-
mation with regard to its accuracy and the
complexity involved in computing its value.

35 Thus, as can be seen, the amount of

management information kept in an AMO is

WO 99/30423 2 PCT/US98/25998

reduced for the following reasons: Firstly,
AMO attributes refer to groups of network
elements rather than the NEs themselves;
Secondly, values are computed by applying a

5 filter function to the collected information;
and, Thirdly, AMOs have the capability of
evaluating their attribute values
synchronously upon a query (i.e., operational
command), thereby eliminating the need for

10 storage.

‘WO 99/30423 23 PCT/US98/25998

Aggregation Managed

Object Services

A distributed object services model

(i.e., the MAVS described herein below) 1is

5 used to provide access to the AMOs. Software
platforms based on industry standards such as
CORBA and Java-RMI are gaining momentum within
the network management services industry and
can be used to support the present invention’s

10 framework. AMOs provide network management
services through a set of advertised
interfaces. Clients obtain access to these
services by contacting a service broker. The
broker returns a reference to the AMO that

15 offers the requested service. The client then
invokes operations on the AMO directly and re-
ceives the results.

AMOs provide two tiers of services:

Basic access services, which are mandatory for

20 all AMOs, and Extended Services that are
implemented optionally. The latter can be
used to provide a richer customized interface
to the object for performing more complex
operations related to its intended management

25 function. There are three types of basic

services:
1. Attribute access services are used to

set and retrieve attribute values and
control several aspects of every

30 attribute's operation. These functions
include get (retrieves an attribute value
as an opaque object), set, action
(dynamically downloads control logic that
operates on one or more attributes or

35 other objects), etc.

‘WO 99/30423 24 PCT/US98/25998

2. Visualization services are used to
provide clients with the necessary
information to setup graphical user
interfaces (GUIs) to access the object's
5 basic and extended services. The benefit
of this approach is that clients do not
need to be aware of an object's internal
structure to provide a user-friendly
interface. In essence, the GUI is
10 "programmed"”" as part of the object and is
transferred to the client when it first
accesses the object. The object may
provide more than one visualization
services depending on the type of clients
15 that are supported by the Marvel system.
3. Event services are used to subscribe
internal and external consumers to
receive event notifications generated by
the object, and control the event flow.
20 Events in Marvel are usually aggregations
of lower-level events corresponding to
the management view portrayed by the

object.

The AMO designer is responsible for
25 providing an implementation for all basic and
extended services. Access to the latter can
sometimes be provided indirectly through the
basic services. For example, the
visualization functions can be overridden to
30 set up a user interface that accesses some of
the object's extended services.
In addition to the common services
provided by every object, every Marvel server

provides a set of high level services that can

WO 99/30423 ’s PCT/US98/25998

be used by client applications to navigate and

examine the database:
1. Navigation services are used to

navigate through the server database and

5 examine its contents. Current Marvel
implementations store objects in a tree,
and include functions like getRoot
(retrieves the root object), getParent
(retrieves the parent of an object),

10 getSubordinates (retrieves the object's
children), getPath (retrieves the path
from the root), etc.

2. Registration services are used to
examine the structure and capabilities of

15 every object in the database. 1In this
way, clients can dynamically browse
through the services provided by the ob-
ject and invoke a service with the
appropriate parameters. This

20 introspection capability does not require
clients to be previously aware of the
services provided by every object.
Rather, services are "discovered" in
real-time and invoked after loading the

25 appropriate stub code at the client.
Objects must register themselves when
they are created and provide information
on the attributes they contain, the
extended services they support and the

30 stubs that must be loaded to invoke these
services.

3. Object management services are used to
instantiate, upgrade or delete objects

while the server is running. The manager

WO 99/30423 26 PCT/US98/25998

provides the name of the object to be
instantiated, its location in the
database and a pointer to the code that
can be used to instantiate the object.

5 The server then dynamically loads the
code and generates a new object instance.
Objects can be upgraded, in which case,
the state of the object is frozen, the
old code is purged from the agent, the

10 new code is loaded and the captured state

is passed to the new object.

