6/074096 A2 | IV VY 200 0O T

—
—

e
=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization ‘f '
International Bureau

(43) International Publication Date
13 July 2006 (13.07.2006)

IR
0 |0 O O 1 A0 00 O

(10) International Publication Number

WO 2006/074096 A2

(51) International Patent Classification:
GOGF 9/44 (2006.01) GOGF 17/00 (2006.01)
HO04Q 5/22 (2006.01) GO8B 13/14 (2006.01)

(21) International Application Number:
PCT/US2005/047503

(22) International Filing Date:
31 December 2005 (31.12.2005)

English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:

11/029,867 4 January 2005 (04.01.2005) US

(71) Applicant (for all designated States except US): RF-
CYBER CORPORATION [US/US]; 4160 Technology

Drive, Suite A, Fremont, California 94538 (US).

(72) Inventors: KOH, Liang Seng; 41291 Carmen Street,
Fremont, California 94539 (US). CHO, Fu-Liang; 5812
Mckellar Drive, San Jose, California 95129 (US). FUNG,
Daniel; 220 Brighton Lane, Redwood City, California
94061 (US). PAN, Hsin; 2374 Olive Avenue, Fremont,

California 94539 (US).

Agent: ZHENG, Joe; Silicon Valley Patent Agency, 7394
Wildflower Way, Cupertino, California 95014 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM FOR DEVELOPING AND DEPLOYING RADIO FREQUENCY IDENTIFICATION ENABLED SOFT-

WARE APPLICATIONS

Deskiop
Application

independent RFID-
enabling APls

Web
Application

JavaSscript-
APls

Web Client

% p

56

hysical
P RFID

logical RFID device
runtime daemon

. device Tag

I
1
1
1
I} RFID
1
1
1
1

(57) Abstract: System, method and related software architecture are disclosed as a platform for developing and deploying RFID-en-
abled software applications. The platform is a framework between these applications and their connected physical RFID devices.
The runtime version of this platform can be thought of as a logical RFID device. The platform allows RFID-enabled applications
securely communicate with physical RFID devices to monitor their status and to access their tag data. The platform includes ex-
ternalized APIs for accessing tag data, an event manager to alert applications of events coming from RFID devices and tags, data
manager to filter and reconcile data returned from physical RFID readers before relaying them to applications, device manager to
monitor the RFID device status for network management, and secured communication channels with data encryption. The deployed
RFID-enabled applications can recognize user identification via the RFID tags then access data of selected RFID tags within a se-
cured infrastructure.

WO 2006/074096 . PCT/US2005/047503

System for Developing and Deploying Radio Frequency Identification Enabled
Software Applications
BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates generally to the field of Radio Frequency
IDentification (RFID) technology. More specifically it relates to the development and
deployment of RFID-enabled software applications in a networked computer environment.
Description of the Related Art

[0002] With its numerous potential advantages of low cost, convenience, flexibility and

massive scalability from deployment through operation, the RFID technology is enjoying
tremendous growth of acceptance across a wide spectrum of industries.

[0003] To enable product integration into real-world RFID application systems, currently
some RFID hardware vendors provide basic libraries or command sets as an
interface/vehicle for their RFID readers or devices to interact with the anticipated
application systems. However, for most cases these basic libraries or command sets only
support low level APIs (Application Programming Interfaces). As these low level APls
handle a single task at a time, it normally takes a logically structured sequence of these
low level APIs to perform a useful application level task. For instance, reading a data
block at the application level may require a programmer to resolve anti-collision, to select
an RFID tag and to access data stored on the selected RFID tag. Furthermore, as these
low level APIs can vary greatly according o the specifics of RFID vendor hardware (e.g.,
vendor-specific RFID readers/writers and tags), application system programmers usually
will have to relearn associated programming specifics whenever a different RFID vendor
device has to be dealt with. As a result, the RFID application development process
becomes correspondingly costly and time consuming while yielding systems that are
typically non-portable. To make matters even worse, the actual deployment and
operational evolution of many RFID application systems commonly encounter different
kinds of vendor-specific physical RFID readers, writers and tags, or heterogeneous
physical RFID devices and tags. Another phenomenon is that many of the currently
deployed RFID applications are limited to desktop applications not yet in pace with the
rapidly and continuously expanding base of network-coupled applications including the
wireless environment wherein communication security can be critical.

GLOSSARY
AES Advanced Encryption Standard
API Application Programming Interface

DES Data Encryption Standard

WO 2006/074096 PCT/US2005/047503

2
HTML HyperText Markup Language
HTTPS HyperText Transmission Protocol over Secure Socket Layer
POST A method of HTML to form data appearing in a message body
RF Radio Frequency
RFID Radio Frequency Identification
SNMP Simple Network Management Protocols
SDK Software Development Kit
ThML Theological Markup Language

RFID-SDK RFID-Software Development Kit
RFID-WSK RFID-Web Service Kit

VML Vector Markup language

VRML Virtual Reality Markup Language

Wi-Fi Wireless Fidelity, a wireless networking protocol
XML Extensible Markup Language

SUMMARY OF INVENTION
[0004] To make the development, deployment and operational evolution of many RFID-

enabled application systems more efficient, less costly and more portable, there is a need
of a unified platform containing network management for all connected physical RFID
devices, data management for processing raw data returned from the physical RFID
readers before sending valid data back to the RFID-enabled applications and secured
communication channels carrying information of tag data and RFID devices. To keep
pace with the rapidly and continuously expanding base of network-coupled applications, it
is also important that the unified platform supports the development and deployment of
RFiD-enabled web and network applications.

[0005] A system is disclosed for efficiently developing and deploying physically
individually located RFID-enabled software applications, including handheld, desktop,
networked and web applications. The system can securely monitor the status of and
communicate with network-coupled, heterogeneous physical RFID devices to access
data stored on scanned RFID tags, the system comprises:

[0006] An RFID-Software Development Kit (RFID-SDK) that comprises externalized
device-independent RFID-enabling APIs (Application Programming Interfaces). During
run time, these APIs are invokable by the RFID-enabled software applications for
accessing the RFID tag data.

[0007] A number of logical RFID devices each coupled with the RFID-enabled software
applications through some of the externalized device-independent RFID-enabling APls.
Concurrently, the logical RFID devices are also coupled with the physical RFID devices

WO 2006/074096 PCT/US2005/047503

through a set of device-dependent interfaces for securely bridging the communication
between the RFID-enabled software applications and the heterogeneous physical RFID
devices to access the RFID tag data.
[0008] The system further comprises a device monitor and manager that is a device
manager service daemon running inside the logical RFID devices for monitoring and
controlling the physical RFID devices and the logical RFID devices in real-time, a data
monitor, and manager coupled to the logical RFID devices for monitoring and managing
data flow between the RFID-enabled software applipations and the physical RFID devices.
[0009] To monitor and control the physical RFID devices and the logical RFID devices,
the device monitor and manager further comprises a set of externalized device monitoring
and controlling commands and APls.
[0010] The RFID-SDK further comprises a set of ActiveX components or a set of web
plug-in components for a web browser and an RFID Web Service Kit (RFID-WSK) that in
turn includes the following:
a set of web script APls, such as JavaScript APIs, for scripting web client pages.
a set of server-resident services called web objects, such as servlets.
a set of data objects, including XML data objects, represented in web page markup
languages such as Extensible Markup Language (XML), HyperText Markup Language
(HTML), Standard Generalized Markup Language (SGML), Vector Markup language
(VML), Theological Markup Language (ThML) and Virtual Reality Markup Language
(VRML).
[0011] The externalized device-independent RFID-enabling APls according to the
invention comprise:

command-APls for effecting an interaction between the RFlD-enabIed software
applications and the logical RFID devices.

callback-APls, each of which is a callback registration, for registering events
coming from the interior of the logical RFID devices.

plug-in services, each of which is a catcher of events coming from the interior of
the logical RFID devices, for registering and invocating application plug-ins.

an application development tools set for developing run-time invokable client
components by the RFID-enabled software applications for accessing the RFID tag data.
[0012] To increase the flexibility of application programming, the command-APIs are
designed to support a number of programming languages such as C++, C, C#, Visual
Basic, Java, and JavaScript. Likewise, the callback-APls are also designed to support a
number of programming languages such as C++, C, C#, and Java. Each of the logical
RFID devices further includes a logical RFID device runtime daemon for communicating

WO 2006/074096 PCT/US2005/047503

with the device-independent RFID-enabling APls and for providing the device-dependent
interfaces.

[0013] For communication with the device-independent RFID-enabling APls, the logical
RFID device runtime daemon further comprises the following to insure an end-to-end
secured communication between the physically individually located RFID-enabled
software applications and the physical RFID devices:

A command-APlIs listener, together with a coupled secured control channel and a
coupled secured data channel, for providing bi-directional communication channels and
maintaining information flow between the logical RFID device and each of those device-
independent RFID-enabling APIs that is a command-API.

An event dispatcher, together with an optional, coupled secured event notification
channel, for establishing event notification channels and managing event flow between
the logical RFID device and each of those device-independent RFID-enabling APIs that is
either a callback-AP! or a plug-in service.

