Title: COATING INCREASING THE FRICTION COEFFICIENT AND PRODUCTION THEREOF BY MEANS OF ATMOSPHERIC PRESSURE PLASMA COATING

Bezeichnung: REIBWERTERHÖHENDE BESCHICHUNG UND HERSTELLUNG DERSELBEN MITTELS ATMOSPÄHRENDRUCKPLASMA-BESCHICHUNG

Abstract: The present invention provides an advantageous method for producing a coating which increases the friction coefficient (3) on a surface (5) of a component (6), wherein the method comprises the following steps: a) activating hard particles (1) that are coated in part or entirely by an adhesive (2) in a non-thermal plasma (low-temperature plasma) under atmospheric pressure; and b) producing the layer (3) which increases the friction coefficient on the surface (5) of the component (6) by depositing the hard particles (1) activated by the non-thermal atmospheric pressure plasma and coated with the adhesive (2) on the surface (5) of the component (6). Said method is particularly more economic for components with complex forms or large dimensions than known methods. No matrix or intermediary layers are required for anchoring the hard particles. The hard particles engage directly in the contact surfaces.

Zusammenfassung: [Fortsetzung auf der nächsten Seite]
Beschreibung

Reibwertherhöhende Beschichtung und Herstellung derselben mittels
Atmosphärendruckplasma-Beschichtung

Die Erfindung betrifft ein Verfahren zur Herstellung einer reibwertherhöhenden Beschichtung mittels nicht-thermischer Atmosphärendruckplasma-Beschichtung sowie ein Bauteil mit einer reibwertherhöhenden Beschichtung, die mit dem zuvor genannten Verfahren hergestellt ist.

Eine Erhöhung des Haftbeiwerts v kann durch reibwertherhöhende Beschichtungen erzielt werden. Im Stand der Technik werden zum Herstellen einer reibwertherhöhenden Beschichtung Hartpartikel in einem Galvanisierungsbad zusammen mit einer als Matrixschicht dienenden Metallschicht auf die Oberfläche eines Bauteils aufgebracht. Die in dem Galvanisierungsbad dispergierten Hartpartikel werden hierbei in die im Bad anwachsende Metallschicht eingebaut. Das Material für die Hartpartikel besitzt eine höhere Druck- und Scherfestigkeit als das der Fügeflächen, sodass die Hartpartikel einen zusätzlichen Formschluss (im μm-Bereich) ermöglichen indem diese bei entsprechender Normalkraft in die Bauteiloberflächen teilweise eindringen.

einzubringenden separaten Verbindungselementes einen Zusatzaufwand bei der Montage von Bauteilen zur Herstellung einer kraftschlüssigen Verbindung.

Es ist Aufgabe der vorliegenden Erfindung, eine reibwerterhöhende Beschichtung auf Bauteilen mit einem Verfahren herzustellen, das die aus dem Stand der Technik bekannten Nachteile vermeidet. Insbesondere ist es Aufgabe der Erfindung, ein wirtschaftlicheres Verfahren bereitzustellen, mit dem reibwerterhöhende Beschichtungen hergestellt werden können, bei denen keine Gefahr der Ablösung von Partikeln und/oder von Matrixschichten besteht.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.

Besonders hohe Haftbeiwerte von Bauteilen mit der reibwerterhöhenden Beschichtung lassen sich bei Verwendung von Diamant oder von Siliziumcarbid als Material für die Hartpartikel erzielen.

Geringe Ablösung und hohe Haftbeiwerte zeigen mit dem erfindungsgemäßen Verfahren hergestellte Beschichtungen insbesondere bei einer bevorzugten Ausführungsform, bei der die Belegung der Hartpartikel mit Haftmittler nach der Beschichtung in Verfahrensschritt a) zwischen 20% und 80% der Hartpartikeloberfläche beträgt. Die besten Ergebnisse hinsichtlich der Ablöseeigenschaften und der Haftbeiwerte werden erzielt wenn die Belegung der Hartpartikel mit Haftmittler nach der Beschichtung in Verfahrensschritt a) zwischen 30% und 70% der Hartpartikeloberfläche beträgt.

