

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2016336868 B2

(54) Title
CXCR6-transduced T cells for targeted tumor therapy

(51) International Patent Classification(s)
C12N 15/85 (2006.01) **C12N 5/16** (2006.01)
A61K 35/17 (2015.01) **C12N 15/867** (2006.01)
C07K 14/715 (2006.01)

(21) Application No: **2016336868** (22) Date of Filing: **2016.10.14**

(87) WIPO No: **WO17/064222**

(30) Priority Data

(31) Number (32) Date (33) Country
15190179.0 **2015.10.16** **EP**

(43) Publication Date: **2017.04.20**
(44) Accepted Journal Date: **2022.04.14**

(71) Applicant(s)
Ludwig-Maximilians-Universität München

(72) Inventor(s)
Kobold, Sebastian;Endres, Stefan;Rapp, Moritz;Grassmann, Simon

(74) Agent / Attorney
Griffith Hack, Level 10 161 Collins St, MELBOURNE, VIC, 3000, AU

(56) Related Art
GANG XIAO ET AL, "CXCL16/CXCR6 chemokine signaling mediates breast cancer progression by pERK1/2-dependent mechanisms", ONCOTARGET, 2015, vol. 6, no. 17, pages 14165 - 14178
US 2002/0076694 A1

(51) International Patent Classification:

C12N 15/85 (2006.01) *C12N 5/16* (2006.01)
C12N 15/867 (2006.01) *A61K 35/17* (2015.01)
C07K 14/715 (2006.01)

AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:

PCT/EP2016/074644

(22) International Filing Date:

14 October 2016 (14.10.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

15190179.0 16 October 2015 (16.10.2015) EP

(71) Applicant: **LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN** [DE/DE]; Geschwister-Scholl-Platz 1, 80539 München (DE).

(72) Inventors: **KOBOLD, Sebastian**; Wörthstrasse 19, 81667 München (DE). **ENDRES, Stefan**; Osterwaldstrasse 58, 80805 München (DE). **RAPP, Moritz**; Winzerhalde 97, 8049 Zürich (CH). **GRASSMANN, Simon**; Pündterplatz 7, 80803 München (DE).

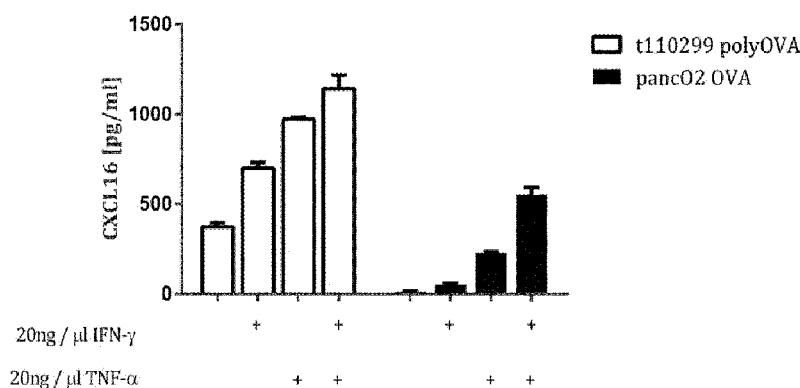
(74) Agent: **VOSSIUS & PARTNER**; Siebertstraße 3, 81675 München (DE).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))
- of inventorship (Rule 4.17(iv))


Published:

- with international search report (Art. 21(3))

[Continued on next page]

(54) Title: CXCR6-TRANSDUCED T CELLS FOR TARGETED TUMOR THERAPY

Fig. 1

(57) Abstract: The present invention relates to CXCR6-transduced (a) T cell(s) such as (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s) for targeted tumor therapy, nucleic acid sequences, vectors capable of transducing such (a) T cell(s), (a) transduced T cell(s) carrying the nucleic acid sequences or vectors of the present invention, methods and kits comprising the nucleic acid sequences or vectors of the present invention. The invention also provides the use of said transduced T cell(s) in a method for the treatment of diseases characterized by CXCL16 overexpression as well as a pharmaceutical composition/medicament comprising (a) transduced T cell(s) expressing the CXCR6 for use in methods of treating diseases characterized by CXCL16 overexpression.

— *with sequence listing part of description (Rule 5.2(a))*

CXCR6-transduced T cells for targeted tumor therapy

The present invention relates to CXCR6-transduced (a) T cell(s) such as (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s) for targeted tumor therapy, nucleic acid sequences, vectors capable of transducing such (a) T cell(s), (a) transduced T cell(s) carrying the nucleic acid sequences or vectors of the present invention, methods and kits comprising the nucleic acid sequences or vectors of the present invention. The invention also provides the use of said transduced T cell(s) in a method for the treatment of diseases characterized by CXCL16 overexpression as well as a pharmaceutical composition/medicament comprising (a) transduced T cell(s) expressing the CXCR6 for use in methods of treating diseases characterized by CXCL16 overexpression.

Adoptive T cell therapy (ACT) is a powerful treatment approach using cancer-specific T cells (Rosenberg and Restifo, *Science* 348(6230) (2015), 62-68). ACT may use naturally occurring tumor-specific cells or T cells rendered specific by genetic engineering using T cell or chimeric antigen receptors (Rosenberg and Restifo, *Science* 348(6230) (2015), 62-68). WO-A1 2015/028444 that is located in the field of adoptive T cell therapy (ACT) describes transduced T cells expressing an anti-CD30 chimeric antigen receptor (CAR) for use in treating CD30 positive cancer. Moreover, US-A1 2014/271635 discloses recombinant T cells expressing a chimeric antigen receptor specific for CD19 for use in the treatment of diseases associated with the expression of CD19. ACT can successfully treat and induce remission in patients suffering even from advanced and otherwise treatment refractory diseases such as acute lymphatic leukemia, non-hodgkins lymphoma or melanoma (Dudley et al., *J Clin Oncol* 26(32) (2008), 5233-5239; Grupp et al., *N Engl J Med* 368 (16) (2013), 1509-1518; Kochenderfer et al., *J Clin Oncol*. (2015) 33(6):540-9. doi: 10.1200/JCO.2014.56.2025. Epub 2014 Aug 25). However, long term benefits are restricted to a small subset of patients while most will relapse and succumb to their refractory disease.

Access of T cells to tumor cells or tissue has been deemed essential for the success of ACT. Thus strategies enabling T cell entry need to be developed and implemented (Gattinoni et al.,

Nat Rev Immunol 6(5) (2006), 383-393). The currently most effective method to achieve enhanced T cell infiltration is total body irradiation, which permeabilizes tumor tissue, remodels the vasculature and depletes suppressive cells (Dudley et al., J Clin Oncol 23(10) (2005), 2346-2357). While this strategy has shown efficacy in clinical trials, its unspecific nature induces severe side effects, limiting its applicability and calling for more specific strategies (Dudley et al., J Clin Oncol 23(10) (2005), 2346-2357).

T cell entry and trafficking into tissues is a tightly regulated process where integrins and chemokines play a central role (Franciszkiewicz et al., Cancer Res 72(24) (2012), 6325-6332; Kalos and June, Immunity 39(1) (2013), 49-60). Chemokines are secreted by resident cells and form gradients, which attract cells bearing their corresponding receptor, regulating cellular entry (Franciszkiewicz et al., Cancer Res 72(24) (2012), 6325-6332). Tumors use this principle to attract immune suppressive cellular populations while excluding proinflammatory subsets (Curiel et al., Nat Med 10(9) (2004), 942-949). Wennerberg et al., Cancer Immunol Immunother 64 (2015), 225-235, located in the field of adoptive T cell therapy (ACT), discloses that ex vivo expansion of natural killer (NK) cells results in an increased expression of the CXCR3 receptor. Further, it is described in Wennerberg et al. that these expanded NK cells displayed an improved migration capacity toward solid tumors secreting CXCL10. However, the NK cells as described in Wennerberg et al. were not genetically engineered to express the chemokine receptor CXCR3. Introducing chemokine receptors (that are targeted by chemokines expressed within the tumor tissue) into T cells has been used to redirect antigen-specific T cells and to enhance their migration into the tumor tissue. CCR2, CCR4 and CXCR2 have been tested in preclinical models. They lead to enhanced therapeutic efficacy of ACT but generally fail to reject tumors, indicating insufficient infiltration and functionality of T cells at the tumor site (Di Stasi et al., Blood 113(25) (2009), 6392-6402; Peng et al., Clin Cancer Res 16(22) (2010), 5458-5468; Asai et al., PLoS One 8(2) (2013), e56820). Further, Sapoznik et al., Cancer Immunol Immunother 61 (2012), 1833-1847 discloses that tumor infiltrating lymphocyte (TIL) cells engineered to express CXCR1 showed enhanced migration towards melanoma cells secreting the chemokine CXCL8. Further, the transfection of the murine B cell line Baf-3 cells with a vector construct harbouring the mouse CXCR6 was described (Matsumura et al., J. Immunol. 181 (2013), 3099-3107). However, the sole purpose of the experimental procedure described in the Matsumura et al. publication was to prove that CXCL16 secreted by mouse tumor cells previously treated with radiation was functional, i.e. that such mouse tumor cells could induce the migration of CXCR6 positive

cells. Thus the transfection of the murine B cell line Baf-3 cells with a vector construct harbouring the mouse CXCR6 was made in order to generate a functional cell line for CXCL16 effects and not vice versa for CXCR6 impact. As mentioned above, the transfected cell line described in the Matsumura et al. publication is a murine B cell line, i.e. a lineage totally independent of T cells functionality and development. Thus the herein demonstrated therapeutic efficacy of CXCR6 transduced T cells cannot be extrapolated from the murine B cell line described in the Matsumura et al. publication. Further, Xiao et al., *Oncotarget*, 6(16) (2015), 14165-14178 discloses the construction of a vector expressing the full-length human CXCR6 for the transduction of human breast cells. Moreover, Deng et al., *Nature* 388 (1997), 296-300 discloses vectors harboring the human CXCR6 sequence as deposited under the accession number AF007545. However, the vectors as described in Xiao et al. and Deng et al. have neither been completely structurally characterized nor have been deposited.

Accordingly, the targeted tumor therapy, particularly the adoptive T cell therapy needs to be improved in order to suffice the needs of the cancer patients. Thus, there is still a need to provide improved means having the potential to improve safety and efficacy of the ACT and overcome the above disadvantages.

Advantageously, this need may be addressed by the present invention by providing the embodiments as defined in the claims.

In a first aspect, there is provided use of an expression vector in the manufacture of a medicament for treating a disease characterized by CXCL16 overexpression, wherein said vector is capable of transducing T cells and comprises a nucleic acid sequence selected from the group consisting of: (a) a nucleic acid sequence of SEQ ID NO: 1, and (b) a nucleic acid sequence, which is at least 84% identical to the sequence of SEQ ID NO: 1 and which is characterized by having a chemokine receptor 6 (CXCR6) activity.

In a second aspect, provided is a T cell expressing a chemokine receptor 6 (CXCR6), produced by transducing the T cell with an expression vector encoding said CXCR6, wherein said vector comprises a nucleic acid sequence selected from the group consisting of: (a) a nucleic acid sequence of SEQ ID NO: 1, and (b) a nucleic acid sequence, which is at least 84% identical to the sequence of SEQ ID NO: 1 and which is characterized by having a chemokine receptor 6 (CXCR6) activity.

In a third aspect, there is provided a method for the production of a transduced T cell expressing a chemokine receptor 6 (CXCR6) comprising the following steps: (a) transducing a T cell with a vector comprising a nucleic acid sequence selected from the group consisting of: (i) a nucleic acid sequence of SEQ ID NO: 1, and (ii) a nucleic acid sequence, which is at least 84% identical to the sequence of SEQ ID NO: 1 and which is characterized by having a chemokine receptor 6 (CXCR6) activity; (b) culturing the transduced T cell under conditions allowing the expression of the chemokine receptor 6 (CXCR6) in or on said T cell; and (c) recovering the transduced T cell from the culture.

The present invention relates to a vector capable of transducing (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), comprising/which comprise a nucleic acid encoding a chemokine receptor 6 (CXCR6) or a fragment thereof, which is characterized by having chemokine receptor 6 (CXCR6) activity.

CXCR6 is the receptor for CXCL16, which is secreted by myeloid cells but also by malignant cells such as pancreatic cancer cells (Gaida et al., Clin Exp Immunol 154(2) (2008), 216-223; van der Voort et al., J Leukoc Biol 87(6) (2010), 1029-1039). The expression of CXCR6 is restricted to certain CD4+ T cell subsets, natural killer (NK) T cells and myeloid cells but is absent from cytotoxic CD8+ T cells (Matloubian et al, Nat Immunol 1(4) (2000), 298-304; van der Voort et al, J Leukoc Biol 87(6) (2010), 1029-1039). The ligand of CXCR6 exists in two forms: membrane bound CXCL16 and a secreted soluble form of CXCL16. This explains

the dual function of CXCR6. CXCR6 mediates migration towards soluble CXCL16 and mediates adhesion through the membrane bound form (Matloubian et al., *Nat Immunol* 1(4) (2000), 298-304; Gough et al., *J Immunol* 172(6) (2004), 3678-3685). These properties render CXCR6 unique among chemokine receptors. In the context of the present invention, it has surprisingly and unexpectedly been found that CXCR6 can be transduced into CD8+ T cells and thereby mediates their migration towards tumor cells. In addition, the data that have been obtained in context of the present invention indicate that CXCR6-transduced T cells, preferably CD8+ T cells, CD4+ T cells, CD3+ T cells, $\gamma\delta$ T cells or natural killer (NK) T cells, most preferably CD8+ T cells, have the further advantage that they adhere to the target tumor cells in an antigen-independent manner, and thus support tumor cell recognition at the tumor site. Accordingly, the present invention relates to the transduction of (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), with CXCR6 thereby mediating their migration towards (a) tumor cell(s) secreting CXCL16. As shown in the appended Examples, the treatment of (a) tumor(s) with (a) transduced T cell(s) expressing a chemokine receptor 6 (CXCR6) significantly reduces the tumor size compared to control experiments (see Figure 17). Accordingly, it was surprisingly found that transduced T cell(s) expressing a chemokine receptor 6 (CXCR6) can be used for the treatment of diseases characterized by CXCL16 overexpression such as pancreatic cancer.

Thus, transduction of (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), with CXCR6 will advantageously result in an improved adoptive T cell therapy. Accordingly, the present invention relates to a vector capable of transducing (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), comprising/which comprise a nucleic acid sequence encoding CXCR6 or a fragment thereof, which is characterized by having CXCR6 activity.

In the context of the present invention the vector may comprise a nucleic acid sequence, which encodes a fragment/polypeptide part of the full length chemokine receptor 6 (CXCR6). Thus, the chemokine receptor 6 (CXCR6), which is comprised in the herein provided vector is a fragment/polypeptide part of the full length CXCR6. The nucleic acid sequence encoding the full length chemokine receptor 6 (CXCR6) is shown herein as SEQ ID NO: 1 (human) and

3 (murine/mouse). The amino acid sequences of murine/mouse and human full length CXCR6 are shown herein as SEQ ID NOs: 4 (murine/mouse) and 2 (human), respectively (the Uni Prot Entry number of the human full length CXCR6 is O00574 (accession number with the entry version number 139 and version 1 of the sequence. The Uni Prot Entry number of the mouse full length CXCR6 is Q9EQ16 (accession number with the entry version number 111 and version 1 of the sequence)).

In the context of the present invention, the nucleic acid sequence encodes “a chemokine receptor 6 (CXCR6)”. The term “chemokine receptor 6 (CXCR6)” and its scientific meaning relating to structure and function are well known in the art and is used accordingly in the context of the present invention (Shimaoka et al., *J Leukoc Biol.* 75(2) (2004), 267-274; Alkhatib G. et al., *Nature* 388(6639) (1997), 238; Paust et al., *Nat Immunol.* 11(12) (2010), 1127-1135). The function of the chemokine receptor 6 (CXCR6) within the vector of the present invention is to act as an attractor and a connector between a cell, preferably a T cell such as a CD8+ T cell, a CD4+ T cell, a CD3+ T cell, a $\gamma\delta$ T cell or a natural killer (NK) T cells, most preferably a CD8+ T cell, that is to be transduced by a nucleic acid sequence expressing said chemokine receptor 6 (CXCR6) and target cell that (over-) expresses the chemokine (C-X-C motif) ligand 16 (CXCL16). The nucleic acid sequences of the full length CXCL16 is shown herein as SEQ ID NO: 5 (human) and 7 (murine/mouse). The amino acid sequences of murine/mouse and human full length CXCL16 are shown herein as SEQ ID NOs: 8 (murine/mouse) and 6 (human), respectively (the Uni Prot Entry number of the human full length CXCL16 is Q9H2A7 (accession number with the entry version number 129 and version 4 of the sequence). The Uni Prot Entry number of the mouse full length CXCL16 is Q8BSU2 (accession number with the entry version number 103 and version 2 of the sequence)). Thus, the transduced T cell(s) expressing a chemokine receptor 6 (CXCR6) encoded by a nucleic acid sequence described herein is capable of migrating towards and binding to (a) target cell(s) that (over-) expresses CXCL16 such as, e.g., progenitor disease cells, primary cell lines, epithelial cells, neuronal cells, lymphoid lineage cells, stem cells or tumor cells.

The term “migrating” in the context of the present invention, refers to the capability of (transduced) T cells, which are characterized by (over-) expressing the CXCR6 towards (transduced) cells that (over-) express CXCL16 such as, e.g., progenitor disease cells, primary cell lines, epithelial cells, neuronal cells, lymphoid lineage cells, stems or tumor cells. The

migration capacity of the target cells can be measured by flow cytometry, ELISA, microscopy or any other suitable device or system (Justus et al., *J. Vis. Exp.* (88) (2014), e51046, doi:10.3791/51046). In brief, such cell migration assays work as follows: transduced T cells (e.g. CD8+ T cells) are labelled with a suitable fluorescent dye and seeded in serum free medium in the upper well of a transwell insert in a 96 well plate. Recombinant CXCL16 is added to the lower chamber. Migration of cells is allowed at 37°C. Thereafter, cells reaching the lower well are quantified. Methods to measure migration are extensively known in the literature (Valster A. et al., *Methods* 37(2) (2005), 208-215) and include transwell-assays, confocal microscopy and flow cytometry for in vitro analysis, while flow cytometry, bioluminescence imaging and immunohistochemistry are used for in vivo analysis (see also Example section 2.5, infra, for further details).

The term “binding” in the context of the present invention, refers to the capability of the chemokine receptor 6 (CXCR6) to associate with the target cell, which is characterized by (over-) expressing CXCL16, for example via covalent or non-covalent interactions. A “covalent” interaction is a form of chemical bonding that is characterized by the sharing of pairs of electrons between atoms, or between atoms and other covalent bonds. Covalent bonding includes many kinds of interaction well-known in the art such as, e.g., σ -bonding, π -bonding, metal to non-metal bonding, agostic interactions and three-center two-electron bonds. A “non-covalent” bond is a chemical bond that does not involve the sharing of pairs of electrons. Non-covalent bonds are critical in maintaining the three-dimensional structure of large molecules, such as proteins and nucleic acids, and are involved in many biological processes in which molecules bind specifically but transiently to one another. There are several types of non-covalent bonds, such as hydrogen bonding, ionic interactions, Van-der-Waals interactions, charge-charge, charge-dipole, dipole-dipole bonds and hydrophobic bonds. Non-covalent interactions often involve several different types of non-covalent bonds working in concert, e.g., to keep a ligand in position on a target binding site on the cell membrane. An interaction may occur with a group such as a charge or a dipole, which may be present many times at the surface of the cell membrane. Preferably, the interaction (i.e. the binding) occurs at a defined site (involves a specific cell membrane constituent/epitope) of the cell membrane, and goes along with the formation of at least one interaction, preferably the formation of a network of several specific interactions. Even more preferably, the binding is specific for the target cell, i.e. the binding occurs at the cell membrane of the target cell but not, or not significantly, at the cell membrane of a non-target cell.

In the context of the present invention, the vector capable of transducing cells, comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 (human) and 3 (murine/mouse) or a nucleic acid sequence, which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NOs: 1 (human) or 3 (murine/mouse) and which is characterized by having a chemokine receptor 6 (CXCR6) activity. Accordingly, also encompassed by the present invention are nucleic acid molecules, nucleic acid sequences or sequence segments having at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity with the nucleic acid molecule/nucleic acid sequence depicted in SEQ ID NOs: 1 (human) or 3 (murine/mouse). Such variant molecules may be splice forms or homologous molecules from other species. It will be appreciated that these variant nucleic acid molecule/nucleic acid sequences nonetheless have to encode an amino acid sequence having the indicated function, i.e. the sequence encoded by a variant of SEQ ID NOs: 1 (human) or 3 (murine/mouse) has to be characterized by having a chemokine receptor 6 (CXCR6) activity as defined herein below.

Accordingly, in the context of the present invention the nucleic acid sequence may be SEQ ID NOs: 1 (human) and 3 (murine/mouse) or a nucleic acid sequence, which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NOs: 1 (human) or 3 (murine/mouse). If the herein provided vector capable of transducing (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 (human) and 3 (murine/mouse) or a nucleic acid sequence, which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NOs: 1 (human) or 3 (murine/mouse), then said nucleic acid sequence is characterized by having a chemokine 6 receptor (CXCR6) activity. The chemokine 6 receptor (CXCR6) activity is defined by the ability to migrate towards a CXCL16 gradient orchestrated by CXCL16-producing cells in vitro and in vivo and allowing the accumulation of CXCR6-positive T cells at the target site, i.e. tumor site and/or by the ability to mediate adhesion directly by CXCL16-binding or indirectly through integrine activation to CXCL16-producing tumor cells, thereby increasing tumor cell recognition. Methods to measure migration are extensively known in the literature (Valster A. et al.,

Methods 37(2) (2005), 208-215) and include transwell-assays, confocal microscopy and flow cytometry for in vitro analysis, while flow cytometry, bioluminescence imaging and immunohistochemistry are used for in vivo analysis.

In accordance with the present invention, the term “at least % identical to” in connection with nucleic acid sequences/nucleic acid molecules describes the number of matches (“hits”) of identical nucleic acids of two or more aligned nucleic acid sequences as compared to the number of nucleic acid residues making up the overall length of the amino acid sequences (or the overall compared part thereof). In other terms, using an alignment, for two or more sequences or subsequences, the percentage of nucleic acid residues that are the same (e.g. at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity) may be determined, when the (sub)sequences are compared and aligned for maximum correspondence over a window of comparison, or over a designated region as measured using a sequence comparison algorithm as known in the art, or when manually aligned and visually inspected. Preferred nucleic acids in accordance with the invention are those where the described identity exists over a region that is at least 100 to 150 nucleotides in length, more preferably, over a region that is at least 200 to 400 nucleotides in length. More preferred nucleic acids in accordance with the present invention are those having the described sequence identity over the entire length of the nucleic acid sequence shown in SEQ ID NO: 1 (human) or 3 (murine/mouse).

It is well known in the art how to determine percent sequence identity between/among sequences using, for example, algorithms such as those based on CLUSTALW computer program (Thompson Nucl. Acids Res. 2 (1994), 4673-4680) or FASTA (Pearson and Lipman, Proc. Natl. Acad. Sci., 1988, 85; 2444). Although the FASTA algorithm typically does not consider internal non-matching deletions or additions in sequences, i.e., gaps, in its calculation, this can be corrected manually to avoid an overestimation of the % sequence identity. CLUSTALW, however, does take sequence gaps into account in its identity calculations. Also available to those having skill in this art are the BLAST and BLAST 2.0 algorithms (Altschul, Nucl. Acids Res., 25 (1977), 3389). The BLASTN program for nucleic acid sequences uses as default a word length (W) of 11, an expectation (E) of 10, M=5, N=4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as default a word length (W) of 3, and an expectation (E) of 10. The BLOSUM62 scoring matrix (Henikoff, Proc. Natl. Acad. Sci., 89 (1989), 10915) uses alignments (B) of 50, expectation

(E) of 10, M=5, N=4, and a comparison of both strands. All those programs may be used for the purposes of the present invention. However, preferably the BLAST program is used. Accordingly, all the nucleic acid molecules having the prescribed function and further having a sequence identity of at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% as determined with any of the above recited or further programs available to the skilled person and preferably with the BLAST program fall under the scope of the invention.

In accordance with the present invention, nucleic acid sequences, which are also referred to herein as polynucleotides or nucleic acid molecules, include DNA, such as cDNA or genomic DNA, and RNA. It is understood that the term "RNA" as used herein comprises all forms of RNA including mRNA, tRNA and rRNA but also genomic RNA, such as in case of RNA of RNA viruses. Preferably, embodiments reciting "RNA" are directed to mRNA. Further included are nucleic acid mimicking molecules known in the art such as synthetic or semi-synthetic derivatives of DNA or RNA and mixed polymers, both sense and antisense strands. They may contain additional non-natural or derivatized nucleotide bases, as will be readily appreciated by those skilled in the art. Such nucleic acid mimicking molecules or nucleic acid derivatives according to the invention include peptide nucleic acid (PNA), phosphorothioate nucleic acid, phosphoramidate nucleic acid, 2'-O-methoxyethyl ribonucleic acid, morpholino nucleic acid, hexitol nucleic acid (HNA) and locked nucleic acid (LNA), an RNA derivative in which the ribose ring is constrained by a methylene linkage between the 2'-oxygen and the 4'-carbon (see, for example, Braasch and Corey, Chemistry & Biology 8 (2001), 1-7). PNA is a synthetic DNA-mimic with an amide backbone in place of the sugar-phosphate backbone of DNA or RNA, as described by Nielsen et al., Science 254 (1991):1497; and Egholm et al., Nature 365(1993), 666.

The nucleic acid molecules/nucleic acid sequences of the invention may be of natural as well as of synthetic or semi-synthetic origin. Thus, the nucleic acid molecules may, for example, be nucleic acid molecules that have been synthesized according to conventional protocols of organic chemistry. The person skilled in the art is familiar with the preparation and the use of such nucleic acid molecules (see, e.g., Sambrook and Russel "Molecular Cloning, A Laboratory Manual", Cold Spring Harbor Laboratory, N.Y. (2001)).

The term comprising, as used herein, denotes that further sequences, components and/or method steps can be included in addition to the specifically recited sequences, components and/or method steps. However, this term also encompasses that the claimed subject-matter consists of exactly the recited sequences, components and/or method steps.

In those embodiments where the nucleic acid molecule comprises (rather than consists of) the recited sequence, additional nucleotides extend over the specific sequence either on the 5' end or the 3' end, or both. Those additional nucleotides may be of heterologous or homologous nature. In the case of homologous sequences, these sequences may comprise up to 1500 nucleotides at the 5' and/or the 3' end, such as e.g. up to 1000 nucleotides, such as up to 900 nucleotides, more preferably up to 800 nucleotides, such as up to 700 nucleotides, such as e.g. up to 600 nucleotides, such as up to 500 nucleotides, even more preferably up to 400 nucleotides, such as up to 300 nucleotides, such as e.g. up to 200 nucleotides, such as up to 100 nucleotides, more preferably up to 50 nucleotides, such as up to 40 nucleotides such as e.g. up to 30 nucleotides, such as up to 20 nucleotides, more preferably up to 10 nucleotides and most preferably up to 5 nucleotides at the 5' and/or the 3' end. The term "up to [...] nucleotides", as used herein, relates to a number of nucleotides that includes any integer below and including the specifically recited number. For example, the term "up to 5 nucleotides" refers to any of 1, 2, 3, 4 and 5 nucleotides. Furthermore, in the case of homologous sequences, those embodiments do not include complete genomes or complete chromosomes.

Additional heterologous sequences may, for example, include heterologous promoters, which are operatively linked to the coding sequences of the invention, as well as further regulatory nucleic acid sequences well known in the art and described in more detail herein below. Thus, in the context of the present invention, the nucleic acid sequences may be under the control of regulatory sequences. Accordingly, in the context of the present invention, the vector of the present invention further comprises a regulatory sequence, which is operably linked to the nucleic acid sequences described herein. For example, promoters, transcriptional enhancers and/or sequences, which allow for induced expression of the CXCR6 described herein may be employed. In the context of the present invention, the nucleic acid molecules are expressed under the control of a constitutive or an inducible promoter. Suitable promoters are e.g. the CMV promoter (Qin et al., PLoS One 5(5) (2010), e10611), the UBC promoter (Qin et al., PLoS One 5(5) (2010), e10611), PGK (Qin et al., PLoS One 5(5) (2010), e10611), the EF1A

promoter (Qin et al., PLoS One 5(5) (2010), e10611), the CAGG promoter (Qin et al., PLoS One 5(5) (2010), e10611), the SV40 promoter (Qin et al., PLoS One 5(5) (2010), e10611), the COPIA promoter (Qin et al., PLoS One 5(5) (2010), e10611), the ACT5C promoter (Qin et al., PLoS One 5(5) (2010), e10611), the TRE promoter (Qin et al., PLoS One. 5(5) (2010), e10611), the Oct3/4 promoter (Chang et al., Molecular Therapy 9 (2004), S367–S367 (doi: 10.1016/j.ymthe.2004.06.904)), or the Nanog promoter (Wu et al., Cell Res. 15(5) (2005), 317-24).

The term "regulatory sequence" refers to DNA sequences, which are necessary to effect the expression of coding sequences to which they are ligated. The nature of such control sequences differs depending upon the host organism. In prokaryotes, control sequences generally include (a) promoter(s), (a) ribosomal binding site(s), and (a) terminator(s). In eukaryotes generally control sequences include (a) promoter(s), (a) terminator(s) and, in some instances, (an) enhancer(s), (a) transactivator(s) or (a) transcription factor(s). The term "control sequence" is intended to include, at a minimum, all components the presence of which are necessary for expression, and may also include additional advantageous components.

Furthermore, it is envisaged for further purposes that nucleic acid molecules may contain, for example, thioester bonds and/or nucleotide analogues. Said modifications may be useful for the stabilization of the nucleic acid molecule against endo- and/or exonucleases in the transduced T cell. Said nucleic acid molecules may be transcribed by an appropriate vector containing a chimeric gene, which allows for the transcription of said nucleic acid molecule in the transduced T cell. In this respect, it is also to be understood that such polynucleotide can be used for "gene targeting" or "gene therapeutic" approaches. In another embodiment said nucleic acid sequences are labeled. Methods for the detection of nucleic acids are well known in the art, e.g., Southern and Northern blotting, PCR or primer extension. This embodiment may be useful for screening methods for verifying successful introduction of the nucleic acid sequences described above during gene therapy approaches. Said nucleic acid sequence(s) may be a recombinantly produced chimeric nucleic acid sequence comprising any of the aforementioned nucleic acid sequences either alone or in combination. In the context of the present invention, the nucleic acid molecule is part of a vector of the present invention.

