PCI\ WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau)
INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(51) International Patent Classification 5 : (11) International Publication Number: ' WO 91/13405
GO6F 11/14, 11/08, 11/00 Al
G11B 20 /18, i (43) International Publication Date: 5 September 1991 (05.09.91)
(21) International Application Number: PCT/US91/01254 | (74) Agents: ROWLAND, Mark, D. et al.; Fish & Neave, 875
Third Avenue, New York, NY 10022 (US).
(22) International Filing Date: 27 February 1991 (27.02.91)
(81) Designated States: AT, AT (European patent), AU, BB, BE
(30) Priority data: (European patent), BF (OAPI patent), BG, BJ (OAPI
487,648 2 March 1990 (02.03.90) UsS patent), BR, CA, CF (OAPI patent), CG (OAPI patent),

(71) Applicant: SF2 CORPORATION [US/US]; 140 Kifer
Court, Sunnyvale, CA 94086 (US).

(72) Inventors: KATZ, Randy, H. ; 65 Eucalyptus Road, Berke-
ley, CA 94705 (US). POWERS, David, T. ; 2265 Bayo
Claros Circle, Morgan Hill, CA 95037 (US). JAFFE,
David, H. ; 551 South Road, Belmont, CA 94002 (US).
GLIDER, Joseph, S. ; 3292 Murray Way, Palo Alto, CA
94303 (US). IDLEMAN, Thomas, E. ; 2660 Brady
Court, Santa Clara, CA 95051 (US).

CH, CH (European patent), CM (OAPI patent), DE,
DE (European patent), DK, DK (European patent), ES,
ES (European patent), FI, FR (European patent), GA
(OAPI patent), GB, GB (European patent), GR (Euro-
pean patent), HU, IT (European patent), JP, KP, KR,
1K, LU, LU (European patent), MC, MG, ML (OAPI
patent), MR (OAPI patent), MW, NL, NL (European
patent), NO, PL, RO, SD, SE, SE (European patent),
SN (OAPI patent), SU, TD (OAPI patent), TG (OAPI
patent).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

'

(54) Title: NON-VOLATILE MEMORY STORAGE OF WRITE OPERATION IDENTIFIER IN DAT/ STORAGE DE-

VICE
(57) Abstract
A method and apparatus are provided for de- }

tecting and correcting various data errors that may 608
arise in a mass data storage apparatus comprising a set SLVIR9 | SECTOR 6
of physical mass storage devices operating as one or SECTOR 3 SYSTEM BUS SETOR 4
more larger logical mass storage devices. More particu- SEGIOR | SECTOR 2
larly, there is provided a method and apparatus for de-
termining, on restoration of power to a device set, B B
whether or not a write operation was interrupted when };’ ERROR REPORT g
power was removed, and for reconstructing any data 6091 F Fol
that may be inconsistent because of the removal of £ E 60
power. R 102 R

et

. TIME STANP i

: COMPARISON !

PATH A | | PATH B

! TIME STAMP '

I APPENDER I

[I

[—— e |

—(700
410
0N v o |52

\—-s|5-——/

applications under the PCT.

AT
AU
BB
BE
BF
BG
BJ
BR
CA
CF
CG
CH
Cl
cM
cs
DE
DK

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austeia
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Canada
Central African Republic
Congo
Switzérland
Cote d'lvoire
Cameroon
Czechoslovakia
Germany
Denmark

Fl
FR
GA

GN
GR
HU
IT
Jp
KP

KR
Lt
LK
LU
MC

Spain

Finland

France

Gabon

United Kingdom
Guinca

Greece

Hungary

Italy

Japan

Democratic People’s Republic
of Korea

Republic of Korea-
Liechicnstein

Sri Lanka
Luxcmbourg
Monaco

Madagascar
Mali
Mongolia
Mauritania
Malawi
Netherlands
Norway
Poland
Romania
Sudan
Sweden
Senegal
Sovicet Union
Chad

Togo

United States of America

-

PCT/US91/01254

WO 91/13405

10

15

20

25

NON-VOLATILE MEMORY STORAGE
OF WRITE OPERATION IDENTIFIER IN DATA STORAGE DEVICE

BACKGROUND OF THE INVENTION

The present invention relates to sets of
physical mass storage devices that collectively perform
as one or more logical mass storage devices. In
particular, the present invention relates to methods
and apparatus for maintaining data integrity across
such a set of physical mass storage devices in the

event of a power failure.
Use of disk memory continues to be important

in computers because it is nonvolatile and because
memory size demands continue to outpace practical
amounts of main memory. At this time, disks are slower
than main memory so that system performance is often
limited by disk access speed. Therefore, it is
important for overall system performance to improve
both memory size and data access speed of disk drive
units. For a discussion of this, see Michelle Y. Kinm,
n"synchronized Disk Interleaving", IEEE Transactions On
Computers, Vol. C-35, No. 11, November 1986.

Disk memory size can be increased by
increasing the number of disks and/or increasing the
diameters of the disks, but this does not increase data
access speed. Memory size and data transfer rate can

WO 91/13405 PCT/US91/01254

10

15

20

25

30

35

both be increased by increasing the density of data
storage. However, technological constraints limit data
density and high density disks are more prone to
errors.

A variety of techniques have been utilized to
improve data access speed. Disk cache memory capable
of holding an entire track of data has been used to
eliminate seek and rotation delays for successive
accesses to data on a single track. Multiple
read/write heads have been used to interleave blocks of
data on a set of disks or on a set of tracks on a
single disk. Common data block sizes are byte size,
word size, and sector size. Disk interleaving is a
known supercomputer technique for increasing
performance, and is discussed, for example, in the
above~-noted article.

Data access performance can be measured by a
number of parameters, depending on the relevant
application. 1In transaction processing (such as in
banking) data transfers are typically small and request
rates are high and random. In supercomputer
applications, on the other hand, transfers of large
data blocks are common.

A recently developed disk memory structure
with improved performance at relatively low cost is the
Redundant Array of Inexpensive Disks (RAID) (see, for
example, David A. Patterson, et al., "A Case for
Redundant Arrays of Inexpensive Disks (RAID)", Report
No. UCB/CSD 87/39, December, 1987, Computer Science
Division (EECS), University of California, Berkeley,
California 94720. As discussed in the Patterson et al.
reference, the large personal computer market has
supported the development of inexpensive disk drives
having a better ratio of performance to cost than
Single Large Expensive Disk (SLED) systems such as the

WO 91/13405 PCT/US91/01254

IBM 3380. The number of I/Os per second per read/write
head in an inexpensive disk is within a factor of two
of the large disks. Therefore, the parallel transfer
from several inexpensive disks in a RAID architecture,

5 in which a set of inexpensive disks function as a
single logical disk drive, produces greater performance
than a SLED at a reduced price.

Unfortunately, when data is stored on more
than one disk, the mean time to failure varies

10 inversely with the number of disks in the array. To
correct for this decreased mean time to failure of the
system, error recognition and correction is built into
the RAID systems. The Patterson et al. reference
discusses 5 RAID embodiments each having a different

15 means for error recognition and correction. These RAID
embodiments are referred to as RAID levels 1-5.

