
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 March 2001 (29.03.2001)

llllllllllllllllllllllllllllllllllll^
(10) International Publication Number

WO 01/22398 AlPCT

(51) International Patent Classification7: G10H 1/00

(21) International Application Number: PCT/US00/25977

(22) International Filing Date:
22 September 2000 (22.09.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/401,318 23 September 1999 (23.09.1999) US

(71) Applicant: ROCKET NETWORK, INC. [US/US]; 53
Stillman Street, San Francisco, CA 94107 (US).

(72) Inventors: MOLLER, Matthew, D.; 4317 26th Street,
San Francisco, CA 94131 (US). LYUS, Graham; 2000

Post #338, San Francisco, CA 94115 (US). FRANKE,
Michael; 253 Mississippi Street, San Francisco, CA 94107
(US).

(74) Agents: GARRETT, Arthur, S. et al.; Finnegan, Hender­
son, Farabow, Garrett & Dunner, EEP, 13001 Street, N.W.,
Washington, DC 20005-3315 (US).

(81) Designated States (national): AE, AG, AE, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, ER, GB, GR, IE,

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR ENABLING MULTIMEDIA PRODUCTION COLLABORATION OVER A NET­
WORK

W
O

 01
/2

23
98

 Al

(57) Abstract: A system and method for collaborative mul­
timedia production by users at different geographic locations.
The users produce sequencer data at a plurality of sequencer
stations (14, 16) connected via a network (18). The sequencer
stations (14, 16) encapsulate sequencer data units into broad­
cast data units and upload and download broadcast data units
to and from a server (12), in response to user commands re­
ceived at the sequencer stations (14, 16).

WO 01/22398 Al llllllllllllllllllllllllllllllllllllll^

IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, For two-letter codes and other abbreviations, refer to the "Guid-
CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG). a nee Notes on Codes and Abbreviations" appearing at the begin­

ning of each regular issue of the PCT Gazette.
Published:
— With international search report.

WO 01/22398 PCT/US00/25977

5

10

15

20

SYSTEM AND METHOD FOR ENABLING MULTIMEDIA PRODUCTION COLLABORATION OVER
A NETWORK

BACKGROUND OF THE INVENTION

Field of the Invention

The invention relates to data sharing and, more particularly, to sharing of

multimedia data over a network.

Computer technology is increasingly incorporated by musicians and multimedia

production specialists to aide in the creative process. For example, musicians use

computers configured as "sequencers" or "DAWs" (digital audio workstations) to record

multimedia source material, such as digital audio, digital video, and Musical Instrument

Digital Interface (MIDI) data. Sequences and DAWs then create sequence data to

enable the user to select and edit various portions of the recorded data to produce a

finished product.

Sequencer software is often used when multiple artists collaborate in a project

usually in the form of multitrack recordings of individual instruments gathered together

in a recording studio. A production specialist then uses the sequencer software to edit

the various tracks, both individually and in groups, to produce the final arrangement for

the product. Often in a recording session, multiple "takes" of the same portion of music

will be recorded, enabling the production specialist to select the best portions of various

takes. Additional takes can be made during the session if necessary.

Such collaboration is, of course, most convenient when all artists are present in

the same location at the same time. However, this is often not possible. For example,

an orchestra can be assembled at a recording studio in Los Angeles but the vocalist

may be in New York or London and thus unable to participate in person in the session.

It is, of course, possible for the vocalist to participate from a remote studio linked to the

WO 01/22398 PCT/US00/25977

5

10

15

20

main studio in Los Angeles by wide bandwidth, high fidelity communications channels.

However, this is often prohibitively expensive, if not impossible.

Various methods of overcoming this problem are known in the prior art. For

example, the Res Rocket system of Rocket Networks, Inc. provides the ability for

geographically separated users to share MIDI data over the Internet. However,

professional multimedia production specialists commonly use a small number of widely

known professional sequencer software packages. Since they have extensive

experience in using the interface of a particular software package, they are often

unwilling to forego the benefits of such experience to adopt an unfamiliar sequencer.

It is therefore desirable to provide a system and method for professional artists

and multimedia production specialists to collaborate from geographically separated

locations using familiar user interfaces of existing sequencer software.

SUMMARY OF THE INVENTION

Features and advantages of the invention will be set forth in the description

which follows, and in part will be apparent from the description, or may be learned by

practice of the invention. The objectives and other advantages of the invention will be

realized and attained by the systems and methods particularly pointed out in the written

description and claims hereof, as well as the appended drawings.

In accordance with the purpose of the invention as embodied and broadly

described, the invention includes apparatus for sharing sequence data between a local

sequencer station and at least one remote sequencer station over a network via a

server, the sequence data representing audiovisual occurrences each having

2

WO 01/22398 PCT/US00/25977

5

10

15

20

descriptive characteristics and time characteristics. The apparatus includes a first

interface module receiving commands from a local sequencer station and a data

packaging module coupled to the first interface module. The data packaging module

responds to the received commands by encapsulating sequence data from the local

sequencer station into broadcast data units retaining the descriptive characteristics and

time relationships of the sequence data. The data packaging module also extracts

sequence data from broadcast data units received from the server for access by the

local sequencer terminal. The apparatus further includes a broadcast handler coupled

to the first interface module and the data packaging module. The broadcast handler

processes commands received via the first interface module. The apparatus also

includes a server communications module responding to commands processed by the

broadcast handler by transmitting broadcast data units to the server for distribution to at

least one remote sequencer station, the server communications module also receiving

data available messages and broadcast data units from the server. The apparatus

further includes a notification queue handler coupled to the server communications

module and responsive to receipt of data available messages and broadcast data units

from the server to transmit notifications to the first interface for access by the local

sequencer terminal.

In another aspect the invention provides a method for sharing sequence data

between a local sequencer station and at least one remote sequencer station over a

network via a server, the sequence data representing audiovisual occurrences each

having descriptive characteristics and time characteristics. The method includes

receiving commands via a client application component from a user at a local

3

WO 01/22398 PCT/US00/25977

sequencer station; responding to the received commands by encapsulating sequence

data from the local sequencer station into broadcast data units retaining the descriptive

characteristics and time relationships of the sequence data and transmitting broadcast

data units to the server for distribution to at least one remote sequencer station;

5 receiving data available messages from the server; responding to receipt of data

available messages from the server to transmit notifications to the client application

component; responding to commands received from the client application component to

request download of broadcast data units from the server; and receiving broadcast data

units from the server and extracting sequence data from the received broadcast data

10 units for access by the client application component.

It is to be understood that both the foregoing general description and the

following detailed description are exemplarily and explanatory and are intended to

provide further explanation of the invention as claimed.

The accompanying drawings are included to provide a further understanding of

15 the invention and are incorporated in and constitute a part of this Specification to

illustrate embodiments of the invention and, together with the description, serve to

explain the principles of the invention.

4

WO 01/22398 PCT/US00/25977

5

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings which are incorporated in and constitute a part of

this specification illustrate embodiments of the invention and together with the

description serve to explain the objects advantages and principles of the invention.

In the drawings:

Fig. 1 is a block diagram showing system consistent with a preferred

embodiment of the present invention;

Fig. 2 is a block diagram showing modules of the services component of Fig. 1;

Fig. 3 is a diagram showing the hierarchical relationship of broadcast data units

of the system of Fig. 1;

Fig. 4 is a diagram showing the relationship between Arrangement objects and

Track objects of the system of Fig. 1;

Fig. 5 is a diagram showing the relationship between Track objects and Event

objects of the system of Fig. 1;

Fig. 6 is a diagram showing the relationship between Asset objects and

Rendering objects of the system of Fig. 1;

Fig. 7 is a diagram showing the relationship between Clip objects and Asset

objects of the system of Fig. 1;

Fig. 8 is a diagram showing the relationship between Event objects, Clip Event

objects, Clip objects, and Asset objects of the system of Fig. 1;

Fig. 9 is a diagram showing the relationship between Event objects, Scope Event

objects, and Timeline objects of the system of Fig. 1;

5

WO 01/22398 PCT/US00/25977

5

10

15

20

Fig. 10 is a diagram showing the relationship of Project objects and Custom

objects of the system of Fig. 1; and

Fig. 11 is a diagram showing the relationship between Rocket objects, and

Custom and Extendable objects of the system of Fig. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Computer applications for musicians and multimedia production specialists

(typically sequencers and DAWs) are built to allow users to record and edit multimedia

data to create a multimedia project. Such applications are inherently single-purpose,

single-user applications. The present invention enables geographically separated

persons operating individual sequencers and DAWs to collaborate.

The basic paradigm of the present invention is that of a “virtual studio.” This, like

a real-world studio, is a “place” for people to “meet” and work on multimedia projects

together. However, the people that an individual user works with in this virtual studio

can be anywhere in the world - connected by a computer network.

Fig. 1 shows a system 10 consistent with the present invention. System 10

includes a server 12, a local sequencer station 14, and a plurality of remote sequencer

stations 16, all interconnected via a network 18. Network 18 may be the Internet or

may be a proprietary network.