The present invention therefore also relates to (a) vector(s) comprising the nucleic acid molecule described in the present invention. Herein the term "vector" relates to a circular or linear nucleic acid molecule, which can autonomously replicate in a host cell (i.e. in a transduced T cell) into which it has been introduced. The "vector" as used herein particularly refers to a plasmid, a cosmid, a virus, a bacteriophage and other vectors commonly used in genetic engineering. In the context of the present invention, the vector of the invention is suitable for the transformation of (a) T cell(s), preferably of (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s). Accordingly, in one aspect of the invention, the vector as provided herein is an expression vector. Expression vectors have been widely described in the literature. In particular, the herein provided vector preferably comprises a recombinant polynucleotide (i.e. a nucleic acid sequence encoding the chemokine receptor 6 (CXCR6) or a fragment thereof, which is characterized by having a CXCR6 activity as described herein) as well as (an) expression control sequence(s) operably linked to the nucleotide sequence to be expressed. The vector as provided herein preferably further comprises (a) promoter(s). The herein described vector may also comprise a selection marker gene and a replication-origin ensuring replication in the host (i.e. the transduced T cell). Moreover, the herein provided vector may also comprise a termination signal for transcription. Between the promoter and the termination signal there is preferably at least one restriction site or a polylinker, which enables the insertion of a nucleic acid molecule (e.g. a nucleic acid sequence encoding the CXCR6 described herein) desired to be expressed. The skilled person knows how such insertion can be put into practice. Examples of vectors suitable to comprise a nucleic acid molecule of the present invention to form the vector of the present invention are known in the art. For example, in context of the invention suitable vectors include cosmids, plasmids (e.g., naked or contained in liposomes) and viruses (e.g., lentiviruses, retroviruses, adenoviruses, and adeno-associated viruses) that incorporate the nucleic acid molecule of the invention (i.e. the nucleic acid sequence encoding the chemokine receptor 6 (CXCR6) or a fragment thereof, which is characterized by having a CXCR6 activity as described herein). Preferably, the vector of the present invention is a viral vector. More preferably, the vector of the present invention is a lentiviral vector, and even more preferably, the vector of the present invention is a retroviral vector (e.g. the pMP71 vector). Accordingly, in the context of the present invention, the vector is a lentiviral vector or a retroviral vector. The vector of the present invention allows for constitutive or conditional expression of the nucleic acid sequence of the present invention encoding the chemokine receptor 6 (CXCR6). In this context, suitable retroviral vectors for the

expression of the CXCR6 are known in the art such as SAMEN CMV/SRa (Clay et al., J. Immunol. 163 (1999), 507-513), LZRS-id3-IHRES (Heemskerk et al., J. Exp. Med. 186 (1997), 1597-1602), FeLV (Neil et al., Nature 308 (1984), 814-820), SAX (Kantoff et al., Proc. Natl. Acad. Sci. USA 83 (1986), 6563-6567), pDOL (Desiderio, J. Exp. Med. 167 (1988), 372-388), N2 (Kasid et al., Proc. Natl. Acad. Sci. USA 87 (1990), 473-477), LNL6 (Tiberghien et al., Blood 84 (1994), 1333-1341), pZipNEO (Chen et al., J. Immunol. 153 (1994), 3630-3638), LASN (Mullen et al., Hum. Gene Ther. 7 (1996), 1123-1129), pG1XsNa (Taylor et al., J. Exp. Med. 184 (1996), 2031-2036), LCNX (Sun et al., Hum. Gene Ther. 8 (1997), 1041-1048), SFG (Gallardo et al., Blood 90 (1997), LXSN (Sun et al., Hum. Gene Ther. 8 (1997), 1041-1048), SFG (Gallardo et al., Blood 90 (1997), 952-957), HMB-Hb-Hu (Vieillard et al., Proc. Natl. Acad. Sci. USA 94 (1997), 11595-11600), pMV7 (Cochlovius et al., Cancer Immunol. Immunother. 46 (1998), 61-66), pSTITCH (Weitjens et al., Gene Ther 5 (1998), 1195-1203), pLZR (Yang et al., Hum. Gene Ther. 10 (1999), 123-132), pBAG (Wu et al., Hum. Gene Ther. 10 (1999), 977-982), rKat.43.267bn (Gilham et al., J. Immunother. 25 (2002), 139-151), pLGSN (Engels et al., Hum. Gene Ther. 14 (2003), 1155-1168), pMP71 (Engels et al., Hum. Gene Ther. 14 (2003), 1155-1168), pGCSAM (Morgan et al., J. Immunol. 171 (2003), 3287-3295), pMSGV (Zhao et al., J. Immunol. 174 (2005), 4415-4423), or pMX (de Witte et al., J. Immunol. 181 (2008), 5128-5136). Further, in the context of the present invention suitable lentiviral vectors for the expression of the chemokine receptor 6 (CXCR6) as encoded by the nucleic acid sequence of the present invention are, e.g. PL-SIN lentiviral vector (Hotta et al., Nat Methods. 6(5) (2009), 370-376), p156RRL-sinPPT-CMV-GFP-PRE/*NheI* (Campeau et al., PLoS One 4(8) (2009), e6529), pCMVR8.74 (Addgene Catalogue No.:22036), FUGW (Lois et al., Science 295(5556) (2002), 868-872, pLVX-EF1 (Addgene Catalogue No.: 64368), pLVE (Brunger et al., Proc Natl Acad Sci U S A 111(9) (2014), E798-806), pCDH1-MCS1-EF1 (Hu et al., Mol Cancer Res. 7(11) (2009), 1756-1770), pSLIK (Wang et al., Nat Cell Biol. 16(4) (2014), 345-356), pLJM1 (Solomon et al., Nat Genet. 45(12) (2013), 1428-30), pLX302 (Kang et al., Sci Signal. 6(287) (2013), rs13), pHr-IG (Xie et al., J Cereb Blood Flow Metab. 33(12) (2013), 1875-85), pRRLSIN (Addgene Catalogue No.: 62053), pLS (Miyoshi et al., J Virol. 72(10) (1998), 8150-8157), pLL3.7 (Lazebnik et al., J Biol Chem. 283(7) (2008), 11078-82), FRIG (Raissi et al., Mol Cell Neurosci. 57 (2013), 23-32), pWPT (Ritz-Laser et al., Diabetologia. 46(6) (2003), 810-821), pBOB (Marr et al., J Mol Neurosci. 22(1-2) (2004), 5-11), or pLEX (Addgene Catalogue No.: 27976).

The invention also relates to (a) transduced T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), expressing a chemokine receptor 6 (CXCR6) encoded by a nucleic acid sequence of the present invention. Accordingly, the invention refers to (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), transduced with a vector expressing a chemokine receptor (CXCR6) encoded by a nucleic acid sequence selected from the group consisting of (a) a nucleic acid sequence of SEQ ID NO: 1 (human) or 3 (murine/mouse); and (b) a nucleic acid sequence, which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NO: 1 (human) or 3 (murine/mouse) and which is characterized by having a chemokine receptor 6 (CXCR6) activity. Accordingly, in the context of the present, the transduced T cell(s) may comprise a nucleic acid sequence of the present invention encoding the chemokine receptor 6 (CXCR6) or a vector of the present invention, which expresses a chemokine receptor 6 (CXCR6) as encoded by a nucleic acid sequence of the present invention. Thus, in the context of the present invention the transduced T cell relates to a transduced T cell, preferably a CD8+ T cell, CD4+ T cell, a CD3+ T cell, a $\gamma\delta$ T cell or a natural killer (NK) T cell, most preferably a CD8+ T cell, expressing a chemokine receptor 6 (CXCR6) encoded by a nucleic acid sequence selected from the group consisting of: (a) a nucleic acid sequence of SEQ ID NO: 1 (human) or 3 (murine/mouse); and (b) a nucleic acid sequence, which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NO: 1 (human) or 3 (murine/mouse) and which is characterized by having a chemokine receptor 6 (CXCR6) activity.

In the context of the present, the term “transduced T cell” relates to a genetically modified T cell (i.e. a T cell wherein a nucleic acid molecule has been introduced deliberately). The herein provided transduced T cell may comprise the vector of the present invention. In the context of the present invention, the term “transduced T cell” refers to (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) CD3+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), which is (are) characterized by not expressing a chemokine receptor 6 (CXCR6) encoded by a nucleic acid sequence selected from the group consisting of (a) a nucleic acid sequence of SEQ ID NO: 1 (human) or 3 (murine/mouse); and (b) a nucleic acid sequence, which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the

sequence of SEQ ID NO: 1 (human) or 3 (murine/mouse) and which is characterized by having a chemokine receptor 6 (CXCR6) activity. Preferably, the herein provided transduced T cell comprises the nucleic acid sequence of the present invention encoding the chemokine receptor 6 (CXCR6) and/or the vector of the present invention. The transduced T cell of the invention may be a T cell, which transiently or stably expresses the foreign DNA (i.e. the nucleic acid molecule, which has been introduced into the T cell). In particular, the nucleic acid sequence of the present invention encoding the chemokine receptor 6 (CXCR6) can be stably integrated into the genome of the T cell by using a retroviral or lentiviral transduction. By using mRNA transfection, the nucleic acid molecule of the present invention encoding the CXCR6 described herein may be expressed transiently. Preferably, the herein provided transduced T cell has been genetically modified by introducing a nucleic acid molecule in the T cell via a viral vector (e.g. a retroviral vector or a lentiviral vector). The expression can be constitutive or constitutional, depending on the system used. The chemokine receptor 6 (CXCR6) is a seven transmembrane receptor thereby only a part of the receptor is accessible from the intracellular spaced. Once transduced in T cells, CXCR6 expression on the surface of the transduced T cell can be detected by flow cytometry or microscopy, using anti-CXCR6 antibodies. Antibodies for the detection of CXCR6 are extensively described in the literature and are commercially available. Exemplarily, anti-CXCR6 antibodies are available from R&D Systems, Inc., MN, USA under the catalogue number “MAB699”. A full list of all commercially available anti-CXCR6 antibodies can be found at the Biocompare homepage (see <http://www.biocompare.com/pfu/110447/soids/321781/Antibodies/CXCR6>).

T cells are cells of the adaptive immune system recognizing their target in an antigen specific manner. These cells are characterized by surface expression of CD3 and a T cell receptor (TCR), recognizing a cognate antigen in the context of major histocompatibility complexes (MHC). T cells may be further subdivided in CD4+ or CD8+ T cells. CD4+ T cells recognize an antigen through their TCR in the context of MHC class II molecules which are predominantly expressed by antigen-presenting cells. CD8+ T cells recognize their antigen in the context of MHC class I molecules which are present on most cells of the human body. While the main function of CD4+ T cells is to provide “help”, i.e. costimulatory factors to other antigen-specific cells such CD8+ T cells, CD8+ are directly cytotoxic to the target cell after TCR engagement.

Methods for detecting CD4+ and CD8+ T cells are well known to those skilled in the art and include flow cytometry, microscopy, immunohistochemistry, RT-PCR or western blot (Kobold, J Natl Cancer Inst (2015), 107; Kobold, J Natl Cancer Inst 107 (2015), 364).

The transduced T cell(s) of the present invention may be, e.g., (a) CD8+ T cell, (a) CD4+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s). Preferably, the transduced T cell of the present invention is (are) (a) transduced CD8+ T cell(s), (a) transduced CD4+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), more preferably the transduced T cell(s) of the present invention is (are) (a) transduced CD8+ T cell(s) or (a) transduced CD4+ T cell(s), most preferably the transduced T cell is (are) (a) CD8+ T cell(s). Accordingly, in the context of the present invention, the transduced T cell is (are) most preferably (a) CD8+ T cell(s). Further, in the context of the present invention, it is also preferred that the transduced T cell(s) is (are) (an) autologous T cell(s).

Accordingly, in the context of the present invention, the transduced T cell is (are) preferably (a) transduced autologous CD8+ T cell(s), (a) transduced autologous CD4+ T cell(s), (a) transduced autologous $\gamma\delta$ T cell or (a) transduced autologous natural killer (NK) T cell(s). In addition to the use of (an) autologous T cell(s) isolated from the subject, the present invention also comprehends the use of (an) allogeneic T cell(s). Accordingly, in the context of the present invention the transduced T cell may also be an allogeneic T cell, such as a transduced allogeneic CD8+ T cell. The use of allogeneic T cells is based on the fact that these cells can recognize a specific antigen epitope presented by foreign antigen-presenting cells (APC), provided that the APC express the MHC molecule, class I or class II, to which the specific responding cell population, i.e. T cell population is restricted, along with the antigen epitope recognized by the T cells. An “allogeneic T cell” is a T cell, of which the donor is of the same species as the recipient but genetically not identical with the recipient. Thus, the term allogeneic refers to cells coming from an unrelated donor individual/subject, which has human leukocyte antigen (HLA) compatible to the individual/subject, which will be treated by e.g. the herein described CXCR6 expressing transduced T cell. An “Autologous T cell” refers to (a) T cell(s), which is (are) isolated/obtained as described herein above from the subject to be treated with the transduced T cell described herein. Accordingly, (an) “autologous T cell(s)” is (are) (a) T cell(s), wherein donor and recipient is the same individual.

As described above, the transduced T cell(s) of the present invention is (are) transduced with a nucleic acid sequence expressing the herein provided chemokine receptor 6 (CXCR6). In the case of (a) cell(s) bearing natural anti-tumoral specificity such as tumor-infiltrating lymphocyte cells (TIL, Dudley et al., *J Clin Oncol.* 31(17) (2013), 2152-2159 (doi: 10.1200/JCO.2012.46.6441)) or (an) antigen-specific cell(s) sorted from the peripheral blood of patients for their tumor-specificity by flow cytometry (Hunsucker et al., *Cancer Immunol Res.* 3(3) (2015), 228-235 (doi: 10.1158/2326-6066.CIR-14-0001)), the cell(s) described herein would only be transduced with the chimeric receptor 6 (CXCR6) of the present invention. However, the transduced T cell(s) of the invention may be co-transduced with further nucleic acid molecules, e.g. with a nucleic acid sequence encoding a T cell receptor or a chimeric antigen receptor.

In accordance with this invention, the term “T cell receptor” is commonly known in the art. In particular, herein the term “T cell receptor” refers to any T cell receptor, provided that the following three criteria are fulfilled: (i) tumor specificity, (ii) recognition of (most) tumor cells, which means that an antigen or target should be expressed in (most) tumor cells and (iii) that the TCR matches to the HLA-type of the subject to be treated. In this context, suitable T cell receptors, which fulfill the above mentioned three criteria are known in the art such as receptors recognizing WT1 (Wilms tumor specific antigen 1; for sequence information(s) see, e.g., Sugiyama, *Japanese Journal of Clinical Oncology* 40 (2010), 377-87), MAGE (for sequence see, e.g., WO-A1 2007/032255 and PCT/US2011/57272), SSX (U.S. Provisional Application No. 61/388,983), NY-ESO-1 (for sequence information(s) see, e.g., PCT/GB2005/001924) and/or HER2neu (for sequence information(s) see WO-A1 2011/0280894).

The term “chimeric antigen receptor” or “chimeric receptor” is known in the art and refers to a receptor constituted of an extracellular portion of a single chain antibody domain fused by a spacer sequence to the signal domains of CD3z and CD28. Again, this chimeric antigen receptor should provide tumor specificity and allow for the recognition of most tumor cells. Suitable chimeric receptors include: anti-EGFRv3-CAR (for sequence see WO-A1 2012/138475), anti-CD22-CAR (see WO-A1 2013/059593), anti-BCMA-CAR (see WO-A1 2013/154760), anti-CD19-CAR (see WO-A1 2012/079000 or US-A1 2014/0271635), anti-CD123-CAR (see US-A1 2014/0271582), anti-CD30-CAR (see WO-A1 2015/028444) or anti-Mesothelin-CAR (see WO-A1 2013/142034).

The present invention also relates to a method for the production of (a) transduced T cell(s) expressing a chemokine receptor 6 (CXCR6) encoded by a nucleic acid sequence of the present invention, comprising the steps of transducing (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), with a vector of the present invention, culturing the transduced T cell(s) under conditions allowing the expressing of the CXCR6 in or on said transduced T cell(s) and recovering said transduced T cell(s).

In the context of the present invention, the transduced T cell(s) of the present invention is (are) preferably produced by/obtainable by the following process: (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s) is (are) isolated/obtained from a subject, preferably a human patient. Methods for isolating/obtaining (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s) from (a) patient(s) or from (a) donor(s) is (are) well known in the art and in the context of the present invention the T cell(s), preferably CD8+ T cell(s), CD4+ T cell(s), $\gamma\delta$ T cell(s) or natural killer (NK) T cell(s), most preferably CD8+ T cell(s) from (a) subject(s)/patient(s) or from (a) donor(s) may be isolated by blood draw or removal of bone marrow. After isolating/obtaining (a) T cell(s) as a sample of the subject(s)/patient(s) or donor(s), the T cell(s) is (are) separated from the other ingredients of the sample. Several methods for separating T cell(s) from the sample is (are) known and include, without being limiting, e.g. leukapheresis for obtaining (a) T cell(s) from the peripheral blood sample from a patient or from a donor, isolating/obtaining T cells by using a FACSsort apparatus, picking living of dead T cell(s) from fresh biopsy specimens harboring (a) living T cell(s) by hand or by using a micromanipulator (see, e.g., Dudley, Immunother. 26 (2003), 332-342; Robbins, Clin. Oncol. 29 (2011), 917-924 or Leisegang, J. Mol. Med. 86 (2008), 573-58). Herein the term "fresh patient biopsy" refers to tissue, preferably tumor tissue, removed from a subject by surgical or any other known means as well as (a) tumor cell line(s) or (an) (isolated) cell(s) from a tumor tissue/tumor cell. The isolated/obtained T cell(s), preferably CD8+ T cell(s), CD4+ T cell(s), $\gamma\delta$ T cell(s) or natural killer (NK) T cell(s), most preferably CD8+ T cell(s), is (are) subsequently cultivated and expanded, e.g., by using an anti-CD3 antibody, by using anti-CD3 and anti-CD28 monoclonal antibodies and/or by using an anti-CD3 antibody, an anti-CD28 antibody and in the presence of cytokines, e.g. interleukin-2 (IL-2) and/or interleukin-

15 (IL-15) (see, e.g., Dudley, Immunother. 26 (2003), 332-342 or Dudley, Clin. Oncol. 26 (2008), 5233-5239).

In a subsequent step the T cell(s) is (are) artificially/genetically modified/transduced by methods known in the art (see, e.g., Lemoine, J Gene Med 6 (2004), 374-386). Methods for transducing (a) cell(s), particularly (a) T cell(s), is (are) known in the art and include, without being limited, in a case where nucleic acid or a recombinant nucleic acid is transduced, for example, an electroporation method, calcium phosphate method, cationic lipid method or liposome method. The nucleic acid to be transduced can be conventionally and highly efficiently transduced by using a commercially available transfection reagent, for example, Lipofectamine (manufactured by Invitrogen, catalogue no.: 11668027). In a case where a vector is used, the vector can be transduced in the same manner as the above-mentioned nucleic acid as long as the vector is a plasmid vector (i.e. a vector that is not a viral vector). In the context of the present invention, the methods for transducing (a) T cell(s) include(s) retroviral or lentiviral T cell transduction as well as mRNA transfection. “mRNA transfection” refers to a method well known to those skilled in the art to transiently express a protein of interest, like in the present case the CXCR6, in (a) T cell(s) to be transduced. In brief (a) T cell(s) may be electroporated with the mRNA coding for the CXCR6 described herein by using an electroporation system (such as e.g. Gene Pulser, Bio-Rad) and thereafter cultured by standard cell (e.g. T cell) culture protocol as described above (see Zhao et al., Mol Ther. 13(1) (2006), 151-159.) Preferably, the transduced T cell(s) of the invention is (are) (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), or most preferably (a) CD8+ T cell(s), and is (are) generated by lentiviral, or most preferably retroviral T cell transduction.

In this context, suitable retroviral vectors for transducing (a) T cell(s) is (are) known in the art such as SAMEN CMV/SRa (Clay et al., J. Immunol. 163 (1999), 507-513), LZRS-id3-IHRES (Heemskerk et al., J. Exp. Med. 186 (1997), 1597-1602), FeLV (Neil et al., Nature 308 (1984), 814-820), SAX (Kantoff et al., Proc. Natl. Acad. Sci. USA 83 (1986), 6563-6567), pDOL (Desiderio, J. Exp. Med. 167 (1988), 372-388), N2 (Kasid et al., Proc. Natl. Acad. Sci. USA 87 (1990), 473-477), LNL6 (Tiberghien et al., Blood 84 (1994), 1333-1341), pZipNEO (Chen et al., J. Immunol. 153 (1994), 3630-3638), LASN (Mullen et al., Hum. Gene Ther. 7 (1996), 1123-1129), pG1XsNa (Taylor et al., J. Exp. Med. 184 (1996), 2031-2036), LCNX (Sun et al., Hum. Gene Ther. 8 (1997), 1041-1048), SFG (Gallardo et al., Blood 90 (1997),

LXSN (Sun et al., *Hum. Gene Ther.* 8 (1997), 1041-1048), SFG (Gallardo et al., *Blood* 90 (1997), 952-957), HMB-Hb-Hu (Vieillard et al., *Proc. Natl. Acad. Sci. USA* 94 (1997), 11595-11600), pMV7 (Cochlovius et al., *Cancer Immunol. Immunother.* 46 (1998), 61-66), pSTITCH (Weitjens et al., *Gene Ther* 5 (1998), 1195-1203), pLZR (Yang et al., *Hum. Gene Ther.* 10 (1999), 123-132), pBAG (Wu et al., *Hum. Gene Ther.* 10 (1999), 977-982), rKat.43.267bn (Gilham et al., *J. Immunother.* 25 (2002), 139-151), pLGSN (Engels et al., *Hum. Gene Ther.* 14 (2003), 1155-1168), pMP71 (Engels et al., *Hum. Gene Ther.* 14 (2003), 1155-1168), pGCSAM (Morgan et al., *J. Immunol.* 171 (2003), 3287-3295), pMSGV (Zhao et al., *J. Immunol.* 174 (2005), 4415-4423), or pMX (de Witte et al., *J. Immunol.* 181 (2008), 5128-5136). In the context of the present invention, suitable lentiviral vector for transducing T cells are, e.g. PL-SIN lentiviral vector (Hotta et al., *Nat Methods.* 6(5) (2009), 370-376), p156RRL-sinPPT-CMV-GFP-PRE/*NheI* (Campeau et al., *PLoS One* 4(8) (2009), e6529), pCMVR8.74 (Addgene Catalogue No.:22036), FUGW (Lois et al., *Science* 295(5556) (2002), 868-872, pLVX-EF1 (Addgene Catalogue No.: 64368), pLVE (Brunger et al., *Proc Natl Acad Sci U S A* 111(9) (2014), E798-806), pCDH1-MCS1-EF1 (Hu et al., *Mol Cancer Res.* 7(11) (2009), 1756-1770), pSLIK (Wang et al., *Nat Cell Biol.* 16(4) (2014), 345-356), pLJM1 (Solomon et al., *Nat Genet.* 45(12) (2013), 1428-30), pLX302 (Kang et al., *Sci Signal.* 6(287) (2013), rs13), pHr-IG (Xie et al., *J Cereb Blood Flow Metab.* 33(12) (2013), 1875-85), pRRLSIN (Addgene Catalogue No.: 62053), pLS (Miyoshi et al., *J Virol.* 72(10) (1998), 8150-8157), pLL3.7 (Lazebnik et al., *J Biol Chem.* 283(7) (2008), 11078-82), FRIG (Raissi et al., *Mol Cell Neurosci.* 57 (2013), 23-32), pWPT (Ritz-Laser et al., *Diabetologia.* 46(6) (2003), 810-821), pBOB (Marr et al., *J Mol Neurosci.* 22(1-2) (2004), 5-11), or pLEX (Addgene Catalogue No.: 27976).

The transduced T cell/T cells of the present invention is/are preferably grown under controlled conditions, outside of their natural environment. In particular, the term “culturing” means that cells (e.g. the transduced T cell(s) of the invention), which are derived from multi-cellular eukaryotes, preferably from a human patient, are grown *in vitro*. Culturing cells is a laboratory technique of keeping cells alive, which are separated from their original tissue source. Herein, the transduced T cell(s) of the present invention is (are) cultured under conditions allowing the expression of the CXCR6 described herein in or on said transduced T cell(s). Conditions that allow the expression or a transgene (i.e. of the CXCR6 described herein) are commonly known in the art and include, e.g., agonistic anti-CD3- and anti-CD28 antibodies and the addition of cytokines such as interleukin 2 (IL-2), interleukin 7 (IL-7),

interleukin 12 (IL-12) and/or interleukin 15 (IL-15). After expression of the CXCR6 described herein in the cultured transduced T cell(s), the transduced T cell(s) is (are) recovered (i.e. re-extracted) from the culture (i.e. from the culture medium).

Also encompassed by the invention is (are) (a) transduced T cell(s) expressing a chemokine receptor 6 (CXCR6) as encoded by a nucleic acid molecule of the invention produced by/obtainable by the method of the present invention.

Furthermore, the invention provides a pharmaceutical composition/medicament comprising (a) transduced T cell(s) expressing a chemokine receptor 6 (CXCR6) encoded by a nucleic acid sequence of the present invention or a transduced T cell as obtained by/produced by the method disclosed above. In the context of the present invention, said composition is a pharmaceutical composition further comprising, optionally, suitable formulations of carrier, stabilizers and/or excipients.

In accordance with the present invention, the term “medicament” is used interchangeably with the term “pharmaceutical composition” and relates to a composition for administration to a patient, preferably a human patient. Accordingly, the invention provides (a) transduced T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), expressing a chemokine receptor 6 (CXCR6) as encoded by a nucleic acid molecule of the invention, or produced/obtainable by the method of the present invention for use as a medicament. In the context of the present invention that medicament/pharmaceutical composition is to be administered to a patient from which the transduced T cell(s) was (were) isolated/obtained. In the context of the present invention, the patient refers to a human patient. Furthermore, in the context of the present invention that patient suffers from a disease characterized by CXCL16 overexpression. In the context of the present invention diseases that are characterized by CXCL16 overexpression are known in the art and include e.g. colorectal cancer (Wagsater et al., Int J Mol Med. 14(1) (2004), 65-69), brain cancer (Ludwig et al., J Neurochem. 93(5) (2005), 1293-1303), ovarian cancer (Son et al., Cancer Biol Ther. 6(8) (2007), 1302-1312), prostate cancer (Lu et al., Mol Cancer Res. 6(4) (2008), 546-554), pancreatic cancer (Wente et al., Int J Oncol. 33(2) (2008), 297-308), breast cancer (Matsumura et al., J Immunol. 181(5) (2008), 3099-3107), renal cancer (Gutwein et al., Eur J Cancer. 45(3) (2009), 478-89), nasopharyngeal carcinoma (Parsonage et al., Am J Pathol. 180(3) (2012), 1215-22), hepatocellular carcinoma (Gao et al.,

Cancer Res. 72(14) (2012), 3546-3556), gastric cancer (Xing et al., Hum Pathol. 43(12) (2012), 2299-2307), cervical cancer (Huang et al., Chin J Cancer. 32(5) (2013), 289-296), bladder cancer (Lee et al., Oncol Lett. 5(1) (2013), 229-235), lymphoma (Liu et al., Oncol Rep. 30(2) (2013), 783-792), sarcoma (Na et al., Hum Pathol. 45(4) (2014), 753-760), or lung cancer (Hu et al., PLoS One. 9(6) (2014), e990562014). Accordingly, in the context of the present invention, the disease characterized by CXCL16 overexpression refers in the context of the present invention to a disease selected from the group consisting of colorectal cancer, brain cancer, ovarian cancer, prostate cancer, pancreatic cancer, breast cancer, renal cancer, nasopharyngeal carcinoma, hepatocellular carcinoma, gastric cancer, cervical cancer, bladder cancer, lymphoma, sarcoma, and lung cancer.

In the context of the present invention the pharmaceutical composition that comprises (a) transduced T cell(s) of the present invention or (a) transduced T cell(s) produced by/obtainable by the method of the present invention is (are) to be administered in combination intervening treatment protocols. Examples of such intervening treatment protocols include but are not limited to, administration of pain medications, administration of chemotherapeutics, surgical handling of the disease or a symptom thereof. Accordingly the treatment regimens as disclosed herein encompass the administration of the transduced T cell(s) expressing a CXCR6 as described herein together with none, one, or more than one treatment protocol suitable for the treatment or prevention of a disease, or a symptom thereof, as described herein or as known in the art.

Accordingly, in the context of the present invention transduced T cell(s) expressing the chemokine receptor 6 (CXCR6) as encoded by a nucleic acid sequence of the present invention can be used for the treatment of a proliferative disease, preferably cancer. More preferably, the herein provided transduced T cell(s) expressing the chemokine receptor 6 (CXCR6) as described herein is (are) used for the treatment of a disease (preferably a cancer), which is characterized by CXCL16 overexpression. Cancer types that are preferably treated with the herein provided transduced T cell expressing the chemokine receptor 6 (CXCR6) are described herein above. Thus, the transduced T cell(s) expressing a chemokine receptor 6 (CXCR6) encoded by a nucleic acid sequence described herein can be used in a method of treating any disease where tumor cells over-express CXCL16. The treatment method preferably involves cell collection by a method described above like isolating/collection of the cells by blood draw or removal of bone marrow. Subsequently, the isolated cell(s) is (are)

modified virally or by mRNA electroporation with the fusion receptor (and optionally co-transduced with further nucleic acid molecules, e.g. with a nucleic acid sequence encoding (a) T cell receptor(s) or (a) chimeric receptor(s)). After cell expansion, as outlined above, the transduced T cell(s), preferably CD8+ T cell(s), CD4+ T cell(s), $\gamma\delta$ T cell(s) or natural killer (NK) T cell(s), most preferably CD8+ T cell(s), is (are) transferred intravenously back to the patient. Moreover, the present invention provides a method for the treatment of diseases comprising the steps of isolating (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) $\gamma\delta$ T cells or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), from a subject, transducing said isolated T cell(s) with a nucleic acid encoding the chemokine receptor 6 (CXCR6) as described herein above, co-transducing said isolated T cell(s) with further nucleic acid molecules, e.g. with a nucleic acid sequence encoding (a) T cell receptor or (a) chimeric receptor(s) as described above, expanding the transduced T cell(s), and administering the transduced T cell(s) back to said subject. This treatment method described herein may be repeated e.g. one or two times per week

The invention also relates to a method for treatment of a disease characterized by CXCL16 overexpression in a subject comprising the steps of

- (a) isolating (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), from a subject;
- (b) transducing said isolated (a) T cell(s), e.g., (a) CD8+ T cell(s), with a vector comprising a nucleic acid sequence selected from the group consisting of:
 - (i) a nucleic acid sequence of SEQ ID NOs: 1 or 3, and
 - (ii) a nucleic acid sequence, which is at least 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NOs: 1 or 3 and which is characterized by having a chemokine receptor 6 (CXCR6) activity; and
- (c) administering said transduced T cell(s), e.g. CD8+ T cell(s), to said subject.