Bei einer bevorzugten Ausführungsform beträgt der mittlere Durchmesser der Hartpartikel zwischen 3μm und 45μm. Besonders gute Eigenschaften können mit einem mittleren Durchmesser der Hartpartikel von 10μm bis 30μm erzielt werden.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die beschichtete Oberfläche mittels eines Atmosphärendruckplasmas nachbehandelt. Dadurch lassen sich die Ablöseeigenschaften der reibwerterhöhenden Beschichtung weiter optimieren.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens bildet die in Verfahrensschritt b) gebildete reibwerterhöhende Beschichtung keine geschlossene Schicht zum Bauteil.

Besonders hohe Haftbeiwerte lassen sich erzielen, wenn die in Verfahrensschritt b) erzeugte reibwerterhöhende Beschichtung auf der Oberfläche des Bauteils eine gleichmäßige Flächenbelegung mit Hartpartikeln zwischen 10% und 30% der Oberfläche des Bauteils bildet.
Im Folgenden wird eine Ausführungsform der Erfindung beispielhaft anhand der beigefügten Figuren erläutert. In den Figuren zeigen:

Fig. 1 einen teilweise mit einem Haftmittler ummantelten Partikel, wie er zur Herstellung einer reibwerterhöhenden Beschichtung mit dem erfindungsgemäßen Verfahren verwendet wird;

Fig. 2 einen Querschnitt durch eine mit dem erfindungsgemäßen Verfahren hergestellte reibwerterhöhende Beschichtung auf einer als Fügefläche bestimmten Bauteiloberfläche; und

Fig. 3 eine Draufsicht auf die in Fig. 2 dargestellte reibwerterhöhende Beschichtung.

Bei dem erfindungsgemäßen Verfahren werden Hartpartikel 1 verwendet, die mit einem Haftmittler 2 vollständig oder teilweise ummantelt sind. Dabei bestehen die Hartpartikel 1 aus einem harten Material wie z.B. Diamant, Siliziumcarbid (SiC), Borcarbid (B₄C), Wolframcarbid (WC), Nitriden, wie z.B. Siliziumnitrid (Si₃N₄) oder kubischem Bornitrid (c-BN), Borid, Siliziumdioxid (SiO₂) oder Aluminiumoxid (Al₂O₃). Diese Materialien zeichnen sich dadurch aus, dass sie bei den jeweiligen Einsatzbedingungen chemisch weder mit den Werkstoffen der zu fügenden Werkstücke noch mit den Umgebungsmedien reagieren, also chemisch inert sind. Zudem zeichnen sich diese Materialien für die Hartpartikel 1 dadurch aus, dass sie eine hohe Druck- und Scherfestigkeit aufweisen. Entscheidend für die Funktion der reibwerterhöhenden Beschichtung 3 ist, dass die Hartpartikel 1 eine höhere Druck- und Scherfestigkeit als das Material der Fügeflächen 5 besitzt, so dass die Hartpartikel 1 beim Zusammendrücken der Fügeflächen 5 einen zusätzlichen Formschluss ermöglichen, indem diese in die Bauteiloberflächen 5 teilweise eindringen, wie oben beim Stand der Technik beschrieben. Vorzugsweise bestehen die Hartpartikel 1 aus Siliziumcarbid oder Diamant. Der mittlere Durchmesser der bei dem Verfahren verwendeten Hartpartikel 1 beträgt 3 µm bis 45 µm, vorzugsweise 10 µm bis 30 µm. Die Größe der dabei verwendeten Hartpartikel 1 ergibt sich durch die Vorgabe, dass die Fügeflächen 5 nicht
durch das Eindrücken der Hartpartikel 1 in die Fügeflächen 5 in unzulässigem Ausmaß beschädigt werden dürfen. Die Größenverteilung der Körnung besitzt eine Streuung von nicht mehr als +/- 50% um einen angegebenen Nominaldurchmesser.