Local and remote sequencer stations 14 and 16 are preferably personal

computers, such as Apple PowerMacintoshes or Pentium-based personal computers

running a version of the Windows operating system. Local and remote sequencer

stations 14 and 16 include a client application component 20 preferably comprising a

6

WO 01/22398 PCT/US00/25977

5

10

15

20

sequencer software package, or "sequencer." As noted above, sequencers create

sequence data representing multimedia data which in turn represents audiovisual

occurrences each having descriptive characteristics and time characteristics.

Sequencers further enable a user to manipulate and edit the sequence data to generate

multimedia products. Examples of appropriate sequencers include Logic Audio from

Emagic Inc. of Grass Valley, California; Cubase from Steinberg Soft- und Hardware

GmbH of Hamburg, Germany; and ProTools from Digidesign, Inc. of Palo Alto, CA.

Local sequencer station 14 and remote sequencer stations 16 may be, but are

not required to be, identical, and typically include display hardware such as a CRT and

sound card (not shown) to provide audio and video output.

Local sequencer station 14 also includes a connection control component 22

which allows a user at local sequencer station 14 to “log in" to server 12, navigate to a

virtual studio, find other collaborators at remote sequencer stations 16, and

communicate with those collaborators. Each client application component 20 at local

and remote sequencer stations 14 and 16 is able to load a project stored in the virtual

studio, much as if it were created by the client application component at that station -

but with some important differences.

Client application components 20 typically provide an "arrangement" window on

a display screen containing a plurality of "tracks," each displaying a track name, record

status, channel assignment, and other similar information. Consistent with the present

invention, the arrangement window also displays a new item: user name. The user

name is the name of the individual that “owns” that particular track, after creating it on

his local sequencer station. This novel concept indicates that there is more than one

7

WO 01/22398 PCT/US00/25977

5

10

15

20

person contributing to the current session in view. Tracks are preferably sorted and

color-coded in the arrangement window, according to user.

Connection control component 22 is also visible on the local user's display

screen, providing (among other things) two windows: incoming chat and outgoing chat.

The local user can see text scrolling by from other users at remote sequencer stations

16, and the local user at local sequencer station 14 is able to type messages to the

other users.

In response to a command from a remote user, a new track may appear on the

local user's screen, and specific musical parts begin to appear in it. If the local user

clicks “play” on his display screen, music comes through speakers at the local

sequencer station. In other words, while the local user has been working on his tracks,

other remote users have been making their own contributions.

As the local user works, he "chats" with other users via connection control

component 22, and receives remote users' changes to their tracks as they broadcast, or

“post,” them. The local user can also share his efforts, by recording new material and

making changes. When ready, the local user clicks a “Post” button of client application

component 20 on his display screen, and all remote users in the virtual studio can hear

what the local user is hearing - live.

As shown in Fig. 1, local sequencer station 14 also includes a services

component 24 which provides services to enable local sequencer station 14 to share

sequence data with remote sequencer stations 16 over network 18 via server 12,

including server communications and local data management. This sharing is

8

WO 01/22398 PCT/US00/25977

5

10

15

20

accomplished by encapsulating units of sequence data into broadcast data units for

transmission to server 12.

Although server 12 is shown and discussed herein as a single server, those

skilled in the art will recognize that the server functions described may be performed by

one or more individual servers. For example, it may be desirable in certain applications

to provide one server responsible for management of broadcast data units and a

separate server responsible for other server functions, such as permissions

management and chat administration.

Fig. 2 shows the subsystems of services component 24, including first interface

module 26, a data packaging module 28, a broadcast handler 30, a server

communications module 32, and a notification queue handler 34. Services component

24 also includes a rendering module 36 and a caching module 38. Of these

subsystems, only first interface module 26 is accessible to software of client application

component 20. First interface module 26 receives commands fronrclient application

component 20 of local sequencer station 14 and passes them to broadcast handler 30

and to data packaging module 28. Data packaging module 28 responds to the received

commands by encapsulating sequence data from local sequencer station 14 into

broadcast data units retaining the descriptive characteristics and time relationships of

the sequence data. Data packaging module 28 also extracts sequence data from

broadcast data units received from server 12 for access by client application

component 20.

Server communications module 32 responds to commands processed by the

broadcast handler by transmitting broadcast data units to server 12 for distribution to at

9

WO 01/22398 PCT/US00/25977

5

10

15

20

least one remote sequencer station 16. Server communications module 32 also

receives data available messages from server 12 and broadcast data units via server

12 from one or more remote sequencer stations 16 and passes the received broadcast

data units to data packaging module 28. In particular, server communications module

receives data available messages from server 12 that a broadcast data unit (from

remote sequencer stations 16) is available at the server. If the available broadcast data

unit is of a non-media type, discussed in detail below, server communications module

requests that the broadcast data unit be downloaded from server 12. If the available

broadcast data unit is of a media type, server communications module requests that the

broadcast data unit be downloaded from server 12 only after receipt of a download

command from client application component 20.

Notification queue handler 34 is coupled to server communications module 32

and responds to receipt of data available messages from server 12 by transmitting

notifications to first interface module 26 for access by client application component 20

of local sequencer terminal 14.

Typically, a user at, for example, local sequencer station 14 will begin a project

by recording multimedia data. This may be accomplished through use of a microphone

and video camera to record audio and/or visual performances in the form of source

digital audio data and source digital audio data stored on mass memory of local

sequencer station 14. Alternatively, source data may be recorded by playing a MIDI

instrument coupled to local sequencer station 14 and storing the performance in the

form of MIDI data. Other types of multimedia data may be recorded.

10

WO 01/22398 PCT/US00/25977

5

10

15

20

Once the data is recorded, it can be represented in an "arrangement" window on

the display screen of local sequencer station 14 by client application component 20,

typically a sequencer program. In a well known manner, the user can select and

combine multiple recorded tracks either in their entirety or in portions, to generate an

arrangement. Client application component 20 thus represents this arrangement in the

form of sequence data which retains the time characteristics and descriptive

characteristics of the recorded source data.

When the user desires to collaborate with other users at remote sequencer

stations 16, he accesses connection control component 22. The user provides

commands to connection control component 22 to execute a log-in procedure in which

connection control component 22 establishes a connection via services component 24

through the Internet 18 to server 12. Using well known techniques of log-in registration

via passwords, the user can either log in to an existing virtual studio on server 12 or

establish a new virtual studio. Virtual studios on server 12 contain broadcast data units

generated by sequencer stations in the form of projects containing arrangements, as

set forth in detail below.

A method consistent with the present invention will now be described. The

method provides sharing of sequence data between local sequencer station 14 and at

least one remote sequencer station 16 over network 18 via server 12. As noted above,

the sequence data represents audiovisual occurrences each having a descriptive

characteristics and time characteristics.

When the user desires to contribute sequence data generated on his sequence

station to either a new or existing virtual studio, the user activates a POST button on his

11

WO 01/22398 PCT/US00/25977

5

10

15

20

screen which causes client application component 20 to send commands to service

component 24. A method consistent with the present invention includes receiving

commands at services component 24 via client application component 20 from a user

at local sequencer station 14. Broadcast handler 30 of service component 24 responds

to the received commands by encapsulating sequence data from local sequencer

station 14 into broadcast data units retaining the descriptive characteristics and time

relationships of the sequence data. Broadcast handler 30 processes received

commands by transmitting broadcast data units to server 12 via server communications

module 32 for distribution to remote sequencer stations 16. Server communication

module 32 receives data available messages from server 12 and transmits notifications

to the client application component 20. Server communication module 32 responds to

commands received from client application component 20 to request download of

broadcast data units from the server 12. Server communication module 32 receives

broadcast data units via the server from the at least one remote sequencer station.

Data packaging module 28 then extracts sequence data from broadcast data units

received from server 12 for access by client application component 20.

When a user is working on a project in a virtual studio, he is actually

manipulating sets of broadcast data managed and persisted by server 12. In the

preferred embodiment, services component 24 uses an object-oriented data model

managed and manipulated by data packaging module 28 to represent the broadcast

data. By using broadcast data units in the form of objects created by services

component 24 from sequence data, users can define a hierarchy and map

interdependencies of sequence data in the project.

12

WO 01/22398 PCT/US00/25977

5

10

15

20

Fig. 3 shows the high level containment hierarchy for objects constituting

broadcast data units in the preferred embodiment. Each broadcast object provides a

set of interfaces to manipulate the object’s attributes and perform operations on the

object. Copies of all broadcast objects are held by services component 24.

Broadcast objects are created in one of two ways:

• Creating objects locally and broadcasting them to server 12. Client

application component 20 creates broadcast objects locally by calling Create methods

(set forth in detail in the Appendix) on other objects in the hierarchy.

• Receiving a new broadcast object from server 12. When a broadcast

object is broadcast to server 12, it is added to a Project Database on the server and

rebroadcast to all remote sequence stations connected to the project.