In the context of the present invention, said transduced T cell(s), e.g., CD8+ T cell(s), is (are) administered to said subject by intravenous infusion.

Moreover, the present invention provides a method for the treatment of a disease characterized by CXCL16 overexpression comprising the steps of

- (a) isolating (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), from a subject;
- (b) transducing said isolated T cell(s), e.g., (a) CD8+ T cell(s), with a vector comprising a nucleic acid sequence selected from the group consisting of:
 - (i) a nucleic acid sequence of SEQ ID NOs: 1 or 3, and
 - (ii) a nucleic acid sequence, which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NOs: 1 or 3 and which is characterized by having a chemokine receptor 6 (CXCR6) activity; and
- (c) co-transducing said isolated T cell(s), e.g., (a) CD8+ T cell(s), with (a) T cell receptor(s);
- (d) expanding the T cell(s), e.g., (a) CD8+ T cell(s), by, e.g., anti-CD3 and anti-CD28 antibodies; and
- (e) administering the transduced T cell(s), e.g. CD8+ T cell(s), to said subject.

The terms “treatment”, “treating” and the like are used herein to generally mean obtaining a desired pharmacological and/or physiological effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of partially or completely curing a disease and/or adverse effect attributed to the disease. The term “treatment” as used herein covers any treatment of a disease in a subject and includes: (a) preventing and/or ameliorating a proliferative disease (preferably cancer) from occurring in a subject that may be predisposed to the disease; (b) inhibiting the disease, i.e. arresting its development, like the inhibition cancer progression; or (c) relieving the disease, i.e. causing regression of the disease, like the repression of cancer. Preferably, the term “treatment” as used herein relates to medical intervention of an already manifested disorder, like the treatment of a diagnosed cancer.

For the purposes of the present invention the “subject” (or “patient”) may be a vertebrate. In context of the present invention, the term “subject” includes both humans and other animals, particularly mammals, and other organisms. Thus, the herein provided methods are applicable to both human therapy and veterinary applications. Accordingly, said subject may be an animal such as a mouse, rat, hamster, rabbit, guinea pig, ferret, cat, dog, chicken, sheep,

bovine species, horse, camel, or primate. Preferably, the subject is a mammal. Most preferably the subject is a human being.

As described above, the present invention relates to a “pharmaceutical composition” comprising the herein provided transduced T cell expressing the chemokine receptor 6 (CXCR6) described herein (encoded by the nucleic acid molecule of the present invention). Said pharmaceutical composition may further comprise a pharmaceutically acceptable carrier, excipient and/or diluent. Examples of suitable pharmaceutical carriers are well known in the art and include phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions etc. The carrier may be a solution that is isotonic with the blood of the recipient. Compositions comprising such carriers can be formulated by well known conventional methods. The dosage regimen will be determined by the attending physician and clinical factors. As is well known in the medical arts, dosages for any one patient depends upon many factors, including the patient’s size, body surface area, age, the particular compound to be administered, sex, time and route of administration, general health, and other drugs being administered concurrently. For example, the pharmaceutical composition of the invention may be administered to the subject at a dose of 10^4 to 10^{10} T cells/kg body weight, preferably 10^5 to 10^6 T cells/kg body weight. In the context of the present invention the pharmaceutical composition may be administered in such a way that an upscaling of the T cells to be administered is performed by starting with a subject dose of about 10^5 to 10^6 T cells/kg body weight and then going up to dose of 10^{10} T cells/kg body weight. The pharmaceutical composition of the invention may be administered intravenously (i.e. by intravenous infusion) but also intraperitoneally, intrapleurally, intrathecally, subcutaneously or intranodally. Intravenous carriers include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer’s dextrose), and the like preservatives and other additives may also be present in the pharmaceutical composition of the present invention, such as, e.g., antimicrobials, anti-oxidants, chelating agents, inert gases and the like.

The pharmaceutical composition of the present invention may be used in co-therapy in conjunction with, e.g., molecules capable of providing an activation signal for immune effector cells, for cell proliferation or for cell stimulation. Said molecule may be, e.g., a further primary activation signal for T cells (e.g. a further costimulatory molecule: molecules

of B7 family, Ox40L, 4.1 BBL, CD40L, anti-CTLA-4, anti-PD-1), or a further cytokine interleukin (e.g., IL-2).

In context of the present invention, the components of the pharmaceutical composition to be used for therapeutic administration are preferably sterile. Sterility may readily be accomplished by, e.g., filtration through sterile filtration membranes (e.g., 0.2 micron membranes). The pharmaceutical composition of the present invention may be prepared by contacting the components of the pharmaceutical composition uniformly with liquid carriers. After its production, the pharmaceutical composition of the invention may be placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

The invention also relates to a method for the treatment of diseases that are characterized by overexpressing CXCL16 such as, e.g., colorectal cancer, brain cancer, ovarian cancer, prostate cancer, pancreatic cancer, breast cancer, renal cancer, nasopharyngeal carcinoma, hepatocellular carcinoma, gastric cancer, cervical cancer, bladder cancer, lymphoma, sarcoma, or lung cancer comprising the administration of a transduced T cell as described herein to a subject. In the context of the present invention, said subject is a human (as explained above). In the context of the present invention, a method for the treatment of a disease is described that comprises the steps of isolating (a) T cell(s), preferably (a) CD8+ T cell(s), (a) CD4+ T cell(s), (a) $\gamma\delta$ T cell(s) or (a) natural killer (NK) T cell(s), most preferably (a) CD8+ T cell(s), from a subject, transducing said isolated T cell(s) with a nucleic acid encoding the chemokine receptor 6 (CXCR6) as described herein above or with a vector comprising a nucleic acid encoding the CXCR6 as described herein above, and administering the transduced T cells to said subject. In the context of the present invention, said transduced T cells are administered to said subject by intravenous infusion. Moreover, the present invention provides a method for the treatment of diseases comprising the steps of isolating T cells, preferably CD8+ T cells, CD4+ T cells, $\gamma\delta$ T cells or natural killer (NK) T cells, most preferably CD8+ T cells, from a subject, transducing said isolated T cells with a nucleic acid encoding the chemokine receptor 6 (CXCR6) as described herein above, co-transducing said isolated T cell(s) with further nucleic acid molecules, e.g. with a nucleic acid sequence encoding (a) T cell receptor(s) or (a) chimeric receptor(s) as described above, expanding the transduced cells, and administering the transduced cells back to said subject.

The above mentioned expanding step of the transduced T cell(s) may be performed in the presence of (stimulating) cytokines such as interleukin-2 (IL-2) and/or interleukin-15 (IL-15). In the context of the present invention, the expanding step may also be performed in the presence of interleukin-12 (IL-12), interleukin-7 (IL-7) and/or interleukin-21 (IL-21). In accordance with the present invention, the expanding step of the transduced T cell(s) may also be performed in the presence of anti-CD3 and/or anti-CD28 antibodies.

As described herein, the present invention relates to a kit comprising the nucleic acid molecule of the invention, the vector of the invention and/or the transduced T cell(s) of the invention. In the context of the present invention, a kit for incorporating a nucleic acid sequence selected from the group consisting of (a) a nucleic acid sequence of SEQ ID NO: 1, and (b) a nucleic acid sequence, which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NO: 1 and which is characterized by having a chemokine receptor 6 (CXCR6) activity into a CD8+ T cell comprising a vector of the present invention is provided. Thus, the herein provided treatment methods may be realized by using this kit. Advantageously, the kit of the present invention further comprises optionally (a) reaction buffer(s), storage solutions (i.e. preservatives), wash solutions and/or remaining reagents or materials required for the conduction of the assays as described herein. Furthermore, parts of the kit of the invention can be packaged individually in vials or bottles or in combination in containers or multicontainer units. In addition, the kit may contain instructions for use. The manufacture of the kit of the present invention follows preferably standard procedures, which are known to the person skilled in the art. As mentioned above, the kit provided herein is useful for treating a subject, preferably a human patient, which has a disease that is characterized by over-expression of CXCL16 such as, e.g., colorectal cancer, brain cancer, ovarian cancer, prostate cancer, pancreatic cancer, breast cancer, renal cancer, nasopharyngeal carcinoma, hepatocellular carcinoma, gastric cancer, cervical cancer, bladder cancer, lymphoma, sarcoma, or lung cancer.

The Figures show

Figure 1: CXCL16 induction by pancreatic cancer cells Panc02-OVA and T110299 upon IFN- γ or TNF- α stimulation

Tumor cells (i.e. pancreatic cancer cell lines Panc02-OVA and T110299) (0.01×10^6 / well) were seeded in a 96-well plate (flat bottom) and stimulated with recombinant IFN- γ (20 ng/ml) or TNF- α (20 ng/ml) (Peprotech, Hamburg). Supernatants were harvested after 48 hours. CXCL16 secretion was measured with a CXCL16 ELISA kit (R&D Systems, Inc., MN, USA). As shown in the Figure, the pancreatic cancer cell lines Panc02-OVA and T110299 release CXCL16 in the presence and absence of IFN- γ and TNF- α *in vitro*.

Figure 2: Induction of CXCL16 from Panc02-OVA and T110299 pancreatic cancer cells upon co-culture with antigen-specific T cells

The pancreatic cancer cell lines Panc02-OVA and T110299 (0.03×10^6 / well) were co-cultured (0.03×10^6 / well) with T cells (1:1 - 10:1 ratios) in 96-well plates (flat bottom). Supernatants were harvested after 48 hours. CXCL16 secretion was measured with a CXCL16 ELISA kit (R&D Systems, Inc., MN, USA). As shown in Figure 2, the antigen recognition in the context of MHC by antigen-specific T cells (OVA-specific, OT-1 T cells) on the surface of pancreatic cancer cells Panc02-OVA and T110299 induces release of CXCL16 from the pancreatic cancer cells.

Figure 3: Expression of CXCL16 in Panc02-OVA and T110299 tumor bearing mice

Expression of CXCL16 in tumor bearing mice was analyzed over time in different organs. Female C57BL/6J mice (4 per group) (Janvier, France (Cat. Number 2014-07-DE-RM-20)) were injected subcutaneously with Panc02-OVA (Jacobs et al. Int J Cancer 128 (2011), 128) or T110299 tumor cells (Düwell et al., Cell Death Differ 21(12) (2014), 1825-1837) at a concentration of 2×10^6 cells per mice. Organs and tumors were analyzed after one, two or three weeks of induction and frozen in liquid nitrogen. After determination of the protein content by the Bradford method (Bio Rad, München) CXCL16 expression was measured with a CXCL16 ELISA kit (R&D Systems, Inc., MN, USA). The tumor site was found to be the site with the highest CXCL16 expression both in Panc02-OVA and T110299 tumors.

Figure 4: Migration of CXCR6-transduced T cells towards a gradient of recombinant CXCL16

CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced CD8+ T cells and GFP-transduced CD8+ T cells were compared for their ability to migrate towards a CXCL16 gradient. Migration medium (0.5 % BSA in RPMI medium) was used with or without recombinant CXCL16 (SEQ ID NO: 9; serial dilutions from 50 ng/ml to 3.125 ng/ml) (Peprotech, Hamburg) in the lower chamber and T cells in the upper chamber (1×10^6 cells/well) of a 96-transwell plate. After 3 hours migrated T cells were resuspended with counting beads (Life Technologies, Carlsbad, CA, USA) for quantification. Migratory capacity was analyzed as cell number and GFP expression by flow cytometry (BD FACS Canto II). As shown in Figure 4, CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced T cells specifically and dose dependently migrate towards CXCL16, which is not seen in T cells which were only transduced with GFP (SEQ ID NOs: 11 (nucleic acid); 12 (protein)). Figure 4B shows that the migration is specific as enrichment of GFP is only seen in CXCR6 transduced T cells. P-values are depicted in the Figure, ** indicates $p < 0.01$ and *** $p < 0.001$.

Figure 5: Migration of CXCR6- and GFP-transduced T cells towards pancreatic cancer cell supernatant

Tumor cells (i.e. T110299 cells) were seeded in a 6 well plate (1×10^6 cells/well) and stimulated with recombinant IFN- γ and TNF- α (20 ng/ml) (Peprotech, Hamburg). After 48 hours, supernatants were incubated 30 min with or without anti-CXCL16 neutralizing antibody (2 μ g/ml) (R&D Systems, Inc., MN, USA, polyclonal). CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced CD8+ T cells and CD8+ T cells which were only transduced with GFP (SEQ ID NOs: 11 (nucleic acid); 12 (protein)) were seeded at 1×10^6 cells/well. After 3 hours, migrated T cells were resuspended with counting beads (Life Technologies, Carlsbad, CA, USA) for quantification. Migration was quantified as cell number and GFP expression by flow cytometry. As shown in the Figure 5A, CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-

transduced T cells migrate specifically towards supernatants of T110299 cells, which is not seen with GFP (SEQ ID NOS: 11 (nucleic acid/cDNA); 12 (protein))-transduced T cells. Figure 5B shows that the migration is specific as enrichment of GFP is only seen in CXCR6 transduced T cells. P-values are depicted in the Figure, ** indicates $p < 0.01$ and *** $p < 0.001$.

Figure 6: Activation of CXCR6- in comparison to GFP-transduced T cells in co-culture with T110299 or Panc02-OVA tumor cells

The pancreatic cancer cell lines Panc02-OVA and T110299 (1×10^4 / well) were co-cultured with T cells (1:1 to 1:10 ratios) in 96-well plates (flat bottom). Supernatants were harvested after 3, 8, 12, 24, 30 and 36 hours of co-culture. Activation level was measured as IFN- γ secretion by ELISA (Becton Dickinson, Franklin Lakes, NJ, USA). As shown in Figures 6A and 6B, CXCR6 (SEQ ID NOS: 3 (cDNA); 4 (protein))-transduced T cells show enhanced recognition of T110299 and Panc02-OVA in comparison to GFP (SEQ ID NOS: 11 (nucleic acid/cDNA); 12 (protein))-transduced T cells. P-values are depicted in Figures 6A and 6B, * indicates $p < 0.05$, ** $p < 0.01$; *** $p < 0.001$.

Figure 7: Lysis of Panc02-OVA tumor cells by CXCR6- versus GFP-transduced OT-1-T cells

The pancreatic cancer cell line Panc02-OVA (3×10^5 cells / well) was co-cultured with CXCR6 (SEQ ID NOS: 3 (cDNA); 4 (protein))-transduced CD8+ T cells in 96-well plates (flat bottom). Supernatants were harvested after 5 hours of co-culture. Cytotoxicity was measured as LDH release (Promega Corporation, Madison, WI, USA; see Fig. 7A), and activation level as IFN- γ secretion by ELISA (Becton Dickinson, Franklin Lakes, NJ, USA; see Fig. 7B). As shown in the Figure, CXCR6 (SEQ ID NOS: 3 (cDNA); 4 (protein))-transduced T cells have enhanced and T cell dose dependent lysis capacity of Panc02-OVA tumor cells in comparison to OT-1 T cells which were only transduced with GFP (SEQ ID NOS: 11 (nucleic acid/cDNA); 12 (protein)). The p-value is depicted in the Figure, ** indicates $p < 0.01$.

Figure 8: Migration of CXCR6-transduced OT-1 T cells towards Panc02-OVA-CXCL16 cells and subsequent lysis of these tumor cells in comparison to GFP-transduced OT-1 T cells

The pancreatic cancer cell line Panc02-OVA was transduced with CXCL16 (SEQ ID NOS: 7 (cDNA) and 8 (protein); the Uniprot entry number of murine/mouse CXCL16 is Q8BSU2 (accession number with the enzry number version 102 and version 2 of the sequence)). A 96-transwell plate was coated with polylysin (100 µg/ml / well) (Sigma Aldrich, Steinheim). Tumor cells (1×10^5 /well) were seeded in the lower chamber and incubated for 12 hours. T cells (8×10^5 cells / well) were administered in the upper chamber. After 2 hours, migration was stopped by removing the upper chamber. After additional 2 hours tumor cell killing was stopped by measuring LDH and IFN- γ secretion by ELISA. For quantification of migration, T cells were stained with an APC labeled anti-CD8 antibody (Biolegend, San Diego, CA, USA, clone 53-6.7) and resuspended with counting beads (Life Techonologies, Carlsbad, CA, USA). Migration was analyzed as cell number and GFP expression by flow cytometry. As shown in Figure 8A, CXCR6-transduced OT-1 T cells specifically migrate towards CXCL16 producing tumor cells. Figure 8B demonstrates that the migration twords the CXCL16 tumor cells is specific. Subssequently, the migrated T cells lysed these tumor cells (as shown in Figure 8C). Tumor lysis correlated with T cell activation as measured by IFN γ release (see Figure 8D). Migration, killing and activation is superior to the activity of GFP-transduced T cells. P-values are depicted in the Figure, * indicates $p < 0.05$, ** $p < 0.01$; *** $p < 0.001$ and ns non-significant.

Figure 9: Treatment of established Panc02-OVA tumors in mice with GFP- or CXCR6-transduced OT-1 T cells

Female C57BL/6J Mice (5 per group) (Janvier, Frankreich, Cat. Number 2014-07-DE-RM-20) were injected with Panc02-OVA tumor cells (2×10^6 / mice) subcutaneously. After 7 days, T cells were adoptively transferred through the tail vein (10×10^6 cells per mice). Therapeutic efficiency was measured as

tumor growth every other day. As shown in the Figure, the treatment of established Panc02-OVA tumors with CXCR6-transduced OT-1 T cells leads to superior anti-tumoral activity compared to GFP-transduced OT-1 T cells.

Figure 10: CXCL16 production by BM-derived dendritic cells

Bone marrow was isolated from a C57BL/6J mouse (Janvier, Frankreich, Cat. Number 2014-07-DE-RM-20) Bone marrow cells were cultured with recombinant GM-CSF (20 ng/ml) (Peprotech, Hamburg) for seven days. Bone marrow derived dendritic cells (BM-DC, 10^4 per well) were seeded in a 96-well plate (flat bottom) and stimulated with recombinant proteins (20 ng/ml) (TNF- α , IFN- γ or IL-4, Peprotech, Hamburg; or R848 Enzo Life Science, Lörrach). Supernatants were harvested after 48 hours. CXCL16 secretion was measured by ELISA (R&D Systems, Inc., MN, USA, polyclonal). As shown in the Figure, bone marrow-derived dendritic cells produce substantial amounts of CXCL16, which can be further enhanced by different stimuli.

Figure 11: Clustering of CXCR6- and pMX-transduced T cells to dendritic cells

T cells were stained with two different PKH cell linker dyes (Sigma Aldrich, Steinheim). Staining efficiency was verified with flow cytometry. CXCR6 pos.T cells (3×10^4 cells per well) were diluted in a 1:1 ratio with control-transduced T cells. T cell numbers were equilibrated by resuspension of 1:1 diluted samples of T cells with counting beads (Life Technologies, Carlsbad, CA, USA) and quantification of stained viable cells by flow cytometry. BM-DC were stimulated with OVA₂₅₇₋₂₆₄ peptide (SEQ ID NO: 10; 1 μ g/ml) (Invivogen, San Diego, CA, USA) and CpG (3 μ g/ml) (Coley Pharmaceutical Group, Düsseldorf) in 96 well plates (3×10^3 per well) and co-cultured with T cells at a 1:10 ratio for 3 hours partly in the presence or absence of anti-ICAM1 α antibody (0.5 mg/ml) (BioXCell, NH, USA, clone YNI.7.4) or anti-CXCL16 neutralizing antibody (10 μ g/ml) (R&D Systems, Inc., MN, USA, polyclonal) for 3 hours. Cells were gently transferred to a glass-bottomed dish and used for confocal microscopy. Clusters were analyzed for the proportion of CXCR6GFP pos. T cells to control-transduced T cells. As shown in Figure

11A and 11B, CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced T cells show enhanced clustering ability to dendritic cells compared to pMX-transduced T cells. The pMX-vector is an empty retroviral vector, which does not hold any insert. This vector can be found at the Addgene homepage (see <https://www.addgene.org/vector-database/3674/>). The pMX-transduced T cells are published in Kitamura (2003) Tokyo Exp Hematol. 31(11):1007-14. Enhanced clustering capacity is CXCL16 but not ICAM-1 dependent. P-values are depicted in the Figure, * indicates $p < 0.05$, ** $p < 0.01$; *** $p < 0.001$ and ns non-significant.

Figure 12: Activation of CXCR6- and GFP-transduced OT-1 T cells in the presence of dendritic cells

Co-culture of BM-DC cells (5×10^3 per well) with CXCR6GFP- transduced T cells or with GFP-transduced T cells (1:1 to 1:10 ratios) were performed in 96 well plates (flat bottom) in the presence of OVA₂₅₇₋₂₆₄ peptide (1 μ g/ml) (Invivogen, San Diego, CA, USA). Supernatants were harvested after 2, 4 and 6 hours. IFN- γ secretion was measured by ELISA (Becton Dickinson, Franklin Lakes, NJ, USA). As shown in the Figure, CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced T cells display enhanced activation capacity by dendritic cells compared to GFP (SEQ ID NOs: 11 (cDNA); 12 (protein))-transduced T cells.

Figure 13: Expression of CXCR6 in Panc02-OVA tumor bearing mice

Expression of CXCR6 in tumor bearing mice was analyzed in different organs, i.e. spleen, tumor-contralateral lymph node (LN_k), tumor, kidney, tumor-ipsilateral lymph node (LN_i) and lung and blood to peripheral blood cells. Female C57BL/6J mice (3 per group) (Janvier, France (Cat. Number 2014-07-DE-RM-20)) were injected subcutaneously with Panc02-OVA tumor cells (Jacobs et al. Int J Cancer 128 (2011) at a concentration of 2×10^6 per mice. Organs and tumors were isolated and processed on day 20 of induction. The tested spleen, tumor-contralateral lymph node (LN_k), tumor, kidney, tumor-ipsilateral lymph node (LN_i) and lung organs refer to single cell suspensions as

obtained from wild type C57BL/6J mice of the corresponding organ or blood to peripheral blood cells from the C57BL/6J mice. For flow cytometric analysis, cells were stained with the following antibodies: (1.) Lymphoid panel: FITC-conjugated anti-mouse CD3e (clone 17A2, BioLegend, San Diego, CA, USA), PE-conjugated anti-mouse CD4 (clone GK1.5, BioLegend, San Diego, CA, USA), Pacific Blue-conjugated CD8a (clone 53-6.7, BioLegend, San Diego, CA, USA), PerCp-Cy5.5-conjugated CD19 (clone 6D5, BioLegend, San Diego, CA, USA) and PE-Cy7-conjugated NKp46 (clone 29A1.4, BioLegend, San Diego, CA, USA). (2.) Myeloid panel: PE-Cy7-conjugated NKp46, APC-Cy7-conjugated CD11b (clone M1/70, BioLegend, San Diego, CA, USA), PE-conjugated CD11c (clone N418, BioLegend, San Diego, CA, USA), FITC-conjugated Gr1 (clone RB6-8C5, BioLegend, San Diego, CA, USA), PerCp-Cy5.5-conjugated Ly-6C (clone HK1.4, BioLegend, San Diego, CA, USA) and Pacific Blue-conjugated F4/80 (clone BM8, BioLegend, San Diego, CA, USA). The expression level of CXCR6 was analyzed by using a APC-conjugated anti-mouse CXCR6 antibody (FAB2145A, R&D Systems, Inc., MN, USA) and the corresponding isotype (rat IgG2B, RTK4530, BioLegend, San Diego, CA, USA). All flow cytometric data were acquired on a BD FACS CantoII and analyzed using the FlowJo software. As shown in Figure 13, CXCR6 cannot be detected in significant levels on the surface of the analyzed immune cells (CD8 T cells, CD4 T cells, NK T cells and CD19 B cells) by flow cytometry.

Figure 14: Migration of CXCR6- and GFP-transduced T cells towards pancreatic cancer cell supernatant

(A): CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced CD8+ T cells and GFP-transduced CD8+ T cells were compared for their ability to migrate towards a CXCL16 gradient. Migration medium (0.5 % BSA in RPMI medium) was used with or without recombinant CXCL16 (SEQ ID NO: 9; serial dilutions from 50 ng/ml to 3.125 ng/ml) (Peprotech, Hamburg) in the lower chamber and T cells in the upper chamber (1 x 10⁶ cells/well) of a 96-transwell plate. After 3 hours migrated T cells were resuspended with counting beads (Life Technologies, Carlsbad, CA, USA) for quantification. Migratory capacity was analyzed as cell number and GFP expression by flow cytometry

(BD FACS Canto II). As shown in Figure 4, CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced T cells specifically and dose dependently migrate towards CXCL16, which is not seen in T cells which were only transduced with GFP (SEQ ID NOs: 11 (nucleic acid); 12 (protein)).

(B): Tumor cells (i.e. Panc02-OVA or T110299 cells) were seeded in a 6 well plate (1×10^6 cells/well) and stimulated with recombinant IFN- γ and TNF- α (20 ng/ml) (Peprotech, Hamburg). After 48 hours, supernatants were incubated 30 min with or without an anti-CXCL16 neutralizing antibody (2 μ g/ml) (R&D Systems, Inc., MN, USA, polyclonal). CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced CD8+ T cells and GFP (SEQ ID NOs: 11 (cDNA); 12 (protein))-transduced CD8+ T cells were seeded at a concentration of 1×10^6 cells/well. After 3 hours, migrated T cells were resuspended with counting beads (Life Technologies, Carlsbad, CA, USA) for quantification. Migration was quantified as cell number and GFP expression by flow cytometry. As shown in Figure 14B, CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced T cells migrate specifically towards supernatants of T110299 cells, which is not seen with GFP (SEQ ID NOs: 11 (cDNA); 12 (protein))-transduced T cells. P-values are depicted in the Figure, *** p < 0.001.

Figure 15: Internalisation and recycling of CXCR6 due to CXCL16 binding

CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced CD8+ T cells (5×10^5 cells) were treated with 200 ng recombinant CXCL16 (Peprotech, Hamburg) and analyzed by live fluorescence microscopy at time intervals of 5 minutes over a period of 1 hour. Confocal imaging was performed with a Leica SP2 AOBS confocal microscope. As shown in Figure 15, CXCL16 stimulation resulted in a CXCR6 internalisation and re-expression within a time span of 30 minutes.

Figure 16: Adhesion of CXCR6-transduced T cells to recombinant CXCL16

CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein))-transduced CD8+ T cells and GFP (SEQ ID NOs: 11 (cDNA); 12 (protein))-transduced CD8+ T cells were compared for their ability to adhere to immobilised recombinant CXCL16.

First, T cells were stained with Calcein (Life Technologies, Carlsbad, CA, USA) and pre-incubated with or without 2 µg/ml anti-mouse CXCL16 neutralizing antibody (R&D Systems, Inc., MN, USA, polyclonal). Nickel-coated 96-well plates (Cat. Number 15442, ThermoScientific, Darmstadt) were pre-incubated with 9 pmol His-tagged CXCL16 (Cat. Number 50142-M08H, SinoBiological, Peking, China) or 9 pmol BSA. The pre-stimulated T cells were transferred to the CXCL16 or BSA coated Nickel plate. After 25-minute incubation and a washing step, attached cells were lysed using RIPA buffer. Calcein was detected with the Mithras LB 940 Multimode Microplate Reader (Berthold Technologies, Bad Wildbad), where the fluorescent signal intensity is proportional to the quantity of adherent cells. As shown in Figure 16, CXCR6 (SEQ ID NOS: 3 (cDNA); 4 (protein))-transduced T cells attach specifically to CXCL16. P-values are depicted in the Figure, ** p < 0.01; *** p < 0.001.

Figure 17: Treatment of established Panc02-OVA tumors in mice with GFP- or CXCR6-transduced OT-1 T cells

Female C57BL/6J Mice (5 per group) (Janvier, Frankreich (Cat. Number 2014-07-DE-RM-20)) were injected with Panc02-OVA tumor cells (2×10^6 / mice) or T110299-OVA tumor cells (4×10^6 / mice) subcutaneously. After 5 days, T cells were adoptively transferred through the tail vein (10×10^6 cells per mice). Therapeutic efficiency was measured as tumor growth every other day. As shown in Figure 17A and 17B, the treatment of established Panc02-OVA tumors or T110299-OVA tumor cells with CXCR6 (SEQ ID NOS: 3 (cDNA); 4 (protein))-transduced OT-1 T cells leads to superior anti-tumoral activity compared to GFP (SEQ ID NOS: 11 (cDNA); 12 (protein))-transduced OT-1 T cells. P-values are depicted in the Figure, *** p < 0.001.

Figure 18: Quantification of tumor-infiltrating iRFP (Red Fluorescent Protein) - or CXCR6-transduced OT-1 T cells

Female C57BL/6J Mice (Janvier, Frankreich (Cat. Number 2014-07-DE-RM-20)) were injected with Panc02-OVA tumor cells (2×10^6 / mice)

subcutaneously. After 5 days, T cells were adoptively transferred through the tail vein (10×10^6 cells per mice). Organs and tumors were isolated and processed on day 10 of induction (five days after T cell transfer). 15 minutes before organ removal, eFluor® 450-conjugated anti-mouse CD31 (4 μ g / mice, clone 390, eBioscience, Frankfurt) was injected intravenously through the tail vein. For flow cytometric analysis, cells were stained with Pacific Blue-conjugated anti-mouse CD8a (clone 53-6.7, BioLegend, San Diego, CA, USA) and analyzed with counting beads (Life Technologies, Carlsbad, CA, USA) for quantification. For 2Photon microscopy, tumors were embedded in 1.5% agarose and 2Photon imaging was performed with the Leica “SP5II MP” system equipped with a “Spectra Physics MaiTai DeepSee” Ti:Sa pulsed laser. As shown in Figure 20, CXCR6 (SEQ ID NOs: 3 (cDNA); 4 (protein transduced T cells are not only specifically enriched in tumor tissue, but also have the ability to migrate towards tumor areas with few blood vessels.

Figure 19: Quantification of tumor-infiltrating iRFP (Red Fluorescent Protein) - or CXCR6-transduced OT-1 T cells by flow cytometry.

Female C57BL/6J Mice (Janvier, Frankreich (Cat. Number 2014-07-DE-RM-20) were injected with Panc02-OVA tumor cells (2×10^6 / mice) subcutaneously. After 5 days, T cells were adoptively transferred through the tail vein (10×10^6 cells per mice). Organs and tumors were isolated and processed on day 10 of induction (five days after T cell transfer). For flow cytometric analysis, cells were stained with Pacific Blue-conjugated anti-mouse CD8a (clone 53-6.7, BioLegend, San Diego, CA, USA) and analyzed with counting beads (Life Technologies, Carlsbad, CA, USA) for quantification. Figure 19 demonstrates a specific enrichment of CXCR6 transduced T cells over iRFP transduced T cells.