RAID level 1 utilizes complete duplication of
data and so has a relatively small performance per disk
ratio. RAID level 2 improves this performance as well

20 as the capacity per disk ratio by utilizing error
correction codes that enable a reduction of the number
of extra disks needed to provide error correction and
disk failure recovery. In RAID level 2, data is
interleaved onto a group of G data disks and error

25 codes are generated and stored onto an additional set
of C disks referred to as "check disks"™ to detect and
correct a single error. This error code detects and
enables correction of random single bit errors in data
and also enables recovery of data if one of the G data

30 disks crashes. Since only G of the C+G disks carries
user data, the performance per disk is proportional to
G/(G+C). G/C is typically significantly greater than
1, so RAID level 2 exhibits an improvement in

. performance per disk over RAID level 1. One or more

35 spare disks can be included in the system so that if

WO 91/13405

10

15

20

25

30

35

PCT/US91/01254

one of the disk drives fails, the spare disk can be
electronically switched into the RAID to replace the
failed disk drive.

RAID level 3 is a variant of RAID level 2 in
which the error detecting capabilities that are
provided by most existing inexpensive disk drives are
utilized to enable the number of check disks to be
reduced to one, thereby increasing the relative
performance per disk over that of RAID level 2.

The performance criteria for small data
transfers, such as is common in transaction processing,
is known to be poor for RAID levels 1-3 because data is
interleaved among the disks in bit-sized blocks, such
that even for a data access of less than one sector of
data, all disks must be accessed. To improve this
performance parameter, in RAID level 4, a variant of
RAID level 3, data is interleaved onto the disks in
sector interleave mode instead of in bit interleave
mode as in levels 1-3. The benefit of this is that,
for small data accesses (i.e., accesses smaller than
G+C sectors of data), all disks need not be accessed.
That is, for a data access size between k and k+1
sectors of data, only k+1 data disks need be accessed.
This reduces the amount of competition among separate
data access requests to access the same data disk at
the same time.

Yet the performance of RAID level 4 remains
limited because of access contention for the check disk
during write operations. For all write operations, the
check disk must be accessed in order to store updated
parity data on the check disk for each stripe (i.e.,
row of sectors) of data into which data is written.
Therefore, write operations interfere with each other,
even for small.data accesses. RAID level 5, a variant
of RAID level 4, avoids this contention problem on

WO 91/13405

10

15

20

25

30

PCT/US91/01254

write operations by distributing the parity check data
and user data across all disks.

Power failures present unique problems to
RAID architectures that conventional error recognition
and correction techniques will not handle reliably. In
a conventional SLED storage system, write requests
translate into write operations on a single disk. If a
power failure occurs during such a write request, it is
more likely that the operation will complete before the
disk loses power. However, in RAID architectures,
write requests translate into write operations on
multiple disks. For RAID write operations, if a power
failure occurs during a write request, it may happen
that only some of the disks involved in the write
request will complete their write operations and that
others will not have started their write operations.
Although this results in only a partial completion of
the write request, this failure to complete the write
operation will not be detected if the disks that did
not complete the write operation did not write any data
at all. In addition, the data on the check disks
across the data stripe that was being altered may be
invalid (i.e., not equal to the correct check
information for the data disks), thereby leading to the
possibility that other sectors uninvolved in the write
request will also not be able to be regenerated
subsequently.

In view of the foregoing, it would be
desirable to be able to provide a way to determine, on
restoration of power to a multiple device mass storage
system after a power loss, whether or not a write
operation was interrupted when power was removed, and
to reconstruct any data that may be inconsistent with
other stored data bécause of the removal of power.

WO 91/13405 PCT/US91/01254

SUMMARY OF THE INVENTION

It is an object of the present invention to
provide a way to determine on restoration of power to a
multiple device mass storage system whether or not a
5 write operation was interrupted when power was removed.
It is another object of the present invention
to provide a way to reconstruct any data that may be
inconsistent with other stored data because of the
removal of power during a write operation.

10 In accordance with the present invention,
there is provided a method and apparatus for
determining, on restoration of power to a set of
physical mass multiple storage devices, whether or not
a write operation was interrupted when power was

15 removed, and for reconstructing any data that may be
inconsistent because of the removal of power. The
apparatus includes at least one check device for .
storing redundancy data, nonvolatile memory means,
means for detecting a failure of power to the set of

20 physical storage devices, means for, on detection of a
power failure during a storage operation, storing in
the nonvolatile memory means information regarding said
storage operation, and means for, on restoration of
power to the set of physical storage devices, reading

25 the information regarding the storage operation from
the nonvolatile memory means and reconstructing data on
the set of physical storage devices.

In an alternative embodiment, information
regarding a storage operation may be stored in the non-

30 volatile memory at the beginning of every storage
operation, and is erased therefrom when the storage
operation is completed.

WO 91/13405 PCT/US91/01254

-7 -

BRIEF _DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a prior art channel
architecture for routing data to various peripheral
devices;

5 FIG. 2 illustrates a prior art bus
architecture for routing data to various peripheral

devices;
FIG. 3 illustrates coupling between RAID

memories and device controllers in a multiple device
10 mass storage system of a type suitable for use with the

present invention;
FIG. 4 illustrates RAID memory 304 of FIG. 3

in greater detail and illustrates hardware used to
detect and correct data errors arising from power
15 failure in accordance with the principles of the

present invention;
FIG. 5 illustrates a data block layout that

jncludes a time stamp data field for detecting and
correcting data errors arising from power failure in
20 accordance with the principles of the present

invention;
FIG. 6 illustrates an array of mass storage

devices in accordance with the principles of the
present invention including four data storage devices

25 divided into two data groups, and a check device; and
FIG. 7 illustrates an example of the

operation of a data group including two mass storage

devices.

DETAILED DESCRIPTION OF _THE INVENTION

30 1. escripti f Exempla M iple Device Mass
Storaage System

, To illustrafe the principles of the present
invention, a description is provided below of a
multiple storage device mass storage system in which

WO 91/13405 PCT/US91/01254

10

15

20

25

the present invention is embodied. It is shown that
the described multiple device mass storage system can
be connected in various computer systems having
conventional architectures. Although the present
invention is described in the context of a multiple
device mass storage system having a RAID architecture,
it will be appreciated by one of skill in the art that
the present invention is useful in any multiple device
storage system architecture in which data is
interleaved across more than one physical storage
device.

In FIG. 1 is illustrated the general
structure of a conventional channel architecture for
routing data from main memory in a central processing
unit (CPU) to any of a set of data storage devices
114-126. Data emerges from the CPU main memory 101
along any one of a set of channels 102-104 and is
selectively directed to one of a set of device
controllers 105-113. The selected one of these device
controllers then passes this data on to a selected one
of the data storage devices attached to that
controller. These data storage devices can be of a
variety of types, including tape storage, single disk
storage and RAID memory storage. Such storage devices
may be coupled to more than one controller to provide
multiple data paths between the CPU main memory 101 and

WO 91/13405

10

15

20

25

30

35

PCT/US91/01254

the storage device. This is shown, for example, by the
coupling of storage device 122 to controllers 111 and
112.

FIG. 2 illustrates an alternative
conventional architecture in which channels 102-104 are
replaced by an input/output (I/0) bus 201. The data
storage devices used in such a systenm also can be of a
variety of types, including tape storage, single disk
storage and RAID memory storage. In both of these
architectures, during any data access, several switches
have to be set to connect CPU main memory 101 to the
storage device selected for access. When the storage
device is a RAID memory, additional controls must be
set to route the data within the RAID memory.