Services component 24 uses a notification system of notification queue handler

34 to communicate with client application component 20. Notifications allow services

component 24 to tell the client application about changes in the states of broadcast

objects.

Client application 20 is often in a state in which the data it is using should not be

changed. For example, if a sequencer application is in the middle of playing back a

sequence of data from a file, it may be important that it finish playback before the data

is changed. In order to ensure that this does not happen, notification queue handler 34

of services component 24 only sends notifications in response to a request by client

application component 20, allowing client application component 20 to handle the

notification when it is safe or convenient to do so.

13

WO 01/22398 PCT/US00/25977

5

10

15

20

At the top of the broadcast object model of data packaging module 28 is Project,

Fig. 3. A Project object is the root of the broadcast object model and provides the

primary context for collaboration, containing all objects that must be globally accessed

from within the project. The Project object can be thought of as containing sets or

“pools" of objects that act as compositional elements within the project object. The

Arrangement object is the highest level compositional element in the Object Model.

As shown in Fig. 4, an Arrangement object is a collection of Track objects. This

grouping of track objects serves two purposes:

1. It allows the Arrangement to define the compositional context of the

tracks.

2. It allows the Arrangement to set the time context for these tracks.

Track objects, Fig. 5, are the highest level containers for Event objects, setting

their time context. All Event objects in a Track object start at a time relative to the

beginning of a track object. Track objects are also the most commonly used units of

ownership in a collaborative setting. Data packaging module 28 thus encapsulates the

sequence data into broadcast data units, or objects, including an arrangement object

establishing a time reference, and at least one track object having a track time

reference corresponding to the arrangement time reference. Each Track object has at

least one associated event object representing an audiovisual occurrence at a specified

time with respect to the associated track time reference.

The sequence data produced by client application component 20 of local

sequencer station 14 includes multimedia data source data units derived from recorded

data. Typically this recorded data will be MIDI data, digital audio data, or digital video

14

WO 01/22398 PCT/US00/25977

5

10

15

20

data, though any type of data can be recorded and stored. These multimedia data

source data units used in the Project are represented by a type of broadcast data units

known as Asset objects. As Fig. 6 shows, an Asset object has an associated set of

Rendering objects. Asset objects use these Rendering objects to represent different

"views" of a particular piece of media, thus Asset and Rendering objects are designated

as media broadcast data units. All broadcast data units other than Asset and

Rendering objects are of a type designated as non-media broadcast data units.

Each Asset object has a special Rendering object that represents the original

source recording of the data. Because digital media data is often very large, this

original source data may never be distributed across the network. Instead, compressed

versions of the data will be sent. These compressed versions are represented as

alternate Rendering objects of the Asset object.

By defining high-level methods, (set forth in detail in the Appendix), for setting

and manipulating these Rendering objects, Asset objects provide a means of managing

various versions of source data, grouping them as a common compositional element.

Data packaging module 28 thus encapsulates the multimedia source objects into at

least one type of asset rendering broadcast object, each asset rendering object type

specifying a version of multimedia data source data exhibiting a different degree of

data compression.

The sequence data units produced by client application component 20 of local

sequencer station 14 include clip data units each representing a specified portion of a

multimedia data source data unit. Data packaging module 28 encapsulates these

15

WO 01/22398 PCT/US00/25977

5

10

15

20

sequence data units as Clip objects, which are used to reference a section of an Asset

object, as shown in Fig. 7. The primary purpose of the Clip object is to define the

portions of the Asset object that are compositionally relevant. For example, an Asset

object representing a drum part could be twenty bars long. A Clip object could be used

to reference four-bar sections of the original recording. These Clip objects could then

be used as loops or to rearrange the drum part.

Clip objects are incorporated into arrangement objects using Clip Event objects.

As shown in Fig. 8, a Clip Event object is a type of event object that is used to reference

a Clip object. That is, data packaging module 28 encapsulates sequence data units

into broadcast data units known as Clip Event objects each representing a specified

portion of a multimedia data source data unit beginning at a specified time with respect

to an associated track time reference.

At first glance, having two levels of indirection to Asset objects may seem to be

overly complicated. The need for it is simple, however: compositions are often built by

reusing common elements. These elements typically relate to an Asset object, but do

not use the entire recorded data of the Asset object. Thus, it is Clip objects that identify

the portions of Asset objects that are actually of interest within the composition.

Though there are many applications that could successfully operate using only

Arrangement, Track, and Clip Event objects, many types of client application

components also require that compositional elements be nested.

For example, a drum part could be arranged via a collection of tracks in which

each track represents an individual drum (i.e., snare, bass drum, and cymbal). Though

a composer may build up a drum part using these individual drum tracks, he thinks of

16

WO 01/22398 PCT/US00/25977

5

10

15

20

the whole drum part as a single compositional element and will-after he is done

editing-manipulate the complete drum arrangement as a single part. Many client

application components create folders for these tracks, a nested part that can then be

edited and arranged as a single unit.

In order to allow this nesting, the broadcast object hierarchy of data packaging

module 28 has a special kind of Event object called a Scope Event object, Fig. 9.

A Scope Event object is a type of Event object that contains one or more

Timeline objects. These Timeline objects in turn contain further events, providing a

nesting mechanism. Scope Event objects are thus very similar to Arrangement objects:

the Scope Event object sets the start time (the time context) for all of the Timeline

objects it contains.

Timeline objects are very similar to Track objects, so that Event objects that

these Timeline objects contain are all relative to the start time of the Scope Event

object. Thus, data packaging module 28 encapsulates sequence data units into Scope

Event data objects each having a Scope Event time reference established at a specific

time with respect to an associated track time reference. Each Scope Event object

includes at least one Timeline Event object, each Timeline Event object having a

Timeline Event time reference established at a specific time with respect to the

associated scope event time reference and including at least one Event object

representing an audiovisual occurrence at a specified time with respect to the

associated timeline event time reference.

A Project object contains zero or more Custom Objects, Fig. 10. Custom

Objects provide a mechanism for containing any generic data that client application

17

WO 01/22398 PCT/US00/25977

5

10

15

20

component 20 might want to use. Custom Objects are managed by the Project object

and can be referenced any number of times by other broadcast objects.

The broadcast object model implemented by data packaging module 28 contains

two special objects: rocket object and extendable. All broadcast objects derive from

these classes, as shown in Fig. 11.

Rocket object contains methods and attributes that are common to all objects in

the hierarchy. (For example, all objects in the hierarchy have a Name attribute.)

Extendable objects are objects that can be extended by client application

component 20. As shown in Fig.11, these objects constitute standard broadcast data

units which express the hierarchy of sequence data, including Project, Arrangement,

Track, Event, Timeline, Asset, and Rendering objects. The extendable nature of these

standard broadcast data units allows 3rd party developers to create specialized types of

broadcast data units for their own use. For example, client application component 20

could allow data packaging module 28 to implement a specialized object called a

MixTrack object, which includes all attributes of a standard Track object and also

includes additional attributes. Client application component 20 establishes the

MixTrack object by extending the Track object via the Track class.

As stated above, Extendable broadcast data units can be extended to support

specialized data types. Many client application components 20 will, however, be using

common data types to build compositions. Music sequencer applications, for example,

will almost always be using Digital Audio and MIDI data types.

18

WO 01/22398 PCT/US00/25977

5

10

15

20

Connection control component 22 offers the user access to communication and

navigation services within the virtual studio environment. Specifically, connection

control component 22 responds to commands received from the user at local

sequencer station 14 to establish access via 12 server to a predetermined subset of

broadcast data units stored on server 12. Connection control component 22 contains

these major modules:

1. A log-in dialog.

2. A pass-through interface to an external web browser providing access

to the resource server 12.

3. A floating chat interface.

4. A private chat interface

5. Audio compression codec preferences.

6. An interface for client specific user preferences.

The log-in dialog permits the user to either create a new account at server 12 or

log-in to various virtual studios maintained on server 12 by entering a previously

registered user name and password. Connection control component 22 connects the

user to server 12 and establishes a web browser connection.

Once a connection is established, the user can search through available virtual

studios on server 12, specify a studio to "enter," and exchange chat messages with

other users from remote sequence stations 16 through a chat window.

In particular, connection control component 22 passes commands to services

component 24 which exchanges messages with server 12 via server communication

19

WO 01/22398 PCT/US00/25977

5

10

15

20

25

module 32. Preferably, chat messages are implemented via a Multi User Domain,

Object Oriented (MOO) protocol.

Server communication module 32 receives data from other modules of services

component 24 for transmission to server 12 and also receives data from server 12 for

processing by client application component 20 and connection control component 22.

This communication is in the form of messages to support transactions, that is, batches

of messages sent to and from server 12 to achieve a specific function. The functions

performed by server communication module 32 include downloading a single object,

downloading an object and its children, downloading media data, uploading

broadcasted data unit to server 12, logging in to server 12 to select a studio, logging in

to server 12 to access data, and locating a studio.