[0014] The control channel, data channel and event notification channel are all secured
through data encryption implemented with symmetric algorithms, such as Advanced
Encryption Standard (AES), DES (Data Encryption Standard), triple-DES, RC2, RC4,
RCS5, Blowfish, SAFER, SEAL, or WAKE, with dynamic generated keys.

[0015] For providing the device-dependent interfaces, the logical RFID device runtime
daemon further comprises a device interface manager for handling and converting
device-dependent communication protocols associated with each of the device-
dependent interfaces into a device-independent interface for controlling and accessing
data from the physical RFID devices. The device-dependent communication protocols
include wired and wireless communication protocols such as RS232, R$422, USB, Wi-Fi
and Bluetooth, and an adaptor manager, coupled with the device interface manager
through the device-independent interface, for concurrently handling the operation of all
connected physical RFID devices.

[0016] For concurrently handling all connected physical RFID devices, the adaptor
manager further comprises the following:

An adaptor-type definer for defining an adaptor type for each kind of physical
RFID devices according to its unique set of communication attributes and service
attributes. The set of communication attributes includes communication protocol and port
number. The service attributes include parameters related to the functionally of the logical
RFID device runtime daemon such as the length of each polling cycle to read RFID tag
data within an RF scan field, the time duration after a last scanned RFID tag for ending a
polling cycle, the time interval between consecutive polling cycles, the anti-collision index

WO 2006/074096 PCT/US2005/047503

of a physical RFID device, the data length of each read operation upon a scanned RFID
tag and the type of events triggering a polling operation.

An adaptor constructor for creating one adaptor instance for each connected
physical RFID device.

An adaptor controller for concurrently monitoring and controlling the operational
status of all connected physical RFID devices through their respective adaptor instances.
[0017] The adaptor manager further comprises an adaptor cluster for grouping a number
of adaptor instances according to a set of clustering parameters such as physical
proximity of the physical RFID devices, identify of RF scanning fields of the physical RFID
devices, location of the physical RFID devices, mission of the physical RFID devices and
load balancing of objects being scanned by the physical RFID devices.

[0018] For filtering the RFID tags data read from each set of grouped adaptor instances,
the logical RFID device runtime daemon further comprises a tag data processing
manager, coupled with the adaptor manager, the command-APlIs listener and the event
dispatcher. The tag data processing manager functions to eliminate duplicated RFID tags
data refrieved from the same RFID fag, to clean up unexpected RFID tags data, to
aggregate RFID tags data to fulfill a corresponding requirement from the RFID-enabled
software applications and to deliver commands and data originated from the RFID-
enabled software applications to targeted adaptor instances of the adaptor manager.
[0619] The device monitor and manager further comprises the following:

A set of commands and externalized device management APls for monitoring, via
controf channels, the status, performance tune up and device specific parameters of the
physical RFID devices using standard network management protocols such as SNMP.

A set of externalized event management APIs for notifying the RFiD-enabled
software applications of predefined events coming from the physical RFID devices.

[0020] The data monitor and manager further comprises the following:

A set of externalized data access APls usable by the RFID-enabled software
applications for accessing the RFID tags data.

A set of externalized data management APIs for filtering and reconciling the RFID
tags data from the physical RFID devices before sending a resulting valid data to the
RFiD-enabled software applications.

A tag administration tool for initializing inserted new RFID tags and keeping track
of the status all initialized tags.

[0021] The proposed system can be implemented on a personal computing machine, an
industrial computing machine or an embedded system box containing all software
platform functionality as well as computing and networking capability,

WO 2006/074096 PCT/US2005/047503

[0022] Other details and advantages of the present invention will become obvious to the
reader and it is intended that these details and advantages be within the scope of the
present invention.

BRIEF DESCRIPTION OF THE DRAWINGS
[0023] Various other objects, features and attendant advantages of the present invention

will become fully appreciated as the same becomes better understood when considered
in conjunction with the accompanying drawings, in which like reference characters
designate the same or similar parts throughout the several views, and wherein:
[0024] Fig. 1 diagrammatically illustrates the major high level components of an RFID-
enabled application development and deployment system of the present invention;
[0025] Fig. 2 is a diagrammatic illustration of the major components of the RFID-enabled
application development and deployment system in one embodied deployment on a
personal computer;
[0026] Fig. 3 illustrates the key architectural hierarchy of the RFID-enabled application
development and deployment system;
[0027] Fig. 4 is another illustration of channel security infrastructure versus types of
RFID-enabled software applications;
[0028] Fig. 5 illustrates an overview of a number of RFID-enabled software applications
working with another number of physical RFID devices in a networked computer
environment following the deployment of the RFID-enabled application development and
deployment system;
[0029] Fig. 6 illustrates data flow and control flow for an RFID-enabled software
application with API invocation for desktop applications;
[0030] Fig. 7 illustrates data flow and control flow for an RFID-enabled software
application with event invocation for desktop applications; and
[0031] Fig. 8 illustrates data flow and control flow for an RFID-enabled software
application with API invocation for web applications.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0032] In the following detailed description of the present invention, numerous specific

details are set forth in order to provide a thorough understanding of the present invention.
However, it will become obvious to those skilled in the art that the present invention may
be practiced without these specific details. In other instances, well known methods,
procedures, components, and circuitry have not been described in detail to avoid
unnecessary obscuring aspects of the present invention. The detailed description is
presented largely in terms of logic blocks and other symbolic representations that directly
or indirectly resemble the related software operations. These descriptions and

WO 2006/074096 PCT/US2005/047503

representations are the means used by those experienced or skilled in the art to concisely
and most effectively convey the substance of their work to others skilled in the art.

[0033] Reference herein to “one embodiment” or an “embodiment” means that a
particular feature, structure, or characteristics described in connection with the
embodiment can be included in at least one embodiment of the invention. The
appearances of the phrase “in one embodiment” in various places in the specification are
not necessarily all referring to the same embodiment, nor are separate or alternative
embodiments mutually exclusive of other embodiments. Further, the order of blocks in
process flowcharts or diagrams representing one or more embodiments of the invention
do not inherently indicate any particular order nor imply any limitations of the invention.
[0034] Fig. 1 illustrates the major high level components of the RFID-enabled application
development and deployment system 10 of the present invention. More detailed
descriptions of these high level components will be presently described in Fig. 3. The
RFID-enabled application development and deployment system 10, alternatively termed
RFCyberWork, is a platform for developing and deploying RFID-enabled desktop,
networked and web applications. The RFID-enabled application development and
deployment system 10 comprises an RFID-Software Development Kit (RFID-SDK) 30,
logical RFID devices 50, a device monitor and manager 120 and a data monitor and
manager 150.

[0035] The RFID-SDK 30 comprises a set of externalized APls, an event notification
mechanism and a set of application development tools such as a web enabled tool kit
called RFID Web Service Kit (RFID-WSK). The terminology “externalized APIs” refers to
APls that are used by RFID application developers to write RFID-enabled software
applications and that are run-time invokable by a requesting RFID-enabled software
application for accessing RFID tag data of a physical RFID device. Here, accessing
means performing a read or write operation onto the RFID tag. For flexibility of application
development, the externalized APls are designed to support a wide variety of
programming languages such as C++, C, C#, Java, Visual Basic and JavaScript. It is
important to point out that these externalized APIs are device-independent. The following
are some examples of these externalized device-independent APIs which are
independent of the interface specifics of their connected heterogeneous physical RFID
devices. As such, these externalized device-independent APIs do not have parameters
for defining specific features of each heterogeneous physical RFID device:
RFCReader::getTagAllld(RFCTagUID*& tag, short& numTags);
RFCApplication::getBlockData(const REFCTagUID& tag, unsigned char*& data, int&
datalLength, short startBlock = 1, short numOfBlocks = 1, unsigned char* AESKey =

WO 2006/074096 PCT/US2005/047503

NULL);
RFCApplication::setBlockData(const RFCTagUID& tag, unsigned char® data, int
dataLength, short startBlock = 1, short numOfBlocks = 1, unsigned char* AESKey =
NULL);
[0036] The externalized device-independent class RFCReader functions to get
information of RFID tags detected by any connected physical RFID devices. The class
RFCApplication functions to access application data, that are data blocks only, of a given
RFID tag.
public int RFCReader::getAllTagld(RFCTagUID*& tag, short& numTags);

Get all tags detected by the reader.
Parameters:
tag - OUT, an RFCTagUID pointer to get information of all returned RFCTagUID objects
stored in an array.
The caller function must call freeMemory(RFCTagUID*), i.e., freeMemory(tag);, after
usage to avoid memory leakage.
numTags - OUT, number of RFCTagUID objects in the array pointed by "tag".
Returns:
result code, defined in rfc_define.h
public int RFCApplication::getBlockData(const RFCTagUID& tag, unsigned char*&
data, int& datalLength, short startBlock = 1, short numOfBlocks = 1, unsigned char*
AESKey = NULL);
Get value of a number of specified data blocks in a given tag.
Use methods getResultCodelength(), getResultCode(int), and getResultCodeAddr(int),
which are defined in super class RFCBase, to retrieve results of access operation against
each block.
Parameters:
tag - IN, the given tag.
startBlock - IN, starting data block number which is block address id for Non-MAD and
block offset for MAD.
Non-MAD: accessible block address id, e.g., one of (0,1,2;4,5,6;8,9,10;12,13,14;
...;56,57,58;60,61,62) for Mifare 1K.
numOfBlocks - IN, number of data blocks to be retrieved starting from startBlock. Default
value is 1. Max value is 48 for Mifare 1K.
AESKey - IN, 16 byte unsigned character string as input key for AES algorithm to decrypt
the value in the specified data blocks. Default value is NULL, i.e., no data encryption in
the specified data blocks.