Der für die Ummantelung der Hartpartikel 1 verwendete Haftmittler 2 besteht aus Polymer, Metall oder einer organischen Substanz.

Bei der vorliegenden Ausführungsform wird ein metallischer Haftmittler 2 verwendet, der mittels chemischer Galvanisierung auf die Hartpartikel 1 aufgebracht wird. Ein mit dem Haftmittler 2 teilweise ummantelter Hartpartikel 1 ist in Fig. 1 gezeigt. Vorzugsweise beträgt die Belegung der Hartpartikel 1 mit Haftmittler 2 zwischen 20% und 80% der Hartpartikeloberfläche 4. Bei einer Belegung der Hartpartikel 1 mit Haftmittler 2 von weniger als 20% haften die Hartpartikel nicht mehr zuverlässig an der Oberfläche des Bauteils. Bei einer Belegung von mehr als 80% wird hingegen der Haftbeiwert gering, da ein zu hoher Anteil des Haftmittlers für Gleiteigenschaften der Hartpartikel im Fügespalt verantwortlich ist. Als besonders vorteilhaft hat sich eine Belegung zwischen 30% und 70% der Hartpartikeloberfläche 5 mit dem Haftmittler 2 erwiesen.

Nachdem die Hartpartikel 1 teilweise oder vollständig mit dem Haftmittler 2 beschichtet wurden, werden diese beschichteten/ummantelten Hartpartikel 1' in einem Atmosphärendruckplasma aktiviert und die aktivierten Hartpartikel 1' mit der Haftmittlerummantelung 2 auf eine Bauteiloberfläche 5 aufgebracht, um die reibwerterhöhende Beschichtung 3 bestehend aus den Hartpartikeln 1 und dem Haftmittler 2 auf dieser Bauteiloberfläche 5 abzuscheiden. Dabei wird eine Vorrichtung zur Atmosphärendruckplasma-Beschichtung verwendet wie sie z.B. in der DE 20 2007 019 184 U1 beschrieben wird. Bei der erfindungsgemäßen Atmosphärendruckplasma-Beschichtung wird das aus den ummantelten Hartpartikeln 1' bestehende Beschichtungspulver unter Ausschluss der Umgebungs Luft mit einem Trägergas vermischt und in eine oder mehrere Reaktionszonen eines Plasmajets transportiert. In dieser Reaktionszone wird der Plasmastrahl und das Trägergas enthaltende Gas-
/Partikelgemisch vermisch. Innerhalb dieses/dieser Reaktionsbereiche(s) wird die Plasmaenergie an den Gas-/Partikelstrom größtenteils übertragen.

Nachdem das aktivierte Gemisch aus Trägergas und ummantelten Hartpartikeln 1' auf die Bauteiloberfläche 5 trifft, wird diese mit den ummantelten Hartpartikeln 1' beschichtet. Da dabei der Plasmastrahl selbst nur zu einem geringen Teil mit der Oberfläche 5 in direkten Kontakt kommt, werden die Strukturen und Eigenschaften der zu beschichtenden Oberfläche 5 bei der Atmosphäreendruckplasma-Beschichtung nicht beschädigt und/oder nachhaltig beeinträchtigt. Die Haftungsmechanismen zwischen der aus den ummantelten Hartpartikeln 1' bestehenden reibwerterhöhenden Beschichtung und der Oberfläche 5 des damit beschichteten Bauteils 6 basieren auf dem für die Atmosphäreendruckplasma-Beschichtungstechnologie zu Grunde liegenden Grenzflächeneffekte. Der Haftmittler 2 stellt die Binphase zwischen der Oberfläche des Bauteils 6 und dem Hartpartikel 1 dar. Eine mit dem erfindungsgemäßen Verfahren hergestellte reibwerterhöhende Beschichtung 3 auf einer Bauteiloberfläche 5 ist im
Querschnitt in Fig. 2 gezeigt und Fig. 3 zeigt eine Draufsicht auf die in Fig. 2 dargestellte reibwerterhöhende Beschichtung.