To explain, FIG. 3 shows in greater detail
how a pair 301 and 302 of device controllers can be
connected to a pair of RAID memories 304 and 305.° Each
device controller is connected by a bus or channel 319
to a CPU main memory. In general, each RAID memory is
attached to at least two device controllers so that
there are at least two parallel paths from one or more
CPU main memories 101 to that RAID memory. Thus, for
example, each of RAID memories 304 and 305 is connected
to device controllers 301 and 302 by busses 311 and
312, respectively. As shown, bus 311 may also connect
device controller 301 to additional RAID memories.

Such parallel data paths from the CPU to the RAID
memory are useful for routing data around a busy or
failed device controller.

Within each RAID memory are a set 306 of disk
drive units 307. This set includes an active set 308
of disk drive units 307 and a backup set 309 of disk
drive units 307. In each of RAID memories 304 and 305
is a RAID controller 310 that routes data between
device controllers 301 and 302 and the appropriate one

WO 91/13405 PCT/US91/01254

10

15

20

25

30

35

- 10 -

or ones of disk drive units 307. Hardware protocol
controllers 315 in each of the device controllers 301
and 302, and corresponding hardware protocol
controllers in each of RAID memories 304 and 305 (e.g.,
protocol controllers 403 and 404 shown in FIG. 4),
handle the transfer of data between device controllers
and RAID controllers. When one of the disk drive units
in active set 308 fails, RAID controller 310 switches
the failed unit out of the data path, recreates the
failed drive unit's data and thenceforth reroutes that
disk drive unit's input data to one of the disk drive
units in backup set 309. Controller 310 utilizes the
error correcting capability provided by the codes
written onto check disks to recdnstruct the data of the
failed disk drive unit onto the backup unit with which
the failed disk drive unit has been replaced.

The particular method by which data on a
drive in a RAID architecture is reconstructed is
implementation specific. In the preferred embodiment a
Reed Solomon coding algorithm is used to calculate the
check data that is stored on the check drives. 1In a
particularly preferred embodiment this check data is
distributed across several physical disk drives in a
striped manner like that of the previously described
RAID level 5 architecture. A stripe comprises
corresponding sectors across a set of disk drives, some
of which sectors contain mass storage data and others
of which sectors contain check data for the mass
storage data sectors within the stripe. A stripe may
be one or more sectors deep. Such stripes on a set of
disks are grouped into one or more of what is hereafter
referred to as redundancy groups. In this arrangement
the physical devices comprising the check drives for a

particular stripe varies from stripe to stripe. The

widths of the stripes (i.e., the number of physical

WO 91/13405

10

15

20

25

PCT/US91/01254

- 11 -

storage devices spanned by each stripe) are equal
within a redundancy group.

The particular Reed Solomon coding algorithm
used determines (or limits) the number of data blocks
that can be reconstructed. For example, the Reed
Solomon code may limit reconstruction to two drives out
of the total number of drives in a stripe (including
drives holding check data). If in this case more than
two drives in the stripe are determined to be
inconsistent, the Reed Solomon code is incapable of
reconstructing any of the data. As used herein, the
term "inconsistent" means that the data, when encoded
using the Reed Solomon code with the other data in the
stripe, does not result in the check data stored for
the stripe. For this reason, it may be desired to
divide a multiple device mass storage system having a
RAID architecture into a plurality of separate .

redundancy groups.
Assuming that the number of drives to be

reconstructed is within the limit imposed by the Reed
Solomon code used, reconstruction is generally
accomplished as follows. First, all data blocks across
the redundancy group stripe that includes the drive(s)
to be reconstructed are read. Also read is the check
data corresponding to that stripe. Error correction
circuitry (e.g., redundancy group error correction
circuitry 408 of FIG. 4) then uses the check data and
the valid data blocks to regenerate the data that

WO 91/13405 PCT/US91/01254

10

15

20

25

30

35

- 12 -

should have been written to each data block or block
that is inconsistent with the remainder of the stripe.
The error correction circuitry can be of any suitable
type for manipulating the data in accordance with the
algorithm of the particular Reed Solomon code used.
How this circuitry generates the check data and how it
regenerates inconsistent data are not within the scope
of the present invention -- it is intended that the
present invention be applicable to any system in which
it is desired to be able to detect and correct data
errors resulting from a failure to write one or more
data blocks involved in a write operation, regardless
of the particular reconstruction technique used.

Thus, by replacing a single, conventional
physical storage unit with a set of disk drives
operating together as a larger unit an additional level
of data path branching and switching is introduced that
may incorrectly direct data to an incorrect disk drive
unit.

2. Detection Of Misrouted Data

The RAID memory can be provided with means
for detecting incorrectly routed data. This is
preferably accomplished as follows. When data is
stored in one of the disk drive units, extra fields
(e.g., fields 501 and 502 of FIG. 5) are included in
each block of stored data. These extra fields contain
data that identifies where that data should be located
in RAID memory. The extra field 501 specifies the
logical unit number of the device to which the CPU
associated with main memory 101 directed the data and
field 502 specifies the logical block number of the
data block to which the CPU directed the data.

A brief discussion is appropriate here
concerning logical units, logical unit numbers, logical
blocks and logical block numbers. A logical unit

WO 91/13405 PCT/US91/01254

10

15

20

25

30

- 13 -

number (LUN) is the number assigned by a CPU to an
external mass storage address space, which may be
mapped to one physical mass storage device, a plurality
of physical mass storage devices, or any portion of one
or more such devices. The LUN is transmitted by the
CPU in a data access command to identify the external
device as the one to take part in the data access. In
response to the logical unit number, various switches
within a data path from the CPU to the selected
external device are set to direct the data to or from
the device. Known RAID device sets are conventionally .
operated such that the CPU sees the RAID memory as one
logical disk drive device. A more preferred method for
configuring data on a set of physical storage devices
is to permit dynamic configuration of the data such
that the set can be changeably operated as one or more
than one logical storage device as desired. ‘

In accordance with this more preferred method
of configuring data, blocks of data (sector sized) from
a single write operation from the CPU are written
across several physical disk drives although, as far as
the CPU is concerned, it has written data to a single
"logical unit," typically in one sector increments.
Such a logical unit comprises one or more data groups.
Each data group is a logically contiguous group of data
blocks (i.e., sectors) bound by a single redundancy
group. Data groups can be configured as desired to
provide within the RAID memory 304 different logical
units having various performance characteristics.

FIG. 4 shows a particular exemplary configuration of
RAID memory 304 in which several disk drive units 307
have been grouped into separate logical

WO 91/13405 PCT/US91/01254

- 14 -

units 401 and 402. Each logical unit may separately

include its own check data or alternatively, the two

logical units may be incorporated into a larger

redundancy group ~-- for example, one formed across all
5 disk units 307 in active set 308.

The memory of each physical disk drive device
is divided into physical blocks of memory, each of
which is identified internally in the device by a
physical block number (PBN). A logical block number

10 (LBN) or logical block address (LBA) is the number
transmitted by a CPU to a data storage device to access
a block of data identified by this number. 1In a
physical disk drive unit, some of the physical blocks
may be bad and other physical blocks may be needed for

15 overhead operations and are therefore not available to
accept user data. A unique LBN or LBA is assigned to
each physical block of a logical unit that is available
for user data.