Figure 20: CXCL16 secretion by human pancreatic cancer cells

Tumor cells, i.e. human pancreatic cancer cell lines PA-TU-8988T (DSM ACC 162), SUIT-2 clone7 (Iwamura et al., Jpn J Cancer Res 78(1) (1987), 54-62), MIA PaCa-2 (ATCC® CRM-CRL-1420™), and PANC-1 (ATCC® CRM-

CRL-1420TM) were seeded in a 6-well plate (flat bottom) at a concentration of 0.2×10^6 / well. Supernatants were harvested after 72 hours. Human CXCL16 secretion was measured with a hCXCL16 ELISA kit (R&D Systems, Inc., MN, USA). As shown in Figure 19, the human pancreatic cancer cell lines PA-TU-8988T (DSM ACC 162), SUIT-2 clone7 (Iwamura et al., Jpn J Cancer Res 78(1) (1987), 54-62), MIA PaCa-2 (ATCC[®] CRM-CRL-1420TM), and PANC-1 (ATCC[®] CRM-CRL-1420TM) release hCXCL16.

Figure 21: Sphere formation by human pancreatic cancer cells

96-well plates (flat bottom) were coated with 1.5% agarose. Human pancreatic cancer cell lines PaTu8988T, Suit-2 clone7, MiaPaCa2 and Panc1 (100 and 500 cells / well) were seeded in the agarose-coated 96-well plate (flat bottom). The formation of spheres was observed by PaTu8988T, Suit-2 clone7, MiaPaCa2 and Panc1 tumor cells. Supernatants were harvested after nine days and human CXCL16 production was measured with an hCXCL16 ELISA kit (R&D Systems, Inc., MN, USA).

Figure 22: Migration of CXCR6-transduced human T cells towards recombinant hCXCL16

CXCR6-transduced CD8+ human T cells and GFP-transduced CD8+ human T cells were compared for their ability to migrate towards hCXCL16. Migration medium (0.5 % BSA in RPMI medium) was used with or without recombinant hCXCL16 (50 ng/ml) (Peprotech, Hamburg) in the lower chamber and T cells in the upper chamber (1×10^6 cells/well) of a 96-transwell plate. After 3 hours migrated T cells were resuspended with counting beads (Life Technologies, Carlsbad, CA, USA) for quantification. Migratory capacity was analyzed as cell number and GFP expression by flow cytometry (BD FACS Canto II). As shown in Figure X, CXCR6-transduced human T cells specifically migrate towards hCXCL16, which is not seen with GFP-transduced T cells. P-values are depicted in the Figure, * indicates $p < 0.05$.

The following Examples illustrate the invention

Illustratively, as proof of the concept, in the following Examples, the experiments were carried by vector constructs harbouring the mouse/murine sequences of CXCR6 (SEQ ID NO: 3 (cDNA sequence encoding the protein sequence as shown in SEQ ID NO: 4)) and CXCL16 (SEQ ID NO: 7 (cDNA sequence encoding the protein sequence as shown in SEQ ID NO: 8)). Further, in the experiments as exemplified in Figures 20 and 21 vector constructs encoding the human sequences of CXCR6 (SEQ ID NO: 1 encoding the protein sequence as shown in SEQ ID NO: 2) was used.

Example 1: Generation of the CXCR6 vector construct and the GFP control vector construct

The CXCR6 vector capable of transducing CD8+ T cells was generated by amplification of the full length murine CXCR6 sequence (SEQ ID NO: 3) and cloned into the pMP71-vector (Schambach et al., Mol Ther 2(5) (2000), 435-45; EP-B1 0 955 374) after *Eco*RI and *Not*I double digestion and ligation. The GFP vector capable of transducing CD8+ T cells was generated by amplification of the full length GFP sequence (SEQ ID NO: 11 (cDNA) and SEQ ID NO: 12 (protein)) and cloned into the pMP71-vector after *Eco*RI and *Not*I double digestion and ligation. Cloning was done using polymerase chain reaction from splenocyte cDNA and amplification of CXCR6 corresponding to the above mentioned sequence and the following primers: 5'-ATTAGCGGCCGCATGGATGATGGCCATCAGG-3' (SEQ ID NO: 13) and 5'-GGAAACCACCAGCATGTTTCAGGAATT-3' (SEQ ID NO: 14). The vector CXCR6GFP was generated in the same way as described above with regard to the CXCR6 and the GFP vector. In brief, the murine full length murine CXCR6 sequence (SEQ ID NO: 3) and the full length GFP sequence (SEQ ID NO: 11 (cDNA) and SEQ ID NO: 12 (protein)) was cloned into the pMP71-vector. The construction of the CXCR6 vector capable of transducing human CD8+ T cells was done in the same way as described above with regard to the CXCR6 vector harbouring the full length murine CXCR6 sequence. In brief length human CXCR6 sequence (SEQ ID NO: 1) was cloned into the pMP71-vector.

Example 2: Transduction of T cells and assay systems for the CXCL16 secretion, T cell proliferation and killing assays**2.1****Cell lines**

The murine pancreatic cancer cell line Panc02 and its ovalbumin-transfected counterpart Panc02-OVA have been previously described (Jacobs et al., Int J Cancer 128(4) (2011), 897-907). The Panc02-cell line was generated through injection of the carcinogen Methycholantren A into the pancreas of wild type C57Bl/6 mice to induce carcinogenesis.

The tumor cell line T110299 was developed from a primary pancreatic tumor of a PtflaCre; KrasG12D; p53fl/R172H mouse 25 and is described in Duewell et al., Cell Death Differ 21(12) (2014), 1825-1837 (Erratum in: Cell Death Differ. 21(12) (2014), 161). The packaging cell line Plat-E has been previously described by Morita et al., Gene Ther 7 (2000), 1063-6). All cells were cultured in DMEM with 10% fetal bovine serum (FBS, Life Technologies, USA), 1% penicillin and streptomycin (PS) and 1% L-glutamine (all from PAA, Germany). 10 µg/ml puromycin and 1 µg/ml blasticidin (Sigma, Germany) were added to the Plat-E medium.

Bone marrow derived dendritic cells were isolated from a C57BL/6J mouse (Janvier, France (Cat. Number 2014-07-DE-RM-20)). Bone marrow cells were cultured with recombinant GM-CSF (20 ng/ml) (Peprotech, Hamburg) for seven days. Bone marrow derived dendritic cells (BM-DC, 10⁴ per well) were seeded in a 96-well plate (flat bottom) and stimulated with recombinant proteins (20 ng/ml) (TNF- α , IFN- γ or IL-4, Peprotech, Hamburg; or R848 Enzo Life Science, Lörrach).

OT-1 T cells are T cells from OT-1 mice Stock number 003831. These OT-1 T cells were produced as follows. Primary splenocytes were harvested from OT-1-mice. Single cell suspensions of splenocytes were stimulated with anti-CD3 (clone 145-2c11 BD Pharmingen, USA), anti-CD28 (clone 37.51, BD

Pharmingen, USA) and recombinant murine IL-2 (Peprotech, Germany) in T cell medium over night.

The human pancreatic cancer cell line PA-TU-8988T is obtainable from the cell line depository Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures under the accession number DSM ACC 162. The origin of the deposited cell line PA-TU-89988T is human (*Homo sapiens*). The cell type is pancreas adenocarcinoma. More precisely, the cell line PA-TU-8988T was established in 1985 from the liver metastasis of a primary pancreatic adenocarcinoma from a 64-year-old woman; sister cell line of PA-TU-8988S (DSM ACC 204).

The human pancreatic cancer cell line MIA PaCa-2 is obtainable from the American Type Culture Collection (ATCC) under the accession number CRM-CRL-1420TM. The organism of the deposited cell line MIA PaCa-2 is human (*Homo sapiens*). The cell type is epithelial cell (Kras Crm).

The human pancreatic cancer cell line PANC-1 is obtainable from the American Type Culture Collection (ATCC) under the accession number CRL-1469TM. The organism of the deposited cell line PANC-1 is human (*Homo sapiens*). The tissue is pancreas/duct.

The human pancreatic cancer cell line SUIT-2 has been previously described in Iwamura et al., Jpn J Cancer Res. 78(1) (1987), 54-62. The pancreatic cancer cell line SUIT-2 is characterized by producing carcinoembryonic antigen and carbohydrate antigen 19-9.

2.2

Animals

Wild type C57Bl/6 mice were bought from Harlan laboratories (The Netherlands). Mice transgenic for a T cell receptor specific for ovalbumine (OT-1) were obtained from the Jackson laboratory, USA (Stock number 003831) and were bred in our animal facility under specific-pathogen free (SPF) conditions. OT-1 mice were crossed to CD45.1 congenic marker mice

(obtained from the Jackson laboratory, stock number 002014) and to CD90.1 congenic marker mice (Stock number: 000406) to generate CD45.1-OT-1 and CD90.1-OT-1 mice, respectively. Wild type C57Bl/6 mice were purchased from Janvier, France. Tumors were induced by subcutaneous injection of 2×10^6 tumor cells and mice were treated by i.v. injection of T cells as indicated. All experiments were randomized and blinded. For neutralization experiments, anti-IFN- γ antibody R4-6A2 (BioXcell, USA) or isotype control (BioXcell, USA) was applied i.p. at a dose of 200 μ g per animal every three days for four doses. Tumor growth and condition of mice were monitored every other day.

2.3 T cell transduction

2.3.1 *T cell transduction of murine/mouse T cells*

The retroviral vector pMP71 (Schambach et al., Mol Ther 2(5) (2000), 435-45; EP-B1 0 955 374) was used for transfection of the ecotropic packaging cell line Plat-E. Transduction was performed according to the method described by Leisegang et al. J Mol Med 86 (2008), 573; Mueller et al. J Virol 86 (2012), 10866-10869; Kobold et al., J Natl Cancer Inst 107 (2015), 364. In brief, packaging cell line Plat E (as described by Morita et al. Gene Ther 7 (2000), 1063) was seeded in 6-well plates and grown over night to 70 - 80 % confluence. On day one, 16 μ g of DNA were mixed together with 100 mM CaCl₂ (Merck, Germany) and 126.7 μ M Chloroquin (Sigma, USA). Plat-E cells were starved for 30 min in low serum medium (3 %) and then incubated for 6 h with the precipitated DNA. Medium was then removed and exchanged with culture medium. On day two, primary splenocytes were harvested from C57Bl/6 mice (Janvier). Single cell suspensions of splenocytes were stimulated with anti-CD3 (clone 145-2c11 BD Pharmingen, USA), anti-CD28 (clone 37.51, BD Pharmingen, USA) and recombinant murine IL-2 (Peprotech, Germany) in T cell medium over night. On day 3, 24-well plates were coated with 12.5 μ g/ml recombinant retronectin (Takara Biotech, Japan) for 2 h at room temperature, blocked with 2 % bovine serum albumin (Roth, Germany) for 30 min at 37°C and washed with PBS. Supernatant of Plat-E was harvested and passed through a filter (40 μ m, Milipore, USA). Fresh T cell medium was

then added to Plat E cells. 1 ml of filtered supernatant was distributed in each well and spinoculated for 2 hours at 4°C. Supernatant was then removed from the 24-well plate. 10⁶ T cells were seeded in one ml T cell medium supplemented with 10 U IL-2 and 400,000 anti-CD3 and anti-CD28 beads (Invitrogen, Germany) per well and spinoculated at 800 g for 30 min at 32°C. On day four, Plat E supernatant was again harvested and filtered. 1 ml was added to each well of the 24-well plate and spinoculated at 800 g for 90 min at 32°C. Cells were subsequently incubated for 6 additional hours at 37°C. 1 ml supernatant was replaced by T cell medium with IL-2. On day five, cells were harvested, counted and reseeded at 10⁶ cells/ml density in T cell medium supplemented with 10 ng IL-15 per ml (Peprotech, Germany). T cells were kept at this density until day 10 when cell analysis or functional assays were performed.

Transduction with the retroviral vector pMX (de Witte et al., J. Immunol. 181 (2008), 5128-5136) was performed in the same way as transduction with the vector pMP71 as described above.

2.3.2 *Human T cell transduction*

The retroviral vector pMP71 (Schambach et al., Mol Ther 2(5) (2000), 435-45; EP-B1 0 955 374) was used for transfection of the amphotrophic packaging cell line Plat-A. Transduction was performed according to the method described by Leisegang et al. J Mol Med 86 (2008), 573; Mueller et al. J Virol 86 (2012), 10866-10869; Kobold et al., J Natl Cancer Inst 107 (2015), 364. In brief, packaging cell line Plat A (as described by Morita et al. Gene Ther 7 (2000), 1063) was seeded in 6-well plates and grown over night to 70 - 80 % confluence. On day two, Plat A cells were transfected with the calcium phosphate precipitation method with 18 µg of retroviral vector plasmid pMP71 and then incubated for 6 h. Medium was then removed and exchanged with culture medium. Furthermore, primary PBMCs were isolated and CD3+ T cells were separated by MACS sorting (Miltenyi Biotec, Bergisch Gladbach). CD3+ human T cells were stimulated with anti-human CD3 (clone UCHT1 BD Pharmingen, USA), anti-human CD28 (clone CD28,2, BD Pharmingen,

USA), recombinant IL-15 (Peprotech, Germany) and recombinant murine IL-2 (Peprotech, Germany) in T cell medium over night. On day four, 24-well plates were coated with 12.5 µg/ml recombinant retronectin (Takara Biotech, Japan) for 2 h at room temperature, blocked with 2 % bovine serum albumin (Roth, Germany) for 30 min at 37°C and washed with PBS. Supernatant of Plat-A was harvested and passed through a filter (0.45 µm, Milipore, USA). Fresh T cell medium was then added to Plat A cells. 1 ml of filtered supernatant was distributed in each well and spinoculated for 2 hours at 4°C. Supernatant was then removed from the 24-well plate. 10⁶ human T cells were seeded in one ml T cell medium supplemented with IL-2, IL-15 and anti-human CD3 and anti-human CD28 Dynabeads (Invitrogen, Germany) per well and spinoculated at 800 g for 30 min at 32°C. On day five, Plat A supernatant was again harvested and filtered. 1 ml was distributed in each well and spinoculated for 2 hours at 4°C. Supernatant was removed and the infected T cells from the previous day were transferred in the 24-well plate and spinoculated at 800 g for 90 min at 32°C. Cells were subsequently incubated for 6 additional hours at 37°C. After incubation, cells were harvested, counted and reseeded at 10⁶ cells/ml density in T cell medium supplemented with IL-15 and IL-2 (Peprotech, Germany). T cells were kept at this density until day 10 when cell analysis or functional assays were performed.

2.4

Co-culture of tumor cells with T cells

T cells and tumor cells were co-cultured for 48 h at a ratio of 1:1 or 10:1 in the culture conditions described above. Supernatants were analyzed for IFN-γ by ELISA (BD) as described in section 2.5, infra.

2.5

Lytic activity of CXCR6-transduced T cells in the presence of CXCL16-producing tumor cells

LDH release was measured by a commercial kit (Promega). In brief, LDH catalyzes the reduction of NAD⁺ to NADH and H⁺ by oxidation of lactate to pyruvate. Next, diaphorase reacts with NADH and H⁺ to catalyze the reduction of a tetrazolium salt (INT) to formazan which absorbs at 490 nm.

IFN- γ is measured by ELISA using complementary IFN- γ binding antibodies as capture and as detection antibodies and Horse Radish Peroxidase coupled secondary system.

Cells expressing GFP are analyzed by a flow cytometer and GFP is excited by the 488 nm and detected in the 530 nm filter using a BD FACS Canto II

Migration towards CXCL16 was performed using a standard transwell migration where the upper and lower part of the well are separated by commercial porous membranes, which can be passed by T cells. CXCL16 was added to the lower part of the well and the cells in the upper part. If the cells express CXCR6, they will migrate through the pores and can be measured by flow cytometry thereafter.

2.6 Statistical analysis

For statistics, GraphPad Prism software version 5.0b was used. All variables reported are continuous. Differences between experimental conditions were analyzed using the unpaired two-sided Student's t-test. For comparison of experimental conditions of individual mice, the Mann-Whitney test was used. p-values < 0.05 were considered significant. For *in vivo* experiments, differences between groups were analyzed using two-way ANOVA with correction for multiple testing by the Bonferroni method.

Differences in Panc02-OVA tumor growth in mice were analyzed by comparing tumor surface (defined as the width times the height of a tumor as measured by an analogue caliper) at each time point using two-way ANOVA with correction for multiple testing.

3. Examples of particular embodiments

Examples of certain non-limiting embodiments of the disclosure are listed hereafter. In particular, the present description relates to the following items:

1. A vector capable of transducing T cells comprising a nucleic acid sequence selected from the group consisting of:
 - (a) a nucleic acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and
 - (b) a nucleic acid sequence which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NO: 1 or SEQ ID NO: 3 and which is characterized by having a chemokine receptor 6 (CXCR6) activity.
2. The vector of item 1, wherein said vector is an expression vector.
3. The vector of item 1 or item 2, wherein said vector is a retroviral vector.
4. The vector of any one of item 1 to 3, wherein said vector further comprises a regulatory sequence which is operably linked to said nucleic acid sequence of item 1.
5. A transduced T cell expressing a chemokine receptor 6 (CXCR6) encoded by a nucleic acid sequence selected from the group consisting of:
 - (a) a nucleic acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and
 - (b) a nucleic acid sequence which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NO: 1 or SEQ ID NO: 3 and which is characterized by having a chemokine receptor 6 (CXCR6) activity.
6. The transduced T cell of item 5, wherein the chemokine receptor 6 (CXCR6) is stably integrated into the genome of the T cell.
7. The transduced T cell of item 5 or item 6, wherein the chemokine receptor 6 (CXCR6) or a fragment thereof is expressed on the surface of the T cell.

8. The transduced T cell of any one of items 5 to 7, wherein the transduced T cell is co-transduced with a T cell receptor.
9. A method for the production of a transduced T cell expressing a chemokine receptor 6 (CXCR6) comprising the following steps:
 - (a) transducing a T cell with a vector comprising a nucleic acid sequence selected from the group consisting of:
 - (i) a nucleic acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and
 - (ii) a nucleic acid sequence which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NO: 1 or SEQ ID NO: 3 and which is characterized by having a chemokine receptor 6 (CXCR6) activity;
 - (b) culturing the transduced T cell under conditions allowing the expression of the chemokine receptor 6 (CXCR6) in or on said T cell; and
 - (c) recovering the transduced T cell from the culture.
10. The method of item 9, wherein the transduced T cell is expanded after the transfection by anti-CD3 and anti-CD28 antibodies.
11. The method of item 9 or item 10, wherein the expansion of the transduced T cells is performed in the presence of cytokines, preferably interleukin-2 (IL-2) and/or interleukin-15 (IL-15).
12. A transduced T cell expressing a chemokine receptor 6 (CXCR6) as obtainable by the method of any one of items 9 to 11.
13. The transduced T cell of any one of items 5 to 8 or 12, or obtainable by the method of any one of items 9 to 11 for use as a medicament.

14. The transduced T cell of any one of items 5 to 8, 12 or 13, or obtainable by the method of any one of items 9 to 11 for use in a method of treating a disease characterized by CXCL16 overexpression.
15. A pharmaceutical composition comprising a transduced T cell expressing a chemokine receptor 6 (CXCR6) encoded by a nucleic acid sequence selected from the group consisting of:
 - (a) a nucleic acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and
 - (b) a nucleic acid sequence which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NO: 1 or SEQ ID NO: 3 and which is characterized by having a chemokine receptor 6 (CXCR6) activity.
16. The pharmaceutical composition of item 15, wherein the transduced T cell comprises the vector of any one of items 1 to 4.
17. The pharmaceutical composition of item 15 or item 16, wherein the transduced T cell is a T cell that has originally been obtained from the patient to be treated with.
18. The pharmaceutical composition of any one of items 15 to 17, wherein the transduced T cell are expanded after transfection by anti-CD3 and anti-CD28 antibodies.
19. The pharmaceutical composition of item 18, wherein the expansion of the transduced T cells is performed in the presence of cytokines, preferably interleukin-2 (IL-2) and/or interleukin-15 (IL-15).
20. The pharmaceutical composition of any one of items 15 to 19 for use in a method of treating a disease characterized by CXCL16 overexpression.
21. A method for the treating of a disease characterized by CXCL16 overexpression in a subject comprising the steps of

- (a) isolating T cells from a subject;
- (b) transducing said isolated T cells with a vector comprising a nucleic acid sequence selected from the group consisting of:
 - (i) a nucleic acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and
 - (ii) a nucleic acid sequence which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NO: 1 or SEQ ID NO: 3 and which is characterized by having a chemokine receptor 6 (CXCR6) activity; and
- (c) administering said transduced T cells to said subject.

22. The method of item 21, wherein said transduced T cells are administered to said subject by intravenous infusion.

23. The method of item 21 or item 22, wherein said transduced T cells are expanded by anti-CD3 and anti-CD28 antibodies.

24. The method of item 23, wherein the expansion of the transduced T cells is performed in the presence of cytokines, preferably interleukin-2 (IL-2) and/or interleukin-15 (IL-15).

25. The transduced T cell of item 14 for use according to item 14, the pharmaceutical composition of item 20 for use according to item 20, or the method of any one of items 21 to 24, wherein said disease is selected from the group consisting of colorectal cancer, brain cancer, ovarian cancer, prostate cancer, pancreatic cancer, breast cancer, renal cancer, nasopharyngeal carcinoma, hepatocellular carcinoma, gastric cancer, cervical cancer, bladder cancer, lymphoma, sarcoma, and lung cancer.

26. A kit for incorporating a nucleic acid sequence selected from the group consisting of:

- (a) a nucleic acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3, and

(b) a nucleic acid sequence which is at least 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identical to the sequence of SEQ ID NO: 1 or SEQ ID NO: 3 and which is characterized by having a chemokine receptor 6 (CXCR6) activity

into a T cell comprising a vector of any one of items 1 to 4.

27. The vector of any one of items 1 to 4, the transduced T cell of any one of items 5 to 8, 10, 12, or 13, the method of any one of items 9 to 11, the transduced cell for the use according to any one of items 13 or 14, the pharmaceutical composition of any one of items 15 to 20, the method of any one of items 21 to 25, or the kit of item 26, wherein the T cell is a T cell selected from the group consisting of a CD8+ T cell, CD4+ T cell, a $\gamma\delta$ T cell and a natural killer (NK) T cells.

28. The vector, the transduced T cell, the method, the pharmaceutical composition, or the kit according to item 27, wherein the T cell is a CD8+ T cell.

It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.

In the claims which follow and in the preceding description of the invention, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention.

CLAIMS

1. Use of an expression vector in the manufacture of a medicament for treating a disease characterized by CXCL16 overexpression, wherein said vector is capable of transducing T cells and comprises a nucleic acid sequence selected from the group consisting of:
 - (a) a nucleic acid sequence of SEQ ID NO: 1, and
 - (b) a nucleic acid sequence, which is at least 84% identical to the sequence of SEQ ID NO: 1 and which is characterized by having a chemokine receptor 6 (CXCR6) activity.
2. A T cell expressing a chemokine receptor 6 (CXCR6), produced by transducing the T cell with an expression vector encoding said CXCR6, wherein said vector comprises a nucleic acid sequence selected from the group consisting of:
 - (a) a nucleic acid sequence of SEQ ID NO: 1, and
 - (b) a nucleic acid sequence, which is at least 84% identical to the sequence of SEQ ID NO: 1 and which is characterized by having a chemokine receptor 6 (CXCR6) activity.
3. A method for the production of a transduced T cell expressing a chemokine receptor 6 (CXCR6) comprising the following steps:
 - (a) transducing a T cell with a vector comprising a nucleic acid sequence selected from the group consisting of:
 - (i) a nucleic acid sequence of SEQ ID NO: 1, and
 - (ii) a nucleic acid sequence, which is at least 84% identical to the sequence of SEQ ID NO: 1 and which is characterized by having a chemokine receptor 6 (CXCR6) activity;
 - (b) culturing the transduced T cell under conditions allowing the expression of the chemokine receptor 6 (CXCR6) in or on said T cell; and
 - (c) recovering the transduced T cell from the culture.
4. The method of claim 3, wherein the transduced T cell is expanded after the transfection by anti-CD3 and anti-CD28 antibodies.

2016336868 31 Mar 2022

5. The method of claim 4, wherein the expansion of the transduced T cells is performed in the presence of cytokines, preferably interleukin-2 (IL-2) and/or interleukin-15 (IL-15).
6. A transduced T cell expressing a chemokine receptor 6 (CXCR6) when obtained by the method of any one of claims 3 to 5.
7. A pharmaceutical composition comprising a T cell expressing a chemokine receptor 6 (CXCR6), which T cell is transduced with an expression vector encoding said CXCR6, wherein said vector comprises a nucleic acid sequence selected from the group consisting of:
 - (a) a nucleic acid sequence of SEQ ID NO: 1, and
 - (b) a nucleic acid sequence, which is at least 84% identical to the sequence of SEQ ID NO: 1 and which is characterized by having a chemokine receptor 6 (CXCR6) activity.
8. The transduced cell of claim 2 or claim 6, or when obtained by the method of any one of claims 3 to 5, or the pharmaceutical composition of claim 7, wherein the transduced T cell is a T cell that has originally been obtained from the patient to be treated with.
9. A method of treating a disease characterized by CXCL16 overexpression, the method comprising administering the transduced cell of claim 2 or claim 6, or when obtained by the method of any one of claims 3 to 5, or the pharmaceutical composition of claim 7.
10. Use of the transduced cell of claim 2 or claim 6, or when obtained by the method of any one of claims 3 to 5, or the pharmaceutical composition of claim 7, in the manufacture of a medicament for treating a disease characterized by CXCL16 overexpression.
11. The method of claim 9 or the use of claim 10, wherein said disease is selected from the group consisting of colorectal cancer, brain cancer, ovarian cancer, prostate cancer, pancreatic cancer, breast cancer, renal cancer, nasopharyngeal carcinoma,

hepatocellular carcinoma, gastric cancer, cervical cancer, bladder cancer, lymphoma, sarcoma, and lung cancer.

12. A kit for incorporating a nucleic acid sequence selected from the group consisting of:
 - (a) a nucleic acid sequence of SEQ ID NO: 1, and
 - (b) a nucleic acid sequence, which is at least 84% identical to the sequence of SEQ ID NO: 1 and which is characterized by having a chemokine receptor 6 (CXCR6) activity into a T cell, the kit comprising the vector of claim 1, when used in the treatment of a disease characterized by CXCL16 overexpression.
13. The vector of claim 1 when used in the treatment of a disease characterized by CXCL16 overexpression, the transduced T cell of claim 2 or 6, or when obtained by the method of any one of claims 3 to 5, the pharmaceutical composition of claim 7, the method of claim 8, the use of claim 9 or the kit of claim 12, wherein the T cell is a T cell selected from the group consisting of a CD8+ T cell, CD4+ T cell, a $\gamma\delta$ T cell and natural killer (NK) T cells.