WO 2006/074096 PCT/US2005/047503

data - OUT, an "unsigned char" pointer to get information of all returned data block.

The caller function must call freeMemory(unsigned char*), i.e., freeMemory(data);, after
usage to avoid memory leakage.

datal.ength - OUT, number of data blocks in the buffer pointed by "data".

Returns:

result code, defined in rfc_define.h

public int RFCApplication::setBlockData(const RECTagUID& tag, unsigned char* data,
int dataLength, short startBlock = 1, short numOfBlocks = 1, unsigned char* AESKey =
NULL); |

Set given data into a number of specified data blocks in a given tag.

If length of the given data exceeds length of data blocks in the tag, those extra given data
are truncated. On the contrary, extra data blocks in the tag are padded with 0.

Use methods getResultCodelength(), getResultCode(int), and getResultCodeAddr(int),
which are defined in super class RFCBase, to retrieve results of access operation against
each block.

Parameters:

tag - IN, the given tag.

startBlock - IN, starting data block number which is block address id for Non-MAD and
block offset for MAD.

Non-MAD: accessible block address id, e.g., one of (1,2;4,5,6;8,9,10;12,13,14;
...;56,57,58;60,61,62) for Mifare 1K.

numOfBlocks - IN, number of data blocks to be retrieved starting from startBlock. Default
value is 1. Max value is 47 for Mifare 1K.

data - IN, the given data, a buffer pointed by "unsigned char", to be written into the given
tag.

datal.ength - IN, number of data blocks in the array pointed by "data".

AESKey - IN, 16 byte unsigned character string as input key for AES algorithm to encrypt
the value in the specified data blocks. Default value is NULL, i.e., no encryption for the
given data.

Returns:

result code, defined in rfc_define.h

[0037] The event notification mechanism comprises callback APls and plug-in services.
The RFID-WSK comprises a set of JavaScript APIs for scripting web client pages, a set of
web objects such as servlets each being a server-resident service, XML data objects as
well as ActiveXs and web plug-in components for a web browser. Examples of the server-
resident services comprise one or more of the following:

WO 2006/074096 PCT/US2005/047503
10

Servlets for dispatching requests from each web client page.

Servlets for calling web plug-in components and ActiveXs provided by users to get
application specific information for next step operations.

Servlets for preparing encrypted request packets to be sent to a web client to get RFID
tag data from a client site.

Servlets for processing encrypted result packets returned from a web client.

Servlets for calling plug-in components provided by users for applying application specific
logic to prepare a returned object.

Servlets for returning a final result back to a web client.

[0038] RFID applications can use those utilities to access (read/write) tag data via data,
control, and event communication channels.

[0039] The logical RFID devices 50 are key software components that enable and
coordinate all plug-and-play operations of all heterogeneous physical RFID devices
connected to the RFID-enabled application development and deployment system 10. A
logical RFID device runtime daemon, being part of the logical RFID devices 50, functions
to provide real-time service between the heterogeneous physical RFID devices and other
components of the RFID-enabled application development and deployment system 10.
Additionally, the logical RFID devices 50 also supports tag data filtering and grouping
capability such as data duplication, data cleanup and data aggregation according to sub-
grouped physical RFID devices, if any.

[0040] The device monitor and manager 120 is a device manager service daemon that
monitors, manages and controls, in real-time, all connected physical RFID devices as well
as predefined logical RFID devices 50. The monitored and managed information
comprises the status, performance tune up and device specific parameters of the physical
RFID devices within a network management environment. Therefore, a corresponding set
of commands and externalized device management APls is provided for device
monitoring and management via control channels. Standard network management
protocols such as Simple Network Management Protocols (SNMP) are supported by the
device monitor and manager 120 for the network management. The device monitor and
manager 120 also comprisea set of externalized event management APIs for notifying
RFID-enabled software applications of predefined events coming from the physical RFID
devices.

[0041] The data monitor and manager 150 is coupled to the logical RFID devices 50 and
the data monitor and manager 150 monitors and manages the flow of data between
RFID-enabled applications and the physical RFID devices. The data monitor and
manager 150 comprise the following components;

WO 2006/074096 PCT/US2005/047503
11

Plug-in services and templates that are hooks to implement those RFID-enabled software
application logic specific for data filtering and aggregation. '

A data-flow tracker for keeping track of the flow of data between RFID-enabled software
applications and all connected physical RFID devices through selected RFID tags within
their RF scan fields.

A data-flow analyzer for analyzing those data flow between RFID-enabled software
applications and all connected physical RFID devices through selected RFID tags within
their RF scan fields for data mining.

[0042] A tag administration tool is also included here to initialize inserted new RFID tags
and to keep track of all issued tags.

[0043] Fig. 2 illustrates the overall relationship of interaction among a physical RFID tag
72, a physical RFID device 70, RFID-enabled applications such as desktop application 92
and web application 98 and major components of the RFID-enabled application
development and deployment system 10 in a typical deployed environment. The
illustrated major components of the RFID-enabled application development and
deployment system 10 comprise logical RFID devices 50 plus a set of command-APls
52a and callback-APls 52b embedded in desktop application 92 plus a set of Javascript-
APIs 52e and ActiveXs 52f embedded in a web client 100 residing in a computer 80. For
illustration, the desktop application 92 comprises its own application logic 92a. In turn, the
web client 100 interacts, through a computer network or Internet, with a web application
98. Likewise, the logical RFID devices 50 interacts, through a computer network or
Internet, with a physical RFID device 70 to access data to and from its attached RFID tag
72. Within the logical RFID devices 50 are illustrated functional components externalized
device-independent RFID-enabling APIs 54, logical RFID device runtime daemon 56 and
event dispatcher 60. In this embodiment, the logical RFID devices 50 is a piece of
software installed on a computer 80 that has one or multiple physical RFID devices such
as the physical RFID device 70 connected to it. For those skilled in the art, the logical
RFID devices 50 can alternatively be installed on an embedded system box.

[0044] Fig. 3 illustrates the key architectural hierarchy of the RFID-enabled application
development and deployment system 10. Notice that the cloud area represents RFID-
enabled software applications 90 that in turn embed externalized device-independent
RFID-enabling APIs 54 like command-APls 52a, callback-APIs 52b and plug-in services
52c and, while not shown here to avoid obscuring details, a set of application
development tools for developing client components that are run time invokable by the
RFID-enabled software applications 90 for accessing the RFID tag data. In addition to the

WO 2006/074096 PCT/US2005/047503
12

externalized device-independent RFID-enabling APls 54, the architecture of the logical
RFID devices 50 further comprises the following major components:

[0045] A device interface manager 66 that interfaces, at the software level, with the
physical RFID device 70. The device interface manager 66 handles and converts both
wired and wireless device-dependent communication protocols, such as RS232, RS422,
USB, Wi-Fi and Bluetooth, associated with each of the device-dependent interfaces of the
physical RFID device 70 into a set of device-independent functional interfaces for an
upper layer software to control and access data from the physical RFID device 70. Thus,
details of these low level device-dependent communication protocols are made
transparent to any upper layer software. Concurrently, an upper layer software, after
composing data into corresponding device-independent commands, can. send these
device-independent commands via the device interface manager 66 to control or access
data of the physical RFID device 70. As a result, the heterogeneous nature of the device-
dependent communication protocols for physical RFID devices from various
manufacturers gets hidden from the upper layer software of the RFID-enabled application
development and deployment system 10. The following TABLE-! illustrates a specific
embodiment of a set of device independent interfaces, with their functional definition
written in C++ language, designed to handle those device-dependent interfaces required
by various heterogeneous physical RFID devices:

TABLE-I Device Independent Interface Set for Handling Various Heterogeneous Physical

RFID Devices
Function Definition Function Description
bool initReader() Initialize a reader. It includes to open a

hardware interface and to initialize the reader.

bool stopReader() Stop a reader. It includes to close a hardware
interface and to shutdown the reader.

bool resetReader() Reset the hardware interface and reader.

bool pollTag() Start a polling cycle and generate data events
for all scanned tags.

int getTagld(TagUID& tagid) Get any tag currently in the reader’s RF field.
int getAllTagld(TagUID*& list) Get all tags currently in the reader’s RF field.
int suspendPoll() Suspend polling activity.
int resumePoll() Resume polling activity.

int setBlockData(const TagUID &tag, short | Write a number of data block to a targeted tag
startBlock, short numOfBlocks, unsigned at a starting offset.