Referring now to FIGS. 3 and 4, the detection

20 of incorrectly routed data is illustrated for the case
of data passing through device controller 302 to and/or
from RAID memory 304. Device controller 302 includes a
processor 314 that interprets CPU commands, identifies
the appropriate logical unit number and the logical

25 block number with which a command is concerned and
transmits this information to RAID memory 304. When
data is written to a logical unit (such as logical unit
401 or 402 in FIG. 4) within RAID memory 304, the
logical unit number and logical block number are

30 prepended to the data block received from the CPU while
the data is being held in a packet staging memory 313
within device controller 302. Subsequently, in one of
the SCSI (Small Computer 5ystem Interface) interfaces
410 within multiple drive SCSI interface 409 of

35 RAID 304, the data is routed to the appropriate disk

WO 91/13405 PCT/US91/01254

- 15 -

drive units within RAID memory 304. However, before
transferring the data block to a particular disk 307,
_the logical unit number and logical block number
prepended to the data are checked against expected

5 values previously transmitted to RAID memory 304 by
processor 314 of device controller 302. This check
takes place while the data block is passing through
multiple drive SCSI interface 409. If the'expected and
received values do not agree, the transfer of the data

10 block is retried and, if a discrepancy still exists,
then an unrecoverable error is reported to the CPU.

When data is read from one of the disk

drives 307, the logical unit number and logical block
number stored with the data are compared against the

15 expected values jdentified from the CPU read command by
processor 314. Such comparison is made both as the
data passes through drive SCSI interface 410 and as it
passes through packet staging memory 313 in device
controller 302 on its way to the CPU. If a discrepancy

20 is detected, the data transfer is terminated and the
read operation is retried. If a discrepancy still
exists, then the data block is either regenerated using
the disk array (e.g., using redundancy data on check
disks) or an unrecoverable error is reported to the

25 CPU. 1In addition, a further recovery operation takes
place as follows. The LBN and LUN read from the data
block, which were found to be incorrect, point to
another data block within RAID memory 306. This ¢ :a
block is marked as corrupted, along with the stri; in

30 which it resides. Subsequent CPU attempts to read or
write this stripe will be rejected until the stripe is
reinitialized by the CPU or other means.

3. Detection Of Failure To Write
Another extra field (505 of FIG. 5) is
25 included in each block of stored data to enable the

WO 91/13405 PCT/US91/01254

10

15

20

25

30

35

- 16 -

RAID controller 310 to detect failures to write due to
a drive failure. This extra field contains data that
identifies a write operation uniquely. In a preferred
embodiment, this field specifies the time at which the
write operation is started by RAID controller 310, and
is referred to herein as a time stamp. As described in
Section 6 herein, the time stamp field can also be used
to reconstruct data if a power failure interrupts
execution of a CPU write request (e.g., a power failure
affecting RAID controller 310).

Before any write operations are started on
any disks, a time value is read from a real time clock
414 of FIG. 4 and is stored in register 412 in the
drive SCSI interfaces 410 associated with the write
request. The write operations are then started and the
time stamp that was written into the drive SCSI
interfaces 410 is appended to each data block
associated with the write request (including blocks of
check data), thereby storing the CPU data, the
associated prepended data and the associated appended
data into RAID memory.

In response to each read request from a CPU,
for all data blocks in each data group that are read to
satisfy that read request, the time stamps stored with
the data are compared against each other by the
following procedure. 1In each drive SCSI interface 410
of multiple drive SCSI interface 409, the time stamp
from the data block is loaded into a register 412
dedicated to holding such time stamps and all such time
stamp registers within multiple drive SCSI interface
409 that are associated with the read request are
compared using compare circuitry within multiple drive
SCSI interface 409. All of the time stamps are
expected to be equal. If a discrepancy is detected,
then the read request is retried. If the discrepancy

WO 91/13405

10

15

20

25

30

35

PCT/US91/01254

- 17 -

is .again detected and the number of disks containing an
older time stamp is within the limit that can be
reconstructed using the check disk(s), then the sectors
in the devices holding older data are reconstructed to
bring the data up to date with the most recent (i.e.
newest) time stamp on the data blocks involved in the
read request. If the number of disks containing an
older time stamp is not within the limit that can be
reconstructed using the check disk(s), then a
nonrecoverable error is reported to the CPU so that
corrective action can be taken such as calling for
backup tapes to reconstruct the data. 1In addition, the
stripe must be declared as corrupted and subsequent
data accesses to it must be rejected until the CPU or
other means reinitializes the stripe.
4. Stored Data Block Structure

FIG. 5 shows a preferred arrangement for a
sector-sized block of data as it is stored on a disk
drive in accordance with the principles of the present
invention. As indicated in FIG. 5, each data block 500
stored in a disk drive preferably has several error
checking fields in addition to the CPU data 503. The
first error checking fields 501 and 502 are error
checking fields prepended by the device controller 302
during a CPU write request and stripped by device
controller 302 during a CPU read request. In this
embodiment, these error checking fields contain the
logical unit number 501 and the logical block number
502 for the associated CPU data 503 contained in that
data block. 1Inclusion of these fields allows the disk
storage system to detect misdirected data blocks as

previously described.
The third field is the CPU data block 503 as

sent from or to CPU bus or channel 319. The fourth
field is a CRC code 504 appended by device controller

WO 91/13405 - PCT/US91/01254

10

15

20

25

30

35

- 18 =

302 on transmission to RAID controller 310 and checked
by RAID controller 310. CRC code 504 is checked again
and stripped by device controller 302 on receipt from
RAID controller 310. Inclusion of this field 504
allows the disk storage system to detect random data
errors occurring on the bus between the device
controller and the RAID controller.

The fifth field is a time stamp 505 appended
by RAID controller 310 on a write operation and checked
and stripped by RAID controller 310 on a read
operation. Inclusion of this field allows the disk
storage system to detect the failure to write and/or
retrieve the correct sector due to disk drive failures
and/or power failures.

The sixth field is a CRC code 506 appended by
the RAID controller on a write operation and checked
and stripped by the RAID controller on a read
operation. As previously described, inclusion of this
field allows the disk storage system to detect random
bit errors occurring within the data block covering the
additional device controller CRC 504 and time stamp 505
fields, during transmission between the disk and the
RAID controller.

The seventh field contains the results of an
error correction code (ECC) calculation 507 appeﬁded by
the disk drive on a write operation and checked and
stripped by the disk drive on a read operation.
Inclusion of this field allows the disk storage system
to detect and possibly correct random bit errors
occurring in the serial channel from the disk drive to
disk platter and other media errors.

Additional fields may be provided for
purposes of performing other data handling functions.
For example, the disk drive may append a track
identification number and a sector identification

WO 91/13405

10

15

20

25

30

35

PCT/US91/01254

- 19 =

number to the stored data for internal drive

operations.

5. Time Stamping In Transaction Mode

A RAID memory may be operated in a
transaction processing mode where data accessed by a
CPU write or read request comprises a single block or
number of blocks of data (e.g., sectors) on a logical
unit disk. For a read operation, only the particular
drive or drives on which the block or blocks are
ljocated will be accessed. For a write operation, one
or more disk drives containing check data are accessed
in addition to the drive or drives on which the block
or blocks of data are located. Assuming, however, that
only a single drive is involved in the read operation,
a comparison check of the time stamp associated with
the requested data block or blocks can not be
accomplished in the manner previously described to
validate the data because no other drives are accessed
in the read.