These functions are achieved by a plurality of message types, described below.

ACK

This is a single acknowledgement of receipt.

NACK

This message is a no-acknowledge and includes an error code.

Request single object

This message identifies the studio, identifies the project containing the object,

and identifies the class of the object.

Request object and children

This message identifies the studio, identifies the project containing the object,

identifies object whose child objects and self is to be downloaded, and identifies

the class of object.

20

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

Broadcast Start

This message identifies the studio and identifies the project being broadcast.

Broadcast Create

This message identifies the studio, identifies the project containing the object,

identifies the object being created, and contains the object's data.

Broadcast Update

This message identifies the studio, identifies the project containing the object,

identifies the object being updated, identifies the class of object being updated,

and contains the object's data.

Broadcast Delete

This message identifies the studio, identifies the project containing the object,

identifies the object being deleted, and identifies the class of object being

updated.

Broadcast Finish

This message identifies the studio, and identifies the project being broadcast.

Cancel transaction

This message cancels the current transaction.

Start object download

This message identifies the object being downloaded in this message, identifies

the class of object, identifies the parent of the object, and contains the object's

data.

Single object downloaded

This message identifies the object being downloaded, identifies the class of the

object, and contains the object data.

21

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

Request media download

This message identifies the studio, identifies the project containing the object,

identifies the rendering object associated with the media to be downloaded, and

identifies the class of object (always Rendering).

Broadcast Media

This message identifies the studio, identifies the project containing the object,

identifies the Media object to be uploaded, identifies the class of object (always

Media), identifies the Media's Rendering parent object, and contains Media data.

Media Download

This message identifies the rendering object associated with the media to be

downloaded, identifies the class of object (always Rendering), and contains the

media data.

Request Timestamp '

This message requests a timestamp.

Response Timestamp

This message contains a timestamp in the format YYYYMMDDHHMMSSMMM

(Year, Month, Day of Month, Hour, Minute, Second, Milliseconds).

Request Login

This message identifies the name of user attempting to Login and provides an

MD5 digest for security.

Response SSS Login

This message indicates if a user has a registered 'Pro' version; and provides a

Session token, a URL for the server Web site, a port for data server, and the

address of the data server.

22

WO 01/22398 PCT/US00/25977

5

10

15

20

25

Request Studio Location

This message identifies the studio whose location is being requested and

the community and studio names.

Response Studio Location

This message identifies the studio, the port for the MOO, and the address of the

MOO.

Request single object

This message identifies the studio, identifies project containing the object,

identifies object to be downloaded, and identifies the class of object.

Finish object download

This message identifies the object that has finished being downloaded, identifies

the class of object, and identifies the parent of object.

Client application component 20 gains access to services component 24 through

a set of interface classes defining first interface module 26 and contained in a class

library. In the preferred embodiment these classes are implemented in straightforward,

cross-platform C++ and require no special knowledge of COM or other inter-process

communications technology.

A sequencer manufacturer integrates a client application component 20 to

services component 24 by linking the class library to source code of client application

component 20 in a well-known manner, using for example, visual C++ for Windows

application or Metroworks Codewarrier (Pro Release 4) for Macintosh applications.

23

WO 01/22398 PCT/US00/25977

5

10

15

20

Exception handling is enabled by:

- Adding Initialization and Termination entry points to client application

component 20 (__ initialize and__ terminate),

- Adding “MSL RuntimePPC++.DLL” to client application component 20,

and

- Add “MSL AppRuntime.Lib” to client application component 20

- Once these paths are specified, headers of services component 24 simply

are included in source files as needed.

A detailed description of the classes of the class library necessary to implement

a system consistent with the present invention is set forth in the Appendix.

To client application component 24, the most fundamental class in the first

interface module 26 is CrktServices. It provides methods for performing the following

functions:

• Initializing Services component 24.

• Shutting down Services component 24.

• Receiving Notifications from Services component 24.

• Creating Project objects.

• Handling the broadcast of objects to Server 12 through services

component 24.

• Querying for other broadcast object interfaces.

24

WO 01/22398 PCT/US00/25977

Each implementation that uses services component 24 is unique. Therefore the

first step is to create a services component 24 class. To do this, a developer simply

creates a new class derived from CRktServices)

5

10

15

20

25

30

35

class CMyRktServices : public CrktServices
(
public :

CMyRktServices();
virtual -CMyRktServices();
etc ...

);

An application connects to Services component 24 by creating an instance of its

CRktServices cldSS and Calling CRktServices: : Initialize () :

try
{

CMyRocketServices *pMyRocketServices = new CMyRocketServices;
(
pMyRocketServices->Initialize() ;
}
catch (CR-rktExceptionS e)
(

// Initialize Failed

)

eRktservices::initialize t) automatically performs all operations necessary to initiate

communication with services component 24 for client application component 20.

Client application component 20 disconnects from Services component 24 by

deleting the eRktservices instance:

// If a Services component 24 Class was created, delete it
if (m_pRktServices != NULL)
(

delete m_pRktServices;
m_pRktServices = NULL;

)

Services component 24 will automatically download only those custom data objects that

have been registered by the client application. CRktServices provides an interface for

doing this:

25

WO 01/22398 PCT/US00/25977

5

10

15

20

25

try
(

// Register for our types of custom data.
m_pRktServices->RegisterCustomDataType(CUSTOMDATATYPEID1);
m_pRktServices->RegisterCustomDataType(CUSTOMDATATYPEID2);

>
catch(CrktExceptioni e)
(

// Initialize Failed

Ϊ

Like CRktServices, all broadcast objects have corresponding crw interface

implementation classes in first interface module 26. It is through these cRkt interface

classes that broadcast objects are created and manipulated.

Broadcast objects are created in one of two ways:

• Creating objects locally and broadcasting them to the Server.

• Receiving a new objects from the server.

There is a three-step process to creating objects locally:

1. Client application component creates broadcast objects by calling the

corresponding createo methods on their container object.

2. Client application component calls createRktmterfaceoto get an interface to

that object.

3. Client application component calls cRktservices::Broadcasto to update the

server with these new objects.

Broadcast objects have createo methods for every type of object they contain.

These create o methods create the broadcast object in services component 24 and

return the ID of the object.

26

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

35

For example, cRktservices has methods for creating a Project. The following code

would create a Project using this method:

CRktProject* pProject = NULL;
// wrap call to RocketAPI in try-catch for possible error conditions
try
{

// attempt to create project
pProject =

CMyRktServices:: Instance ()->CreateRktProjectInterface
(

CRktServices:: Instance () ->CreateProj ect()) ;

// user created, set default name
pProject->SetName("New Project");

) // try
catch (CRktExceptionA e)
(

delete pProject;
e.ReportRktError(); .
return false;

)
To create a Track, client application component 20 calls the createTracko method

of the Arrangement object. Each parent broadcast object has method(s) to create its

specific types of child broadcast objects.

It is not necessary (nor desirable) to call CRktServices: broadcasto immediately after

creating new broadcast objects. Broadcasting is preferrably triggered from the user

interface of client application component 20. (When the user hits a “Broadcast” button,

for instance).

Because services component 24 keeps track of and manages all changed

broadcast objects, client application component 20 can take advantage of the data

management of services component 24 while allowing users to choose when to share

their contributions and changes with other users connected to the Project.

Note that (unlike cRktservicee) data model interface objects are not created

directly. The must be created through the creation methods or the parent object.

27

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

Client application component 20 can get CRkt interface objects at any time. The

objects are not deleted from data packaging module 28 until the Remove () method has

successfully completed.

Client application component 20 accesses a broadcast object as follows:

// Get an interface to the new project and
// set name.
{

CRktPtr < CRktProject > pMyProject =
CMyRktServices: : Instanced - >CreateRktProj ec tinter face (Project) ;

MyProject->SetName(szProjName);
} // try
catch (CRktExceptionfc e)
{

e.ReportRktError();
}

The CRktPtro template class is used to declare auto-pointer objects. This is

useful for declaring interface objects which are destroyed automatically, when the

CRktPtr goes out of scope.

To modify the attributes of a broadcast object, client application component 20

calls the access methods defined for the attribute on the corresponding CRkt interface

class:

// Change the name of my project
pRktObj->SetName("My Project");

Each broadcast object has an associated Editor that is the only user allowed to

make modifications to that object. When an object is created, the user that creates the

object will become the Editor by default.

Before services component 24 modifies an object it checks to make sure that the

current user is the Editor for the object. If the user does not have permission to modify

the object or the object is currently being broadcast to the server, the operation will fail.

28

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

Once created, client application component 20 is responsible for deleting the

interface object:

delete pTrack;

Deleting cRkt interface classes should not be confused with removing the object

from the data model. To remove an object from the data model, you call the object’s

Remove () method is called:

pTrack->Remove (); // remove from the data model

Interface objects are “reference-counted.” Although calling Removeo will

effectively remove the object from the data model, it will not de-allocate the interface to

it. The code for properly removing an object from the data model is:

CRktTrack* pTrack;
//Create Interface ...
pTrack->Remove (); // remove from the data model
delete pTrack; // delete the Interface object

or using the CRktptr Template:

CRktPtr < CRrktTrack > pTrack;
// Create Interface ...
pTrack->Remove ();
// pTrack will automatically be deleted when it
// goes out of scope

Like the create process, objects are not deleted globally until the

CRktServices::Broadcast() method is called.