The above services can be
implemented using industry-standard platforms
such as CORBA and Java which are currently

15 Dbeing used in many network management appli-
cations. Java's remote method invocation
(RMI) is a package that provides distributed
computing primitives tightly integrated with
the language, and is extremely easy to use and

20 integrate into Java applications. CORBA is a
more widely accepted standard but requires
more heavyweight implementations. The present
invention provides the same object services
under both frameworks: Java RMI is more

25 suitable for web (and other lightweight)
clients, while CORBA for more demanding appli-
cations that require the widest possible

inter-operability.

30 The Management
Aggregation and Visualization

Server (MAVS)

Referring to Figure 6, the MAVS 1 is
a management agent designed to handle

35 aggregations of network management

‘WO 99/30423 7 PCT/US98/25998

20

25

35

information. “Every AMO must be instantiated
within a MAVSL For this reason a MAVS has a
number of subsystems designed exclusively to
support AMO features. Referring again to
Figure 6, its main components are:
1. The aggregation processing
engine 2. This engine is
responsible for implementing an at-
tribute's update policy by computing
its value from a set of components;
It initially resolves group
references into target objects,
invokes the appropriate protocols to
collect the necessary information,
and finally applies the filter
function to compute the final
value(s). For control operations
the last two tasks are reversed.
2. The persistent storage engine
3. By default, the state of every
AMO is made persistent to survive
failures of the MAVS. Persistence
is necessary when the stored
aggregated information cannot be
reconstructed from the current
contents of element management
agents (a time series attribute is a
good example of an object that must
be persistent).
3. The AMO service registry 4.
The registry logs every AMO on the
MAVS together with its exported
service interfaces (basic and
extended). Clients first contact
the registry to obtain a handle to
their AMO of interest.

WO 99/30423 28 PCT/US98/25998

10

15

20

25

35

4. An HTTP server 5, that provides
access to HTML documents generated
by some AMO's visualization
functions. It also serves to
download Java class byte code to
clients and provides an initial
navigation page to the contents of
the MAVS object database.

5. The event processing subsystem
6, that registers event
subscriptions and performs event
collections and correlations.

6. The guery processing engine 7,
that supports operations on AMOs
with user-supplied predicates and
filters (as described above).

7. The protocol translation module
8, which allows AMOs to access
management services using a
different protocol, such as SNMP,
CMIP or CORBA.

A management system based on MARVEL
may contain many MAVS. Although it is not
required to follow a particular structure, it
is usually convenient to structure all MAVS
similar to the grouping hierarchy for easier
administration, and to minimize communication
overheads. So, in a MARVEL system one would
expect to have separate MAVS containing the
aggregation objects for a particular sub-
network, a parent MAVS containing aggregations
about a network region (consisting of several
sub-networks), and finally a top level MAVS
containing the aggregations for the entire

network. In reality however, the management

WO 99/30423 29 PCT/US98/25998

10

15

20

25

35

system designer can expand or collapse these
levels as is necessary. A single MAVS may 1in
fact support any number of levels of
aggregation.

AMOs within a MAVS represent
aggregations of Levels I and above. The MAVS
itself acts in a dual role: it acts as a
server (agent) for its clients and as a client
(manager) when accessing the services of other
MAVS or EMAs.

In the current implementation every
MAVS contains a number of AMOs in a persistent
storage database, very much like the 0SI
management model. AMOs are placed in a
containment tree structure in any fashion that
the manager wishes (the tree structure was
selected purely for implementation
convenience). However, It is often
appropriate to follow a natural containment
relationship. For example, an AMO
representing a summarization of performance
parameters from a set of users would be placed
as the parent of the AMOs that contain
performance parameters of individual users.
Note that the structure of the containment
tree expresses an arbitrary containment re-
lationship between the AMOs and is not
necessarily related to the grouping hierarchy.

Since group definitions and filter
functions can be shared between many MAVS,
they can be stored in an external directory
server. In a way, this directory acts as a
central network configuration database. By
separating the fairly static configuration
information from the MAVS, we avoid syn-

chronization issues when group definitions

‘WO 99/30423 30 PCT/US98/25998

20

25

30

35

change. The penalty however is that a
directory access is necessary every time a
group is resolved into its components.