FIGS. 6 and 7 illustrate an embodiment of the
time stamp aspect of the present invention particularly
preferred for transaction processing applications.

FIG. 6 shows an array 600 of physical storage devices
601-606. Devices 601-604 store blocks of transaction
data. Devices 605 and 606 operate as check drives for
the array and are used to regenerate data if one or two
of devices 601-604 fails. It is to be understood also
that if one or both of devices 605 and 606 fail, the
check data stored on these drives can be reconstructed
from the data on devices 601-604. Within array 600 are
defined two data groups 615 and 616. Each data group
may comprise a separate logical unit (e.g., logical
unit 401 of FIG. 4), or together they may be included
within a larger logical unit (e.g., logical unit 402 of
FIG. 4). Data group 615 includes devices 601 and 602,

WO 91/13405 PCT/US91/01254

10

15

20

25

30

35

- 20 =

and data group 616 includes devices 603 and 604. Data
is transferred between each of devices 601-606 and a
system bus 608 (e.g., bus 406 of FIG. 4) via a
corresponding one of buffer memories 609-614 (e.g.,
buffers 407 of FIG. 4). When array 600 is operated in
transaction mode, such that a write or read request may
concern only a single block of data, all accesses to
data on any of devices 601-604 causes both devices of
the data group including the device on which the data
block is located to be accessed. This applies to both
write and read requests. Thus, for example, if a block
of data is to be written to only device 601, both
device 601 and device 602 will be accessed together in
the same write command issued to data group 615. The
new host data block will be written to device 601 with
an appended time stamp of the type previously
described. Although no new host data is written to
device 602, the same time stamp written to device 601
is written to the block location on device 602
corresponding to the block location on device 601 in
which the new host data is written and to 605 and 606
on the corresponding check data blocks. On a
subsequent read request concerning the data block on
device 601, the time stamps on devices 601 and 602 are
compared. This compéfison of time stamps is made to
ensure that new data was written to device 601 when the
write command to data group 615 was issued.

A write command to a data group is typically
accomplished by a read-modify-write operation for
purposes of updating the check data on devices 605 and
606. This operation involves first reading the old
data in the block to be written, as well as the old
data in the corresponding block of the other device in
the data group and the check data associated with those
blocks. For example, assuming again that new data is

WO 91/13405

10

15

20

25

30

- 21 -

to be written to a block location in device 601, the
old data in the block location is read into buffer 609.
At the same time, the old data in a corresponding block
location in device 602 (which is not to be changed) is
read into buffer 610. Also, the old check data on
devices 605 and 606 is read into buffers 613 and 614.
Then, the data in buffer 609 is updated, as is the
check data in buffers 613 and 614. The contents of
buffers 609, 610, 613 and 614 are then written
respectively to devices 601, 602, 605 and 606. During
this write operation, a time stamp is appended to the
data transferred to devices 601 and 602, as well as to
the check data transferred to devices 605 and 606.

Although the array 600 of FIG. 6 is arranged
such that check data for the entire array is located on
devices 605 and 606, it is to be understood that the
data group configuration can be used as well in arréys
in which the check data is distributed throughout the
devices of the array, as in RAID level 5 or in any of
the preferred data structures previously described.

In addition, although data groups 615 and 616
are shown as each comprising two physical devices, such
data groups may comprise any plurality of physical
devices, or portions of any plurality of physical
devices, and may as well be used for applications other
than transaction processing such as in data bases,
real-time analysis, numerical analysis and image
processing.

FIG. 7 illustrates an example of how a series
of data blocks each of sector size can be written to
and read from devices 601 and 602 configured as a
single data group having logically contiguous sectors

PCT/US91/01254

WO 91/13405 . PCT/US91/01254

10

15

20

25

30

- 22 -

numbered 1-6. For purposes of illustration, assume
that sectors 1 and 2 are a pair of corresponding
sectors of devices 601 and 602 respectively. Likewise,
assume sectors 3 and 4, and sectors 5 and 6 are
corresponding pairs of sectors in devices 601 and 602,
respectively. New data may be written to an individual
sector of either device 601 or 602, or new data may be
written to corresponding sectors of devices 601 and 602
in parallel, but in either case both devices 601 and
602 are accessed for each transfer. For exanmple, when
writing new data to either sector 1 of device 601 or
sector 2 of device 602 or to both, a read operation is
performed first in which the old data in sectors 1 and
2 is read into buffers 609 and 610 respectively. The
data in one or both buffers is modified appropriately
with the new data, and the data in the buffers are
written back to the devices 601 and 602. As indicated
by box 700, a time stamp is appended to both sectors 1
and 2 as the data is transferred along paths A and B to
devices 601 and 602 respectively. When reading from
either sector 1 or 2 or both, the data from both
sectors is transferred to buffers 609 and 610, and the
corresponding time stamps stored with sectors 1 and 2
are compared during the transfer as indicated by box
702. As an example, the functions of appending and
comparing time stamps may be accomplished in a drive
interface circuit such as SCSI drive interface

circuit 410 of FIG. 4. If a discrepancy between the
stamps is detected, indicating that a previous write to
the devices 601 and 602 was not successfully completed,
the read operation is retried. If the discrepancy
reoccurs, then either reconstruction is attempted or an
error report is generated as previously described.

WO 91/13405

10

15

20

25

30

35

PCT/US91/01254

- 23 -

6. Power Failure Interrupted Write Operation

A power failure could occur at any time
during execution of a CPU write request causing an
interruption of write operations associated with the
write request. If such a power failure does occur (for
example, the RAID controller loses power), then the
write request can end in any one of the following three
states: (1) none of the write operations were
completed; (2) some of the write operations were
conmpleted; or (3) all of the write operations were
completed.

A fourth possibility, for the following
reasons, is so remote as not to be of significant
concern. This possibility is that a write operation on
a disk is discontinued part way through writing a data
block onto a disk ‘platter. When power fails, there is
sufficient energy stored to allow the disks to continue
writing for multiple milliseconds, which is more than
enough time to complete any operations that had
progressed to the point that data was actually being
transferred to the disk platters. It is much more
likely that, during a power failure, some disks were in
the process of seeking the heads or waiting for the
correct sector to come under the heads. 1In these
cases, there may not have been sufficient time to
complete the operation in the event of a power failure.

Therefore, before any write operation is
started on any disk, within a nonvolatile memory 413 is
stored a journal of information concerning the CPU
write request and the write operations to be performed.
The data stored within nonvolatile memory 413 is
intended to assist in recovering from a write request
interrupted by a power failure. Nonvolatile memory 413
is preferably battery backed-up random access memory oOr
electrically erasable programmable read-only memory.

WO 91/13405 PCT/US91/01254

10

15

20

25

30

35

- 24 -

Nonvolatile memory is used so that this information is
not lost if a power failure occurs, thereby enabling
such data to be utilized in recovering from such power
failure. Successful recovery from such an incomplete
write operation means that all data blocks across the
redundancy group stripe that was modified by the write
operations associated with the CPU write request are
consistent with the check data for that stripe.

Some, and preferably all, of the following
information is loaded into nonvolatile memory 413
before the start of any write operation: (1) a write
process flag -- an indicator that a write operation was
underway when power was removed; (2) an operation
sequence number -- a number assigned to the write
command when received from the CPU indicating the order
of command reception; (3) a physical drive address;

(4) a starting logical block number; (5) an ending
logical block number, or an indication of the size of
the write operation; (6) a time stamp; (7) and the
physical addresses of check drive(s) associated with
the transfer.