WO 2006/074096 PCT/US2005/047503

13

char *data, int datal.ength, int* resultList)

appOrSectorld, AuthKeyMode appKeyMode, | at a starting offset computed from an
const unsigned char* appKey, short application ID or a sector ID.
startBlock, short numOfBlocks, unsigned
char *data, int dataLength, AuthKeyMode
dirReadKeyMode, const unsigned char*
dirReadKey, int* resultList)

int setBlockData(const TagUID &tag, short | Write a number of data block to a targeted tag

startBlock, short numOfBlocks, unsigned tag at a starting offset.
char *&data, int &datalLength, int* resultList)

int getBlockData(const TagUID &tag, short | Read a number of data block from a targeted

const unsigned char* appKey, short application ID or a sector ID.
startBlock, short numOfBlocks, unsigned
char *&data, int &datalLength, AuthKeyMode
dirReadKeyMode, const unsigned char*
dirReadKey, int* resultList)

int getBlockData(const TagUID &tag, short | Read a number of data block from a targeted
appOrSectorld, AuthKeyMode appKeyMode, | tag at a starting offset offset computed from an

[0046] Furthermore, detailed description of two selected functions setBlockData() and
getBlockData() follows. Two different kinds of physical RFID devices, Escort Memory
System LRP-series RFID reader with ABx format commands and Accu-sort Sentient RFR
RFID reader with W format commands, are used as vendor-specific examples. As a
further reference, the following are addresses of these two vendors:

Escort Memory Systems

170 Technology Circle, Scotts Valley, CA 95066

http://www.ems-rfid.com

Accu-Sort Systems, Inc.
511 School House Road, Telford, PA 18969
http://www.accusort.com
[0047] The internal Readerimpl class is a class that implements various methods for
handling generic application logic needed to provide common operations. For many
physical RFID readers, the command for each of these operations is mainly different in
terms of their instructional format. For instance,
int setBlockData(

const TagUID &tag, //in: targeted tag

short startBlock, /lin: starting block address

WO 2006/074096 PCT/US2005/047503
14

short numOfBlocks, //in: number of blocks to write
unsigned char *data, //in: input data buffer
int datal.ength, /lin: length of data buffer
int* resultList) {lout: list of result code
[0048] This operation writes data from a given buffer to a number of blocks starting from
an offset. The logic is as follows:
To select the tag
To form the write instruction in base format
Repeat for a number of blocks
Fill in the correct offset and data for the command
Send it to the reader
Wait for the reader to return
Assign result status to result code list
[0049] To implement this operation using Escort Memory Systems’ LRP-Series long
range passive RFID readers such as LRP2000 or LRP820, ABx command 0x06 can be
used:

header| packet size | 0x06 | start no. of byteg timeout | data checksum | terminator
address

[0050] However, for an Accu-sort Sentient RFR RFID reader, the following W command
can be used to write a page:
Wyy<blk-a><blk-b><end> where <end> represents 2 bytes 0x0D, 0x0A, and y is a ASCII
numeric digit for the page offset. <blk-a> is an 8 bytes data for page a, <blk-b> is an 8
bytes data for subsequent page (It is ignored).
int getBlockData(

const TagUID &tag, //in: targeted tag

short startBlock, /fin: starting block address

short numOfBlocks, //in: number of blocks to be read

unsigned char *&data, //out: buffer pointer to store return data

int &dataLength, [lout: length of the data buffer

int* resultList) //out: list for result codes
[0051] This operation reads a humber of blocks into a given buffer from a starting offset
address. The logic is as follows:
Prepare a buffer
To select the tag

To form the read instruction in base format

WO 2006/074096 PCT/US2005/047503

Repeat for a number of read blocks

Fill in the correct offset and data for the command

Send it to the reader

Wait for the reader fo return

Assign result status to result code list

[0052] To implement this operation using Escort Memory Systems’ LRP-Series long
range passive RFID readers such as LRP2000 or LRP820, the ABX command 0x05 can
be used. It has the following format:

header | packet size | 0x05 | start no. of bytes | timeout checksum terminator
address

[0053] However, for an Accu-sort Sentient RFR RFID reader, the following RO0O
command (9 bytes) can be used to read a page:

R00aazz<end> where <end> represents 2 bytes 0x0D, 0x0A, and an ‘a’ (or an ‘Z’)
represents an ASCII numeric digit.

[0054] For concurrently handling the operation of all connected physical RFID devices,
the RFiD-enabled application development and deployment system 10 will define one
adaptor type for each kind of physical RFID device 70 and provide an adaptor manager
64, a component of the logical RFID devices 50, that is coupled with the above device
interface manager 66 during application deployment to handle all different adaptor types
encountered. More specifically, the adaptor type is defined with an associated set of
service attributes and communication attributes part of which are functional parameters
for the device interface manager 66. Examples of the service attributes are the following
parameters related to the functionally of the logical RFID device runtime daemon 56:

The length of each polling cycle to read RFID tag data within an RF scan field.

The time duration after a last scanned RFID tag for ending a polling cycle.

The time interval between consecutive polling cycles.

The anti-collision index of a physical RFID device.

The data length of each read operation upon a scanned RFID tag.

The type of events triggering a polling operation.

[0055] Examples of the communication attributes are communication protocol and port
number. Hence, an adaptor-type definer 64a, being a component of the adaptor manager
64, is created to define an adaptor type for each kind of physical RFID device 70. Next,
another component adaptor constructor 64b is created for creating, corresponding to
each connected physical RFID device 70, one adaptor instance. As a result, two adaptor
instances thus created can be of the same adaptor type while possessing different values
of service attributes and communication attributes. Also, within the context of the same

WO 2006/074096 PCT/US2005/047503
16

adaptor instance duplicated data collected from its corresponding physical RFID device
70 within a given time frame can be eliminated. Adaptor-type definer 64a and adaptor
constructor 64b should be designed according to features and specifications of the
physical RFID devices to facilitate their control and monitoring. Thirdly, another
component, called adaptor controller 64c, is provided for concurrently monitoring and
controlling the operational status of all connected physical RFID devices through their
respective adaptor instances. Yet another component of the adaptor manager 64 is an
adaptor cluster 64d for grouping and/or defining a hierarchical structure for a set of
adaptor instances according to a set of clustering parameters. The clustering parameters
can comprise one or more of the following: physical proximity of the physical RFID
devices, identify of RF scanning fields from the same physical RFID device, location of
the physical RFID devices, mission of the physical RFID devices and load balancing of
objects being scanned by the physical RFID devices. One example of locational
clustering of the physical RFID devices is when they are placed in the same building.
Some examples of mission of the physical RFID devices are logistics, retailing, supplying
and manufacturing. This grouping capability is very important for a tag data processing
manager of the logical RFID device runtime daemon 56 to be presently described.

(0051) Another major component of the logical RFID devices 50 is a tag data processing
manager 62 responsible for filtering the RFID tags data read from each set of grouped
adaptor instances through the adaptor manager 64. The data filtering task comprises:
Eliminating duplicated RFID tags data retrieved from the same RFID tag.

Cleaning up unexpected RFID tags data.

Aggregating RFID tags data to fulfill a corresponding requirement coming from the RFID-
enabled software applications 90.

[0056] As a basic task, the tag data processing manager 62 will also deliver commands
and data originated from the RFID-enabled software applications 90 to targeted groups of
adaptor instances of the adaptor manager 64.

[0057] The command-APls listener 58 and event dispatcher 60, which are software
components in the same layer of the logical RFID devices 50, handle bi-directional
communication between main process of the logical RFID devices 50 and those RFID-
enabled software applications 90 which use command-APls 52a, callback-APIs 52b or
plug-in services 52c. In case of command-APIs 52a, the listener component command-
APIs listener 58 will relay information flow, via a coupling secured control channel 58a
and a coupling secured data channel 58b, between the RFID-enabled software
applications 90 and the logical RFID devices 50 main process. The secured control
channel 58a and secured data channel 58b are compulsory channels required to be

WO 2006/074096 PCT/US2005/047503
17

established between logical RFID devices 50 and each of their clients. They are bi-
directional channels for transporting requests and results of RFC-APIs 52a, including
operations against both RFID tags and adaptors. However, in cases of callback-APls 52b
or plug-in services 52¢, the event dispatcher 60 would be required for the corresponding
information flow, via an optional coupling secured event notification channel 60a, because
an event driven message passing mechanism is used between the RFIiD-enabled
software applications 90 and the logical RFID devices 50 main process for events of large
data volume. The secured event notification channel 60a dispatches data of RFID tag
retrieved from an RF scanning field and events related to adaptors. For security, all
control channel 58a, data channel 58b and event notification channel 60a and/or the
information flowing there through can be encrypted with, for example, a symmetric
encryption algorithm with dynamically generated keys such as Advanced Encryption
Standard (AES), DES (Data Encryption Standard) or triple-DES. For Internet traffic, an
additional Secured Socket Layer (SSL) protocol can be used between web clients and
web servers. Therefore, by now it should also become clear that an end-to-end secured
communication, be it among different processes inside the same computer box or across
a computer network or the Internet, between the RFID-enabled software applications 90
and the physical RFID device 70 is insured. More illustration on channel security versus
types of RFID-enabled software applications 90 will be presented. The just described
communication channels 58a, 58b and 60a also suggested that the RFID-enabled
application development and deployment system 10 supports two programming
paradigms. First, the RFID-enabled application development and deployment system 10
allows client applications to initiate requests by invoking command-APIls 52a supported
by the client applications. Second, the RFID-enabled application development and
deployment system 10 also supports an event driven programming paradigm wherein the
logical RFID devices 50 sends two categories of events, tag events and control events,
which are respectively related to RFID tags in an RF scan field and status of an adaptor
instance. Applications interested in these events can then register a callback through the
callback-APIs 52b or the plug-in services 52c. Hence, respective callbacks or plug-in
services will be invoked upon occurrence of events at an associated logical RFID device.