Fig. 1

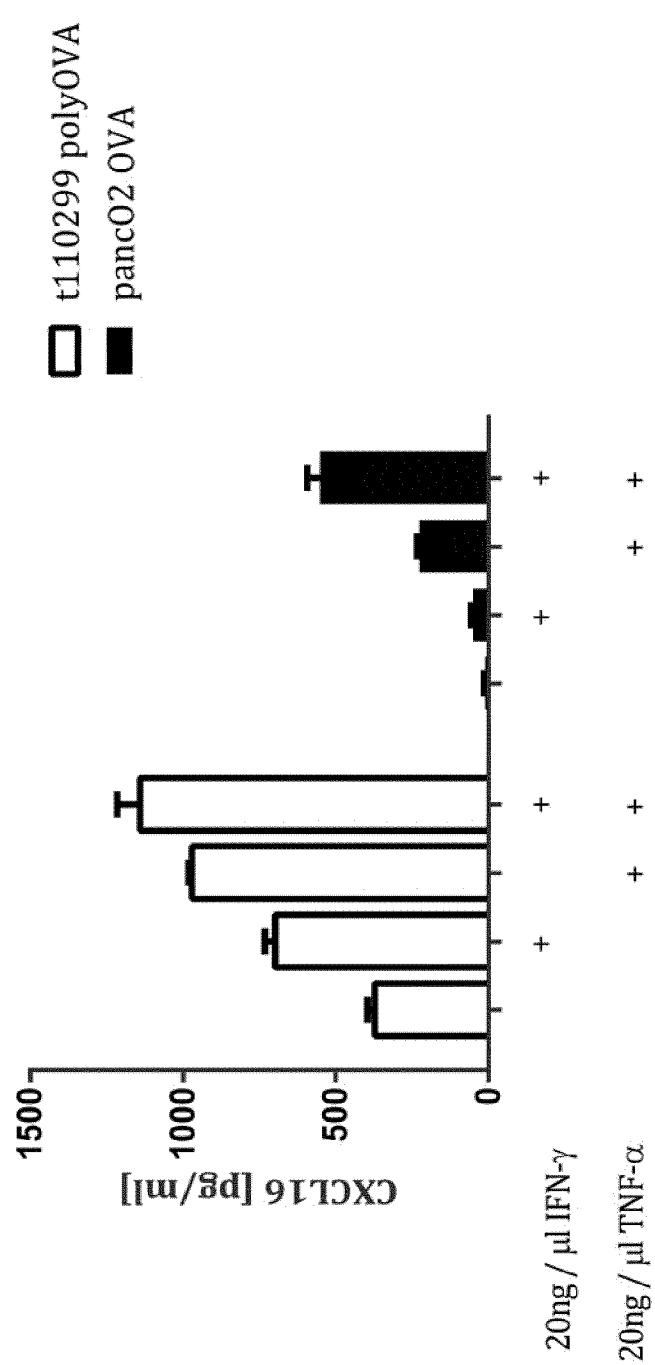


Fig. 2

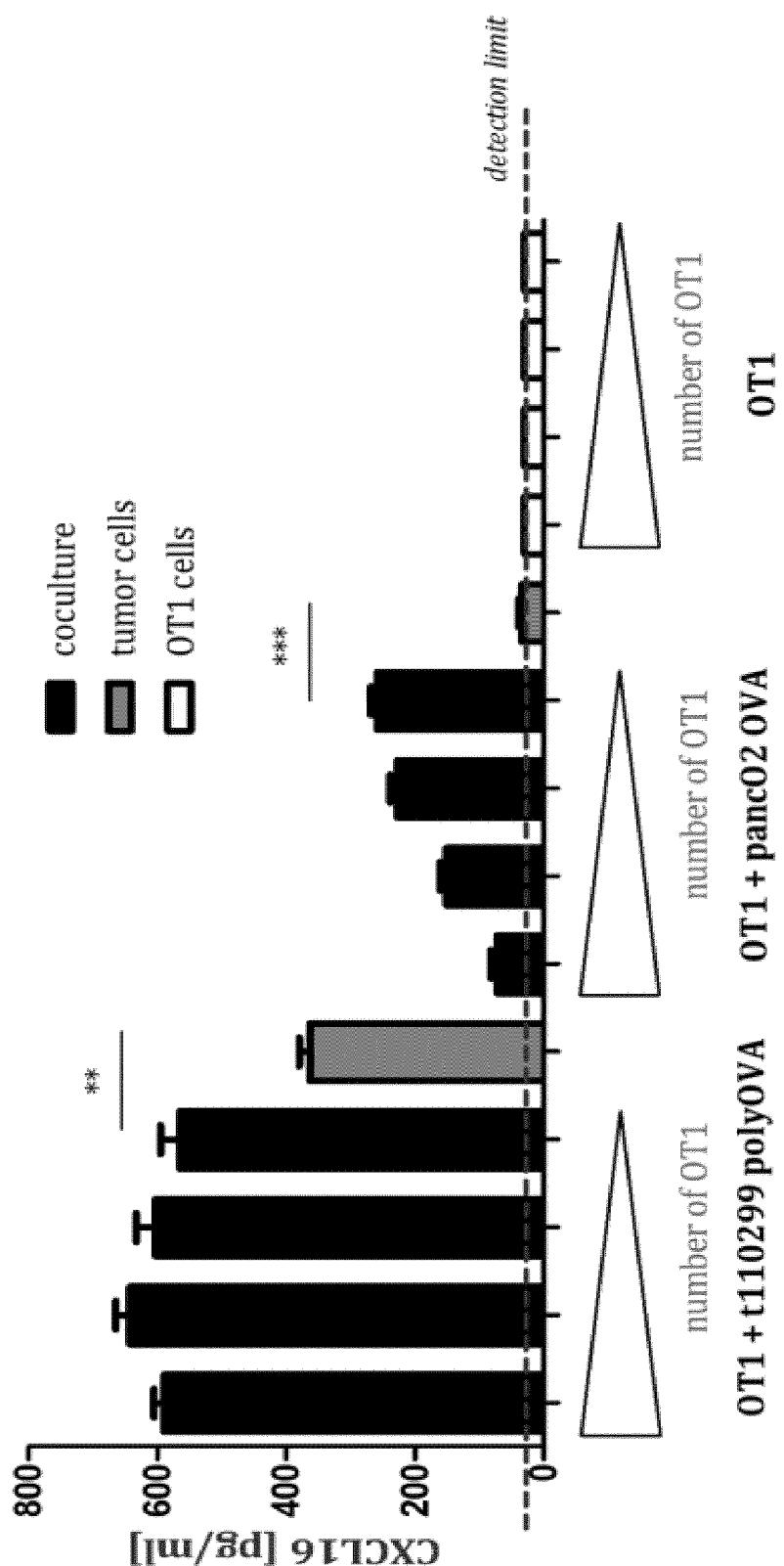
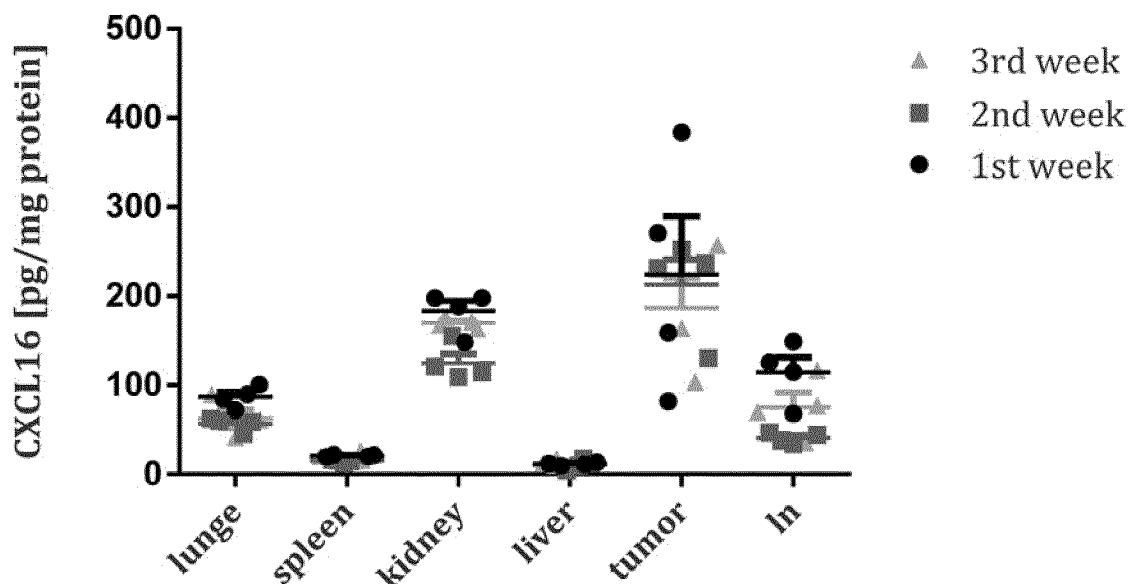
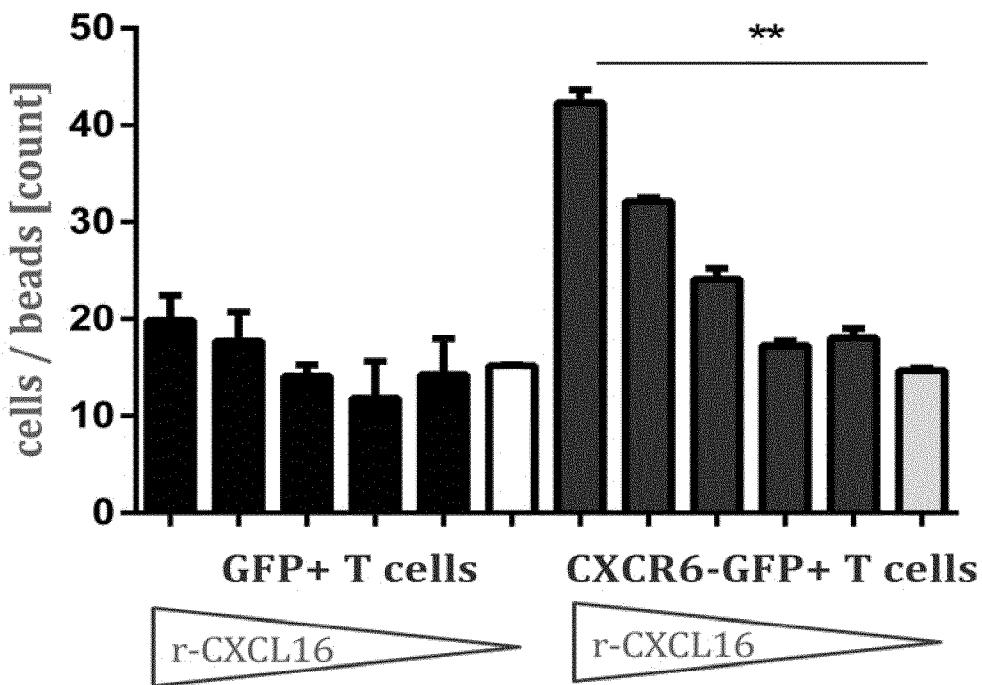
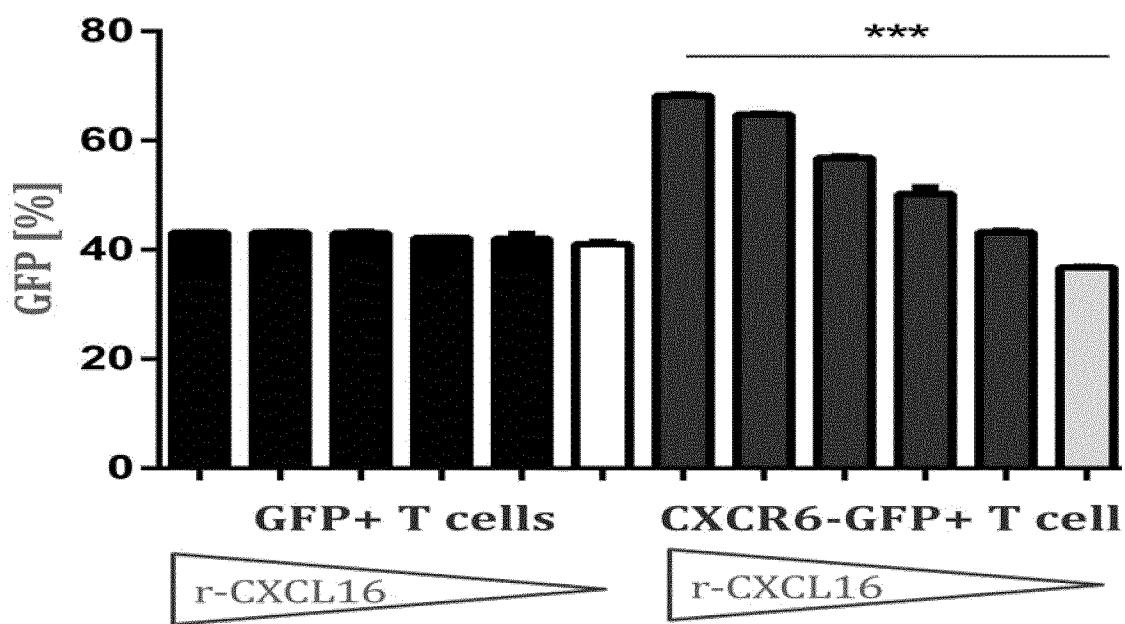
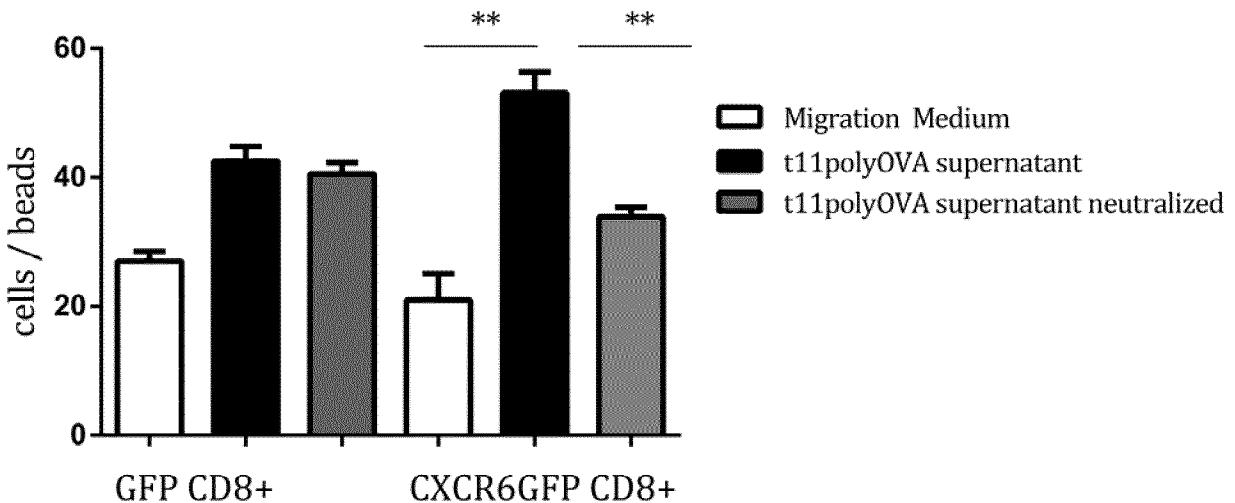
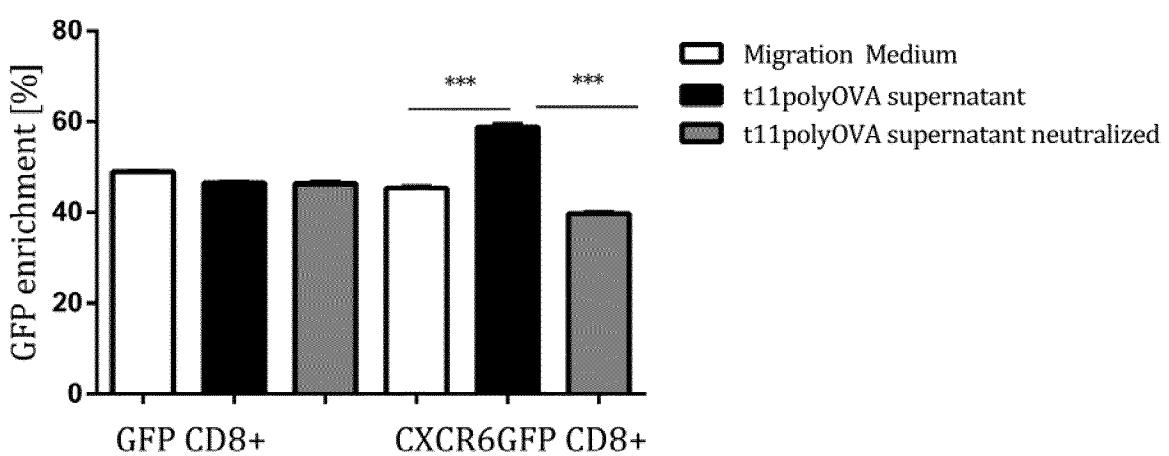
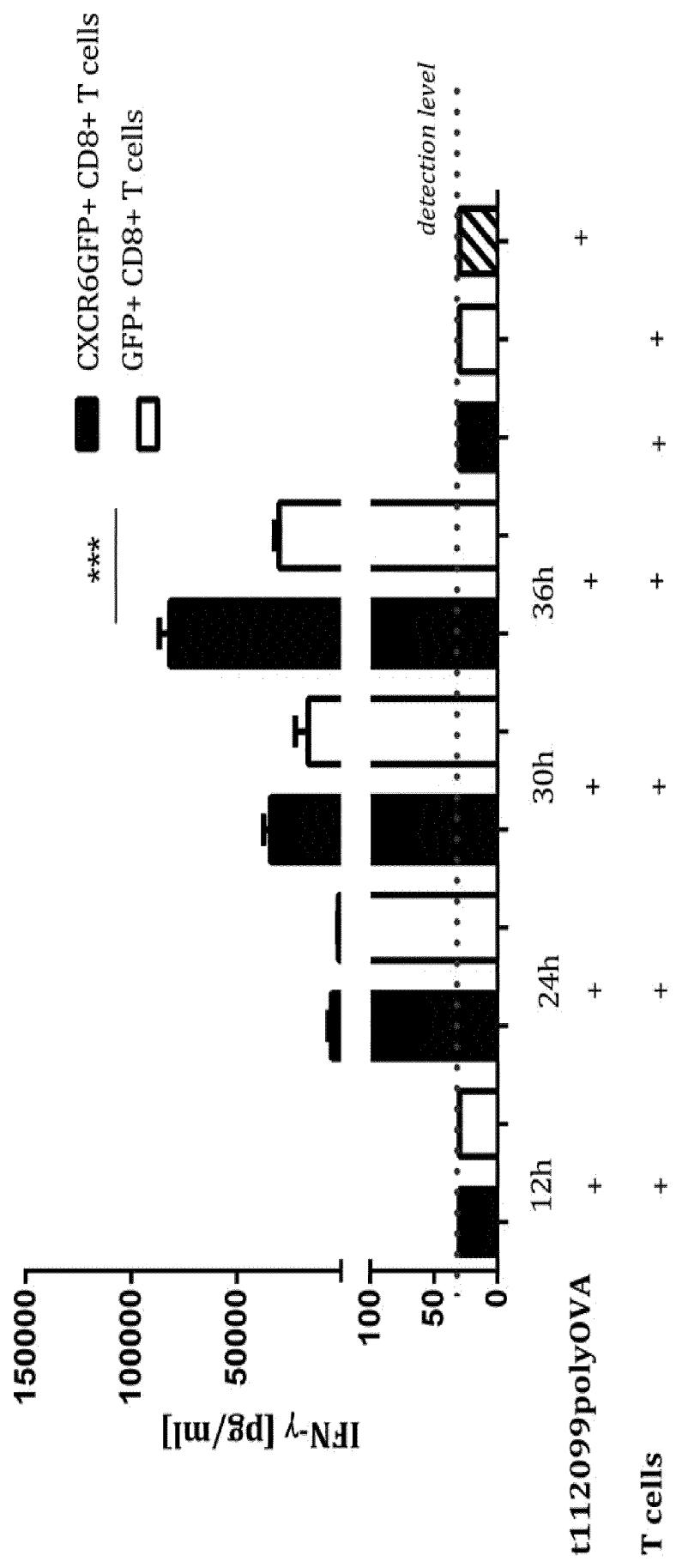


Fig. 3A




Fig. 3B

4/27

Fig. 4A**Fig. 4B**

Fig. 5A**Fig. 5B**

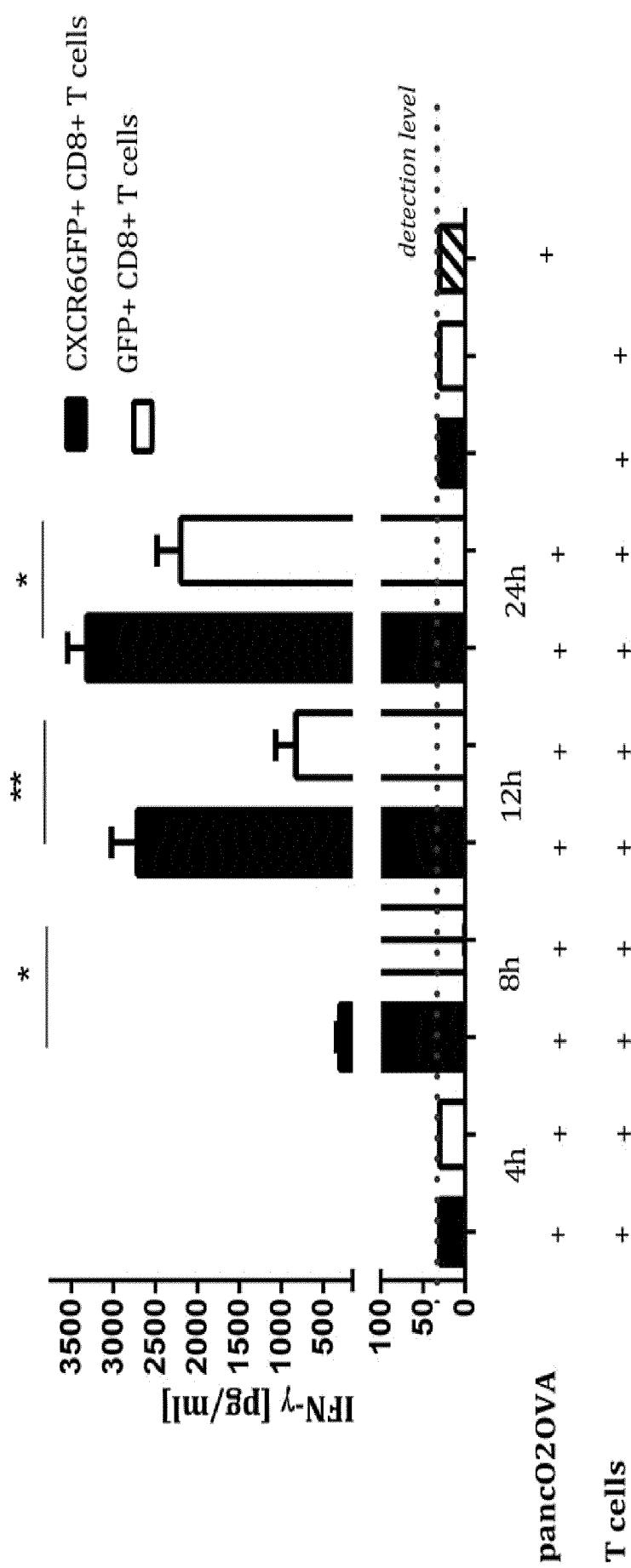
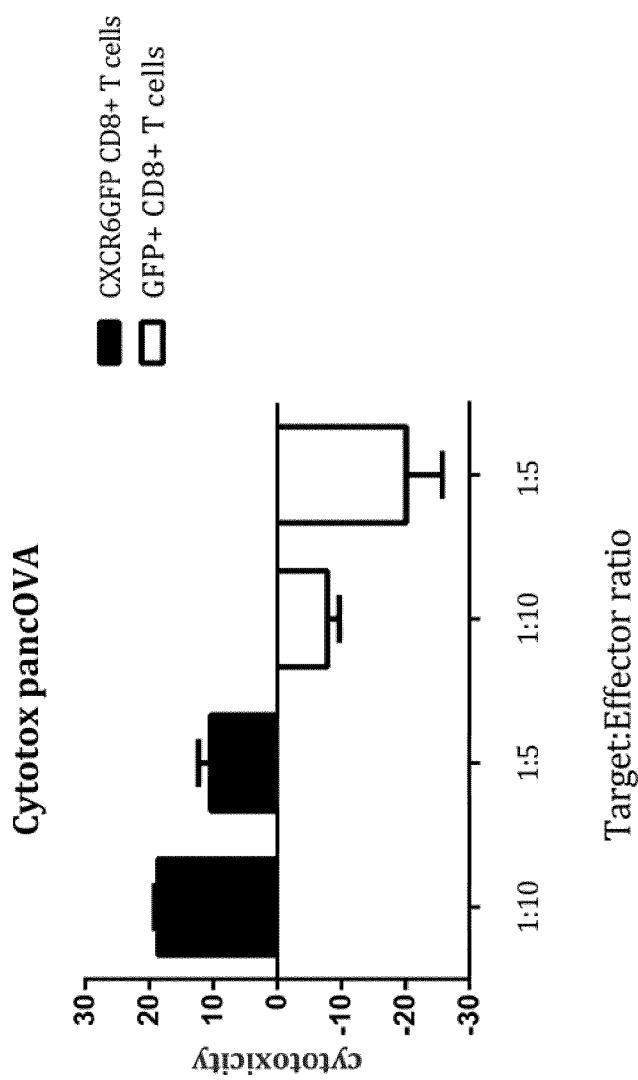



Fig. 6B

Fig. 7A

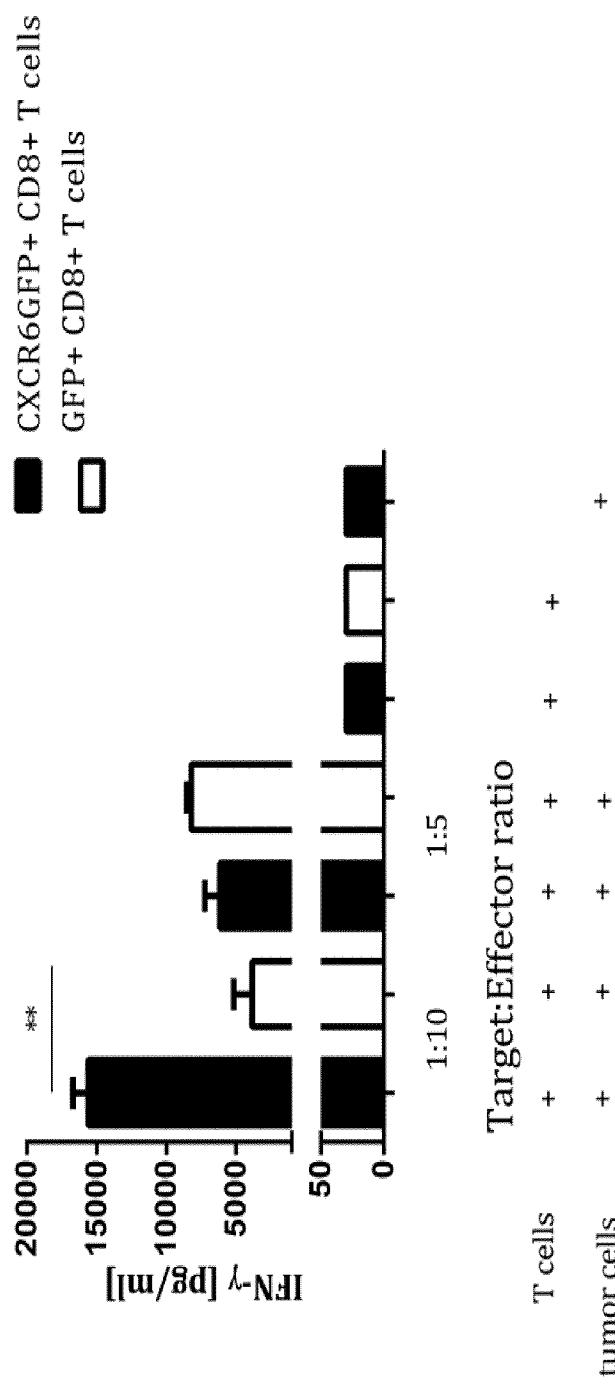
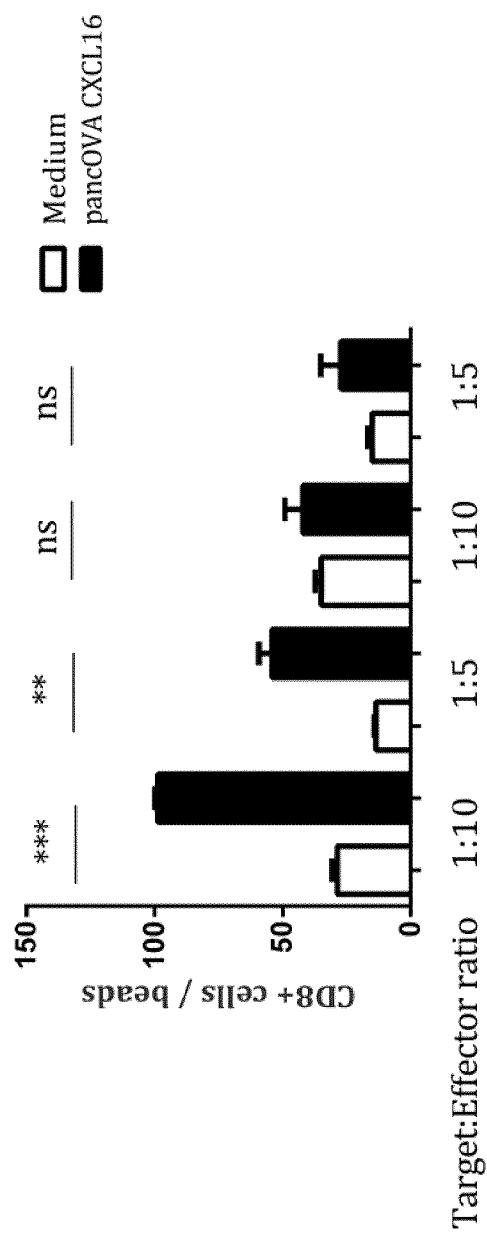
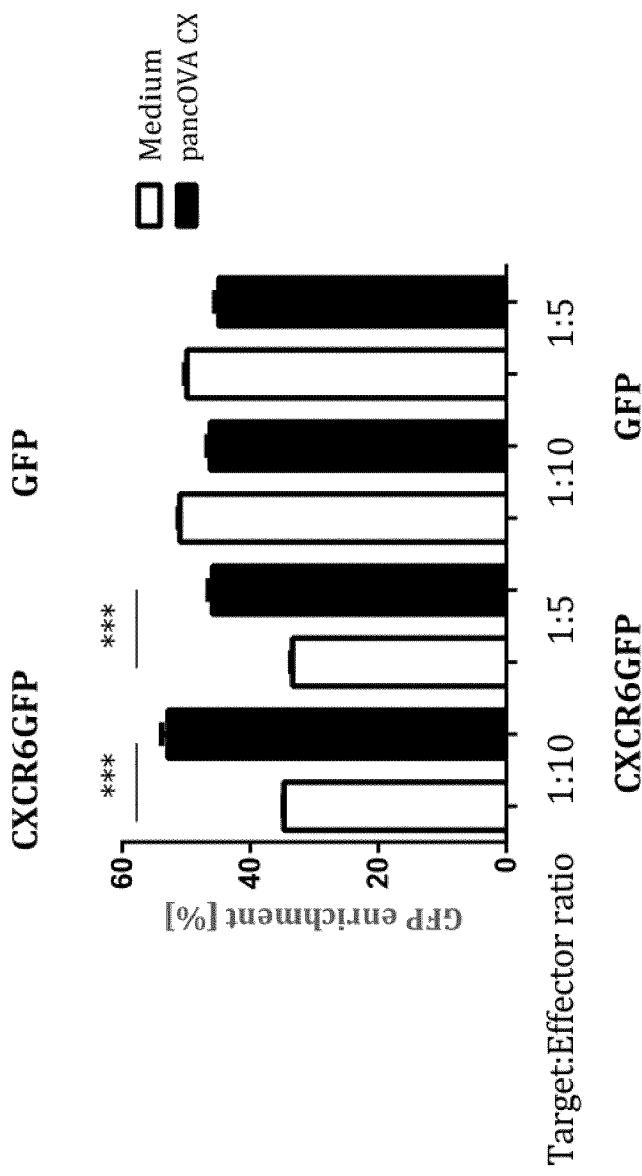
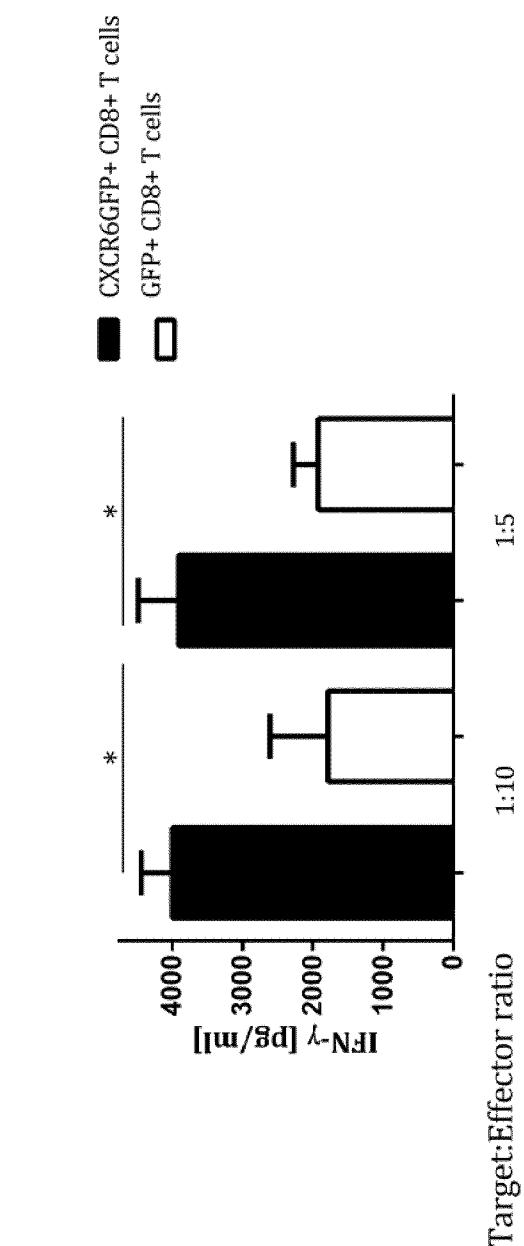
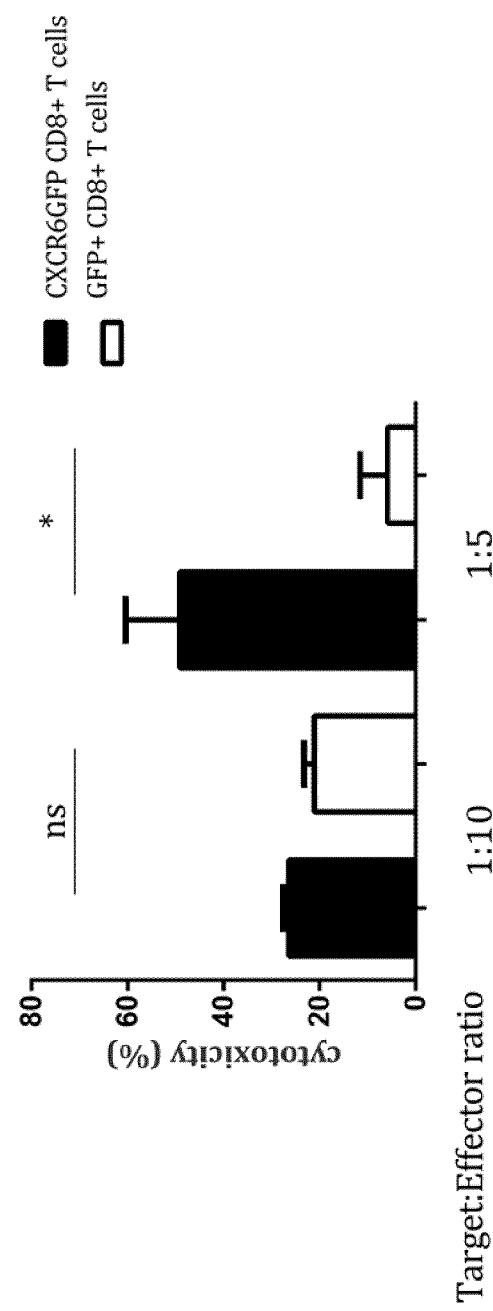