After all write operations occurring on
drives within a logical unit (e.g., logical unit 402)
associated with a write request are completed, the time
stamp and other information associated with that write
request are erased from the nonvolatile memory 413 by
processor 411

If a power failure occurs affecting RAID
controller 310, processor 411 analyzes the
“consistency" of each redundancy group as part of its
initialization procedure when power is restored to the
RAID controller. To do so, it scans each write in
progress journal stored within nonvolatile memory 413.
If all journals have been erased within nonvolatile
memory 413, then processor 411 knows that no write

WO 91/13405

10

15

20

25

30

35

PCT/US91/01254

- 25 =

operation was partially completed at the time of power
failure. If the journal has not been erased within
nonvolatile memory 413, then processor 411 determines
which disks 307 and which sectors on these disks were
being written in response to the write request by
reading the contents of the journal stored in
nonvolatile memory 413. Processor 411 then causes data
blocks from those sectors to be read from disks 307 to
the RAID buffers 407 and then compares the time stamps
from each data block with the expected value as read
from nonvolatile memory 413.

If none or all of the data blocks associated
with the write request were written with new data
(i.e., either none or all of the time stamps have the
same value as in nonvolatile memory 413), processor 411
deletes the nonvolatile memory entry for the write
request, thereby indicating that the recovery opération
was successfully completed. If some of the data blocks
associated with the write request were written and some
were not, then processor 411 determines whether it is
within the error correcting capabilities of the RAID
controller, using redundancy group error correction
circuitry 408, to reconstruct the data blocks that have
the oldest time stamp to bring them up to date with the
newest data blocks (i.e, the data blocks that were '
successfully written before the power failure
interrupted the write operation). When possible,
processor 411 carries out procedures to regenerate data
where the old data resides and then deletes the
nonvolatile memory entry for the write request.

If processor 411 determines that the blocks
with old data cannot be reconstructed and it is within
the error correcting capabilities of correction
circuitry 408 to.reconstruct the data blocks that have
the new time stamp (thereby bringing the data blocks

WO 91/13405 PCT/US91/01254

10

15

20

25

30

- 26 -

back to the state just prior to the write operation),
then processor 411 carries out procedures to do that,
and deletes the nonvolatile memory entry for the write
request.

If none of the above scenarios is possible,
processor 411 signals an unrecoverable error to all
device controllers 301-302 to which RAID memory 304 is
connected. In turn, all device controllers 301-302
thus signalled will report this unrecoverable error to
all CPUs to which they are connected. 1In addition, any
further data requests to the corrupted area are
rejected until the problem is corrected.

Although an embodiment has been described in
which data is stored on nonvolatile memory 413 at the
beginning of every write operation, the RAID memory may
include a power supply having a power failure early
warning system that can eliminate the need to store
data in nonvolatile memory 413 at the beginning of
every write operation. -Such early warning systems are
provided as an option in many conventional power
supplies. These early warning systems are capable of
detecting the onset of a power failure in advance of
the actual failure, and can be used to generate an
interrupt to notify a processor that a power failure is
imminent. By so using a conventional powef)failure
early warning system to generate an interrupt signal to
processor 411, processor 411 is provided sufficient
warning to allow it to store data concerning a pending
write operation in nonvolatile memory 413 before power
actually fails. Thus, in such a case there is no need
to store data in nonvolatile memory 413 at the
beginning of every write operation, since that same
data can be stored in the non-volatile memory in the
event of a power failure.

WO 91/13405 PCT/US91/01254

10

15

20

25

30

35

- 27 -

The execution of a CPU write request and a
CPU read request by RAID memory 304 is described
hereafter to further illustrate how the various aspects
of the present invention can be integrated in the
operation of RAID memory 304.

- 7. CPU Write Request

In a CPU write request, device controller 302
receives a request to write a certain amount of data to
a certain logical unit number, starting at a certain
logical block number. The request is staged in packet
staging memory 313 and is read and interpreted by
processor 314. A request is forwarded to RAID
controller 310 through protocol controller 315 and bus
312 and is read and stored by protocol controller 404.
Protocol controller 404 signals processor 411 via a bus
405 that a request is ready to be processed and
processor 411 then reads and interprets the write
request. Note that protocol controller 403 handles
requests to RAID 304 from device controller 301.

Processor 411 determines whether the write
request to the logical unit number translates to write
operations on disks contained within the array 306 of
disks (e.g., logical unit 401 or 402), and, if it does,
then sends commands to those disks through each of
their associated drive SCSI interfaces 410. Processor
411 signals processor 314 in device controller 302 to
start sending data to buffers 407 of RAID memory 304.
Processor 411 also reads the current time of day from
clock 414 and loads the nonvolatile memory 413 with
information relating to the write operations that are
about to start. Processor 411 also writes the time of
day into a register 412 in each drive SCSI interface
410 associated with a disk drive unit 307 that will be
involved in the write request. Processor 411 also
writes registers 412 in these same drive SCSI

WO 91/13405 PCT/US91/01254

10

15

20

25

30

- 28 -

interfaces with the expected logical unit number and
logical block number for the block of data arriving
from the CPU.

Processor 314 signals the CPU to send data to
packet staging memory 313 in device controller 302. 1In
response, the CPU sends data block packets which are
staged in packet staging memory 313. From the header
information attached to the CPU data, processor 314
determines for which logical unit number and logical
block number each packet is intended and prepends that
information to the data block. A set of data blocks is
sent to RAID controller 310 where it is temporarily
stored in the buffers 407 corresponding to the disks
for which each data block is intended. This data is
transmitted from protocol controller 404 to these
buffer memories over bus 406. The data blocks are then
transferred to the corresponding drive SCSI interfaces
410 where the logical unit number and logical block
number are compared against the expected values .
previously loaded into registers 412 at interfaces 410.
If the values match, then each of these drive SCSI
interfaces transfers its data block to its associated
disk 307 and appends the time of day from its register
412 onto the data block. After all disk memory write
operations for fhis write request have been completed,
processor 411 erases the time stamp and other data in
the nonvolatile memory 413 associated with this write
request. If the logical block number or the logical
unit number prepended to the data does not match the
logical unit number and logical block number stored in
the register 412 for that drive SCSI interface 410,
then the operation is retried or an unrecoverable error
is reported to the CPU.

WO 91/13405 PCT/US91/01254

- 29 =

8. ' CPU Read Request

In a CPU read request, device controller 302
receives a request to read a specified amount of data
from a specified logical unit number, starting at a

5 specified logical block number. The request is staged
in the packet staging memory 313 and is read and
interpreted by processor 314. A request is forwarded
over bus 312 to the RAID controller 310 via protocol
controller 315 and is read and stored by protocol

10 controller 404. Protocol controller 404 signals
processor 411 that a request is ready to be processed
and the processor reads and interprets the read
request.