If the user does not have permission to modify the object or a broadcast is in

progress, the operation will fail, throwing an exception.

Broadcast objects are not sent and committed to Server 12 until the

CRktServices::Broadcast() interface method is called. This allows users to make changes

locally before committing them to the server and other users. The broadcast process is

29

WO 01/22398 PCT/US00/25977

5

10

15

20

an asynchronous operation. This allows client application component 20 to proceed

even as data is being uploaded.

To ensure that its database remains consistent during the broadcast procedure,

services component 24 does not allow any objects to be modified while a broadcast is

in progress. When all changed objects have been sent to the server, an

onBroadcastcompiete notification will be sent to the client application.

Client application component 20 can revert any changes it has made to the

object model before committing them to server 12 by calling CRktServices::Rollback().

When this operation is called, the objects revert back to the state they were in before

the last broadcast. (This operation does not apply to media data.)

Roiibacko is a synchronous method.

Client application component 20 can cancel an in-progress broadcast by calling

CrktServices::CancelBroadcast() . This process reverts all objects to the state they are in on

the broadcasting machine. This includes all objects that were broadcast before

CancelBroadcast () W3S Called.

canceiBroadcasto is a synchronous method.

Notifications are the primary mechanism that services component 24 uses to

communicate with client application component 20. When a broadcast data unit is

broadcast to server 12, it is added to the Project Database on server 12 and a data

available message is rebroadcast to all other sequencer stations connected to the

project. Services component 24 of the other sequencer stations generate a notification

for their associated client application component 20. For non-media broadcast data

30

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

35

40

units, the other sequencer stations also immediately request download of the available

broadcast data units; for media broadcast data units, a command from the associated

client application component 20 must be received before a request for download of the

available broadcast data units is generated.

Upon receipt of a new broadcast data unit, services component 24 generates a

notification for client application component 20. For example, if an Asset object were

received, the OnCreateAssetComplete() notification would be generated.

All Notifications are handled by the CRktservices instance and are implemented

as virtual functions of the CRktservices object.

To handle a Notification, client application component 20 overrides the

corresponding virtual function in its CRktservices class. For example:

class CMyRktServices : public CRktservices
(

// Overriding to handle OnCreateAssetComplete Notifications
virtual void OnCreateAssetComplete (

const RktObjectldTypeS rObjectld,
const RktObjectldTypeS rParentObjectld ;

};
When client application component 20 receives notifications via notification

queue handler 28, these overridden methods will be called:

RktNestType
CMyRktServices : -.OnCreateAssetStart (

const RktObjectldTypeS
rObjectld,

const RktObjectldTypefi rParentObjectld)
(

try
<

// Add this Arrangement to My Project
if (m_pProjTreeView != NULL)

m_pProjTreeView->NewAsset (rParentObjectld—rObjectld);) // try
catch (CRktExceptioni e)

(
e.ReportRktError();

>
return ROCKET_QUEUE_DO_NEST;

}

31

WO 01/22398 PCT/US00/25977

5

10

15

20

25

Sequencers are often in states in which the data they are using should not be

changed. For example, if client application component 20 is in the middle of playing

back a sequence of data from a file, it may be important that it finish playback before

the data is changed.

In order to ensure data integrity, all notification transmissions are requested

client application component 20, allowing it to handle the notification from within its own

thread. When a notification is available, a message is sent to client application

component 20.

On sequencer stations using Windows, this notification comes in the form of a

Window Message. In order to receive the notification, the callback window and

notification message must be set. This is done using the

CRktServices: : SetDataNotif icationHandler () method:

// DeSine a message for notification from Services component 24.
#define RKTMSGNOTIFICATIONPENDING (WMAPP + 0x100)

// Now Set the window to be notified of Rocket Events CMyRktServices::InstanceO-
>SetDataNotificationHandler (m_hWnd, ,
rktmsg_notification_pending) ;

This window will then receive the rktmsg_notification_pending message

whenever there are notifications present on the event queue of queue handler

module 34.

Client application component 20 would then call

CRktServices::ProcessNextDataNotication() to instruct services component

24 to send notifications for the next pending data notification:

// Data available for Rocket Services. Request Notification.
afx_msg CMainFrame::OnPendingDataNotification(LPARAM l.WPARAM w)
{

CMyRktServices::Instanced->ProcessNextDataNotificationO;

32

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

}
ProcessNextDataNotificationO causes services component 24 to remove the

notification from the queue and call the corresponding notification handler, which client

application component 20 has overridden in its implementation of CRktServices.

On a Macintosh sequencer station, client application component 20 places a call

to CrktServices::

DoNotifications() in their idle loop, and then override the CRktServices::
OnDataNotlficationAvailable() notification method :
// This method called when data available on the event notification
// queue.
void CMyRktServices::OnDataNotlficationAvailable()
(

try
(

ProcessNextDataNotificationO:
>
catch (CRktLogicException e)
{

e.ReportRktError();
)

}

As described in the Windows section above, ProcessNextDataNotificationO instructs

services component 24 to remove the notification from the queue and call the

corresponding notification handler which client application component 20 has

overridden in its implementation of CRktServices.

Because notifications are handled only when client application component 20

requests them, notification queue handler of services component 24 uses a “smart

queue” system to process pending notifications. The purpose of this is two-fold:

1. To remove redundant messages.

2. To ensure that when an object is deleted, all child object messages are

removed from the queue.

33

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

This process helps ensure data integrity in the event that notifications come in

before client application component 20 has processed all notifications on the queue.

The system of Fig. 1 provides the capability to select whether or not to send

notifications for objects contained within other objects. If a value of rocket_queue_do_nest
is returned from a start notification then all notifications for objects contained by the

object will be sent. If rocket_queue_do_not_nest is returned, then no notifications will be sent

for contained objects. The create<T>comPiets notification will indicate that the object and

all child objects have been created.

For example if client application component 20 wanted to be sure to never

receive notifications for any Events contained by Tracks, it would override the

OnCreateProjectStart() method and have it return rocket_queue_do_not_nest:
RktNestType
CMyRktServices:: OnCreateProjectStart (

const RktObjectldTypeS rObjectld,
const RktObjectldTypeS rParentObjectld)

// don't send me notifications for
// anything contained by this project.

return ROCKET_QUEUE_DO_NOT_NEST;
)

And in the createTrackcompieteo, notification parse the objects contained by the track:

void
CMyRktServices::OnCreateProjectC
omplete (

const RktObjectldTypeS
objectld,

const RktObjectldTypei
parentobjectld)

34

In the preferred embodiment, predefined broadcast objects are used wherever

possible. By doing this, a common interchange standard is supported. Most client

application components 20 will be able to make extensive use of the predefined objects

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

in the broadcast object Model. There are times, however, when a client application

component 20 will have to tailor objects to its own use.

The described system provides two primary methods for creating custom and

extended objects. If client application component 20 has an object which is a variation

of one of the objects in the broadcast object model, it can choose to extend the

broadcast object. This permits retention of all of the attributes, methods and

containment of the broadcast object, while tailoring it to a specific use. For example, if

client application component 20 has a type of Track which holds Mix information, it can

extend the Track Object to hold attributes which apply to the Mix Track implementation.

All pre-defined broadcast object data types in the present invention (audio, MIDI, MIDI

Drum, Tempo) are implemented using this extension mechanism.

The first step in extending a broadcast object is to define a globally unique

RktExtendedDataldType:
// a globally unique ID to identify my extended data type
const RktExtendedDataldType CReeketld MY_EXTENDED_TRACK_ATTR_ID

("14A51841-B618-lld2-BD7E-0060979C492B·);

This ID is used to mark the data type of the object. It allows services component 20 to

know what type of data broadcast object contains. The next step is to create an

attribute structure to hold the extended attribute data for the object:

struct CMyTrackAttributes
{

CMyTrackAttributes();
Int32Type m_nMyQuantize; // my extended data
} <■

// Simple way to initialize defaults for your attributes is
// to use the constructor for the struct
CMyTrackAttributes::CMyTrackAttributes()
<

35

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

35

40

45

m_nMyQuantize = kMyDefaultQuantize;
}

To initialize an extended object, client application component 20 sets the data

type Id, the data size, and the data:

// set my attributes. . . .
CMyTrackAttributes myTrackAttributes;
myTrackAttributes.mnMyQuantize = 16;

try
{

// Set the extended data type
pTrack->SetDataType(MY_EXTENDED_TRACK_ATTR_ID);

// Set the data (and length)
Int32Type nSize = sizeof(myTrackAttributes) ;

Track->SetData (imyTrackAttributes, SnSize);
}
catch (CRktException e)
{

e.ReportRktError();
}

When a notification is received for an object of the extended type, it is assumed

to have been initialized. Client application component 20 simply requests the attribute

structure from the cRkt interface and use its values as necessary.