Fig. 7B

Fig. 8A**Fig. 8B**

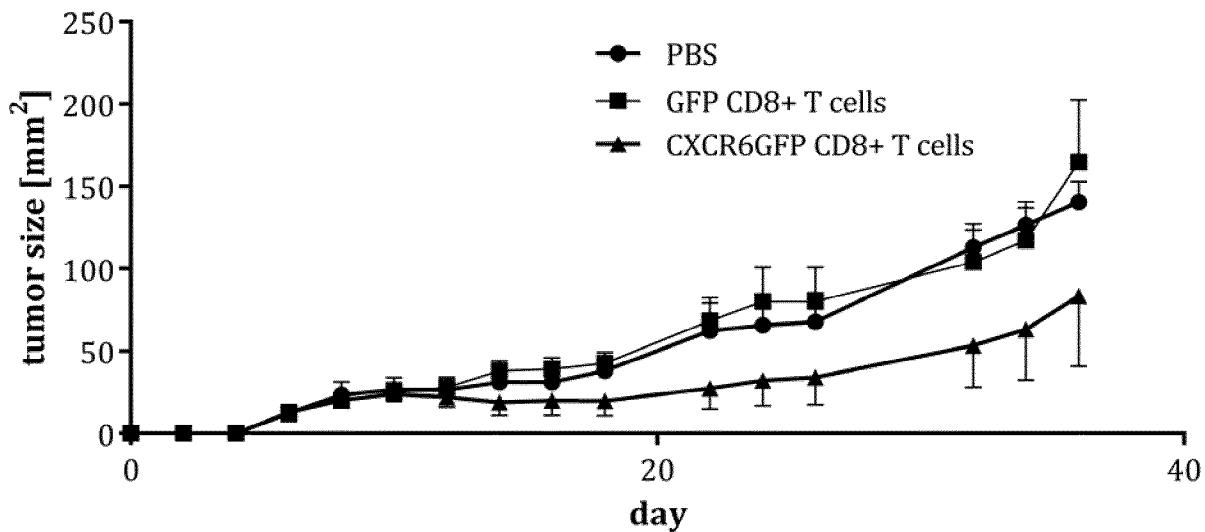
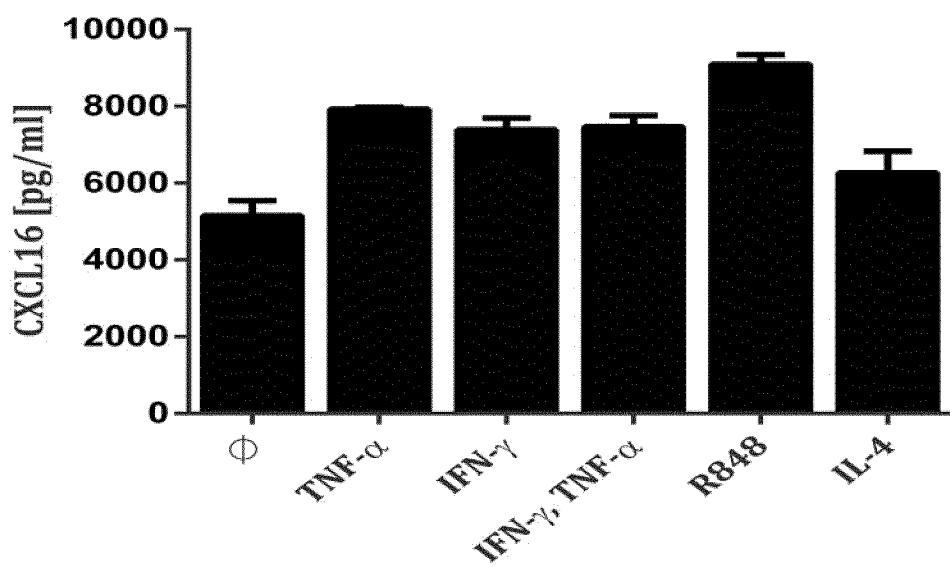
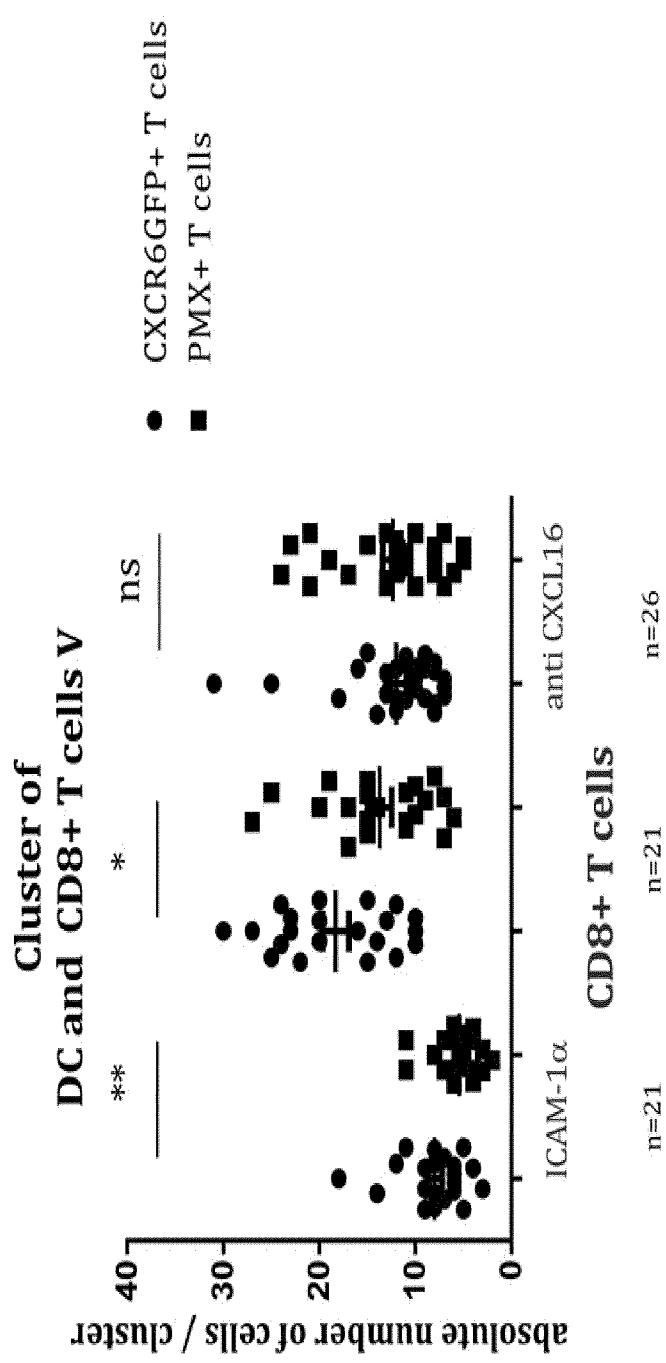
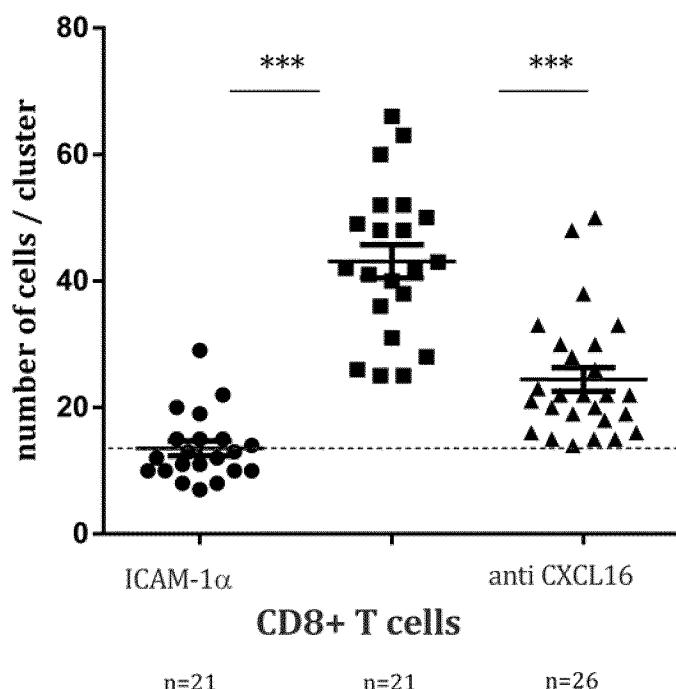
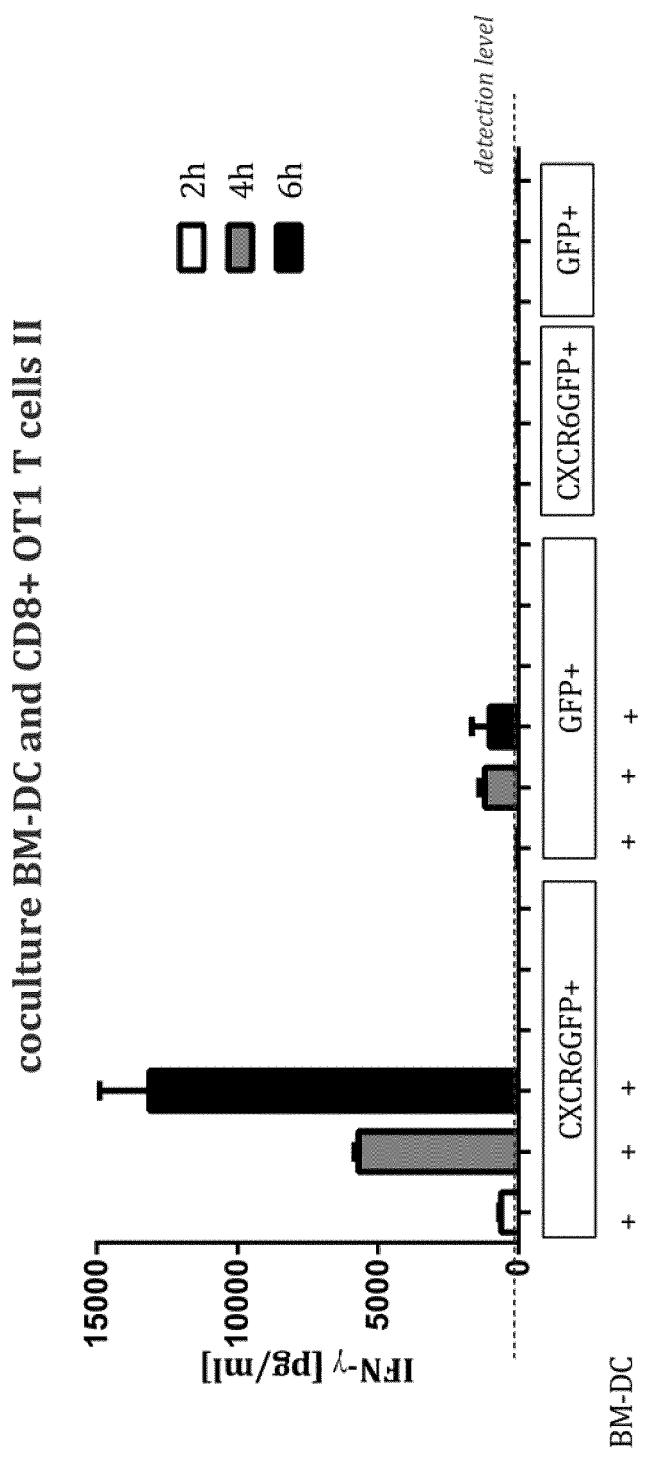





Fig. 9**Fig. 10**

Fig. 11A

Fig. 11B

Fig. 12

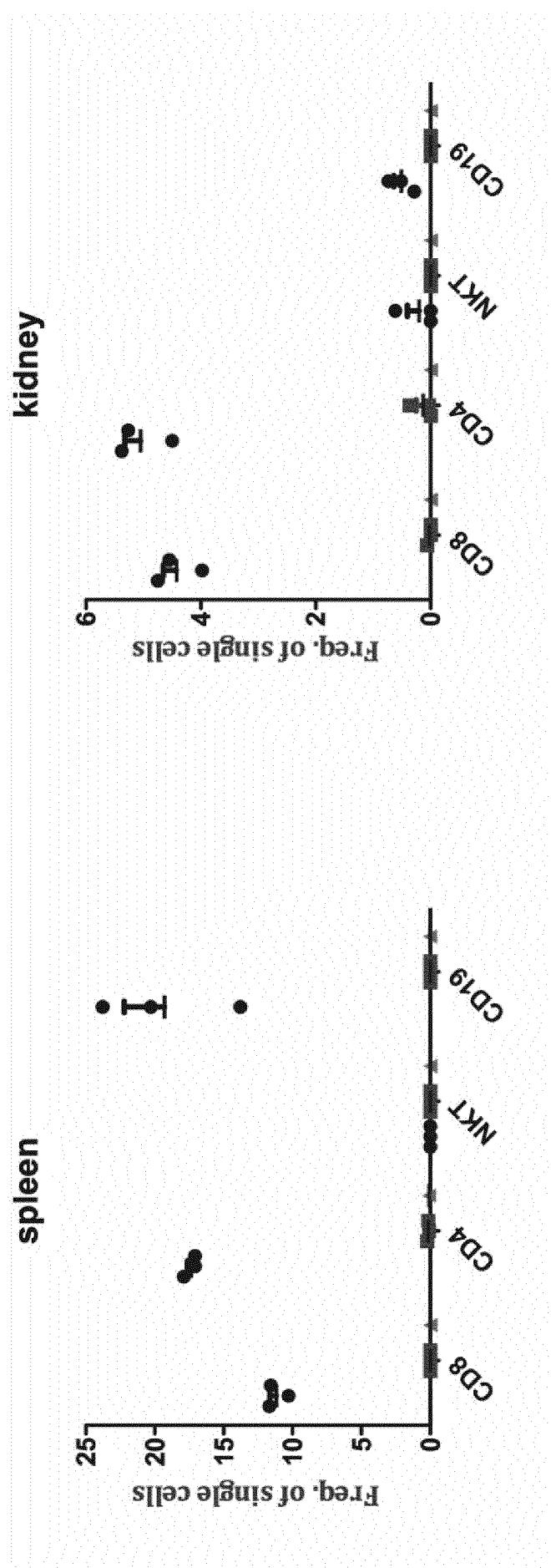


Fig. 13

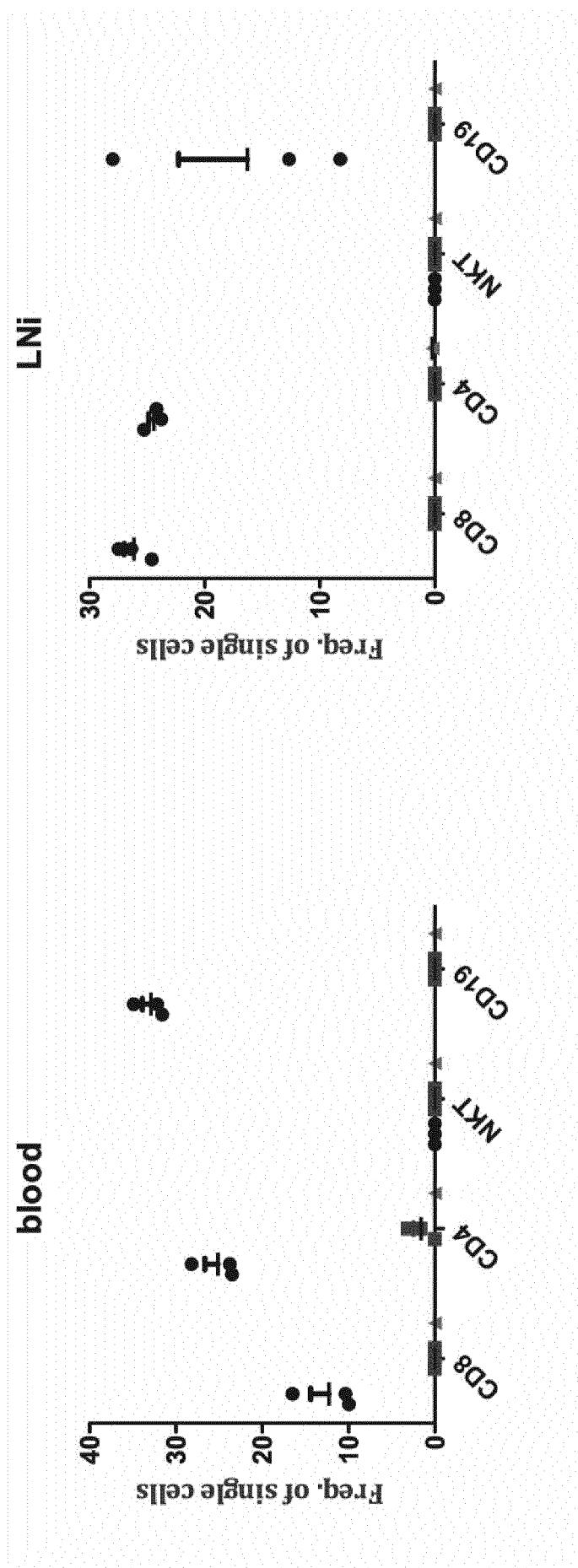


Fig. 13 (cont.)



Fig. 13 (cont.)

Fig. 13 (cont.)

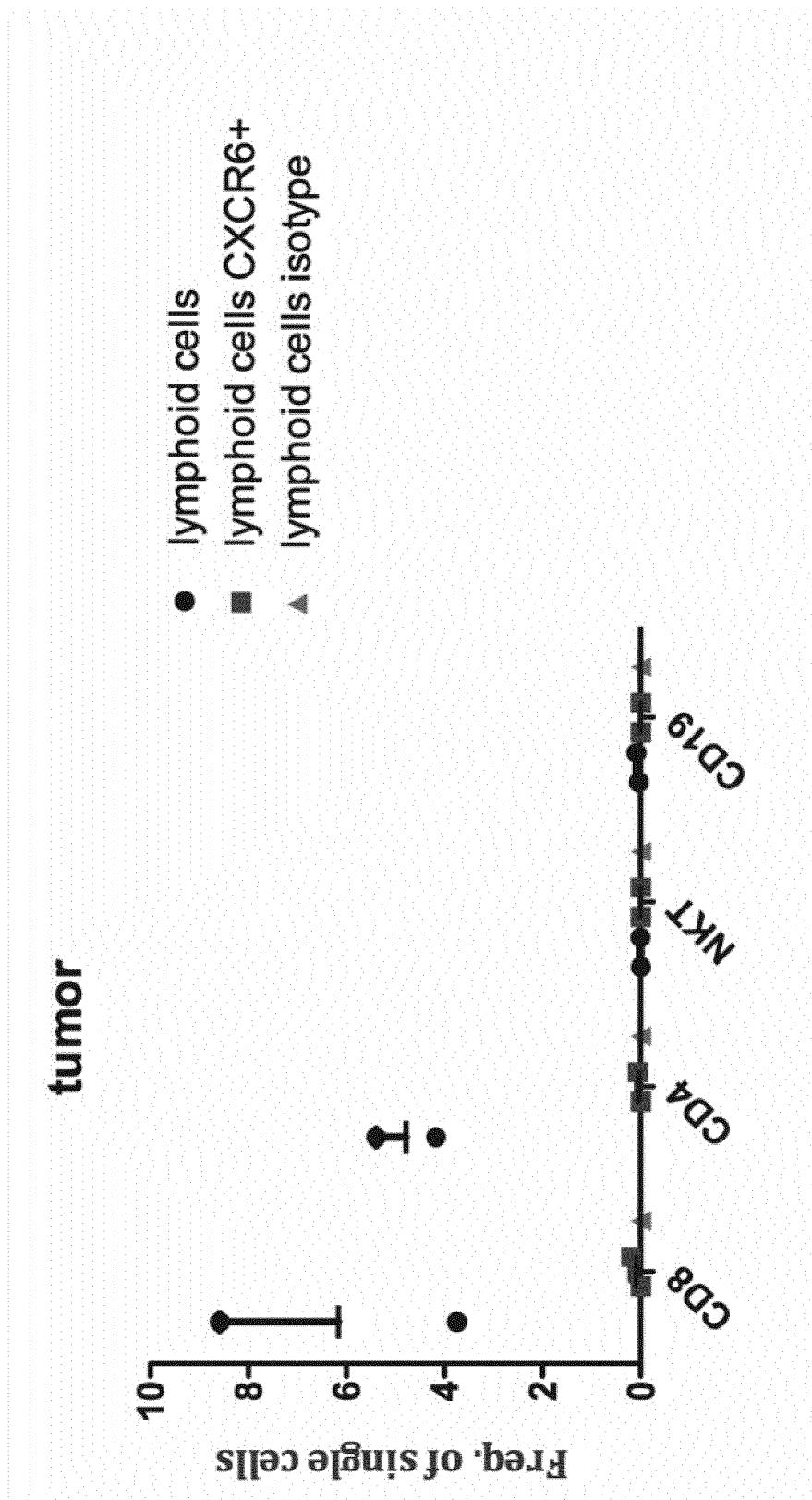
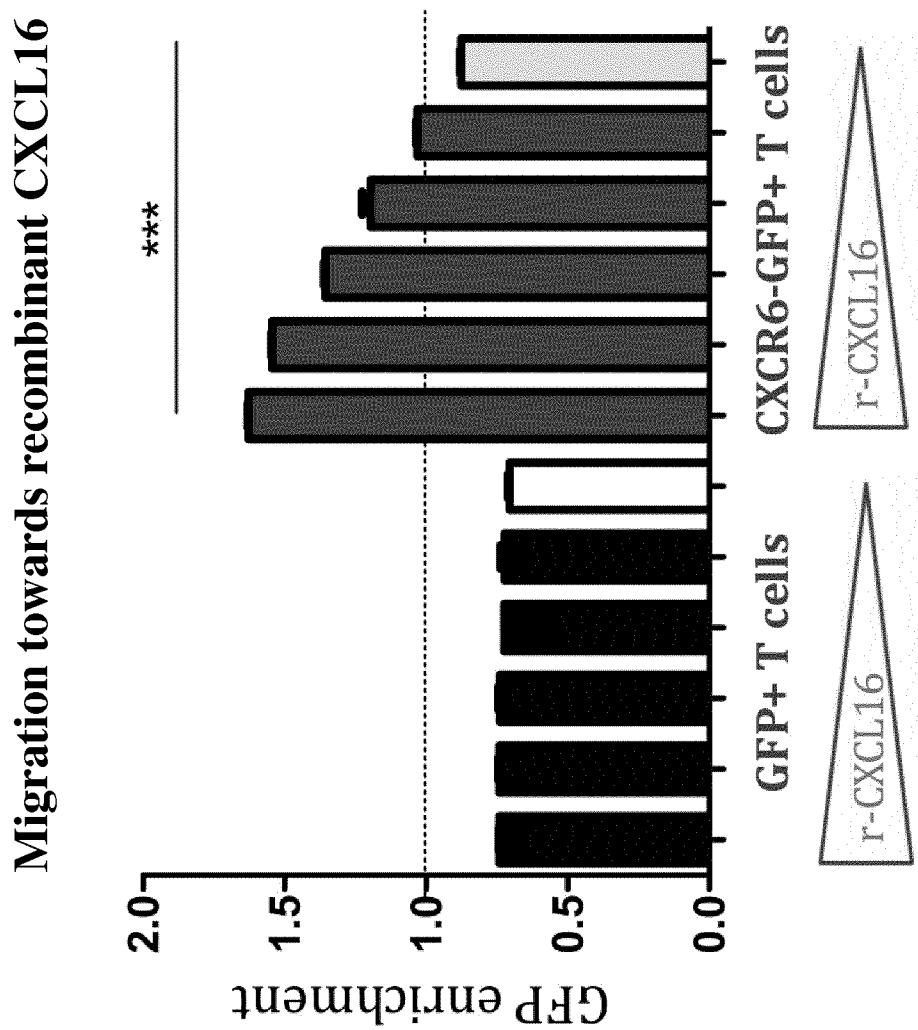
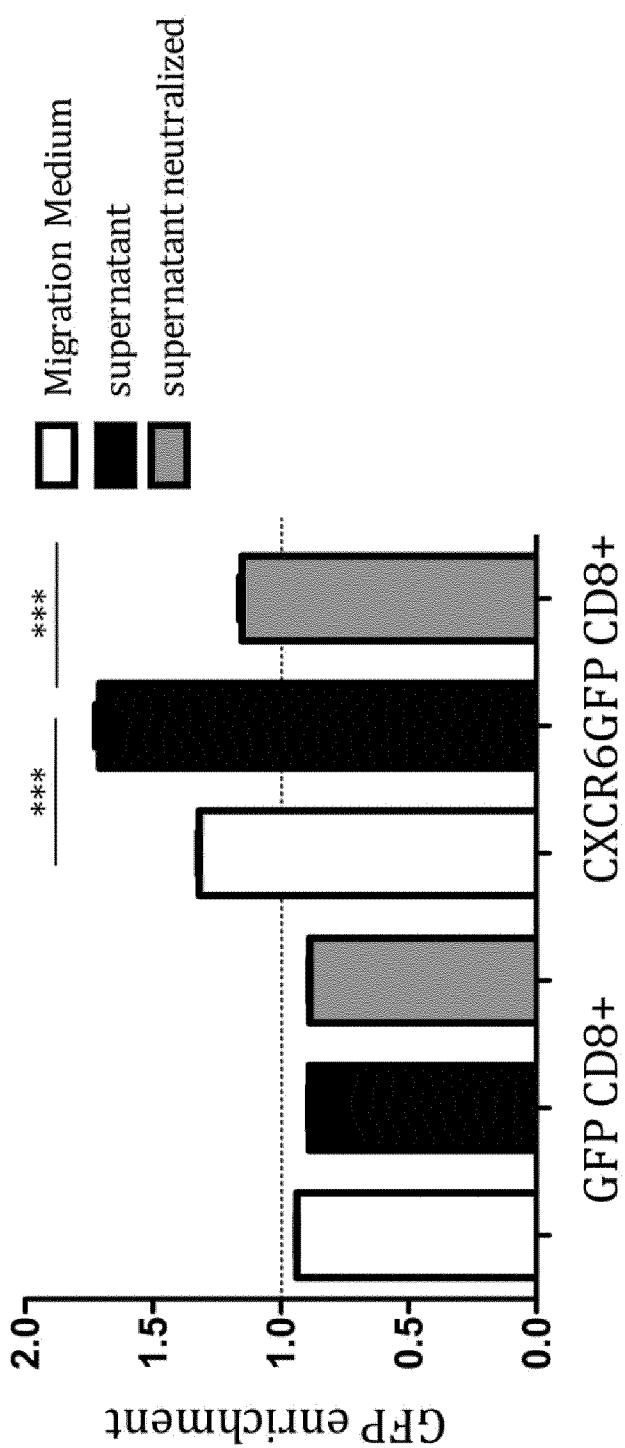