Processor 411 determines that the read

15 request to the logical unit number translates to read
operations on disks contained within set 306 and sends
commands to those disks through each of their
associated drive SCSI interfaces within multiple drive
SCSI interface 409. Processor 411 also loads register

20 412 in each of these drive SCSI interfaces 410 with the
expected logical unit number and logical block number
for the block of data arriving from the associated
disk. _

B Data starts arriving into multiple device

25 SCSI Interface 409 from those disk drive units within
the indicated logical unit. At each drive SCSI
jnterface 409 within this logical unit, the logical
block number and logical unit number for each block of
data are checked against the values previously loaded

30 into registers 412 by processor 411. The time of day
appended at the end of each data block is compared by
multiple drive SCSI interface 409 with all of the
others associated with the same read request and the
same stripe. If the time stamps of all accessed data

WO 91/13405 PCT/US91/01254

10

15

20

25

30

35

- 30 -

blocks are equal, then the transfer of these data
blocks to their associated buffers 407 begins. The
appended time stamp is stripped from each block as it
is transferred to its associated buffer 407.

When all blocks have been transferred,
processor 411 signals processor 314 that the data
block(s) are ready to be sent to packet staging memory
313. Protocol controllers 404 and 315 carry out the
transfer of the data block(s) from one or more of the
buffers 407 to packet staging memory 313. As each data
block is transferred to packet staging memory 313,
processor 314 again checks the logical unit number and
logical block number contained in the data block
against the expected value stored in processor 314 and
strips this prepended data from the data block to send
the remainder of the data block to the CPU.

If a discrepancy occurs in any of these
comparisons anywhere in the RAID controller or device
controller, the transfer of data is aborted and the
aborted read operation is retried. In the case of
detection of misdirected data, where the detection
occurs at multiple SCSI drive interface 409, a further
recovery operation takes place as follows: (1) the LUN
and LBN from the failing data blocks are read from
processor 411; and (2) the data block in RAID memory
306 indicated by this LUN and LBN is marked as
corrupted along with the stripe in which it resides.
Subsequent CPU attempts to read or write this stripe
will be rejected until the stripe is reinitialized by
the CPU or other means. If the failure reoccurs and if
it is within the limits of the error correcting
capabilities of the redundancy group error correction
circuitry 408, then the failing data block is
regenerated using the disk array including the check
disk(s) and correction circuitry 408. If the failure

WO 91/13405

10

PCT/US91/01254

- 31 -

reoccurs and is not within the limits of the error
correcting algorithms (because too many data blocks
have failed), then an unrecoverable error is reported

to the CPU.

Thus it is seen that the present invention
provides ways for detecting and correcting errors in a
multiple device mass storage system resulting from
power failure. One skilled in the art will appreciate
that the present invention can be practiced by other
than the described embodiments, which are presented for
purposes of illustration and not of limitation, and the
present invention is limited only by the claims which

follow.

WO 91/13405 PCT/US91/01254

- 32 -

CLAIMS

1. A memory comprising:

a plurality of physical blocks of memory
for storing data, said physical blocks being
distributed among a set of physical devices operable as
one or more logical units; and

means, responsive to a power failure,
for determining whether there has been an incomplete
storage of one or more of a plurality of blocks of data
being written to physical blocks of memory at the time
of a power failure.

2. A memory as in claim 1, wherein said
means for determining whether there has been an
incomplete storage of data comprises:

first means for storing in nonvolatile
storage information indicating that a write operation
involving the plurality of blocks of data is in
progress and information uniquely identifying the write
operation; and

second means for storing with each of
the plurality of blocks of data information uniquely
identifying the most recent write operation involving
the block of data.

3. A memory as in claim 2, wherein said
means for determining whether there has been an
incomplete storage of data further comprises:

means, responsive to the completion of a
write operation, for erasing from nonvolatile storage
the information that indicates that the write operation
was in progress; and .

means, responsive to said power failure
for checking whether the information in nonvolatile

WO 91/13405 PCT/US91/01254

- 33 -

storage that indicates that the write operation was in
progress has been erased and, if it has not been
erased, then initiating steps to determine what portion
of information to be stored in physical blocks of
memory for that write operation which was not stored.

4. A memory as in claim 3, wherein said
means for determining whether there has been an
incomplete storage of data further comprises:

means for checking for each block of
data involved in the write operation the information
stored by said first time storing means uniquely
identifying the write operation with the information
stored with the block in memory by said second time
storing means uniquely identifying the most recent
write operation involving the block of data, and if
there is a disparity, then concluding that the block in
memory was not stored during the power failure
interrupted write operation.

5. A memory as in claim 2, wherein the
information stored by said first means includes a time
stamp indicating the time at which the write operation -
in progress involving the plurality of blocks of data
was initiated, and wherein the information stored by
said second means includes a time stamp indicating the
time at which the most recent write operation involving
the block of data was initiated.

6 A method of storing data in memory
comprising the steps of:
(a) reading and writing data into a
plurality of physical blocks of memory, said physical
blocks being distributed among a set of physical

WO 91/13405 PCT/US91/01254

- 34 -

storage devices operable as one or more logical units;
and

(b) in response to a power failure,
determining whether there has been an incomplete
storage of one or more of a plurality of blocks of data
being written to physical blocks of memory at the time
of a power failure.

7. A method as in claim 6, wherein said
step (b) comprises the steps of:

(bl) storing in nonvolatile storage
information indicating that a write operation involving
the plurality of blocks of data is in progress and
information uniquely identifying the write operation;

(b2) storing with each of the plurality
of blocks of data information uniquely identifying the
most recent write operation involving the block of
data.

8. A method as in claim 7, wherein said
step(b) further comprises the steps of:

(b3) in response to the completion of a
write operation, erasing the information in non-
volatile storage that indicates that the write
operation was in progress; and h

(b4) in response to said power failure,
checking whether the information that indicates that
the write operation was in progress has been erased,
and if it has not been erased, then initiating steps to
determine what portion of information to be stored in
physical blocks of memory for that write operation was
not stored.

9. A method as in claim 8, wherein said
step (b) further comprises the step of:

WO 91/13405 PCT/US91/01254

- 35 =

(b5) checking for each block of data
involved in the write operation the information stored
in nonvolatile storage uniquely identifying the write
operation with the information stored with the block in
memory uniquely identifying the most recent write
operation involving the block of data, and if there is
a disparity, then concluding that the block in memory
was not stored during the power failure interrupted

write operation.

8. A method as in claim 7, wherein the step
of storing information in nonvolatile storage is
performed before any of the plurality of blocks of data
is written to a physical block of memory.

9. A method as in claim 7, wherein the step
of storing time information in nonvolatile storage is
performed responsive to a signal indicating the onset

of the power failure.

PCT/US91/01254

e

L4V H04d , L4V ¥014d
Z 9/ 19/
2| 4 tdl
g2l 2
@ /m__ i

@

D bEObLLD o6 A

@ > €
{ o o | sl ol ﬁ@a g0 £s_h »Mg_ <0l

50l _ 0l 201
U

AIOW3W NIVH U AOWIN NIV

WO 91/13405

101

PCT/US91/01254

WO 91/13405

26

3: W x N \ — l\ _\.W m L v
YITI0NINOD QIVY SjoEzs aIvy
ﬁ ,\. \ _/ _ \ \ J
0 G0¢ ol b0g
-2I¢ e
(_ _ J 4 [[
¥ITIOLNOD |} ¥ITION LNOD | | ¥3TI0M1N09 | | uITI0MINGD ¥31104LN0I| {43 1108 1N0D| | ¥ 371041N0OD| | ¥ITIOMINGD
1090104d {| 1000004d || 100L04d || 1090104 1090104d || 1090L04d || 7020104d || T090104d
[/ _ - " Z [[—<
gle gi¢
qie” _ s _
AHOWIW AMOW M
cpe ANOYS 13¥0 40553004 1oL NS, 13H0id 40553304
N __ M,sm ﬁ y " big
¢0¢ 6lg- 10¢ 61¢]