// Check the data type, to see if we understand it.
RktExtendedDataldType dataType =
pTrack->GetDataTypa () ;

// if this is a MIDI track ...
if (dataType == CLSID_ROCKET_MIDI_TRACK_ATTR)
{

// Create a Midi struct
- CMyTrackAttributes myTrackAttributes;

// Get the Data. Upon return, nSize is set to the actual
// size of the data.

Int32Type nSize = sizeof (CMyTrackAttributes);
pTrack->GetData —(SmyTrackAttributes, nSize) ;

// Access struct members...
DoSomethingWith(myTrackAttributes);

)

36

Custom Objects are used to create proprietary objects which do not directly map

to objects in the broadcast object model of data packaging module 28. A Custom Data

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

35

Object is a broadcast object which holds arbitrary binary data. Custom Data Objects

also have attributes which specify the type of data contained by the object so that

applications can identify the Data object. Services component 24 does provide all of

the normal services associated with broadcast objects - Creation, Deletion, Modification

methods and Notifications - for Custom Data Descriptors.

The first step to creating a new type of Custom Data is to create a unique ID that

signifies the data type (or class) of the object:

// a globally unique ID to identify my custom data object
const RktCustomDataldType MY_CUSTOM_OBJECT_ID
("FEB24F40-B616-lld2-BD7E-0060979C492B·);

This ID must be guaranteed to be unique, as this ID is used to determine the type of

data being sent when Custom Data notifications are received. The next step is thus to

define a structure to hold the attributes and data for the custom data object.

struct CMyCustomDataBlock
<

CMyCustomDataBlock ();
int m_nMyCustomAttribute;

};

crktProject::createcustomobject t) can be called to create a new custom object, set the data

type of the Data Descriptor object, and set the attribute structure on the object:

try
{

// To create a Custom Data Object:
// First, ask the Project to create a new Custom Data Object
RktObjactldType myCustomObjectld =
pProject->CreateCustomObject() ;

// Get an interface to it
CRktPtr< CRktCustomObject > pCustomObject =

m_pMyRocketServices->CreateRktCustomObj ectInterface
(myCustomObjectld);

// Create my custom data block and fill it in. . .

37

CMyCustomDataBlock myCustomData;

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

35

40

45

50

// Set the custom data type
pCustomObject->SetDataType(MY_CUSTOM_OBJECT_ID);

// Attach the extended data to the object (set data and size)
Int32Type nSize = sizeof(CMyCustomDataBlock);
pCustomObject->SetData(imyCustomData, nSize);

} // try
catch'(CRktException e)
{

e.ReportRktError();
}

When client application component 20 receives the notification for the object, it

simply checks the data type and handles it as necessary:

// To access an existing Custom Data Object:
try ...

// Assume we start with the ID of the object...

// Get an interface to it
CRktPtr< CRktCustomObject >
pCustomObject =

m_pMyRocketServices->CreateRktCustomObjectinterface
(

myCustomObjectld);

// Check the data type, to see if we understand it. Shouldn't
// be necessary, since we only register for ones we understand,
// but we'll be safe
RktCustomDataldType idCustom;
idCustom o

) ;
if (idCustom == CLSID_MY_CUSTOM_DATA)

{
// Create my custom data struct
CMyCustomDataBlock myCustomData;

// Get the Data. Upon return, theSize is set to the actual
// size of the data.
Int32Type nSize = slzeof (myCustomData);
pCustomObject->GetData(amyCustomData, nSize);

// Access struct members...
DoSomethingWith(myCustomData);

} // if my custom data
) // try
catch (CRktExceptiona e)
{

e.ReportRktError();
}

38

WO 01/22398 PCT/US00/25977

5

10

15

20

All of the custom data types must be registered with services component 24

(during services component 24 initialization). Services component 24 will only allow

creation and reception of custom objects which have been registered. Once registered,

the data will be downloaded automatically.

// Tell Services component 24 to send me these data types
pMyRocketServices->RegisterCustomDataType(MY_CUSTOM_OBJECT_ID);

When a user is building a musical composition, he or she arranges clips of data

that reference recorded media. This recorded media is represented by an Asset object

in the broadcast object model of data packaging component 32. An Asset object is

intended to represent a recorded compositional element. It is these Asset objects that

are referenced by clips to form arrangements.

Though each Asset object represents a single element, there can be several

versions of the actual recorded media for the object. This allows users to create

various versions of the Asset. Internal to the Asset, each of these versions is

represented by a Rendering object.

Asset data is often very large and it is highly desirable for users to broadcast

compressed versions of Asset data. Because this compressed data will often be

degraded versions of the original recording, an Asset cannot simply replace the original

media data with the compressed data.

39

WO 01/22398 PCT/US00/25977

5

10

15

20

Asset objects provide a mechanism for tracking each version of the data and

associating them with the original source data, as well as specifying which version(s) to

broadcast to server 12. This is accomplished via Rendering objects.

Each Asset object has a list of one or more Rendering objects, as shown in

Fig. 6. For each Asset object, there is a Source Rendering object, that represents the

original, bit-accurate data. Alternate Rendering objects are derived from this original

source data.

The data for each rendering object is only broadcast to server 12 when specified

by client application component 20. Likewise, rendering object data is only downloaded

from server 12 when requested by client application component 20.

Each rendering object thus acts as a placeholder for all potential versions of an

Asset object that the user can get, describing all attributes of the rendered data.

Applications select which Rendering objects on server 12 to download the data for,

based on the ratio of quality to data size.

Rendering Objects act as File Locator Objects in the broadcast object model. In

a sense, Assets are abstract elements; it is Rendering Objects that actually hold the

data.

Renderings have two methods for storing data:

• In RAM as a data block.

• On disk as a File.

The use of RAM or disk is largely based on the size and type of the data being

stored. Typically, for instance, MIDI data is RAM-based, and audio data is file-based.

40

WO 01/22398 PCT/US00/25977

5

10

15

20

Of all objects in the broadcast object model, only Rendering objects are cached

by cache module 36. Because Rendering objects are sent from server 12 on a request-

only basis, services component 24 can check whether the Rendering object is stored

on disk of local sequencer station 14 before sending the data request.

In the preferred embodiment, Asset Renderings objects are limited to three

specific types:

Source: Specifies the original source recording—. Literally represents a bit-

accurate recreation of the originally recorded file.

Standard: Specifies the standard rendering of the file to use, generally a

moderate compressed version of the original source data.

Preview: Specifies the rendering that should be downloaded in order to get a

preview of the media, generally a highly compressed version of the original source data.

Each of the high-level Asset calls set forth in the Appendix uses a flag specifying

which of the three Rendering object types is being referenced by the call. Typically the

type of Rendering object selected will be based on the type of data contained by the

Asset. Simple data types - such as MIDI - will not use compression or alternative

renderings. More complex data types - such as Audio or Video - use a number of

different rendering objects to facilitate efficient use of bandwidth.

A first example of use of asset objects will be described using MIDI data.

Because the amount of data is relatively small, only the source rendering object is

broadcast, with no compression and no alternative rendering types.

41

WO 01/22398 PCT/US00/25977

5

10

15

20

25

The sender creates a new Asset object, sets its data, and broadcasts it to

server 12.

Step 1: Create an Asset Object

The first step for client application component 20 is to create an Asset object.

This is done in the normal manner:

// Attempt to Create an Asset in the current Project
RktObjectldType assetld = pProject->CreateAsset0;

Step 2: Set the Asset Data and Data Kind

The next step is to set the data and data kind for the object. In this case,

because the amount of data that we are sending is small, only the source data is set:

// Set the data for my midi data
pMidiAsset->SetDataKind (DATAKIND_ROCKET_MIDI);
// Set the Midi Data
pMidiAsset->SetSourceMedia (pMIDIData, nMIDIDataSize

) ;

The setsourceMedia o call is used to set the data on the Source rendering. The

data kind of the data is set to datakind_rocket_midi to signify that the data is in standard

MIDI file format.

Step 3: Set the Asset Flags

The third step is to set the flags for the Asset. These flags specify which

rendering of the asset to upload to the server 12 the next time a call to Broadcast () IS

made. In this case, only the source data is required.

// Always Broadcast MIDI
Source
pMidiAssat->SetBroadcastFlags (
ASSET_BROADCAST_SOURCE) ;

Setting the asset_broadcast_source flag specifies that the source rendering must

be uploaded for the object.