Die Haftung der Hartpartikel 1 auf der beschichteten Bauteiloberfläche 5 wird nach dem Aufbringen der reibwerterhöhenden Beschichtung 3 weiter verbessert durch eine nachgeschaltete Plasmaaktivierung der Oberfläche, bei der ein Plasmastrahl in direktem Kontakt mit der zu behandelnden Oberfläche ist und daher direkt auf die reibwerterhöhende Beschichtung 3 einwirkt.

Beim Fügen bzw. Verpressen einer Fügefläche 5 eines ersten Bauteils mit einer mit der reibwerterhöhenden Beschichtung 3 beschichteten Fügefläche 5 eines anderen Bauteils dringen die Hartstoffpartikel 1 in die Oberflächen der Fügeflächen 5 ein und übertragen die auftretenden Querkräfte direkt ohne dass der Haftmittler 2 an dieser Kraftübertragung beteiligt ist. Die verfügbare Normalkraft muss hierbei ausreichend sein, um die Hartpartikel 1 in die Oberflächen 5 der Bauteile (Fügeflächen) einzudrücken. Die Anzahl der Hartpartikel 1 pro Flächeneinheit der Kontaktflächen der zu fügenden Bauteile beträgt vorzugsweise zwischen 5% und 40% der Fügefläche 5. Bei einer geringeren Belegung der Fügeflächen mit Haftpartikeln 1 als 5% der Fügefläche können die zu erwartenden Querkräfte nicht sicher übertragen werden. Bei einer Flächenbelegung von mehr als 40% der Fügeflächen 5 ist in der Regel die verfügbare Normalkraft nicht mehr ausreichend, die Hartpartikel 1 in die Fügeflächen 5 ausreichend tief einzudrücken.

Anschließend an die Herstellung der reibwerterhöhenden Beschichtung 3 wie oben beschrieben wird die reibwerterhöhende Beschichtung 3 von lose aufsitzenden Hartpartikeln 1 befreit. Dies kann z.B. in einem Ultraschallbad oder aber durch Abblasen mit Druckluft erfolgen.

Die mit dem oben beschriebenen Verfahren hergestellte reibwerterhöhende Beschichtung 3 weist eine über die Verfahrensparameter reproduzierbare, definierte Anzahl an Hartpartikeln 1 auf. Die reibwerterhöhende Beschichtung 3 ist dadurch gekennzeichnet, dass über den an den Hartpartikeln angelagerten Haftmittler 2 während

Zum Aufbringen der Beschichtung wurde wie folgt vorgegangen: Das zu beschichtende Werkstück (Schwungmasse) wurde in einer Vorrichtung positioniert. Bereiche der zu beschichtenden Fugefläche (Stirnseite) welche nicht in Kontakt mit den Beschichtungsmaterialien kommen durften (z.B. Verzahnungsbereich) wurden mit für das Atmosphärendruckplasma-Beschichtungsverfahren üblichen Methoden (z.B. Schattenmasken) geschützt.

Während des Beschichtungsvorgangs wurde die Schwungmasse mittels einer xy-Verfahrenseinheit unter der Beschichtungsdüse der Plasmaanlage in einem definierten Abstand und definierter Geschwindigkeit bewegt. Der eigentliche Beschichtungsvorgang erfolgte wie oben beschrieben. Durch die so erzeugte reibungswert erhöhende Beschichtung konnte bei der speziellen Ausführungsform der Haftbeiwert v um einen Faktor 4 verbessert werden.