PCT/US91/01254

WO 91/13405 .
3/6
(//_______.__—-—-————-—'—“"—"“‘\ w
2| = l
Y = 3 ! S
| = YE8E|E T
| } et | K
| ~TORVE SC31 |
| —{ RAD BUFFER || INTERRCE |77 .
= DRVE SCS1 |
| S —IRAID BUFFER || INTERFACE : | l g
[— [f
. DRVE L3 |
of [| e e[! | i
\ E2 |t rosrren [e S '!_@L
| €3 = [T RIVE SCSIL.L !
= 7 RAID BUFFER | e [1 :
l — DRIVE SCSIL! !
i] RAID BUFFER || INTERFACE T@,’
s = | 1 S
| g [TH Mo 2| [My ‘{‘f@ N
~ = [T ORVE S8 1 | |
L P mowm =L Mt P
| & [0RVE S09] ! | I
| o — RAD BUFFER w || DTERRACE 1
| 82 = | N~k
E =3 R0 BUFFER |0 e C O e
| E= & L !
2 | —S RAD BUFFER = Dﬁ%ﬁ"l’@:
=14 1L
|] RADD BUFFER WG T]z
| v [[~
3 } DRVE SCSl| | |
| RAD BUFFER
| -~ INTERFACE T:LQI
l I | “\ _/I'
I T I
l = - |
| ~ 18] |2 |
2 12| 2= '
| g ||5] |28 :
| | ||s| |B= |
| F = l
| = !
e ————— —i -—l ————— g y
= =3

PCT/US91/01254

WO 91/13405

/6

G 94

J3HD AONVONNAFY Y3 TI0HLNOD QIvY

A}

)
dWVLS 3WIL
303 uo_>uoﬁ y

03H) AINVONNQ3Y Y3 TTOULNOD 3DIAC

YIAWNN ¥I018 WII0T LSOH

%018 VIva 1SOH

||

HIEWON 1INN Y107 1SOH

——— —— i ———

L | I\

A

A

i

008" 106G 906 "G0S

Yy S———

¥0G

100AY1 ¥3078 I901

—

€05

g

206

10S

PCT/US91/01254

WO 91/13405
/6

b
; o ;
a / SYSTEM BUS |
| r
| : | !
| | | |
| 8 5] ! B B] ! [B B
Lol Uf o] Ul i
Lo F Pl |F Pl olF Pl
A F F F F F
Lo E El]|k EL D O|E E 1
i R R | R R { R R I
I 1 i |
! %o |%0 i S [| &3 T
I | I I
| | |]
| ! ' N
| | ! |
I | l |
: ! L I

] | |
| MEOI [MEDR |y | MEDIA [[MEDIA [1| EDA MEDIA | |

]
C el e | s feod| e la !
| | | CHECK DRIVE CHECK DRIVE |
. DA MR A DA ! AT DAA |
|

| . |
F—D4Th CROUP +——— DATA GROUP —— |
[616~ |
!__ Gw f

FlG. 6

PCT/US91/01254

WO 91/13405
%
| 508
SECTOR 5 \ SECTOR
SECTOR 3 SYSTEM BUS SECTOR 4
SECTOR | SECTOR 2
B B
I I
F ERROR REPORT F
609 F Y
F £
R 102 R
r """""" '1‘ -1
. TIME STAMP :
| COMPARISON |
PATH A | | PATH B
| TIME STAMP |
| APPENDER 1
| |
| A ——— —
i a0
N | o

(INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 91/01254

1. CLASSIFICATION OF SUBJECT MATTER (if soveral classification symbels apply, Indlcate ail)®

‘According to faternatianal Palent Ciassification (IPC) o to koth National Classiflcation and IPC '
Int.C1. 5 GO6F11/14 ; GO6F11/08 ; GO6F11/00 ; G11B20/18

11, FIELDS SEARCHED

Minlmum Decumentation Sesrched?

Classification System Classifieation Symbale

G11B

Int.Cl. 5 GO6F ;

Documentation Searched other than Minlmem Docamentation
to the Extent that such Documents are Incladed in the Flalds Searched?

111, DOCUMENTS CONSIDERED TO RE RELEVANT?

Cltatlon of Decunieat, (U with {adicution, where appropriate, of tha relevant passages i Relevant te Cluim Noul2

Category

X EP,A,249 091 (INTERNATIONAL BUSINESS MACHINES 1,6
CORPORATION) December 16, 1987
see column 1, 14ne 1 - column 3, Tine 4

A WO,A,8 910 594 (AMDAHL CORPORATION) November 2, 1,6
1989
see page 4, 1ine 25 - page 9, line 6

A FTCS 17 DIGEST OF PAPERS 1

July 6, 1987, PITTSBURGH, PENNSYLVANIA, USA
pages 176 - 181;

Y.DISHON ET AL.: 'A HIGHLY AVAILABLE STORAGE
SYSTEM USING THE CHECKSUM METHOD '

see page 178, right column, 1ine 6 - page 179,
left column, line 12

-f—

*T" later document published after the internationa filiog dats

* Special cutegories of cited ducuments : 90

*A" document defining the guneral state of the art which Is not
considered to da of particular rcievance

E earifer document hut published an or after the {nternstional
flling date

"L* document which may throw deults oa ptiarity daim(s) er
which Is eited to establish the publication date of another
dtation or other special reason (as)

*0® document refaczing to an ara) disclosure, use, exhibition or
LI MEQRS

“P* document published prior to the international filing date but
Later than the ptiozily date clalmel

or priotity date snd not in conflict with the applicatios bat
cited to wnderstand the principle wr theory ng the
Invention

“X” document of particular velevance; the claimad invention
cannot be censidered novel or cannot ks considered to
invelve an invenfive step

TY* document of purticulur relevance; the clalmed Iavention
cannet be considered ta involve an inventive stap whes the
dacument {5 combined with ene ar more other Such doca-
Illll!’:. s::dl combination heing whvions to 8 person shilled

» the art, k

&% document member of the same pateat family

IV. CERTIFICATION

Date of the Actuat Copletion of the Intermatlonel Scarch

06 JUNE 1991

Date of Malling of this {nternational Search Report

i19, 08 of

International Searching Autbority

EUROPEAN PATENT OFFICE

Slnmrg of Authorized Offic .
ABSALOM R. m

Porm POT/ISAI200 (saeond sheut) (Jumusry 1983)

PCT/US 91/01254

Internationsl Application Na

1. DOCUMENTS CONSIDERED TQ BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category © Cltation of Documont, with indicstion, where appropriate, of the relevant passages Relevant to Clalm Ne,

A IBM TECHNICAL DISCLOSURE BULLETIN : 1
vol. 15, no. 9, February 1973,

pages 2813 - 2816; .

V.J. KRUSKAL: 'DETECTING DISCREPANT SEGMENTS IN
A PAGING ENVIRONMENT !

see the whole document

A WO,A,8 809 968 (CAB-TEK, INC.) December 15, 1988 2
see abstract

see page 26, line 15 - page 27, line 31

A GB,A,1 545 169 (BURROUGHS CORPORATION) May 2,
1979

Form PCT{19A/210 ¢extra sheel) (Jawary 1988

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