AMOs are programmed directly in
Java. A core class provides the basic
management services described above. Every
AMO is then subclassed from the parent class
and inherits automatically the basic access
interface. 1In addition, the designer can
implement the optional extended services by
adding new service interfaces. Writing AMOs
directly in a programming language has the
following advantages:

The development environment is
much simpler since no AMO schema
compilers are required (in contrast
with the OSI model that uses a GDMO
compiler for generating managed
objects).

Some of the default object's
functions can be overridden by the
programmer to implement, for
example, specific data collection
and aggregation policies.

Objects can be extended to
provide customized high level
services in addition to the fun-
damental -get/set operations on
their attributes.

The Java runtime system
supports dynamic class loading,
which allows the integration of new
AMO classes and the execution of
manager-defined tasks, a capability
also known as active management or

management-by-delegation.

WO 99/30423 31 PCT/US98/25998

10

15

20

25

30

35

Managed Objects Visualization
Model

The MAVS, and the Marvel system in
which it resides, was designed under the
assumption that the majority of user clients
have no prior knowledge of the information
stored in Marvel servers and the methods used
to access it. This allows clients to rely on
the standard features provided by their
distributed computing platform to download the
necessary code to navigate through the
database and to generate a graphical user
interface to interact with the Aggregated
Managed Objects.

To accomplish this, the Marvel
framework requires that every object be able
to "visualize" itself by generating a user
interface. There may, however, be several
ways of visualizing an object depending on the
capabilities of the client. For this reason,
Marvel supports a small number of visual
domains. For every supported visual domain,
an Aggregated Managed Object must implement a
visualization function capable of displaying
the attributes of the object in that domain.
For example, a Gopher system would require
that the object be converted into a textual
representation before it can be displayed. A
web-based system would require that every
object be converted into an HTML page, and any
control actions for the object be implemented
through HTML post operations and a CGI
interface. Finally, a Java enriched web
browser can download Java applets to provide a

more interactive interface and use directly

WO 99/30423 32 PCT/US98/25998

10

15

20

25

30

35

distributed computing facilities such as CORBA
and Java RMI to access the object's services.

The latter visualization technique
is of particular interest due to the wide
acceptance of the world wide web and Java. As
a result, object conversion to Java-enriched
HTML is a mandatory service that must be
provided by every Marvel object. Referring to
Figures 6 and 7, the technique works as
follows: First, the client invokes the
object's toJeHTML() method in one of the
following ways:

. by directly invoking
the object's method through the
distributed computing
environment 50, or,

. by indirectly making
an HTTP get request supplying
the object's name and address.
The get request is then
translated by the HTTP server
53 to a call to the object's
toJeHTML () method, and the
results are returned through
the HTTP reply.

Second, once the toJeHTML() method has been
called, the object generates an HTML page 51
that can be viewed by the web browser 52. It
does so by generating a default layout for the
page, on which the values of the attributes
will be displayed. Then, each attribute is
instructed to convert itself into a Java-
enriched HTML form. Simple data types such as
strings and integers need only convert
themselves into simple text. More complex

data types (especially the ones representing

‘WO 99/30423 33 PCT/US98/25998

computed views of‘management information such
as tables and time-series graphs) may choose
to invoke a Java applet (by inserting the
<applet> primitive). The same holds for
5 ~attributes that represent the object's control
capabilities. When the applet is used purely
for monitoring purposes, it is possible to
supply all the necessary information inside
the applet specification block through the
10 <param> primitive. It is also possible to
pass to the applet the name and address of the
object, in which case the applet can interact
with the object directly. This is required
for applets that need to perform control
I5 operations on the object, or to refresh the
displayed information after the page has been
loaded.
When the web browser 52 encounters
the <applet> block 60 within the html page 51,
20 it attempts to load the applet's code and any
other Java classes needed for the applet's
operation. Java classes are always loaded
from an HTTP server.
As can be seen from above, a network
25 manager can define how management information,
collected from network elements, is aggregated
into more useful abstractions and finally
presented. Thus, as described above, the
present invention allows for the automatic
30 aggregation of network management information
in spatial, temporal and functional forms, as
well as the automatic visualization of the
managed objects over the world-wide-web.
In the foregoing description, the
35. method and apparatus of the present invention

have been described with reference to a

WO 99/30423 34 PCT/US98/25998

specific example. It is to be understood and
expected that variations in the principles of
the method and apparatus herein disclosed may
be made by one skilled in the art and it is

5 intended that such modifications, changes, and
substitutions are to be included within the
scope of the present invention as set forth in
the appended claims. The specification and
the drawings are accordingly to be regarded in

10 an illustrative rather than in a restrictive

sense.