42

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

35

40

Step 4: Broadcast

The last step is to broadcast. This is done as normal, in response to a command

generated by the user:

pMyRocketServices-
>Broadcast () ;

To receive an Asset, client application component 20 of local sequence station

14 handles the new Asset notification and requests the asset data. When the

OnCreateAssetComplete notification is received, the Asset object has been created by data

packaging module 28. Client application component 20 creates an interface to the

Asset object and queries its attributes and available renderings:

virtual void
CMyRocketServices::OnCreateAssetComplete (

const RktObjectldTypeA rObjectld,
const RktObjectldTypeti rParentObjectld)
<

try
{
// Get an interface to the new asset
CRktPtr < CRktAsset > pAsset =

CreateRktAssetlnter£ace (rObjectld);

// Check what kind of asset it is
DataKindType dataKind = pAsset->GetDataXind();

// See if it is a MIDI asset
if (dataKind == CLSID_ROCKET_MIDI_ASSET)

{
// Create one of my application's MIDI asset equiv

// etc . . .
}
else if (dataKind == CLSID_ROCKET_AUDIO_ASSET)
{

// Create one of my application's Audio asset equiv
// etc...

}
}
catch (CRktException Se)

{
e.ReportRktError() ;

}

43

WO 01/22398 PCT/US00/25977

Data must always be requested by local sequencer station 12 for assets. This

allows for flexibility when receiving large amounts of data. To do this client application

component 20 simply initiates the download:

5

10

15

20

25

30

35

40

45

50

virtual void
CMyRktServices::OnAssetMediaAvailable (

const RktObjectldTypefc
const RendClassType
const RktObjectldTypeS
{

rAssetld,
classification,
rRenderingld

try
{

CRktPtr < CRktAsset > pAsset =
CreateRktAssetlnterface (rAssetld) ;

// Check if the media already exists on this machine.
// If not, download it. (Note: this isn't necessarily
// recommended - you should download media whenever
// it is appropriate. Your UI might even allow downloading
// of assets on an individual basis).

// Source is always Decompressed.
// Other renderings download compressed.
RendStateType rendState;
if (classification == ASSET_SOURCE_REND_CLASS)

rendState = ASSET_DECOMPRESSED_REND_STATE;
else
rendState = ASSET_COMPRESSED_REND_STATE;

// If the media is not already local, then download it
if (I pAsset->IsMediaLocal (classification, rendState))

{
// Note: If this media is RAM-based, the file locator
// is ignored.

CRktFileLocator fileLocUnused;
pAs set->DownloadMedi a

(classification, fileLocUnused);
}

}
catch (CRktException &e)
{

e.ReportRktError();
}

When the data has been successfully downloaded, the onAssetMedianownioadedo

Notification will be sent. At this point the data is available locally, and client application

component 20 calls GetDatao to get a copy of the data:

// This notification called when data has been downloaded
virtual void
CMyRktServices::OnAssetMediaDownloaded (

44

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

35

40

45

50

55

const RktObjectldTypes rAssetld,
const RendClassType classification,
const RktObjectldTypei rRenderingld const

try
(

// Find my corresponding object
CRktPtr < CRktAsset > pAsset =

CreateRktAssetlnterface (rAssetld); .

// Have services component 24 allocate a RAM based
// copy, and store a pointer to the data in pData
// store its size in nSize.

// Note: this application will be responsible for
// freeing the memory

void* pData;
long nSize;

pAsset->GetMediaCopy (
ASSET_SOURCE_REND_CLASS,
ASSET_DECOMPRESSED_REND_STATE,
ipData,
nSize);

catch (CRktException &e)
(
e.ReportRktError();
)

In a second example, an audio data Asset is created. Client application

component 20 sets the audio data and a compressed preview rendering is generated

automatically by services component 24.

In this scenario the data size is quite large, so the data is stored in a file.

The sender follows many of the steps in the simple MIDI case above. This time,

however, the data is stored in a file and a different broadcast flag used:

// Ask the project to create a new asset
RktObjectldType assetld = pProject->CreateAsset();
// Get an interface to the new asset
CRktPtr < CRktAsset > pAsset =

CRktServices:: Instance ()->CreateRktAssetInterface
(assetld);

// Set the data kind
pAsset->SetDataKind(DATAKIND_ROCKET_AUDIO);

// Set the source rendering file.
// We don't want to upload this one yet. Just the
preview
CRktFileLocator fileLocator;

// Set the fileLocator here (bring up a dialog or use a
// pathname. Or use an FSSpec on).

pAsset->SetSourceMedia(* fileLocator-);

45

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

35

// Set the flags so that only a preview is uploaded.
// We did not generate the preview rendering ourselves,
// so we will need to call
// CRktServices::RenderforBroadcast() before calling
// Broadcast!). This will generate any not-previously
// created renderings which are specified to be broadcast.

pAsset->SetBroadcastFlags(
ASSET_BROADCAST_PREVIEW);

// Make sure all renderings are created
pMyRocketServices->RenderForBroadcast();

// and Broadcast
pMyRocketServices->Broadcast();

Because asset_broadcast_preview was specified, services component 24

will automatically generate the preview rendering from the specified source rendering

and flag it for upload when CRocketServices: :RenderForBroadcast() is called.

Alternatively, the preview could be generated by calling

CRktAsset: : CompressMedia () explicitly:

// compress the asset (true means synchronous)
pAsset->CompressMedia(
ASSET_PREVIEW_REND_CLASS, τ

true) ;

In this example asset_broadcast_source was not set. This means that the

Source Rendering has not been tagged for upload and will not be uploaded to server

12.

The source rendering could be added to uploaded later by calling:

pAsset->SetBroadcastFlags
(ASSET_BROADCAST_SOURCE I ASSET_BROADCAST_PREVIEW);
pMyRocketServices->Broadcast();

When an Asset is created and broadcast by a remote sequencer station 16,

notification queue handler 28 generates an OnCreateAssetComplete () notification.

46

Client application component then queries for the Asset object, generally via a lookup

by ID within its own data model:

// find matching asset in my data model.
CMyAsset—* pMyAsset = FindMyAsset(idAsset);

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

35

40

As above, the data would be requested:

CRktFileLocator locDownloadDir;

// On Windows...
locDownloadDir.SetPath("d: WMyDownloadsW");
// (similarly on Mac, but would probably use an FSSpec)
pAsset->DownloadMedia(ASSET_PREVIEW_REND_CLASS,

&locDownloadDir);

The CRktAsset: :DownloadMedia () specifies the classification of the

rendering data to download and the directory to which the downloaded file should be

written.

When the data has been successfully downloaded, the

OnAssetMediaDownloaded notification will be sent. At this point the compressed data

is available, but it needs to be decompressed:

// this notification called when data has been downloaded
virtual void
CMyRocketServices::OnAssetMediaDownloaded (

const RktObjectldTypes rAssetld,
const RendClassType classification,
const RktObjectldTypeS rRenderingld
(

try
{

// Get an interface to the asset
CRktPtr < CRktAsset > pAsset =

CreateRktAssetlnterface (rAssetld);

// and get set the data for the asset.
pAsset->DecompressRendering(classification, false);

)
catch (CRktException &e)
{

e.ReportRktError();
>

47

When the data has been successfully decompressed, the

OnAssetDataDecompressedO notification will be sent:

WO 01/22398 PCT/US00/25977

5

10

15

20

25

30

35

// This notification called when data decompression complete
virtual void
CMyRktServices::OnAssetMediaDecompressed (

const RktObjectldTypeS rAssetld,
const RendClassType classification,
const RktObjectldTypeS rRenderingld)

(
try

(
CreateRktAssetlnterface (rAssetld);

// Get the Audio data for this asset to a file.
CRktFileLocator locDecompressedFile =
pMyAsset->GetMedia

(classification,
ASSET_DECOMPRESSED_REND_STATE);
// Now import the file specified by locDecompressedFile
// —into Application...
)
catch (CRktException Se)
{
e.ReportRktError();
)
*/

Services component 24 keeps track of what files it has written to disk client

application component 20 can then check these files to determine what files need to be

downloaded during a data request Files that are already available need not be

downloaded. Calls to isMediaLocal0 indicate if media has been downloaded

already.

Services component 24 uses Data Locator files to track and cache data for

Rendering objects. Each data locator file is identified by the ID of the rendering it

corresponds to, the time of the last modification of the rendering, and a prefix indicating

whether the cached data is preprocessed (compressed) or post-processed

(decompressed).

48

WO 01/22398 PCT/US00/25977

5

10

15

20

25

For file-based rendering objects, files are written in locations specified by the

client application. This allows media files to be grouped in directories by project. It also

means that client application component 20 can use whatever file organization scheme

it chooses.

Each project object has a corresponding folder in the cache directory. Like Data

Locators, the directories are named with the ID of the project they correspond to. Data

Locator objects are stored within the folder of the project that contains them.

Because media files can take up quite a lot of disk space, it is important that

unused files get cleared. This is particularly true when a higher quality file supercedes

the current rendering file. For example, a user may work for a while with the preview

version of an Asset, then later choose to download the source rendering. At this point

the preview rendering is redundant. CRkt-Asset provides a method for clearing this

redundant data:

// Clear up the media we are no longer using.
pAsset->DeleteLocalMedia

(ASSET_PREVIEW_REND_CLASS, ,
ASSET_COMPRESSED_REND_STATE) ;
pAsset->DeleteLocalMedia
(ASSET_PREVIEW_REND_CLASS, ,

ASSET_DECOMPRESSED_REND_STATE);

This call both clears the rendering file from the cache and deletes the file from disk or

RAM.