[0058] The command-APIls 52a, callback-APls 52b and plug-in services 52c¢ are all
externalized device-independent RFID-enabling APIs 54 embedded within the RFID-
enabled software applications 90. The command-APIs 52a, callback-APls 52b and plug-
in services 52¢ are all externalized high level APis for desktop, networked and web
applications to interact with other parts of the logical RFID devices 50. TCP/IP message
transport is used between the command-APIs 52a client and the rest of the logical RFID

WO 2006/074096 PCT/US2005/047503
18

devices 50. For flexibility of system deployment, the command-APls 52a support
numerous computer programming languages such as C++, C, C#, Visual Basic, Java and
JavaScript. Likewise, the callback-APls 52b also support numerous computer
programming languages such as C++, C, C#, and Java. The callback-APIs 52b are
implemented within the RFID-enabled software applications 90 as callback registration for
events coming from the logical RFID devices 50. Each of the plug-in services 52c is a
catcher of events coming from the logical RFID devices 50. The plug-in services 52c are
designed for application plug-in registration and invocation. The plug-in services 52c¢
comprise plug-in services for well-known application servers such as WebMethod.

[0059] Another conceptual embodiment is that, all the components of the logical RFID
devices 50 from the device interface manager 66 at the lowest level to the control channel
58a, the data channel 58b and the event notification channel 60a at the highest level,
inclusively, can be thought of as constituting a logical RFID device runtime daemon 56 for
communicating with the externalized device-independent RFID-enabling APls 54 while
providing device-dependent interfaces through the device interface manager 66.

[0060] Fig. 4 is another illustration of channel security infrastructure versus types of
RFID-enabled software applications 90. To provide secured message exchange between
logical RFID devices 50 and any of its client applications, encrypted communication
channels are established between the two parties. The RFID-enabled application
development and deployment system 10 has slightly different security infrastructure for
web application 98 with web-server-APls 52d, compared with desktop/networked
application 93 with command-APIs 52a. For the desktop/networked application 93, the
application talks directly to targeted logical RFID devices 50 via its encrypted channels
84. Here, the encryption of information traffic is simply done with command-APIs 52a
client residing in this application. However, for the case of web application 98, there are
ActiveXs (or web plug-in components) 52f and a set of Javascript-APIs 52e equipped
web client 100 sitting between targeted logical RFID devices 50 and the web application
98. The encrypted channels 85 are established between the logical RFID devices 50 and
the web client 100. To protect sensitive application data such as authentication keys,
applications are encouraged not to expose these sensitive application data on web
pages. Instead, these sensitive data are normally hidden at a data store that is accessible
by the web application 98 residing on a hosting web server. Hence, message encryption
is carried out at the hosting web server where the web application 98 retrieves these data
and prepares messages. The encrypted messages are then sent over SSL and encrypted
channels 86 to the web client 100 residing within a browser that renders the web pages.

WO 2006/074096 PCT/US2005/047503
19

[0061] Following a typical deployment of the RFiD-enabled application development and
deployment system 10, there can be one installed logical RFID device per computer, to
which a plurality of physical RFID readers are connected via a corresponding number of
generally different device interfaces. For the purpose of scalability, multiple logical RFID
Readers can be integrated together. In this embodiment, an Enterprise Reader Manager
can be provided to control and monitor all integrated logical RFID readers as well as all
connected adaptors and/or physical RFID readers.
[0062] Fig. 5 illustrates the corresponding overview of a number of networked RFID-
enabled software applications 90a, 90b and 90c, each residing on its own computer.
These application-resident computers then interface and work with a number of physical
RFID devices 70a, 70b, 70c and 70d through a computer network 110 and another
number of computers having the RFID-enabled application development and deployment
systems 10a, 10b, 10c and 10d installed in there.
[0063] The data flow and control flow among the components of the RFID-enabled
application development and deployment system 10, the physical RFID devices and a
client application are different for web and non-web related applications. For illustration,
data flow and control flow are described for the following three different kinds of RFID-
enabled software applications:
Desktop application with API invocation in Fig. 6.
Desktop application with event invocation in Fig. 7.
Web application with API invocation in Fig. 8.
[0064] in Fig. 6, RFID-enabled desktop applications 92 refer to applications that reside
on the same computer where the targeted logical RFID devices 50 are installed. On the
other hand, RFID-enabled networked applications refer to applications that can run on a
different computer than the one where the targeted logical RFID devices 50 are installed.
Nevertheless, for these two types of RFID-enabled applications, the control flow and data
flow among the various related components are the same. For clarity of the embodiment,
various steps and control/data flow below are labeled as A1, A2, ..., A10:
A1: Desktop application 92 invokes an API client from the set of externalized device-
independent RFID-enabling APls 54.
A2: The API client establishes a secured data channel with targeted logical RFID devices
50 if such channel has not already been established before.
A3: The API client encrypts application data if needed, formats an API request with
appropriate data and encrypts the API request message using, for example, an AES
algorithm with dynamic seed.

WO 2006/074096 PCT/US2005/047503
20

Ad4: The client sends the encrypted message over the established secured data channel
to the targeted logical RFID devices 50.

A5: The targeted logical RFID devices 50 send request to an attached physical RFID
device 70. This may involve performing several round ftrips of RF operations
between the logical RFID devices 50 and the physical RFID device 70. The RF
operations comprise executing anti-collision protocols to select the targeted RFID
tag 72 and performing any read/write operations on the targeted RFID tag 72.

AB: The physical RFID device 70 actually communicates with those RFID tags within the
RF scan field.

AT: The physical RFID device 70 retrieves data from the RFID tag 72.

A8: The logical RFID devices 50 receive results from the attached physical RFID device
70.

A9: The logical RFID devices 50 format the resulting message, encrypt the resulting
message using a symmetric encryption algorithm, such as AES, with dynamic seed,
and send the encrypted message over the same secured data channel back to the
API client.

A10: The API client decrypts the encrypted message, further decrypts any application
data if needed, and returns the results back to the desktop application 92.

Steps A1 to A10 are then repeated whenever an API client is invoked.

[0065] Fig. 7 illustrates data flow and control flow for an RFID-enabled desktop

application 92 with event invocation. It is remarked again that the data flow and control

flow remain the same for networked applications. However, being different from the
above API-driven program flow, the event invocation is triggered with the presence of an

RFID tag 72 to a physical RFID device 70. Recall from before that the logical RFID

devices 50 send two categories of events: tag events and control events. Fig. 7 presents

program flow following a tag event invocation. For clarity of the embadiment, various
steps and control/data flow below are labeled as B1, B2, . . ., B6:

B1: The API client first registers a callback and then establishes a secured event channel
with targeted logical RFID devices 50, if such channel has not already been
established before.

B2: An RFID tag 72 is moved within the RF scanning field of a physical RFID device 70.

B3: Logical RFID devices 50, which have been polling the physical RFID device 70,
detect the presence of an RFID tag in the scanning field. The logical RFID devices
50 will read the tag identification and/or tag data.

B4: The logical RFID devices 50 will decide which kind of tag events should be issued
according to a predefined configuration and the selected RFID tag.

WO 2006/074096 PCT/US2005/047503
21

B5: The logical RFID devices 50 first check that there is no pending same type of tag
events with the same tag identification as the issued tag event in the previous step.
The logical RFID devices 50 then insert an issued event for the previous step, with
the tag identification, into an event queue.

B6: The event dispatcher 60 picks up the first event from the event queue and dispatches
the event to all correspondingly established event channels.

[0066] However, following a control event invocation the following alternative steps are

followed:

B1: The API client first registers a callback and then establishes a secured event channel
with targeted logical RFID devices 50, if such channel has not already been
established before.

B2: The Status of a connected physical RFID device 70 or its corresponding adaptor
instance is changed.

B3: Logical RFID devices 50, which have been monitoring the status of all adaptor
instances, detect the change and prepare a corresponding type of control event.

B4: The logical RFID devices 50 first check that there is no pending same type of control
events. The logical RFID devices 50 then insert the control event into an event
queve. |

B5: The event dispatcher 60 picks up the first event from the event queue and dispatches
the event to all correspondingly established event channels.

[0067] It is remarked that all messages going through an event channe! are always
initiated by the event dispatcher 60 of logical RFID devices 50. In addition, the event
channel needs to be kept alive as the API client could not differentiate between the
absence of any event and a dropped event channel. One way to keep an event channel
alive is by having the event dispatcher 60 constantly send heartbeat messages through
the event channel.