Fig. 14A

Fig. 14B

Migration towards tumor supernatant

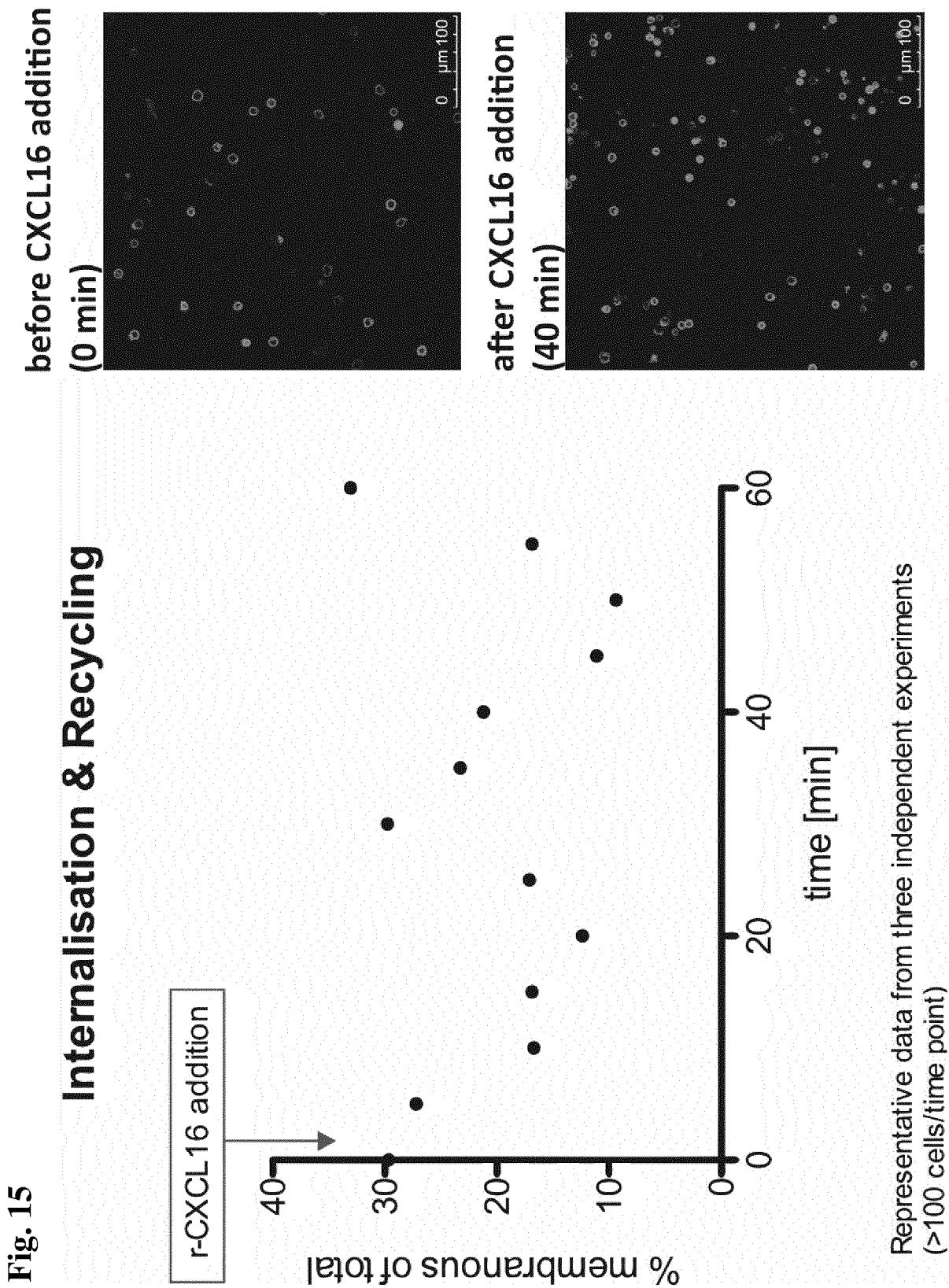
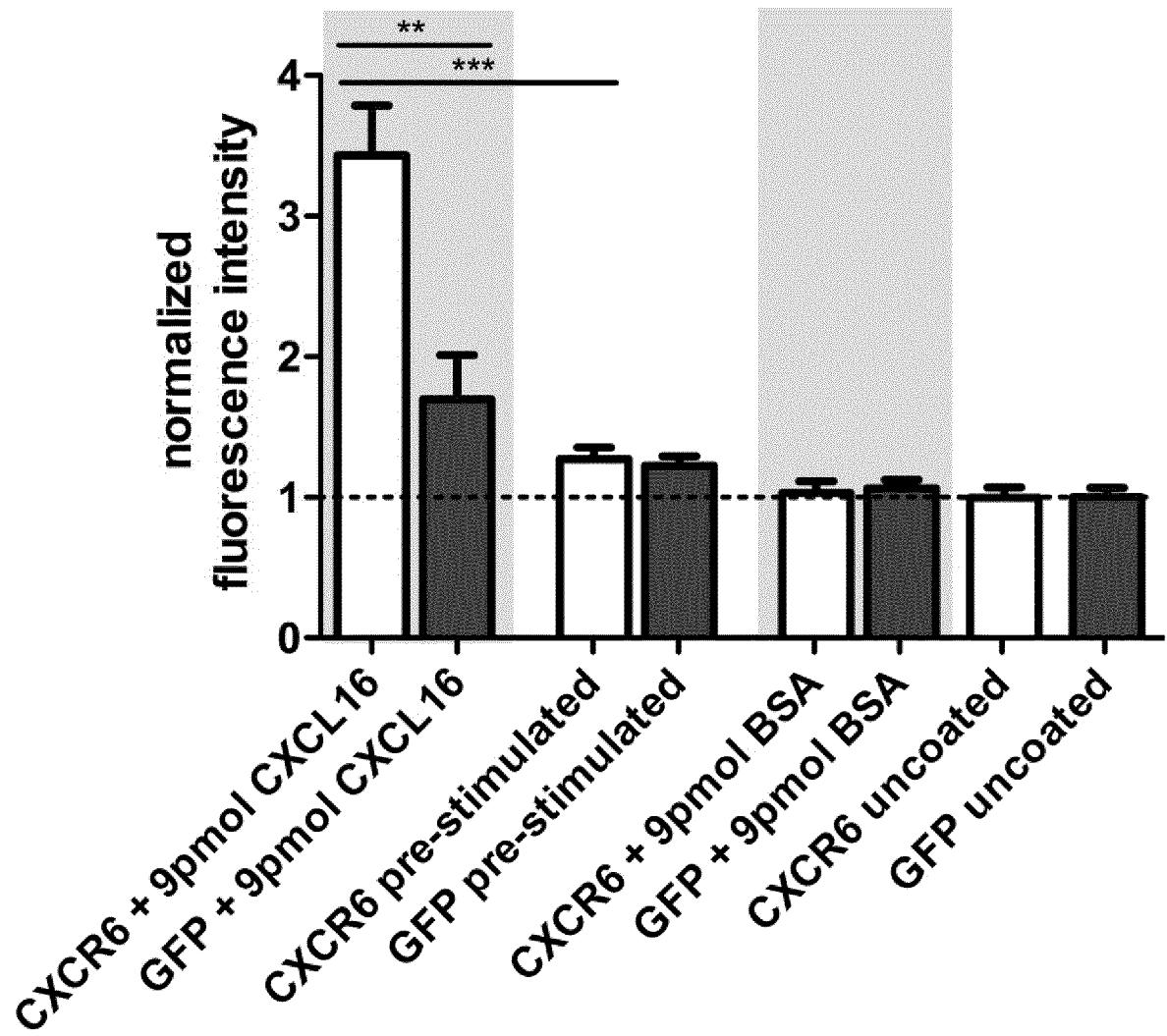



Fig. 16

24/27

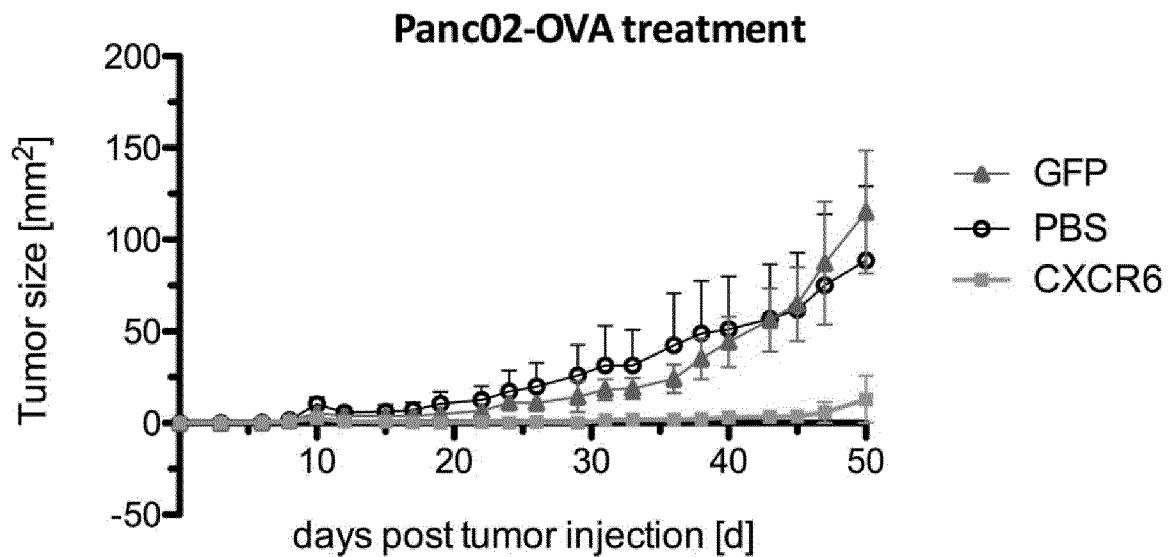
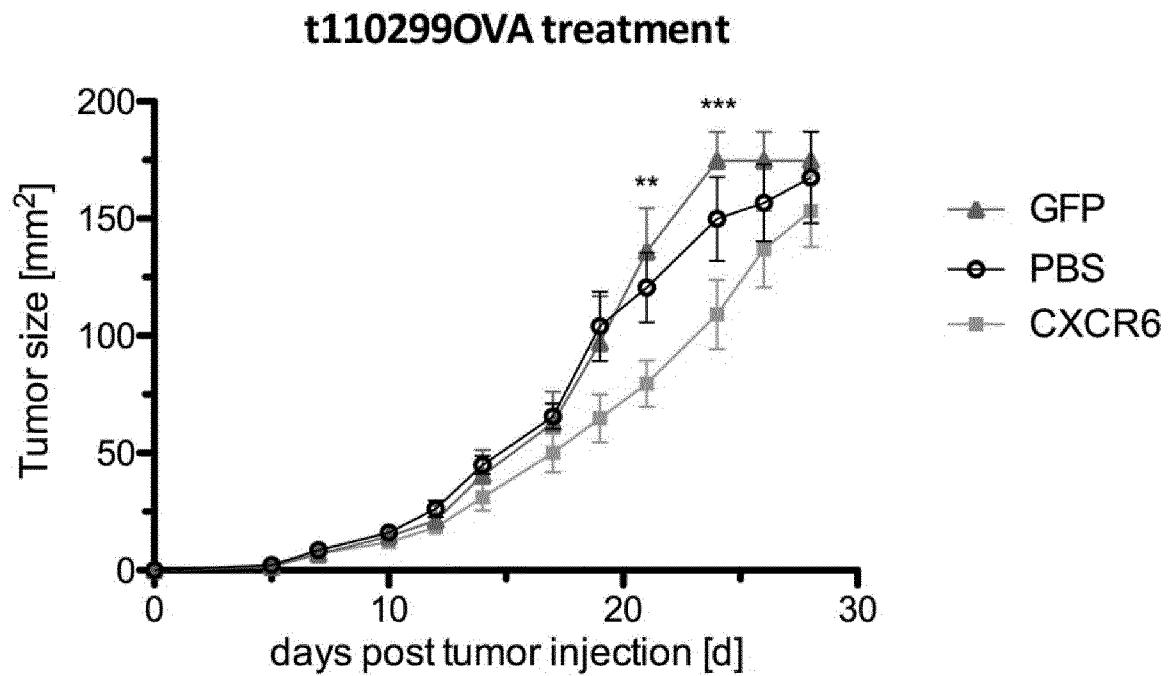
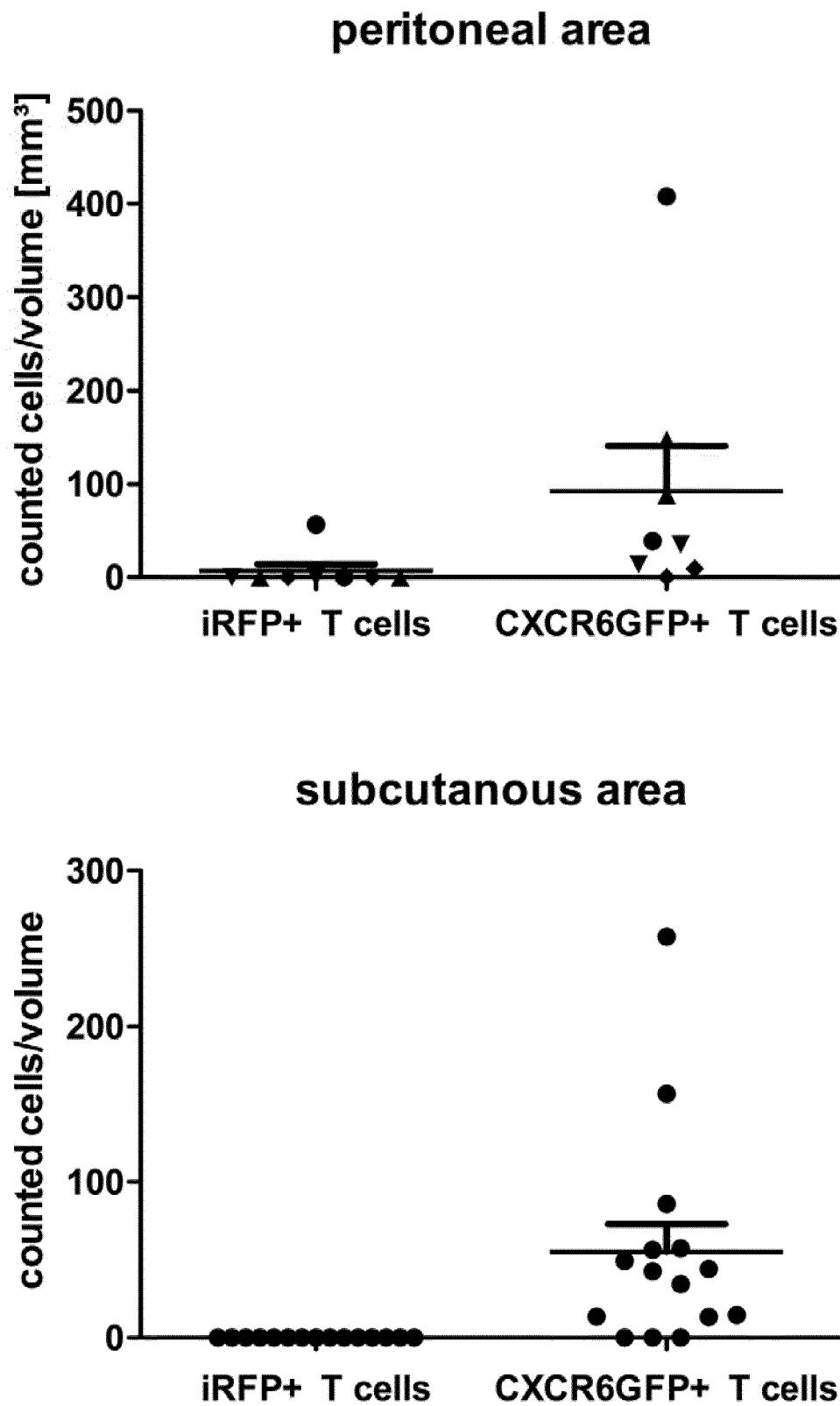
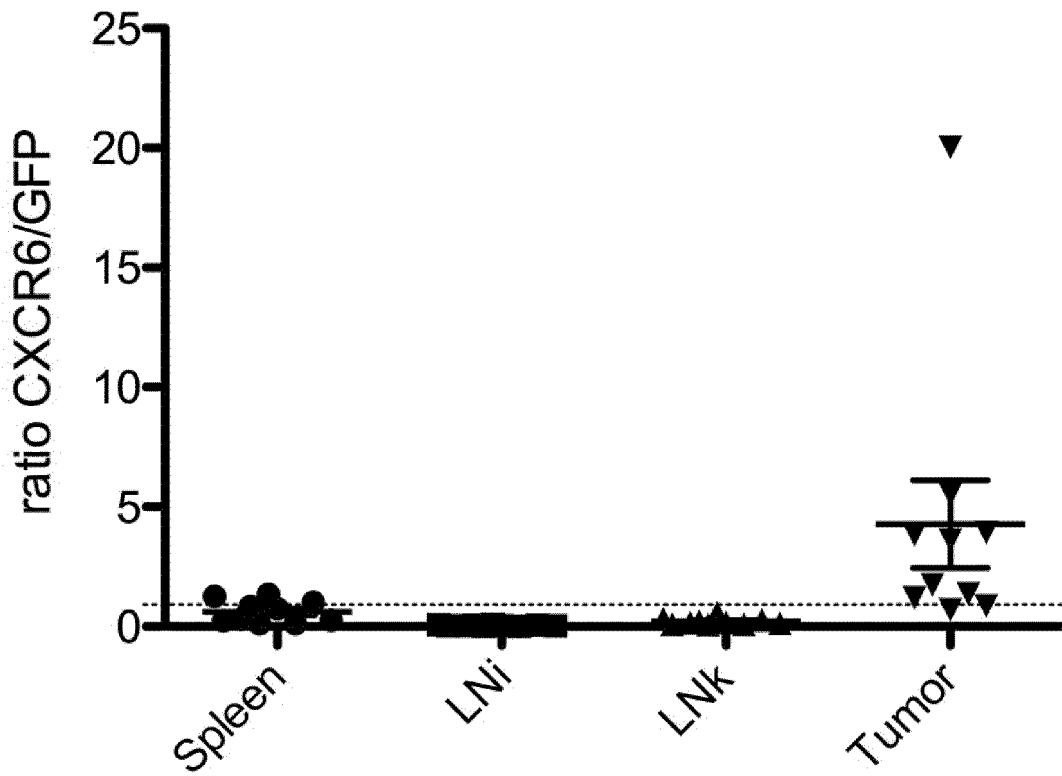
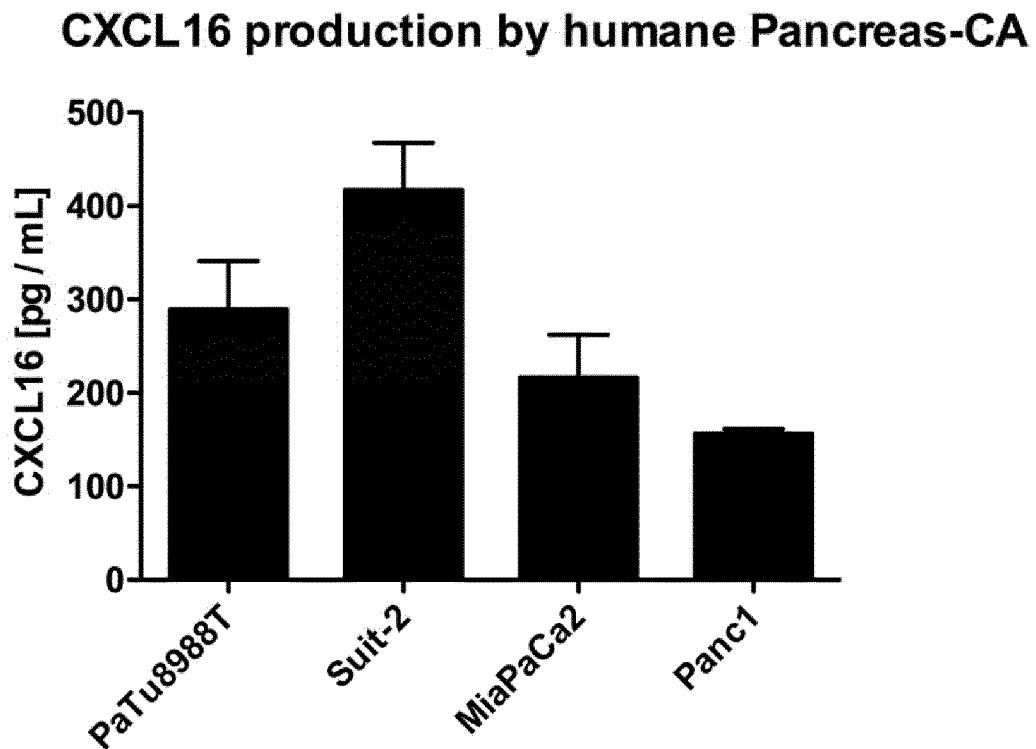





Fig. 17A**Fig. 17B**

Fig. 18

26/27

Fig. 19**Fig. 20**

27/27

Fig. 21

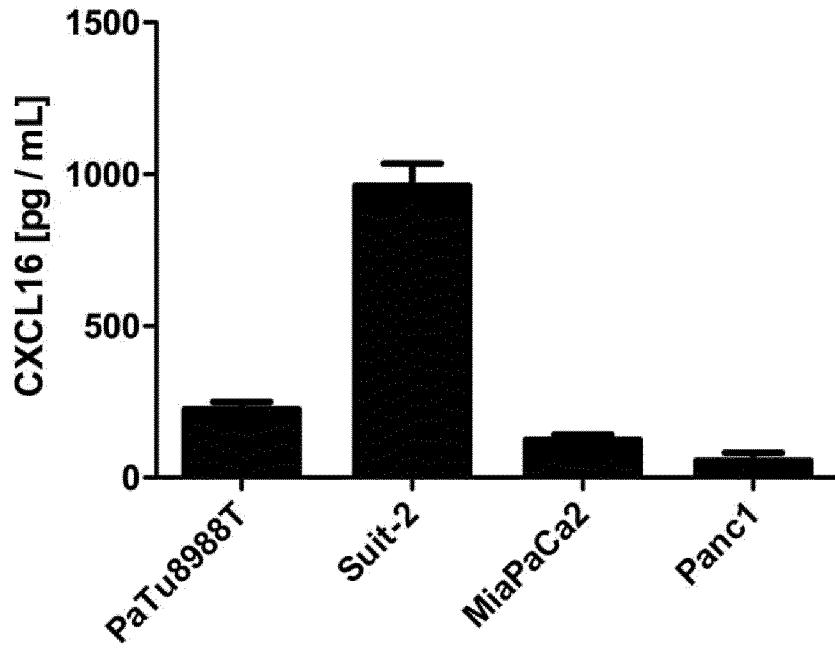
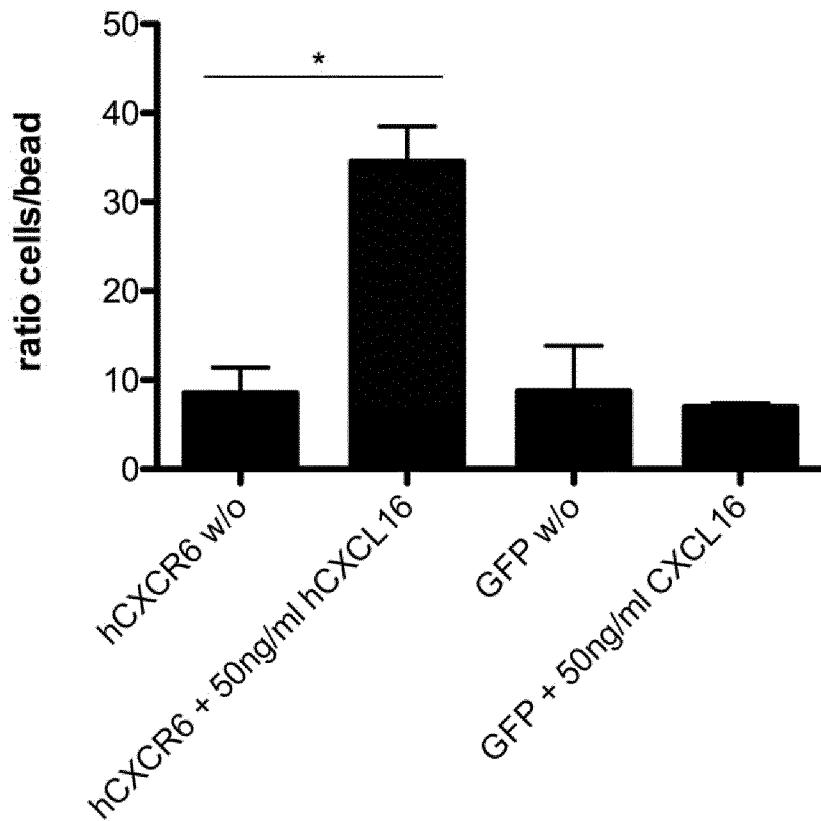


CXCL16 production by spheres (500cells; d9)

Fig. 22

eol f-seql . txt
SEQUENCE LISTING

<110> Ludwi g-Maxi mi l i ans-Uni versi tät München

<120> CXCR6-transduced T cells for targeted tumor therapy

<130> Y1575 PCT S3

<150> EP 15 19 0179.0

<151> 2015-10-16

<160> 14

<170> Bi SSAP 1.2

<210> 1

<211> 1026

<212> DNA

<213> Homo sapiens

<220>

<221> source

<222> 1..1026

<223> /mol_type="unassigned DNA"
/organism="Homo sapiens"

<220>

<221> CDS

<222> 1..1026

<223> /transl_table=1

<400> 1

atg	gct	gaa	cat	gat	tat	cat	gaa	gat	tat	ggc	ttt	agc	agc	ttt	aac	48
Met	Ala	Glu	His	Asp	Tyr	His	Glu	Asp	Tyr	Gly	Phe	Ser	Ser	Phe	Asn	
1		5					10						15			

gat	agc	agc	cag	gaa	gaa	cat	cag	gat	ttt	ctg	cag	ttt	agc	aaa	gtg	96	
Asp	Ser	Ser	Gl	n	Gl	u	Gl	u	His	Gl	n	Asp	Phe	Leu	Gl	n	
20							25						30				

ttt	ctg	ccg	tgc	atg	tat	ctg	gtg	gtg	ttt	gtg	tgc	ggc	ctg	gtg	ggc	144	
Phe	Leu	Pro	Cys	Met	Tyr	Leu	Val	Val	Phe	Val	Cys	Gly	Leu	Val	Gl	y	
35					40						45						

aac	agc	ctg	gtg	ctg	gtg	att	agc	att	ttt	tat	cat	aaa	ctg	cag	agc	192
Asn	Ser	Leu	Val	Leu	Val	Ile	Ser	Ile	Phe	Tyr	His	Lys	Leu	Gl	n	
50					55						60					

ctg	acc	gat	gtg	ttt	ctg	gtg	aac	ctg	ccg	ctg	gct	gat	ctg	gtg	ttt	240
Leu	Thr	Asp	Val	Phe	Leu	Val	Asn	Leu	Pro	Leu	Ala	Asp	Leu	Val	Phe	
65				70				75					80			

gtg	tgc	acc	ctg	ccg	ttt	tgg	gct	tat	gct	ggc	att	cat	gaa	tgg	gtg	288
Val	Cys	Thr	Leu	Pro	Phe	Trp	Ala	Tyr	Ala	Gly	Ile	His	Gl	u	Trp	
							85		90				95			

ttt	ggc	cag	gtg	atg	tgc	aaa	agc	ctg	ctg	ggc	att	tat	acc	att	aac	336	
Phe	Gly	Gl	n	Val	Met	Cys	Lys	Ser	Leu	Leu	Gly	Ile	Tyr	Thr	Ile	Asn	
100					105							110					

ttt	tat	acc	agc	atg	ctg	att	ctg	acc	tgc	att	acc	gtg	gat	cgc	ttt	384
Phe	Tyr	Thr	Ser	Met	Leu	Ile	Leu	Thr	Cys	Ile	Thr	Val	Asp	Arg	Phe	
115					120						125					

att	gtg	gtg	gtg	aaa	gct	acc	aaa	gct	tat	aac	cag	cag	cgc	aaa	cgc	432
Ile	Val	Val	Val	Lys	Ala	Thr	Lys	Ala	Tyr	Asn	Gl	n	Ala	Lys	Arg	
130				135						140						

eol f-seql . txt

atg acc tgg ggc aaa gtg acc agc ctg ctg att tgg gtg att agc ctg Met Thr Trp Glu Lys Val Thr Ser Leu Leu Ile Trp Val Ile Ser Leu 145 150 155 160	480
ctg gtg agc ctg ccg cag att att tat ggc aac gtg ttt aac ctg gat Leu Val Ser Leu Pro Glu Ile Ile Tyr Glu Asn Val Phe Asn Leu Asp 165 170 175	528
aaa ctg att tgc ggc tat cat gat gaa gcg att agc acc gtg gtg ctg Lys Leu Ile Cys Glu Tyr His Asp Glu Ala Ile Ser Thr Val Val Leu 180 185 190	576
gcg acc cag atg acc ctg ggc ttt ttt ctg ccg ctg ctg acc atg att Ala Thr Glu Met Thr Leu Glu Phe Phe Leu Pro Leu Leu Thr Met Ile 195 200 205	624
gtg tgc tat agc gtg att att aaa acc ctg ctg cat gcg ggc ggc ttt Val Cys Tyr Ser Val Ile Ile Lys Thr Leu Leu His Ala Glu Glu Phe 210 215 220	672
cag aaa cat cgc agc ctg aaa att att ttt ctg gtg atg gcg gtg ttt Gln Lys His Arg Ser Leu Lys Ile Ile Phe Leu Val Met Ala Val Phe 225 230 235 240	720
ctg ctg acc cag atg ccg ttt aac ctg atg aaa ttt att cgc agc acc Leu Leu Thr Glu Met Pro Phe Asn Leu Met Lys Phe Ile Arg Ser Thr 245 250 255	768
cat tgg gaa tat tat gcg atg acc agc ttt cat tat acc att atg gtg His Trp Glu Tyr Tyr Ala Met Thr Ser Phe His Tyr Thr Ile Met Val 260 265 270	816
acc gaa gcg att gcg tat ctg cgc gcg tgc ctg aac ccg gtg ctg tat Thr Glu Ala Ile Ala Tyr Leu Arg Ala Cys Leu Asn Pro Val Leu Tyr 275 280 285	864
gcg ttt gtg agc ctg aaa ttt cgc aaa aac ttt tgg aaa ctg gtg aaa Ala Phe Val Ser Leu Lys Phe Arg Lys Asn Phe Trp Lys Leu Val Lys 290 295 300	912
gat att ggc tgc ctg ccg tat ctg ggc gtg agc cat cag tgg aaa agc Asp Ile Glu Cys Leu Pro Tyr Leu Glu Val Ser His Glu Trp Lys Ser 305 310 315 320	960
agc gaa gat aac agc aaa acc ttt agc gcg agc cat aac gtg gaa gcg Ser Glu Asp Asn Ser Lys Thr Phe Ser Ala Ser His Asn Val Glu Ala 325 330 335	1008
acc agc atg ttt cag ctg Thr Ser Met Phe Glu Leu 340	1026