It will be apparent to those skilled in the art that various modifications and

variations can be made in the methods and systems consistent with the present

invention without departing from the spirit or scope of the invention. For example, if all

49

WO 01/22398 PCT/US00/25977

of the constants in the invention described above were multiplied by the same constant,

the result would be a scaled version of the present invention and would be functionally

equivalent. The true scope of the claims is defined by the following claims.

5

50

WO 01/22398 PCT/US00/25977

5

10

15

20

WHAT IS CLAIMED IS:

1. Apparatus for sharing sequence data between a local sequencer station and at

least one remote sequencer station over a network via a server, the sequence

data representing audiovisual occurrences each having descriptive

characteristics and time characteristics, the apparatus comprising:

a first interface module receiving commands from a local sequencer station;

a data packaging module coupled to the first interface module, the data

packaging module responding to the received commands by

encapsulating sequence data from the local sequencer station into

broadcast data units retaining the descriptive characteristics and time

relationships of the sequence data, the data packaging module also

extracting sequence data from broadcast data units received from the

server for access by the local sequencer terminal;

a broadcast handler coupled to the first interface module and the data packaging

module, the broadcast handler processing commands received via the

first interface module;

a server communications module responding to commands processed by the

broadcast handler by transmitting broadcast data units to the server for

distribution to at least one remote sequencer station, the server

communications module also receiving data available messages and

broadcast data units from the server; and

a notification queue handler coupled to the server communications module and

responsive to receipt of data available messages and broadcast data units

51

WO 01/22398 PCT/US00/25977

from the server to transmit notifications to the first interface for access by

the local sequencer terminal.

2. Apparatus as recited in claim 1 wherein the data packaging module

encapsulates the sequence data into broadcast data units including an

arrangement data unit establishing a time reference, and at least one track data

unit having a track time reference corresponding to the arrangement time

5 reference, each track data unit having at least one associated event data unit

representing an audiovisual occurrence at a specified time with respect to the

associated track time reference.

3. Apparatus as recited in claim 2, wherein the sequence data produced by the

local sequencer station includes multimedia data source data units and wherein

the data packaging module encapsulates the multimedia source data units into

at least one type of asset rendering broadcast unit, each asset rendering

5 broadcast unit type specifying a version of multimedia data source data

exhibiting a different degree of data compression.

4. Apparatus as recited in claim 3, wherein the server communications module

responds to commands processed by the broadcast handler by transmitting

asset rendering broadcast units of a selected asset rendering broadcast unit type

to the server for distribution to at least one remote sequencer station

52

WO 01/22398 PCT/US00/25977

5. Apparatus as recited in claim 3, wherein the sequence data units produced by

the local sequencer station include clip data units each representing a specified

portion of a multimedia data source data unit and wherein the data packaging

module encapsulates the clip data units into broadcast clip data units.

6. Apparatus as recited in claim 5, wherein the data packaging module

encapsulates sequence data units into broadcast clip event data units each

representing a specified portion of a multimedia data source data unit beginning

at a specified time with respect to an associated track time reference.

7. Apparatus as recited in claim 6, wherein:

the data packaging module encapsulates sequence data units into scope event

data units each having a scope event time reference established at a

specific time with respect to an associated track time reference;

5 each scope event data unit including at least one timeline event data unit, each

timeline event data unit having a timeline event time reference established

at a specific time with respect to the associated scope event time

reference and including at least one event data unit representing an

audiovisual occurrence at a specified time with respect to the associated

10 timeline event time reference.

8. Apparatus as recited in claim 1, comprising a connection control component

responsive to commands received from the local sequencer station to establish

53

WO 01/22398 PCT/US00/25977

access via the server to a predetermined subset of broadcast data units stored

on the server.

9. Apparatus as recited in claim 8, wherein the connection control component

receives registration data from the local sequencer station and establishes

access to a predetermined subset of broadcast data units stored on the server in

accordance with permission data stored on the server.

10. Apparatus as recited in claim 1, wherein the data packaging module:

encapsulates sequence data into first and second types of broadcast data

units;

responds to receipt of a message indicating the availability at the server of

5 the first type of broadcast data unit by causing the server

communications module to initiate a download of the first type of

broadcast data unit without requiring authorization from the client

application component; and

responds to receipt of a message indicating the availability at the server of

10 the second type of broadcast data unit by causing the server

communications module to initiate a download of the second type

of broadcast data unit only after receipt of a download command

from the client application component.

54

WO 01/22398 PCT/US00/25977

11. Apparatus as recited in claim 10, wherein the first type of broadcast data unit

comprises a non-media broadcast data unit and the second type of broadcast

data unit comprises a media broadcast data unit.

12. Apparatus for sharing sequence data between a local sequencer station and at

least one remote sequencer station over a network via a server, the sequence

data representing audiovisual occurrences each having descriptive

characteristics and time characteristics and including multimedia data source

5 data units, the apparatus comprising:

a first interface module receiving commands from a local sequencer station;

a data packaging module coupled to the first interface module, the data

packaging module responding to the received commands by

encapsulating sequence data from the local sequencer station into

10 broadcast data units retaining the descriptive characteristics and time

relationships of the sequence data, the data packaging module

encapsulating the multimedia source data units into at least one type of

asset rendering broadcast unit, each rendering broadcast unit type

specifying a version of multimedia data source data exhibiting a different

15 degree of data compression, the data packaging module also extracting

sequence data from broadcast data units received from the server;

a broadcast handler coupled to the first interface module and the data packaging

module, the broadcast handler processing commands received via the

first interface module; and

55

20

5

10

15

WO 01/22398 PCT/US00/25977

a server communications module responding to commands processed by the

broadcast handler by transmitting broadcast data units to the server for

distribution to at least one remote sequencer station, the server

communications module also receiving broadcast data units via the server

from the at least one remote sequencer station.

13. Apparatus for sharing sequence data between a local sequencer station and at

least one remote sequencer station over a network via a server, the sequence

data representing audiovisual occurrences each having descriptive

characteristics and time characteristics, the apparatus comprising:

a first interface module receiving commands from a local sequencer station;

a data packaging module coupled to the first interface module, the data

packaging module responding to the received commands by

encapsulating sequence data from the local sequencer station into

broadcast data units retaining the descriptive characteristics and time

relationships of the sequence data, the broadcast data units including

custom broadcast data units, standard broadcast data units expressing

the hierarchy of sequence data, and specialized broadcast data units

including all attributes of standard broadcast data units plus additional

attributes, the data packaging module also extracting sequence data from

broadcast data units received from the server;

56

WO 01/22398 PCT/US00/25977

20

25

5

10

a broadcast handler coupled to the first interface module and the data packaging

module, the broadcast handler processing commands received via the

first interface module; and

a server communications module responding to commands processed by the

broadcast handler by transmitting broadcast data units to the server for

distribution to at least one remote sequencer station, the server

communications module also receiving broadcast data units via the

server from the at least one remote sequencer station and passing the

received broadcast data units to the data packaging module.

14. A method for sharing sequence data between a local sequencer station and at

least one remote sequencer station over a network via a server, the sequence

data representing audiovisual occurrences each having descriptive

characteristics and time characteristics, the method comprising:

receiving commands via a client application component from a user at a local

sequencer station;

responding to the received commands by encapsulating sequence data from the

local sequencer station into broadcast data units retaining the descriptive

characteristics and time relationships of the sequence data and

transmitting broadcast data units to the server for distribution to at least

one remote sequencer station;

receiving data available messages from the server;

57

WO 01/22398 PCT/US00/25977

15

responding to receipt of data available messages from the server to transmit

notifications to the client application component;

responding to commands received from the client application component to

request download of broadcast data units from the server; and

receiving broadcast data units from the server and extracting sequence data

from the received broadcast data units for access by the client application

component.

58

WO 01/22398 PCT/US00/25977

1/11

FIG. 1

2/11

WO 01/22398 PCT/US00/25977

FIG. 2

3/11

WO 01/22398 PCT/US00/25977

FI
G

. 3

4/11

WO 01/22398 PCT/US00/25977

FI
G

. 4

5/11

WO 01/22398 PCT/US00/25977

Tr
ac

k

FI
G

. 5

6/11

WO 01/22398 PCT/US00/25977

FI
G

. 6

7/11

WO 01/22398 PCT/US00/25977

<n<

FI
G

. 7

C
lip

8/11

WO 01/22398 PCT/US00/25977

FI
G

. 8

9/11

WO 01/22398 PCT/US00/25977

FI
G

. 9

10/11

WO 01/22398 PCT/US00/25977

FI
G

. 1
0

11/11

WO 01/22398 PCT/US00/25977

FIG. 11