[0068] Fig. 8 illusirates data flow and control flow for an RFID-enabled software

application with AP| invocation for a web application 98. The deployment of the web

application 98 generates additional software components: ActiveX components 52f for
the case of Microsoft Windows operating system (or, while not illustrated here, a plug-in
component for the case of Linux operating system), Web Client APIs and Web Service

APls. The Web Client APIs is a set of JavaScript-APls 52e for developing RFiD-enabled

web pages. This set of JavaScript-APls extends the functionalities from the desktop to

the web. However, being different from desktop APls, sensitive data such as application
keys and encryption seeds are not made part of the parameter list of the respective Web

Client APls. Instead, these sensitive data are to be hidden in the corresponding APIs

WO 2006/074096 PCT/US2005/047503
22

within the Web Service API. The ActiveX components 52f or web plug-in components
act, on behalf of a web client page rendered in a web browser, to interact with the
installed logical RFID device on the same computer. Meanwhile, the RFID-enabled web
application resides on a backend server over the Internet and uses Web Service APls
which are packaged in a Web Server Library 53 that also include services to
communicate with Web Client via HTTPS. In practice, the ActiveXs or web plug-in
components can be pre-installed at the time the logical RFID reader is installed or it can
be downloaded and installed on the fly when an RFID-enabled web page is downloaded.

For clarity of the embodiment, various steps and control/data flow below are labeled as

C1,C2,...,C13:

C1: A user clicks on an HTML control on an RFID-enabled web page of a web application
98 to perform an action that in turn triggers Web Client script APlIs written in
JavaScript, called JavaScript-APls 52e.

C2: The JavaScript-APIs 52e passes a corresponding request to the loaded ActiveXs or
web plug-in components in the web browser, called ActiveXs 52f in this example.

C3: Based on this request, the ActiveXs 52f formats a message and uses HTTPS
protocol to send a POST request via the Internet to a servlet that implements Web
Service APIs which are part of the Web Server Library 53. This servlet should reside
on the same machine that hosts the web application 98.

C4: The servlet processes the POST request and prepares a corresponding API request
message for the logical RFID devices 50. This involves the retrieval of related keys
and seeds, application data encryption if needed, and message formatting and
encryption.

The servlet then returns the encrypted request message in the HTTP POST return
message to the ActiveXs 52f.

C5: The ActiveXs 52f forwards this encrypted request message to a logical RFID device
50 residing in the same personal computer.

C6: The logical RFID device 50 processes this request and sends appropriate device-
dependent commands to the connected physical RFID device 70. This may involve
performing several round trips of RF operations between the logical RFID devices
50 and the physical RFID device 70. The RF operations include executing anti-
collision protocols to select the targeted RFID tag 72 and performing any read/write
operations on the targeted RFID tag 72.

C7: The physical RFID device 70 then accesses those RFID tags within the RF scan field.

C8: The physical RFID device 70 retrieves information from the RFID tag 72.

WO 2006/074096 PCT/US2005/047503
23

C9: The physical RFID device 70 in turn sends the retrieved information to the logical
RFID device 50.

C10: The logical RFID device 50 prepares a result message and sends it over the same
data channel to the ActiveXs 52f. This result message can be encrypted using AES
algorithm with dynamic seed.

C11: The ActiveXs 52f prepares an HTTP POST request using this result message and
then uses an HTTPS protocol to send a corresponding request via the Internet to
the same servlet.

C12: The servlet, that implements Web Service APls, processes the returned result and
formats the result into one of the pre-defined XML format. The corresponding Web
Service API returns the resulting XML to the ActiveXs 52f.

C13:The ActiveXs 52f returns the resulting XML back to the invoked JavaScript-APls
52e.

[0069] Steps C3 through C11 could be repeated with each Web Client API request.
Notice that in Fig. 8 all the solid arrow lines represent secured channels covered by the
RFID-enabled application development and deployment system 10. On the other hand,
the dotted arrow lines are not within the scope of security service of the RFID-enabled
application development and deployment system 10.
[0070] A system for efficiently developing and deploying RFID-enabled software
applications has been described for securely monitoring and communicating with
network-coupled heterogeneous physical RFID devices to access data stored on scanned
RFID tags. With respect to the above descriptions, it is to be realized that numerous
variations and extensions of the embodiments are deemed readily apparent and obvious
to one skilled in the art, and all equivalent relationships to those illustrated in the figures
and described in the specification are intended to be encompassed by the present
invention. Therefore, the foregoing is considered as illustrative only of the principles of the
invention. Furthermore, since numerous modifications and changes will readily occur to
those skilled in the art, it is not desired to limit the invention to the exact construction and
operation shown and described and accordingly, all suitable modifications and
equivalents may be resorted to fall within the scope of the invention.

WO 2006/074096 PCT/US2005/047503
24

CLAIMS
What is claimed is:
1. A system for developing and deploying a number of individually located Radio
Frequency [Dentification (RFID)-enabled software applications, capable of securely
monitoring the status of and communicating with a number of connected physical RFID
devices to access data stored on RFID tags, the system comprising:
an RFID-Software Development Kit (RFID-SDK) comprising a set of externalized RFID-
enabling Application Programming Interfaces (APIs) invokable, during run time, by said
RFID-enabled software applications for accessing the RFID tag data; and
a number of logical RFID devices, each coupled with said RFID-enabled software
applications through a selectable subset of said set of externalized RFID-enabling APls,
and coupled with said physical RFID devices through a corresponding set of device-
dependent interfaces, each for communicating with a matching member of said RFID
devices, for securely bridging the communication between said RFID-enabled software
applications and said physical RFID devices to access the RFID tag data.
2. The system of claim 1 further comprises a device monitor and manager, being a device
manager service daemon running in said number of logical RFID devices, for monitoring
and controlling said physical RFID devices and said logical RFID devices in real-time,
3 The system of claim 2 further comprises a data monitor and manager, coupled to said
number of logical RFID devices, for monitoring and managing data flow between said
RFID-enabled software applications and said RFID devices.
4, The system of claim 2 wherein said device monitor and manager further comprises a
set of externalized device monitoring and controlling commands and APIs for monitoring
and controlling said physical RFID devices and said logical RFID devices.
5. The system of claim 3 wherein said data monitor and manager further comprises:
a number of plug-in services and templates as hooks to implement those RFID-enabled
software application logic for data filtering and aggregation;
a data-flow tracker for keeping track of the flow of data between said RFID-enabled
software applications and all connected physical RFID devices through selected RFID
tags within their RF scan fields; and
a data-flow analyzer for analyzing those data flow between said RFID-enabled software
applications and all connected physical RFID devices through selected RFID tags within
their RF scan fields for data mining.
6. The system of claim 1 wherein said RFID-SDK further comprises:
an RFID Web Service Kit (RFID-WSK) that further comprising:
a set of APIs for scripting web client pages;

WO 2006/074096 PCT/US2005/047503

a set of web objects each being a server-resident service; and

a set of data objects represented in web page markup languages;

7. The system of claim 1 wherein said RFID-SDK further comprises a set of plug-in
components for a web browser.

8. The system of claim 6 wherein said server-resident services further comprises a set of
web objects capable performing one or more of the following functions:

dispatching requests from each web client page;

calling plug-in components provided by users to get application specific information for
next step operations;

preparing encrypted request packets to be sent to a web client to get RFID tag data from
a client site;

processing encrypted result packets returned from said web client;

calling plug-in components provided by users for applying application specific logic to
prepare a returned object; and

returning a final result back to said web client.

9. The system of claim 6 wherein said web page markup languages comprise one or
more of the followings: Exiensible Markup Language (XML), HyperText Markup
Language (HTML), Standard Generalized Markup Language (SGML), Vector Markup
language (VML), Theological Markup Language (ThML) and Virtual Reality Markup
Language (VRML).

10. The system of claim 1 wherein said number of logical RFID devices, corresponding
RFID-enabled software applications, and corresponding physical RFID devices, reside on
one or more different computers.

11. The system of claim 1 wherein said set of externalized RFID-enabling APls further
comprises:

a number of command-APIs for effecting an interaction between said RFID-enabled
software applications and said logical RFID devices;

a number of callback-APls, each being a callback registration, for registering events
coming from the interior of said logical RFID devices;

a number of plug-in services, each being a cafcher of events coming from the interior of
said logical RFID devices, for registering and invocating application plug-ins; and

a set of application development tools for developing client components invokable, during
run time, by said RFID-enabled software applications for accessing the RFID tag data.

12. The system of claim 10 wherein said command-APls further support a number of

computer programming languages.

WO 2006/074096 PCT/US2005/047503
26

13. The system of claim 12 wherein said number of computer programming languages
comprises one or more of the followings: C++, C, C#, Visual Basic, Java, and JavaScript.

14. The system of claim 10 wherein said callback-APIs support a number of computer
programming languages.

15. The system of claim 14 wherein said number of computer programming languages
comprises one or more of the followings: C++, C, C#, and Java.

16. The system of claim 1 wherein each of said number of logical RFID devices further
comprises a logical RFID device runtime daemon for communicating with said subset of
RFiD-enabling APIs and for providing said device-dependent interfaces.