WO 99/30423 s PCT/US98/25998

What Is Claimed Is:

1. A method for the automatic visualization
of managed objects over the world-wide-web,

5 the method comprising the steps of:

receiving a request for visualization of
network management information pertaining to
one of at least one network element and at
least one element management agent;

10 identifying at least one attribute
pertaining to the request for visualization of
network management information; and

generating an HTML page on the basis of
the at least one attribute.

15
2. The method according to claim 1, wherein
the at least one attribute is stored within an

Aggregation Managed Object (AMO).

20 3. The method according to claim 2, wherein
the Aggregation Managed Object is stored
within a Management Aggregation and

Visualization Server (MAVS).

25 4. The method according to claim 1, wherein
the at least one attribute identifies at least

one program applet.

5. The method according to claim 1, further

30 comprising the step of:
retrieving at least one program applet

identified by the at least one attribute for

insertion into the generated HTML page.

6. The method according to claim 5, wherein
35 the at least one program applet is stored

within an applet database.

‘WO 99/30423 36 PCT/US98/25998

7. The method according to claim 6, wherein
the applet database is contained within a
Management Aggregation and Visualization

5 Server (MAVS).

8. The method according to claim 5, wherein
the at least one program applet is written in
a JAVA computer programming language.

10
9. The method according to claim 1, further
comprising the step of:

sending the HTML page to a Web Browser

from which the visualization request was

15 recieved.

10. The method according to claim 9, wherein
the HTML page is sent to the Web Browser by an
HTTP server.

20
11. The method accroding to claim 10, wherein
the HTTP server is a Management Aggregation

and Visualization Server (MAVS) .

25 12. The method according to claim 1, further
comprising the step of:
displaying the HTML page through a Web
Browser.

30 13. The method accroding to claim 1, wherein
the request for visualization is in the form

of a Uniform Resource Locator (URL) address.

14. A method for the automatic visualization
35 of managed objects over the world-wide-web,

the method comprising the steps of:

WO 99/30423 37 PCT/US98/25998

10

20

25

30

35

receiving a request for visualization of
an aggregated network management information
object;

identifying at least one attribute of the
aggregated network management information
object;

applying a visualize function to the at

least one attribute to create an HTML page.

15. The method according to claim 14, further
comprising the step of:
retrieving at least one program applet

pertaining to the at least one attribute.

16. The method according to claim 15, further
comprising the step of:

inserting the at least one program applet
into the HTML page.

17. The method according to claim 14, wherein
the at least one program applet is written in

a JAVA computer programming language.

18. The method according to claim 14, further
comprising the step of:
sending the HTML page to at least one web

browser.

19. The method according to claim 18, wherein
the HTML page is sent to the at least one web
browser by an HTTP server.

20. The method according to claim 19, wherein
the HTTP server is a part of .the Management
Aggregation and Visualization Server (MAVS).

WO 99/30423 PCT/US98/25998

10

15

20

25

30

35

38

21. An apparatus for the automatic
visualization of managed objects over the
world-wide-web, the apparatus comprising:

an access interface for receiving a
request for visualization of network
management information;

a persistent storage database for storage
of at least one attribute pertaining to the
network management information; and

an HTTP server for generating an HTML
page on the basis of the at least one
attribute.

22. The apparatus according to claim 21,
further comprising:

an applet database for storing at least
one computer program applet relating to the at

least one attribute.

23. The apparatus according to claim 22,
wherein the at least one computer program
applet is written in a JAVA computer

programming language.

24. The apparatus according to claim 21,
further comprising:

a web browser for viewing the HTML page.

25. The apparatus according to claim 21,
wherein the at least one attribute is stored
within an Aggregation Managed Object (AMO).

26. The apparatus according to claim 21,
wherein the HTTP server is a Management

Aggregation and Visualization Server (MAVS) .

WO 99/30423 PCT/US98/25998

LEVEL 2

LEVEL 1

61.]