<210> 2
<211> 342

<212> PRT

<213> Homo sapiens

<220>

<223> [CDS]: 1..1026 from SEQ ID NO 1

<400> 2
Met Ala Glu His Asp Tyr His Glu Asp Tyr Glu Phe Ser Ser Phe Asn
1 5 10 15
Asp Ser Ser Glu Glu His Glu Asp Phe Leu Glu Phe Ser Lys Val
20 25 30
Phe Leu Pro Cys Met Tyr Leu Val Val Phe Val Cys Glu Leu Val Glu
35 40 45
Asn Ser Leu Val Leu Val Ile Ser Ile Phe Tyr His Lys Leu Glu Ser

eol f-seql . txt

50	55	60													
Leu	Thr	Asp	Val	Phe	Leu	Val	Asn	Leu	Pro	Leu	Ala	Asp	Leu	Val	Phe
65				70				75							80
Val	Cys	Thr	Leu	Pro	Phe	Trp	Ala	Tyr	Ala	Gly	Ile	His	Gl u	Trp	Val
								85		90				95	
Phe	Gly	Gln	Val	Met	Cys	Lys	Ser	Leu	Leu	Gly	Ile	Tyr	Thr	Ile	Asn
								100		105				110	
Phe	Tyr	Thr	Ser	Met	Leu	Ile	Leu	Thr	Cys	Ile	Thr	Val	Asp	Arg	Phe
								115		120				125	
Ile	Val	Val	Val	Lys	Ala	Thr	Lys	Ala	Tyr	Asn	Gln	Gln	Ala	Lys	Arg
								130		135				140	
Met	Thr	Trp	Gly	Lys	Val	Thr	Ser	Leu	Leu	Ile	Trp	Val	Ile	Ser	Leu
								145		150				155	
Leu	Val	Ser	Leu	Pro	Gln	Ile	Ile	Tyr	Gly	Asn	Val	Phe	Asn	Leu	Asp
								165		170				175	
Lys	Leu	Ile	Cys	Gly	Tyr	His	Asp	Gl u	Ala	Ile	Ser	Thr	Val	Val	Leu
								180		185				190	
Ala	Thr	Gln	Met	Thr	Leu	Gly	Phe	Phe	Leu	Pro	Leu	Leu	Thr	Met	Ile
								195		200				205	
Val	Cys	Tyr	Ser	Val	Ile	Ile	Lys	Thr	Leu	Leu	His	Ala	Gly	Gly	Phe
								210		215				220	
Gln	Lys	His	Arg	Ser	Leu	Lys	Ile	Ile	Phe	Leu	Val	Met	Ala	Val	Phe
								225		230				235	
Leu	Leu	Thr	Gln	Met	Pro	Phe	Asn	Leu	Met	Lys	Phe	Ile	Arg	Ser	Thr
								245		250				255	
His	Trp	Gl u	Tyr	Tyr	Ala	Met	Thr	Ser	Phe	His	Tyr	Thr	Ile	Met	Val
								260		265				270	
Thr	Gl u	Ala	Ile	Ala	Tyr	Leu	Arg	Ala	Cys	Leu	Asn	Pro	Val	Leu	Tyr
								275		280				285	
Ala	Phe	Val	Ser	Leu	Lys	Phe	Arg	Lys	Asn	Phe	Trp	Lys	Leu	Val	Lys
								290		295				300	
Asp	Ile	Gly	Cys	Leu	Pro	Tyr	Leu	Gly	Val	Ser	His	Gln	Trp	Lys	Ser
								305		310				315	
Ser	Gl u	Asp	Asn	Ser	Lys	Thr	Phe	Ser	Ala	Ser	His	Asn	Val	Gl u	Al a
								325		330				335	
Thr	Ser	Met	Phe	Gln	Leu										
								340							

<210> 3

<211> 1050

<212> DNA

<213> Mus musculus

<220>

<221> source

<222> 1.. 1050

<223> /mol_type="unassigned DNA"
/organism="Mus musculus"

<220>

<221> CDS

<222> 1.. 1050

<223> /translate=1

<400> 3

atg	gat	gat	ggc	cat	cag	gaa	agc	gcg	ctg	tat	gat	ggc	cat	tat	gaa
Met	Asp	Asp	Gly	His	Gln	Gl u	Ser	Ala	Leu	Tyr	Asp	Gly	His	Tyr	Gl u
1									10					15	

48

ggc	gat	ttt	tgg	ctg	ttt	aac	aac	agc	agc	gat	aac	agc	cag	gaa	aac
Gl y	Asp	Phe	Trp	Leu	Phe	Asn	Asn	Ser	Ser	Asp	Asn	Ser	Gl n	Gl u	Asn
									25				30		

96

aaa	cgc	ttt	ctg	aaa	ttt	aac	gaa	gtg	ttt	ctg	ccg	tgc	gtg	tat	ctg
Lys	Arg	Phe	Leu	Lys	Phe	Lys	Gl u	Val	Phe	Leu	Pro	Cys	Val	Tyr	Leu
								35		40		45			

144

gtg	gtg	ttt	gtg	ttt	ggc	ctg	ctg	ggc	aac	agc	ctg	gtg	ctg	att	att
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

192

eol f-seql . txt

Val	Val	Phe	Val	Phe	Gly	Leu	Leu	Gly	Asn	Ser	Leu	Val	Leu	Ile	Ile		
50					55						60						
tat	att	ttt	tat	cag	aaa	ctg	cgc	acc	ctg	acc	gat	gtg	ttt	ctg	ctg		240
Tyr	Ile	Phe	Tyr	Gl n	Lys	Leu	Arg	Thr	Leu	Thr	Asp	Val	Phe	Leu	Leu		
65				70					75					80			
aac	ctg	ccg	ctg	gcg	gat	ctg	gtg	ttt	gtg	tgc	acc	ctg	ccg	ttt	tgg		288
Asn	Leu	Pro	Leu	Al a	Asp	Leu	Val	Phe	Val	Cys	Thr	Leu	Pro	Phe	Trp		
				85				90					95				
gcg	tat	gcg	ggc	acc	tat	gaa	tgg	gtg	ttt	ggc	acc	gtg	atg	tgc	aaa		336
Al a	Tyr	Al a	Gl y	Thr	Tyr	Gl u	Trp	Val	Phe	Gl y	Thr	Val	Met	Cys	Lys		
				100			105					110					
acc	ctg	cgc	ggc	atg	tat	acc	atg	aac	ttt	tat	gtg	agc	atg	ctg	acc		384
Thr	Leu	Arg	Gl y	Met	Tyr	Thr	Met	Asn	Phe	Tyr	Val	Ser	Met	Leu	Thr		
				115			120					125					
ctg	acc	tgc	att	acc	gtg	gat	cgc	ttt	att	gtg	gtg	gtg	cag	gcg	acc		432
Leu	Thr	Cys	Ile	Thr	Val	Asp	Arg	Phe	Ile	Val	Val	Val	Gl n	Al a	Thr		
				130		135			140								
aaa	gcg	ttt	aac	cgc	cag	gcg	aaa	tgg	aaa	att	tgg	ggc	cag	gtg	att		480
Lys	Al a	Phe	Asn	Arg	Gl n	Al a	Lys	Trp	Lys	Ile	Trp	Gl y	Gl n	Val	Ile		
				145		150			155					160			
tgc	ctg	ctg	att	tgg	gtg	gtg	agc	ctg	ctg	gtg	agc	ctg	ccg	cag	att		528
Cys	Leu	Leu	Ile	Trp	Val	Val	Ser	Leu	Leu	Val	Ser	Leu	Pro	Gl n	Ile		
				165			170					175					
att	tat	ggc	cat	gtg	cag	gat	att	gat	aaa	ctg	att	tgc	cag	tat	cat		576
Ile	Tyr	Gl y	His	Val	Gl n	Asp	Ile	Asp	Lys	Leu	Ile	Cys	Gl n	Tyr	His		
				180		185			190								
agc	gaa	gaa	att	agc	acc	atg	gtg	ctg	gtg	att	cag	atg	acc	ctg	ggc		624
Ser	Gl u	Gl u	Ile	Ser	Thr	Met	Val	Leu	Val	Ile	Gl n	Met	Thr	Leu	Gl y		
				195			200			205							
ttt	ttt	ctg	ccg	ctg	ctg	acc	atg	att	ctg	tgc	tat	agc	ggc	att	att		672
Phe	Phe	Leu	Pro	Leu	Leu	Thr	Met	Ile	Leu	Cys	Tyr	Ser	Gl y	Ile	Ile		
				210		215			220								
aaa	acc	ctg	ctg	cat	gcg	cgc	aac	ttt	cag	aaa	cat	aaa	agc	ctg	aaa		720
Lys	Thr	Leu	Leu	His	Al a	Arg	Asn	Phe	Gl n	Lys	His	Lys	Ser	Leu	Lys		
				225		230			235					240			
att	att	ttt	ctg	gtg	gtg	gcg	ttt	ctg	ctg	acc	cag	acc	ccg	ttt		768	
Ile	Ile	Phe	Leu	Val	Val	Al a	Val	Phe	Leu	Leu	Thr	Gl n	Thr	Pro	Phe		
				245			250					255					
aac	ctg	gcg	atg	ctg	att	cag	agc	acc	agc	tgg	gaa	tat	tat	acc	att		816
Asn	Leu	Al a	Met	Leu	Ile	Gl n	Ser	Thr	Ser	Trp	Gl u	Tyr	Tyr	Thr	Ile		
				260			265					270					
acc	agc	ttt	aaa	tat	gcg	att	gtg	gtg	acc	gaa	gcg	att	gcg	tat	ttt		864
Thr	Ser	Phe	Lys	Tyr	Al a	Ile	Val	Val	Thr	Gl u	Al a	Ile	Al a	Tyr	Phe		
				275			280			285							
cgc	gcg	tgc	ctg	aac	ccg	gtg	ctg	tat	gcg	ttt	gtg	ggc	ctg	aaa	ttt		912
Arg	Al a	Cys	Leu	Asn	Pro	Val	Leu	Tyr	Al a	Phe	Val	Gl y	Leu	Lys	Phe		
				290		295			300								
cgc	aaa	aac	gtg	tgg	aaa	ctg	atg	aaa	gat	att	ggc	tgc	ctg	agc	cat		960
Arg	Lys	Asn	Val	Trp	Lys	Leu	Met	Lys	Asp	Ile	Gly	Cys	Leu	Ser	His		
				305			310		315				320				
ctg	ggc	gtg	agc	agc	cag	tgg	aaa	agc	agc	gaa	gat	agc	agc	aaa	acc		1008

eol f-seql . txt

Leu Gl y Val Ser Ser Gl n Trp Lys Ser Ser Gl u Asp Ser Ser Lys Thr
325 330 335

tgc agc gcg agc cat aac gtg gaa acc acc acc agc atg ttt cag
Cys Ser Al a Ser His Asn Val Gl u Thr Thr Ser Met Phe Gl n
340 345 350

1050

<210> 4
<211> 350
<212> PRT
<213> Mus musculus

<220>
<223> [CDS]: 1..1050 from SEQ ID NO 3

<400> 4
Met Asp Asp Gl y His Gl n Gl u Ser Al a Leu Tyr Asp Gl y His Tyr Gl u
1 5 10 15
Gl y Asp Phe Trp Leu Phe Asn Asn Ser Ser Asp Asn Ser Gl n Gl u Asn
20 25 30
Lys Arg Phe Leu Lys Phe Lys Gl u Val Phe Leu Pro Cys Val Tyr Leu
35 40 45
Val Val Phe Val Phe Gl y Leu Leu Gl y Asn Ser Leu Val Leu Ile Ile
50 55 60
Tyr Ile Phe Tyr Gl n Lys Leu Arg Thr Leu Thr Asp Val Phe Leu Leu
65 70 75 80
Asn Leu Pro Leu Al a Asp Leu Val Phe Val Cys Thr Leu Pro Phe Trp
85 90 95
Al a Tyr Al a Gl y Thr Tyr Gl u Trp Val Phe Gl y Thr Val Met Cys Lys
100 105 110
Thr Leu Arg Gl y Met Tyr Thr Met Asn Phe Tyr Val Ser Met Leu Thr
115 120 125
Leu Thr Cys Ile Thr Val Asp Arg Phe Ile Val Val Val Gl n Al a Thr
130 135 140
Lys Al a Phe Asn Arg Gl n Al a Lys Trp Lys Ile Trp Gl y Gl n Val Ile
145 150 155 160
Cys Leu Leu Ile Trp Val Val Ser Leu Leu Val Ser Leu Pro Gl n Ile
165 170 175
Ile Tyr Gl y His Val Gl n Asp Ile Asp Lys Leu Ile Cys Gl n Tyr His
180 185 190
Ser Gl u Gl u Ile Ser Thr Met Val Leu Val Ile Gl n Met Thr Leu Gl y
195 200 205
Phe Phe Leu Pro Leu Leu Thr Met Ile Leu Cys Tyr Ser Gl y Ile Ile
210 215 220
Lys Thr Leu Leu His Al a Arg Asn Phe Gl n Lys His Lys Ser Leu Lys
225 230 235 240
Ile Ile Phe Leu Val Val Al a Val Phe Leu Leu Thr Gl n Thr Pro Phe
245 250 255
Asn Leu Al a Met Leu Ile Gl n Ser Thr Ser Trp Gl u Tyr Tyr Thr Ile
260 265 270
Thr Ser Phe Lys Tyr Al a Ile Val Val Thr Gl u Al a Ile Al a Tyr Phe
275 280 285
Arg Al a Cys Leu Asn Pro Val Leu Tyr Al a Phe Val Gl y Leu Lys Phe
290 295 300
Arg Lys Asn Val Trp Lys Leu Met Lys Asp Ile Gl y Cys Leu Ser His
305 310 315 320
Leu Gl y Val Ser Ser Gl n Trp Lys Ser Ser Gl u Asp Ser Ser Lys Thr
325 330 335
Cys Ser Al a Ser His Asn Val Gl u Thr Thr Ser Met Phe Gl n
340 345 350

<210> 5
<211> 762
<212> DNA
<213> Homo sapiens

<220>
<221> source

eol f-seql .txt

<222> 1..762
<223> /mol_type="unassigned DNA"
 /organism="Homo sapiens"

```
<220>
<221> CDS
<222> 1..762
<223> /transl_table=1
```

<400> 5	atg ggc cgc gat ctg cgc ccg ggc agc cgc gtg ctg ctg ctg ctg	Met Gly Arg Asp Leu Arg Pro Gly Ser Arg Val Leu Leu Leu Leu	15	48
1	5	10	15	
ctg ctg ctg ctg gtg tat ctg acc cag ccg ggc aac ggc aac gaa ggc	Leu Leu Leu Leu Val Tyr Leu Thr Gln Pro Gly Asn Gly Asn Glu Gly	20	25	30
20	25	30		96
agc gtg acc ggc agc tgc tat tgc ggc aaa cgc att agc agc gat agc	Ser Val Thr Gly Ser Cys Tyr Cys Gly Lys Arg Ile Ser Ser Asp Ser	35	40	45
35	40	45		144
ccg ccg agc gtg cag ttt atg aac cgc ctg cgc aaa cat ctg cgc gcg	Pro Pro Ser Val Gln Phe Met Asn Arg Leu Arg Lys His Leu Arg Ala	50	55	60
50	55	60		192
tat cat cgc tgc ctg tat tat acc cgc ttt cag ctg ctg agc tgg agc	Tyr His Arg Cys Leu Tyr Tyr Thr Arg Phe Gln Leu Leu Ser Trp Ser	65	70	75
65	70	75	80	240
gtg tgc ggc ggc aac aaa gat ccg tgg gtg cag gaa ctg atg agc tgc	Val Cys Gly Gly Asn Lys Asp Pro Trp Val Gln Glu Leu Met Ser Cys	85	90	95
85	90	95		288
ctg gat ctg aaa gaa tgc ggc cat gcg tat agc ggc att gtg gcg cat	Leu Asp Leu Lys Glu Cys Gly His Ala Tyr Ser Gly Ile Val Ala His	100	105	110
100	105	110		336
cag aaa cat ctg ctg ccg acc agc ccg ccg att agc cag gcg agc gaa	Gln Lys His Leu Leu Pro Thr Ser Pro Pro Ile Ser Gln Ala Ser Glu	115	120	125
115	120	125		384
ggc gcg agc agc gat att cat acc ccg ccg cag atg ctg ctg agc acc	Gly Ala Ser Ser Asp Ile His Thr Pro Pro Ala Glu Met Leu Leu Ser Thr	130	135	140
130	135	140		432
ctg cag agc acc cag ccg ccg acc ctg ccg gtg ggc agc ctg agc agc	Leu Gln Ser Thr Gln Arg Pro Thr Leu Pro Val Gly Ser Leu Ser Ser	145	150	155
145	150	155	160	480
gat aaa gaa ctg acc cgc ccg aac gaa acc acc att cat acc gcg ggc	Asp Lys Glu Leu Thr Arg Pro Asn Glu Thr Thr Ile His Thr Ala Glu	165	170	175
165	170	175		528
cat agc ctg gcg gcg ggc ccg gaa gcg ggc gaa aac cag aaa cag ccg	His Ser Leu Ala Ala Gly Pro Glu Ala Gly Glu Asn Gln Lys Glu Pro	180	185	190
180	185	190		576
gaa aaa aac gcg ggc ccg acc gcg cgc acc agc gcg acc gtg ccg gtg	Glu Lys Asn Ala Gly Pro Thr Al a Arg Thr Ser Al a Thr Val Pro Val	195	200	205
195	200	205		624
ctg tgc ctg ctg gcg att tt ttt att ctg acc gcg gcg ctg agc tat	Leu Cys Leu Leu Ala Ile Ile Phe Ile Leu Thr Ala Ala Leu Ser Tyr	210	215	220
210	215	220		672

eol f-seql . txt

225

230

235

240

ctg ccg gtg cat tat att ccg gtg gcg ccg gat agc aac acc
 Leu Pro Val His Tyr Ile Pro Val Ala Pro Asp Ser Asn Thr
 245 250

762

<210> 6
 <211> 254
 <212> PRT
 <213> Homo sapiens

<220>
 <223> [CDS]: 1.. 762 from SEQ ID NO 5

<400> 6
 Met Gly Arg Asp Leu Arg Pro Gly Ser Arg Val Leu Leu Leu Leu Leu
 1 5 10 15
 Leu Leu Leu Leu Val Tyr Leu Thr Gln Pro Gly Asn Gly Asn Glu Gly
 20 25 30
 Ser Val Thr Gly Ser Cys Tyr Cys Gly Lys Arg Ile Ser Ser Asp Ser
 35 40 45
 Pro Pro Ser Val Gln Phe Met Asn Arg Leu Arg Lys His Leu Arg Ala
 50 55 60
 Tyr His Arg Cys Leu Tyr Tyr Thr Arg Phe Gln Leu Leu Ser Trp Ser
 65 70 75 80
 Val Cys Gly Gly Asn Lys Asp Pro Trp Val Gln Glu Leu Met Ser Cys
 85 90 95
 Leu Asp Leu Lys Glu Cys Gly His Ala Tyr Ser Gly Ile Val Ala His
 100 105 110
 Gln Lys His Leu Leu Pro Thr Ser Pro Pro Ile Ser Gln Ala Ser Glu
 115 120 125
 Gly Ala Ser Ser Asp Ile His Thr Pro Ala Gln Met Leu Leu Ser Thr
 130 135 140
 Leu Gln Ser Thr Gln Arg Pro Thr Leu Pro Val Gly Ser Leu Ser Ser
 145 150 155 160
 Asp Lys Glu Leu Thr Arg Pro Asn Glu Thr Thr Ile His Thr Ala Gly
 165 170 175
 His Ser Leu Ala Ala Gly Pro Glu Ala Gly Glu Asn Gln Lys Gln Pro
 180 185 190
 Glu Lys Asn Ala Gly Pro Thr Ala Arg Thr Ser Ala Thr Val Pro Val
 195 200 205
 Leu Cys Leu Leu Ala Ile Ile Phe Ile Leu Thr Ala Ala Leu Ser Tyr
 210 215 220
 Val Leu Cys Lys Arg Arg Gly Gln Ser Pro Gln Ser Ser Pro Asp
 225 230 235 240
 Leu Pro Val His Tyr Ile Pro Val Ala Pro Asp Ser Asn Thr
 245 250

<210> 7
 <211> 738
 <212> DNA
 <213> Mus musculus

<220>
 <221> source
 <222> 1.. 738
 <223> /mol_type="unassigned DNA"
 /organism="Mus musculus"

<220>
 <221> CDS
 <222> 1.. 738
 <223> /transl_table=1

<400> 7
 atg cgc cgc ggc ttt ggc ccg ctg agc ctg gcg ttt ttt ctg ttt ctg
 Met Arg Arg Gly Phe Gly Pro Leu Ser Leu Ala Phe Phe Leu Phe Leu
 1 5 10 15

48

eol f-seql . txt

ctg gcg ctg ctg acc ctg ccg ggc gat ggc aac cag ggc agc gtg gcg	96
Leu Al a Leu Leu Thr Leu Pro Gl y Asp Gl y Asn Gl n Gl y Ser Val Al a	
20 25 30	
ggc agc tgc agc tgc gat cgc acc att agc agc ggc acc cag att ccg	144
Gl y Ser Cys Ser Cys Asp Arg Thr Ile Ser Ser Gl y Thr Gl n Ile Pro	
35 40 45	
cag ggc acc ctg gat cat att cgc aaa tat ctg aaa gcg ttt cat cgc	192
Gl n Gl y Thr Leu Asp His Ile Arg Lys Tyr Leu Lys Al a Phe His Arg	
50 55 60	
tgc ccg ttt ttt att cgc ttt cag ctg cag agc aaa agc gtg tgc ggc	240
Cys Pro Phe Phe Ile Arg Phe Gl n Leu Gl n Ser Lys Ser Val Cys Gl y	
65 70 75 80	
ggc agc cag gat cag tgg gtg cgc gaa ctg gtg gat tgc ttt gaa cgc	288
Gl y Ser Gl n Asp Gl n Trp Val Arg Gl u Leu Val Asp Cys Phe Gl u Arg	
85 90 95	
aaa gaa tgc ggc acc ggc cat ggc aaa agc ttt cat cat cag aaa cat	336
Lys Gl u Cys Gl y Thr Gl y His Gl y Lys Ser Phe His His Gl n Lys His	
100 105 110	
ctg ccg cag gcg agc acc cag acc ccg gaa gcg gcg gaa ggc acc ccg	384
Leu Pro Gl n Al a Ser Thr Gl n Thr Pro Gl u Al a Al a Gl u Gl y Thr Pro	
115 120 125	
agc gat acc agc acc ccg gcg cat agc cag agc acc cag cat agc acc	432
Ser Asp Thr Ser Thr Pro Al a His Ser Gl n Ser Thr Gl n His Ser Thr	
130 135 140	
ctg ccg agc ggc gcg ctg agc ctg aac aaa gaa cat acc cag ccg tgg	480
Leu Pro Ser Gl y Al a Leu Ser Leu Asn Lys Gl u His Thr Gl n Pro Trp	
145 150 155 160	
gaa atg acc acc ctg ccg agc ggc tat ggc ctg gaa gcg cgc ccg gaa	528
Gl u Met Thr Thr Leu Pro Ser Gl y Tyr Gl y Leu Gl u Al a Arg Pro Gl u	
165 170 175	
gcg gaa gcg aac gaa aaa cag cag gat gat cgc cag cag gaa gcg ccg	576
Al a Gl u Al a Asn Gl u Lys Gl n Gl n Asp Asp Arg Gl n Gl n Gl u Al a Pro	
180 185 190	
ggc gcg ggc gcg agc acc ccg gcg tgg gtg ccg gtg ctg agc ctg ctg	624
Gl y Al a Gl y Al a Ser Thr Pro Al a Trp Val Pro Val Leu Ser Leu Leu	
195 200 205	
gcg att gtg ttt ttt ctg acc gcg gcg atg gcg tat gtg ctg ctg tgc aac	672
Al a Ile Val Phe Phe Leu Thr Al a Al a Met Al a Tyr Val Leu Cys Asn	
210 215 220	
cgc cgc gcg acc cag cag aac agc gcg ggc ctg cag ctg tgg tat acc	720
Arg Arg Al a Thr Gl n Gl n Asn Ser Al a Gl y Leu Gl n Leu Trp Tyr Thr	
225 230 235 240	
ccg gtg gaa ccg cgc ccg	738
Pro Val Gl u Pro Arg Pro	
245	

<210> 8
 <211> 246
 <212> PRT
 <213> Mus musculus

<220>
 <223> [CDS]: 1.. 738 from SEQ ID NO 7

eol f-seql . txt

<400> 8
Met Arg Arg Gl y Phe Gl y Pro Leu Ser Leu Al a Phe Phe Leu Phe Leu
1 5 10 15
Leu Al a Leu Leu Thr Leu Pro Gl y Asp Gl y Asn Gl n Gl y Ser Val Al a
20 25 30
Gl y Ser Cys Ser Cys Asp Arg Thr Ile Ser Ser Gl y Thr Gl n Ile Pro
35 40 45
Gl n Gl y Thr Leu Asp His Ile Arg Lys Tyr Leu Lys Al a Phe His Arg
50 55 60
Cys Pro Phe Phe Ile Arg Phe Gl n Leu Gl n Ser Lys Ser Val Cys Gl y
65 70 75 80
Gl y Ser Gl n Asp Gl n Trp Val Arg Gl u Leu Val Asp Cys Phe Gl u Arg
85 90 95
Lys Gl u Cys Gl y Thr Gl y His Gl y Lys Ser Phe His His Gl n Lys His
100 105 110
Leu Pro Gl n Al a Ser Thr Gl n Thr Pro Gl u Al a Al a Gl u Gl y Thr Pro
115 120 125
Ser Asp Thr Ser Thr Pro Al a His Ser Gl n Ser Thr Gl n His Ser Thr
130 135 140
Leu Pro Ser Gl y Al a Leu Ser Leu Asn Lys Gl u His Thr Gl n Pro Trp
145 150 155 160
Gl u Met Thr Thr Leu Pro Ser Gl y Tyr Gl y Leu Gl u Al a Arg Pro Gl u
165 170 175
Al a Gl u Al a Asn Gl u Lys Gl n Gl n Asp Asp Arg Gl n Gl n Gl u Al a Pro
180 185 190
Gl y Al a Gl y Al a Ser Thr Pro Al a Trp Val Pro Val Leu Ser Leu Leu
195 200 205
Al a Ile Val Phe Phe Leu Thr Al a Al a Met Al a Tyr Val Leu Cys Asn
210 215 220
Arg Arg Al a Thr Gl n Gl n Asn Ser Al a Gl y Leu Gl n Leu Trp Tyr Thr
225 230 235 240
Pro Val Gl u Pro Arg Pro
245

<210> 9
<211> 88
<212> PRT
<213> Artificial Sequence

<220>
<223> Recombinant CXCL16

<400> 9
Asn Gl n Gl y Ser Val Al a Gl y Ser Cys Ser Cys Asp Arg Thr Ile Ser
1 5 10 15
Ser Gl y Thr Gl n Ile Pro Gl n Gl y Thr Leu Asp His Ile Arg Lys Tyr
20 25 30
Leu Lys Al a Phe His Arg Cys Pro Phe Phe Ile Arg Phe Gl n Leu Gl n
35 40 45
Ser Lys Ser Val Cys Gl y Gl y Ser Gl n Asp Gl n Trp Val Arg Gl u Leu
50 55 60
Val Asp Cys Phe Gl u Arg Lys Gl u Cys Gl y Thr Gl y His Gl y Lys Ser
65 70 75 80
Phe His His Gl n Lys His Leu Pro
85

<210> 10
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> OVA257–264 peptide

<400> 10
Ser Ile Ile Asn Phe Gl u Lys Leu
1 5

eol f-seql . txt

```

<210> 11
<211> 729
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<222> 1..729
<223> /mol_type="unassigned DNA"
      /note="GFP sequence"
      /organism="Artificial Sequence"

<220>
<221> CDS
<222> 1..729
<223> /translate=1

<400> 11
atg gcc acc atg gtg agc aag ggc gag gag ctg ttc acc ggg gtg gtg 48
Met Ala Thr Met Val Ser Lys Glu Glu Glu Leu Phe Thr Glu Val Val
1          5          10          15

ccc atc ctg gtc gag ctg gac ggc gac gta aac ggc cac aag ttc agc 96
Pro Ile Leu Val Glu Leu Asp Glu Asp Val Asn Glu His Lys Phe Ser
20          25          30

gtg tcc ggc gag ggc gag ggc gat gcc acc tac ggc aag ctg acc ctg 144
Val Ser Gly Glu Gly Glu Asp Ala Thr Tyr Gly Lys Leu Thr Leu
35          40          45

aag ttc atc tgc acc acc ggc aag ctg ccc gtg ccc tgg ccc acc ctc 192
Lys Phe Ile Cys Thr Thr Glu Lys Leu Pro Val Pro Trp Pro Thr Leu
50          55          60

gtg acc acc ctg acc tac ggc gtg cag tgc ttc agc cgc tac ccc gac 240
Val Thr Thr Leu Thr Tyr Gly Val Glu Cys Phe Ser Arg Tyr Pro Asp
65          70          75          80

cac atg aag cag cac gac ttc ttc aag tcc gcc atg ccc gaa ggc tac 288
His Met Lys Glu His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr
85          90          95

gtc cag gag cgc acc atc ttc ttc aag gac gac ggc aac tac aag acc 336
Val Glu Glu Arg Thr Ile Phe Phe Lys Asp Asp Glu Asn Tyr Lys Thr
100          105          110

cgc gcc gag gtg aag ttc gag ggc gac acc ctg gtg aac cgc atc gag 384
Arg Ala Glu Val Lys Phe Glu Glu Asp Thr Leu Val Asn Arg Ile Glu
115          120          125

ctg aag ggc atc gac ttc aag gag gac ggc aac atc ctg ggg cac aag 432
Leu Lys Gly Ile Asp Phe Lys Glu Asp Glu Asn Ile Leu Glu His Lys
130          135          140

ctg gag tac aac tac aac agc cac aac gtc tat atc atg gcc gac aag 480
Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys
145          150          155          160

cag aag aac ggc atc aag gtg aac ttc aag atc cgc cac aac atc gag 528
Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu
165          170          175

gac ggc agc gtg cag ctc gcc gac cac tac gag cag aac acc ccc atc 576
Asp Glu Ser Val Glu Leu Ala Asp His Tyr Glu Glu Asn Thr Pro Ile
180          185          190

ggc gac ggc ccc gtg ctg ctg ccc gac aac cac tac ctg agc acc cag 624

```

eol f-seql . txt

Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln
195 200 205

tcc gcc ctg agc aaa gac ccc aac gag aag cgc gat cac atg gtc ctg 672
Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu
210 215 220

ctg gag ttc gtg acc gcc gcc ggg atc act ctc ggc atg gac gag ctg 720
Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu
225 230 235 240

tac aag taa 729
Tyr Lys

<210> 12

<211> 242

<212> PRT

<213> Artificial Sequence

<220>

<223> [CDS]: 1..729 from SEQ ID NO 11

<400> 12

Met Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val
1 5 10 15
Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser
20 25 30
Val Ser Gly Glu Gly Glu Asp Ala Thr Tyr Gly Lys Leu Thr Leu
35 40 45
Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu
50 55 60
Val Thr Thr Leu Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp
65 70 75 80
His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr
85 90 95
Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr
100 105 110
Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu
115 120 125
Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys
130 135 140
Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys
145 150 155 160
Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu
165 170 175
Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile
180 185 190
Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln
195 200 205
Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu
210 215 220
Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu
225 230 235 240
Tyr Lys

<210> 13

<211> 31

<212> DNA

<213> Artificial Sequence

<220>

<221> source

<222> 1..31

<223> /mol_type="unassigned DNA"

/note="Primer"

/organism="Artificial Sequence"

eol f-seql . txt

<400> 13
at tagcggcc gcatggatga tggccatcag g

31

<210> 14
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<221> source
<222> 1..28
<223> /mol_type="unassigned DNA"
 /note="Primer"
 /organism="Artificial Sequence"

<400> 14
ggaaaccacc agcatgttcc aggaattc

28