17. The system of claim 16 whereinsaid logical RFID device runtime daemon further
comprises:

a command-APls listener, together with a coupled secured control channel and a coupled
secured data channel, for providing bi-directional communication channels and
maintaining information flow between said logical RFID device and each of those RFID-
enabling APls; and

an event dispatcher, together with an optional, coupled secured event notification
channel, for establishing event notification channels and managing event flow between
said logical RFID device and each of those RFID-enabling APIs

thereby insuring an end-to-end secured communication between said number of RFID-
enabled software applications and said number of physical RFID devices.

18. The system of claim 17 wherein information flowing through said control channel, said
data channel and said event notification channel carries operation requests against said
RFID tags, responses against said RFID tags and data.

19. The system of claim 17 wherein said control channel, data channel and event
notification channel are all secured through data encryption.

20. The system of claim 19 wherein said data encryption is implemented with symmetric
encryption algorithms with dynamically or statically generated keys.

21. The system of claim 20 wherein said symmetric encryption algorithms comprises one
or more of the followings: Advanced Encryption Standard (AES), DES (Data Encryption
Standard), triple-DES, RC2, RC4, RC5, Blowfish, SAFER, SEAL, or WAKE.

22. The system of claim 19 wherein information flowing through said control channel, data
channel and event notification channel are further secured through data encryption.

23. The system of claim 22 wherein said data encryption is implemented with symmetric
encryption algorithms.

WO 2006/074096 PCT/US2005/047503
27

24. The system of claim 23 wherein said symmetric encryption algorithms comprise one
or more of the followings: AES, DES, triple-DES, RC2, RC4, RC5, Blowfish, SAFER,
SEAL, or WAKE.
25. The system of claim 16 wherein said logical RFID device runtime daemon further
comprises a device interface manager for handling and converting device-dependent
communication protocols associated with each of said set of device-dependent interfaces
into a device-independent interface for controlling and accessing data from said matching
member of said RFID devices.
26. The system of claim 25 wherein, for providing said device-dependent interfaces, said
logical RFID device runtime daemon further comprises an adaptor manager, coupled with
said device interface manager through said device-independent interface, for concurrently
handling the operation of all connected physical RFID devices.
27. The system of claim 25 wherein said device-dependent communication protocols
comprise wired and wireless communication protocols.
28. The system of claim 27 wherein said wired and wireless communication protocols
further comprise RS232, RS422, USB, Wi-Fi and Bluetooth.
29. The system of claim 26 wherein said adaptor manager further comprises:
an adaptor-type definer for defining an adaptor type for each kind of said physical RFID
device, according to its unique set of communication attributes and service
attributes;
an adaptor constructor for creating one adaptor instance for each connected physical
RFID device,
an adaptor controller for concurrently monitoring and controlling the operational status of
all connected physical RFID devices through their respective adaptor instances;
and
an adaptor cluster for grouping and/or defining a hierarchical structure for a set of
adaptor instances according to a set of clustering parameters.
30. The-system of claim 17 wherein, through said event notification channels, said event
dispatcher send the following categories of events:
tag events being related to RFID tags in an Radio Frequency (RF) scanning field; and
control events being related to the status of said adaptor instance.
31. The system of claim 30 wherein said event dispatcher further enables said RFID-
enabled software applications to register a callback by invoking said RFID-enabling APls
that is either acallback-API or a plug-in service.
32. The system of claim 29 wherein said control channel carries operation requests and
responses against said adaptor instance.

WO 2006/074096 PCT/US2005/047503
28

33. The system of claim 29 wherein said set of communication attributes further include a

communication protocol and port number.

34. The system of claim 29 wherein said set of service attributes further include one or

more of the following parameters related to the functionally of said logical RFID device

runtime daemon:

the length of each polling cycle to read RFID tag data within an RF scan field;

the time duration after a last scanned RFID tag for ending a polling cycle;

the time interval between consecutive polling cycles;

the anti-collision index of a physical RFID device;

the data length of each read operation upon a scanned RFID tag; and

the type of events triggering a polling operation.

35. The system of claim 29 wherein each said control channel further carries operation

requests from an originating adaptor instance and carries responses to said originating

adaptor instance; and each said data channel further carries RFID tags data

corresponding to said operation requests and said responses.

36. The system of claim 29 wherein said adaptor manager further comprises an adaptor

cluster for grouping a number of adaptor instances according to a set of clustering

parameters. ‘

37. The system of claim 36 wherein said set of clustering parameters further comprises

one or more of the followings: physical proximity of said physical RFID devices, identify of

RF scanning fields of said physical RFID devices, location of said physical RFID devices,

mission of said physical RFID devices and load balancing of objects being scanned by

said physical RFID devices.

38. The system of claim 26 wherein said logical RFID device runtime daemon further

comprises a tag data processing manager, coupled with said adaptor manager, said

command-APls listener and said event dispatcher, for filtering the RFID tags data read

from each set of grouped adaptor instances by achieving one or more of the following

goals:

eliminating duplicated RFID tags data retrieved from the same RFID tag;

cleaning up unexpected RFID tags data;

aggregating RFID tags data to fulfill a corresponding requirement from said RFiD-enabled

software applications; and

delivering commands and data originated from said RFID-enabled software applications

to targeted adaptor instances of said adaptor manager.

39. The system of claim 17 wherein said device monitor and manager further comprises:
a set of commands and externalized device management APls for network

WO 2006/074096 PCT/US2005/047503
29

management against all said connected physical RFID devices; and

a set of externalized event management APIs for notifying said RFID-enabled
software applications of predefined events coming from said physical RFID devices.
40. The system of claim 39 wherein said device management supports existing standard
network management protocols used in network management through_monitoring said
connected physical RFID devices.
41. The system of claim 40 wherein said standard network management protocols include
Simple Network Management Protocols (SNMP).
42, The system of claim 3 wherein said data monitor and manager further comprises:

a set of externalized data access APIs usable by said RFID-enabled software
applications for accessing the RFID tags data; and

a set of externalized data management APIs for filtering and reconciling the RFID tags
data from said physical RFID devices before sending a resulting valid data to said RFID-
enabled software applications.
43. The system of claim 42 wherein said data monitor and manager further comprises a
tag administration tool for initializing inserted new RFID tags and keeping track of the
status all initialized tags.
44, The system of claim 1 wherein said system is implemented on a personal computing
machine, an industrial computing machine or an embedded system box containing all
software platform functionality as well as computing and networking capability.
45. A method for developing and deploying Radio Frequency IDentification (RFID)-
enabled software applications capable of securely monitoring the status of and
communicating with a number of connectedphysical RFID devices to access data stored
on RFID tags, the method comprising:

providing an RFID-Software Development Kit (RFID-SDK) comprising a set of
externalized RFID-enabling Application Programming Interfaces (APIs) invokable, during
run time, by said RFID-enabled software applications for accessing the RFID tag data;
and

providing a number of logical RFID devices, each coupled with said RFID-enabled

software applications through a selectable subset of said set of externalized RFID-
enabling APlsand coupled with said physical RFID devices through a corresponding set
of device-dependent interfaces, each for communicating with a matching member of said
RFID devices, for securely bridging the communication between said RFID-enabled
software applications and said physical RFID devices to access data stored on said RFID
tags.
46. The method of claim 45 further comprising:

WO 2006/074096 PCT/US2005/047503
30

installing a device monitor and manager, being a device manager service daemon, for
monitoring and controlling said RFID devices in real-time; and

installing a data monitor and manager, coupled to said number of logical RFID
devices, for monitoring and managing data flow between said RFID-enabled software
applications and said RFID devices.
47. The method of claim 46 wherein said step of monitoring and controlling said physical
RFID devices and said logical RFID devices further comprising:
configuring said physical RFID devices and said logical RFID devices;
performing control operation thereon;
monitoring operation status thereof; and
reviewing operation logs thereof.
48. The method of claim 45 wherein the step of providing an RFID-Software Development
Kit (RFID-SDK) for a deskop or networked deployment of said RFID-enabled software
applications to securely monitor the status of and access RFID tags data from a targeted
physical RFID device, further comprises:
invoking a RFID-enabling API with a client component of said RFID-enabled software
application;
establishing secured communication with and sending a request message to a
correspondingly targeted logical RFID device with the invoked RFID-enabling AP!;
sending a request message to the target physical RFID device, being attached to the
correspondingly targeted logical RFID device, and accessing data stored on the RFID tag
with the correspondingly targeted logical RFID device; and
returning the accessed data, via the client component of said RFID-enabling API, back to
said RFID-enabled software application with the correspondingly targeted logical RFID
device.
49. The method of claim 48 wherein establishing secured communication with and
sending a request message to a correspondingly targeted logical RFID device further
comprises:
establishing a secured data channel with the correspondingly targeted logical RFID
device;
encrypting application data and e the request message; and
sending the encrypted request message over the established secured data channel to the
correspondingly targeted logical RFID device.
50. The method of claim 48 wherein sending a request message to the target physical
RFID device and accessing data stored bn the RFID tag further comprises:
sending a request to the targeted physical RFID device;

WO 2006/074096 PCT/US2005/047503
31

communicating with and accessing data on scanned RFID tags in an RF scan field with
the targeted physical RFID device; and

receiving results from the targeted physical RFID device with the correspondingly
targeted logical RFID device.