612
Lo (WO O®) (OO O M

SUBSTITUTE SHEET (ruie 26)

WO 99/30423 PCT/US98/25998

2/6

/GS

/

//////////////////y
(O~
‘a.

o

%

FIG. 2
O

<
oa

SUBSTITUTE SHEET (ruie 26)

WO 99/30423 PCT/US98/25998

3/6

FIG. 38

40
MANAGEMENT APPLICATIONS 7

DISTRIBUTED COMPUTING ENVIRONMENT 50

MANAGEMENT MIDDLEWARE
(OBJECTS REPRESENTING COMPUTED VIEWS)

ELEMENT MANAGEMENT INFORMATION L~ 20

10

FIG. 4
‘& 3
" V=H}(61,0 1,0y (G 0000) R Y fl
: =i ‘O‘ G‘)(GZ’OZ"’Z» E ity < rncion
I

| 0BJECT !
'SEgE:CI_l@lil:l: —— [INTERMEDIATE
B SE56—56 T =~ ATTRIBUTE
LATTRIBUTE VALUE COLLECTION ; LIST

2

SUBSTITUTE SHEET (ruie 26)

¢c

PCT/US98/25998

4/6

WO 99/30423

m 13 \ L ——
or=Iolewod 1ol g0 (NOILIITIOD 3MVA TInGRLIY “ ,__%M%
IS [[zovzae
JLNANLLY ILVIGINGILNI 11| [on g
/“ “ _f|0§<|.|\n
| \,_—un/uu/_. -7
I L
I
“m ; ONY
m“ uoé\em
19 L SIH/VN e
TONE0
_ ~
| -~
| {(CooCo)(tot ot o)z
]
NOLLONN 55\: MddV v | INOIISSIUAX3 Q3LVOTHOOY
m. L

SUBSTITUTE SHEET (ruie 26)

WO 99/30423 PCT/US98/25998

5/6
FIG. 6
T0 OTHER
MAVS AND
CLIENT
APPLICATIONS WEB
) BROWSER
/' A
Lz \
(\ /,/ T\ \‘
JAVA_RMI_ACCESS INTERFACE /] \
/ 4 \
QUERY PROCESSING \ !
7 SERVICE \
il \’/FF REGISTRY \ s
\
GROUP PSETROSll?iTGEENT @Mo3 IVISUALIZE() \ \
N0 e | DATABASE 0 @O~ — -+ = — = —— ~| P
FILTER |~ " |_SERVER
DIRECTORY | | e
1 SERVICES
Y \
2~"|AGGREGATION PROCESSING)
PROTOCOL MODULES g

SNMP |CMIP|JAVA | RMI {CORBA
K A \ A A A)

Y] Y Yy Y

LEVEL 0 AGENTS OR OTHER MAVS

SUBSTITUTE SHEET (ruie 26)

PCT/US98/25998

WO 99/30423

6/6

VAV 40 Y8400 ININANOYIANI ONILNWOD Q3LnalLsIa

\m%ﬁ_z B o
~ SIVNI9 103060

4
()InLHRlo} 01 TIVD

<lwipy/>
<Apog/>
[~ sainquyo Jsyjo]

09 —<jojddo/>
< Ho/s1awojsny/ =joslqo woind
< Mas[amIDp =8LupuloAies woindy

< SSDJ2°|04jU02J3WO)SNI=8P0d
$9s$D|2 /=8sDqapod jejddo
<-- J9|ddo sp sipaddo ziyp -->

1RLy=0WD) Jowojsn)
<= X8} |wyy so sipaddp (4o ~->

|

N\

ML33410
133r40
HL

A
GLLYINIANG)
L31ddV
HL

o

39¥d TNIH 31VYINID <jwy>

<Apog> -

131ddY

Q114vVIS 34V
SL31ddY JHL ONV
43SM0o¥8 3HL NI
(3AV1dSIO ST 39Vd

NON3VQ dLIH

——

fo/s1ewolsny/ 1193080 3HL ¥04 1SINDIY NOILYZIIVASIA L93r60 LOFHIONI

JIN3S TIAGVA

mm\

4 OIAd

133r80

NV 404 1S3N03Y
¥ SPIVN 19vd
NOILYIIAYN 3HL

d3SMOYE 8IM

N

A

SUBSTITUTE SHEET (rule 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