Die obige Ausführungsform des erfindungsgemäßen Verfahrens wurde so beschrieben, dass der Plasmastrahl während der eigentlichen Abscheidung selbst nur zu einem geringen Teil mit der Oberfläche 5 in direkten Kontakt kommt und nach der eigentlichen Abscheidung eine nachgeschaltete Plasmaaktivierung durchgeführt wird.
Es ist aber auch möglich, das Verfahren so durchzuführen, dass der Plasmastrahl während des Abscheidens mit der Oberfläche in Kontakt kommt. Je nach Einwirkzeit des Plasmastrahls auf die Oberfläche während der eigentlichen Abscheidung ist auch für diesen Fall eine nachgeschaltete Plasmaaktivierung vorteilhaft.

Ansprüche

1. Verfahren zur Herstellung einer reibwerterhöhenden Beschichtung (3) auf einer Oberfläche (5) eines Bauteils (6), wobei das Verfahren folgende Schritte aufweist:
 a) Aktivieren von mit einem Haftmittler (2) teilweise oder vollständig ummantelten Hartpartikeln (1) in einem nicht thermischen Plasma unter Atmosphärendruck; und
 b) Erzeugen der reibwerterhöhenden Beschichtung (3) auf der Oberfläche (5) des Bauteils (6) durch Abscheiden der mit dem nicht-thermischen Atmosphärendruck-Plasma aktivierten, mit dem Haftmittler (2) ummantelten Hartpartikel (1) auf der Oberfläche (5) des Bauteils (6).

2. Verfahren nach Anspruch 1, wobei die reibwerterhöhenden Hartpartikel (1) aus Diamant, Borcarbid oder Siliziumcarbid bestehen.

3. Verfahren nach Anspruch 1 oder 2, wobei der Haftmittler (2) ein Metall oder ein Polymer ist.

4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Belegung der Hartpartikel (1) mit Haftmittler (2) in Verfahrensschritt a) zwischen 20% und 80% der Hartpartikeloberfläche (4), besonders bevorzugt zwischen 30% und 70% der Hartpartikeloberfläche, beträgt.

5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die Hartpartikel (1) einen mittleren Durchmesser von 3μm bis 45μm, besonders bevorzugt von 10μm bis 30μm, aufweisen.

6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das Verfahren nach dem Schritt b) folgenden weiteren Verfahrensschritt aufweist:
c) Nachaktivierung der beschichteten Oberfläche (5) mittels eines Atmosphärendruckplasmas.

7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die in Verfahrensschritt b) gebildete reibwerterhöhende Beschichtung (3) keine geschlossene Schicht zum Bauteil (6) bildet.

8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die in Verfahrensschritt b) erzeugte reibwerterhöhende Beschichtung (3) auf der Oberfläche des Bauteils (6) eine gleichmäßige Flächenbelegung mit Hartpartikeln (1) zwischen 5% und 40%, besonders bevorzugt zwischen 10% und 30%, der Oberfläche (5) des Bauteils (6) bildet.

9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Temperaturerhöhung des Substrates durch den Beschichtungsvorgang während und unmittelbar nach dem Beschichtungsprozess unterhalb von 100°C liegt.

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C23C16/513 F16B2/00

ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C23C F16C F16B F16H F16D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EP0-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 1 300 485 A1 (WACKER CHEMIE GMBH [DE]) 9 April 2003 (2003-04-09) paragraph [0017]; figure 1</td>
<td>10</td>
</tr>
<tr>
<td>X</td>
<td>US 3 692 341 A (BROWN KENNETH G WYNNE ET AL) 19 September 1972 (1972-09-19) column 2, line 25 - line 48; figure 1</td>
<td>10</td>
</tr>
<tr>
<td>A</td>
<td>WO 2010/104442 A1 (SKF AB [SE]; SVENSSON BO [SE]) 16 September 2010 (2010-09-16) page 3, line 5 - line 20; figure 1</td>
<td>1,10</td>
</tr>
<tr>
<td>A</td>
<td>DE 10 2008 017029 A1 (FORD GLOBAL TECH LLC [US]) 8 October 2009 (2009-10-08) paragraphs [0029], [0030]</td>
<td>1,10</td>
</tr>
<tr>
<td>A</td>
<td>US 2010/304045 A1 (BISGES MICHAEL [DE]) 2 December 2010 (2010-12-02) paragraph [0028]; figure 2</td>
<td>1,10</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