51. The method of claim 50 wherein sending a request to the targeted physical RFID
device further comprises performing a number of round trips of RF operations from the
targeted logical RFID device to the targeted physical RFID device.

52. The method of claim 51 wherein performing a number of round trips of RF operations
further comprises executing anti-collision protocol to select the inserted RFID tags and
performing any required read/write operations on the scanned RFID tags.

53. The method of claim 48 wherein returning the accessed data back to said RFID-
enabled software application further comprises:

formatting a result message containing the accessed data and encrypting the result
message;

sending the encrypted result message over the secured data channel back to the client
component;

decrypting the encrypted result message, and further decrypting any application data if
needed; and

returning the decrypted accessed data back to said RFID-enabled software application.
54. The method of claim 45 wherein, the step of providing an RFID-Software
Development Kit (RFID-SDK) for a browser-related web deployment of aid RFID-enabled
software applications for the user to securely retrieve a requested document containing
RFID tags data in a targeted physical RFID device, , further comprises the following
steps: '

triggering a web client by clicking on a corresponding markup language control on the
web page;

requesting, with the web client, a web object, residing on a hosting server, to implement
web service APls serving the web client;

establishing, with the web object, secured communication with and sending a request
message to a correspondingly targeted logical RFID device residing on the same
computer as a web browser;

sending a request message to the target physical RFID device, being attached to the
correspondingly targeted logical RFID device, and accessing data stored on the RFID tag
with the correspondingly targeted logical RFID device; and

securely returning the requested document containing the accessed RFID tags data to
the user,

WO 2006/074096 PCT/US2005/047503
32

55. The method of claim 54 wherein requesting a web object to implement web service
APIs further comprises:

passing the request to a loaded plug-in component in the web browser; and

formatting a corresponding message and sending a POST request to said web object to
implement said web service APls.

56. The method of claim 54 wherein establishing secured communication with and
sending a request message to a correspondingly targeted logical RFID device further
comprises:

establishing a secured data channel with the correspondingly targeted logical RFID
device;

processing the POST request of a web protocol and preparing a corresponding AP!
request message;

encrypting application data if needed, formatting the request message with appropriate
data and encrypting the request message; and

sending the encrypted request message over the established secured data channel to the
correspondingly targeted logical RFID device.

57. The method of claim 56 wherein preparing a corresponding AP! request message
further comprises:

hiding all sensitive data at a data store that is only accessible by said web applications;
and '
retrieving said sensitive datafrom said data store.

58. The method of claim 57 wherein said sensitive data further include tag authentication
keys, access control bits and security configuration.

59. The method of claim 57 wherein preparing a corresponding API request message
further comprises:

retrieving related keys and seeds for encryption;

encrypting application data if needed; and

formatting and encrypting the API request message.

60. The method of claim 56 wherein sending the encrypted request message to the
correspondingly targeted logical RFID device further comprises:

returning, with the web object, the encrypted API request message in an HTTP POST
return message to the plug-in component in the web browser; and

forwarding, with the plug-in component, the encrypted. APl request message to the
correspondingly targeted logical RFID device.

61. The method of claim 54 wherein sending a request message to the target physical
RFID device and accessing data stored on the RFID tag further comprises: ‘

WO 2006/074096 PCT/US2005/047503
33

sending a request to the targeted physical RFID device;
communicating with and accessing data on inserted RFID tags in an RF scan field with
the targeted physical RFID device; and
receiving results from the targeted physical RFID device with the correspondingly
targeted logical RFID device.
62. The method of claim 61 wherein sending a request to the targeted physical RFID
device further comprises performing a number of round frips of RF operations from the
targeted logical RFID device to the targeted physical RFID device.
63. The method of claim 62 wherein performing a number of round trips of RF operations
further comprises:
executing anti-collision protocol to select the inserted RFID tags; and
performing any required read/write operations on the inserted RFID tags.
64. The method of claim 56 wherein securely returning the requested document
containing the accessed RFID tags data to the user further comprises:
formatting and encrypting a result message containing the accessed data;
sending the encrypted result message over the secured data channel to a loaded plug-in
component in the web browser;
decrypting the encrypted result message, and sending a corresponding HTTP POST
request over the Internet to the web object;
processing the result message to one of the existing web markup language formats and
returning the resulting requested document to the loaded plug-in component; and
returning the requested document back to the user via the triggered web client.
65. The method of claim 48 further comprises the step of handling a tag event for the
presenting of an RFID tag within the RF scan field of one of said physical RFID devices:
66. The method of claim 65 further comprises the steps of :
polling said one physical RFID device and detecting the tag event with a targeted logical
RFID device coupled with said one physical RFID device; and
issuing the tag event to an event queue with the targefed logical RFID device;
67. The method of claim 66 further comprises the stebs of:

registering a callback with a client component and, if an event notification channel has
not already been established for the targeted logical RFID device, establishing said event
notification channel; and
picking up the first event in the event queue and dispatching the picked up event to all
correspondingly established event notification channels with an event dispatcher of said
targeted logical RFID device.

WO 2006/074096 PCT/US2005/047503
34

68. The method of claim 66 wherein issuing the tag event to an event queue further
comprises:

reading the tag identification and/or tag data of the detected tag event;

qualifying the detected tag event according to predefined conditions; and

inserting the qualified tag event with its tag identification to an event queue.

69. The method of claim 48 further comprises the step of handling a control event defined
as the status change of a connected physical RFID device or its corresponding adaptor
instance.

70. The method of claim 69 further comprises monitoring the status of all adaptor
instances, detecting any status change and preparing a corresponding control event.

71. The method of claim 70 further comprises issuing the control event, upon its
qualification, to an event queue with a targeted logical RFID device.

72 The method of claim 70 further comprises registering a callback with a client
component and, if an event notification channel has not already been established for the
targeted logical RFID device, establishing said event notification channel.

73 The method of claim 72 further comprises picking up the first event in the event queue
and dispatching the picked up event to all correspondingly established event notification
channels with an event dispatcher of said targeted logical RFID device.

74. The method of claim 71 wherein issuing the control event to an event queue further
comprises:

qualifying the detected control event according to the absence of pending previously
detected duplicate control event; and

inserting the thus qualified control event to an event queue.

PCT/US2005/047503

WO 2006/074096

N\

[on31q

s90lAeQ 14y [e01607]

Jobeue Jabeuely
® 10JIUOIN © JOMUON
eled 92IAe(]

/

AAs-didd

/

0S1 01

/
4 e

v/\/oﬁ

1/8

WO 2006/074096 PCT/US2005/047503

Web
Application

54
xternalized device™ 100
60 I independent RFID- 70 72
NG | enabling APIs 1
1 |
I Event Dispatcher Web Client I
56 | logical RFID devices | physical
] .| RrFD _'?FlD
. ag
| fogical RFID device | | device
I runtime daemon |
1 \L Y, I
|

({_J_C_on.vpu_tec.___________..__
8

Figure 2

2/8

WO 2006/074096 PCT/US2005/047503

- command- callback- plug-in
APls APls services

Seo

58b

Data Channel

Control Channel Event Notification

Channel
58 ~

. command-APIs Listener Event Dispatcher
5

~—— Tag Data Processing Manager

/ / 1 ;1]
N—— \ \ Device Interface Manager \
/ [/ /
64a 64b 64c 64d
Figure 3

3/8

WO 2006/074096 PCT/US2005/047503

98
Web Application 52d
——"]Desktop/ Networked Application 86 web-server-APls | —
73 command-APls l callback-APls \/\isl SL & Encrypted channel
/-\/ '
52a Web Client N

100

52b JavaScript-APls,—_____ |
ActiveXs_ 8 S2e

\52f

Encrypted channels

Encrypted channels

84

logical RFID devices 85

50

Figure 4

4/8

WO 2006/074096 PCT/US2005/047503

9037

RFID-enabled
Software
Applications

RFID-enabled
Software

1031 ‘

RFID-enablea

application application application application
development and development and development and development and
deployment deployment deployment deployment

system system system system

Computer Computer Computer Computer
physical physical physical physical
RFID RFID RFID RFID
device device device device
70a 70b 70¢ 70d
Figure 5

5/8

WO 2006/074096 PCT/US2005/047503

Desktop
Application

~N

Externalized

|
|
60 | RFID-enabling 1 70 72
\ | APIs |
| - I
I Event Dispatcher I
120 1 | logical RFID devices AS 1| physical | A6
_+ RFID RFID
A8 ! device A7 Tag

I Device monitor I
1 and manager 1
1\ J 1
Computer 1
1

6/8

WO 2006/074096 PCT/US2005/047503

92a

\ J

/IIComputer
80 e

Figure 7

5
€0 r ——— —_——— e —— -
: B3 w : 70 72
5\4 L Event Dispatcher I
i Externalized | /
| RFID-enabling I
APis
120 1 I | physical
_y| rogical RFID devices g, - RFD RFID
.) B3 device B2 ag
| Device monitor I
1 and manager 1
1 |
|
i

7/8

WO 2006/074096 PCT/US2005/047503

104 r

I 72
| |
5 : C19//05 { physical
| logical RFID devices %::::;_9%6; =z RFID _:£i7:_ th;m
| | device | cs

8/8

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