2 November 2012

Date of mailing of the international search report

09/11/2012

Authorized officer

Kudelka, Stephan

Form PCT/ISA/210 (second sheet) (April 2005)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 3692341</td>
<td>19-09-1972</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 2010104442</td>
<td></td>
<td>WO 2010104442 A1</td>
<td>16-09-2010</td>
</tr>
<tr>
<td>DE 102008017029 A1</td>
<td>08-10-2009</td>
<td>CN 101555938 A</td>
<td>14-10-2009</td>
</tr>
<tr>
<td>DE 102008017029 A1</td>
<td></td>
<td>DE 102008017029 A1</td>
<td>08-10-2009</td>
</tr>
<tr>
<td>US 2010304045</td>
<td>02-12-2010</td>
<td>AT 524953 T</td>
<td>15-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101810060 A</td>
<td>18-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102007043291 A1</td>
<td>02-04-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 202007019184 U1</td>
<td>30-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2206417 A1</td>
<td>14-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2373502 T3</td>
<td>06-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010539644 A</td>
<td>16-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100051594 A</td>
<td>17-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010304045 A1</td>
<td>02-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009033522 A1</td>
<td>19-03-2009</td>
</tr>
</tbody>
</table>
INTERNATIONALER REUCHENBERICH

Nach der Internationalen Patentklassifikation (IPC) oder nach der nationalen Klassifikation und der IPC

B. RECHRIERTE-GEIBETE

Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
C23C F16C F16B F16H F16D

Recherchierte, aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile</th>
<th>Betr. Anspruch Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2010/104442 A1 (SKF AB [SE]; SVENSSON BO [SE]) 16. September 2010 (2010-09-16) Seite 5, Zeile 5 - Zeile 20; Abbildung 1</td>
<td>1,10</td>
</tr>
<tr>
<td>A</td>
<td>US 2010/304045 A1 (BISGES MICHAEL [DE]) 2. Dezember 2010 (2010-12-02) Absatz [0028]; Abbildung 2</td>
<td>1,10</td>
</tr>
</tbody>
</table>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

<table>
<thead>
<tr>
<th>Datum des Abschlusses der internationalen Recherche</th>
<th>Absendetermin des internationalen Rechercherberichts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. November 2012</td>
<td>09/11/2012</td>
</tr>
</tbody>
</table>

Name und Postanschrift der Internationalen Recherchenbehörde

Name: Kudelka, Stephan

Endereço: Europäisches Patentamt, P.B. 5818 Patentfam 2 NL - 2280 HV Rijswijk
Tel. (+31-30) 540-3040,
Fax: (+31-70) 540-3016

Bevollmächtigter Bediensteter
<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(e) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>EP 1300485 A1</td>
<td>09-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003155576 A</td>
<td>30-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003087097 A1</td>
<td>08-05-2003</td>
</tr>
<tr>
<td>US 3692341 A</td>
<td>19-09-1972</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2010104442 A1</td>
<td>16-09-2010</td>
</tr>
<tr>
<td>DE 102008017029 A1</td>
<td>08-10-2009</td>
<td>CN 101555938 A</td>
<td>14-10-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102008017029 A1</td>
<td>08-10-2009</td>
</tr>
<tr>
<td>US 2010304045 A1</td>
<td>02-12-2010</td>
<td>AT 524953 T</td>
<td>15-09-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101810066 A</td>
<td>18-08-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 102007043291 A1</td>
<td>02-04-2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 202007019184 U1</td>
<td>30-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2206417 A1</td>
<td>14-07-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2373502 T3</td>
<td>06-02-2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010539644 A</td>
<td>16-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20100051594 A</td>
<td>17-05-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010304045 A1</td>
<td>02-12-2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009033522 A1</td>
<td>19-03-2009</td>
</tr>
</tbody>
</table>