A process for forming a turbine blade comprises the step of forming an as-cast turbine blade having an airfoil portion and a tip shroud, wherein the forming step comprises forming at least one as-cast cooling circuit within the tip shroud.
COOLED TURBINE BLADE SHROUD

CROSS REFERENCE TO RELATED APPLICATION(S)

BACKGROUND

[0002] There is described herein a turbine blade having a tip shroud with cooling circuits for use in high temperature applications.

[0003] Turbine blade tip shrouds can be used to provide a useful flowpath shape (conical flowpath outer diameter) and to minimize tip leakage flow to increase turbine efficiency. Tip shrouds can also provide structural benefits by changing blade natural frequencies and mode shapes, as well as providing frictional damping from the interaction between rotating blade segments. Tip shrouds can degrade in operation by creep (curling up of shroud edges) or oxidation if the shroud metal temperature and/or stress exceed the capability of the material from which the blade and the shroud are produced.

[0004] Historically, it has been difficult and expensive to provide cooling features to turbine blade tip shrouds. As a result, blades with tip shrouds often have been limited to lower temperature stages of a gas turbine engine. Limitations in manufacturing capability have greatly constrained shroud cooling features, with existing designs either providing lightweight, extensive cooling at great cost, simple cooling at reduced cost or thick, heavy designs which require very heavy blades and rotors to support the large cooled shrouds.

[0005] Use of traditional ceramic core materials to form internal cooling passages in blade shrouds results in air passages which are excessively thick compared to the rest of the shroud geometry, leading to an excessively thick and heavy blade tip and a very heavy blade/rotor stage. Failure can occur due to the high stress imparted by the heavy tip shroud.

[0006] Other methods used in the past are open cavities closed with coverplates, such as that shown in FIG. 1. The coverplates are welded over machined cooling passages. The coverplates tend to be heavy and the overall process of manufacture is expensive.

[0007] Another method used in the past is the fabrication of EDM cooling passages. Such a method is shown in FIG. 2. Forming cooling passages in this manner is expensive and has very limited, straight line passage geometry limitations.

[0008] These prior processes for forming shrouds with cooling are expensive, create life debits due to welding, and can form heavy shrouds due to parasitic mass of a coverplate. Still other processes are slow as well as expensive and provide limited cooling passage geometry capability.

[0009] FIGS. 3-5 show a large-size industrial engine airfoil concept that uses a large plenum core in the tip shroud fed by drilled holes in the blade. The dashed outline shown in FIG. 5 illustrates the plenum boundary. The airfoil is fabricated using covers and ceramic core inserts. This fabrication concept suffers from being expensive and heavy. Further, this concept used a plenum, rather than a defined duct with a confined path with inlets and exits. Plenums such as this suffer from uncertain local internal flow conditions with low heat transfer.

SUMMARY OF THE DISCLOSURE

[0010] In accordance with the present disclosure, there is provided a shroud having a plurality of cooling passages, which cooling passages are formed using refractory metal core technology. Cooling passages formed in this manner are advantageous because they provide controlled internal air velocity and effective cooling through the extent of the passage.

[0011] A turbine blade for use in high temperature applications is disclosed, which turbine blade broadly comprises an as-cast airfoil portion and an as-cast outer tip shroud portion, the outer tip shroud portion having at least one as-cast internal cooling passage for cooling the outer tip shroud, and the at least one as-cast internal cooling passage having one or more exits for discharging cooling air over exterior surfaces of the shroud.

[0012] A process for forming a turbine blade is disclosed which broadly comprises the steps of forming an as-cast turbine blade having an airfoil portion and a tip shroud, and the forming step comprising forming at least one as-cast cooling passage within the tip shroud.

[0013] Other details of the RMC cooled turbine blade shroud of the present disclosure, as well as objects and advantages attendant thereto, are set forth in the following detailed description and the accompanying drawings wherein like reference numerals depict like elements.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 illustrates an approach for providing a cooled tip shroud;

[0015] FIG. 2 illustrates another approach for providing a cooled tip shroud;

[0016] FIGS. 3-5 illustrate a plenum approach for providing a cooled tip shroud;

[0017] FIG. 6 shows a shroud with a cross section of an airfoil superimposed thereon;

[0018] FIG. 7 is a sectional view of a shroud having internal cooling passages formed using refractory metal core technology; and

[0019] FIG. 8 illustrates a ceramic core with refractory metal cores attached thereto.

[0020] FIG. 9 illustrates a single refractory metal core used to form more than one passage.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

[0021] As described herein, there is disclosed a turbine blade having a tip shroud with a plurality of thin cooling passages cast integrally into the tip shroud using refractory metal core technology. The passages may have a thickness in the range of from 0.010 to 0.060 inches. This type of thin, as cast, internal cooling passage in the tip shroud provides high heat transfer with a very small increase in shroud thickness, namely from 0.030-0.100 inches less thickness than required by conventional ceramic core casting techniques.

[0022] This type of manufacturing is useful because the shape of the refractory metal core(s) can be tailored as needed to the specific blade being designed without the need for expensive machining operations and/or welded coverplates. Heat transfer augmentation features, such as trip strips and pedestals, can be easily fabricated and used as needed to increase shroud cooling and passage flow.
Referring now to FIGS. 6 and 7, there is shown a turbine blade 10 having an airfoil portion 12 and an outer tip shroud 14. The tip shroud 14 may be provided with a first cooling passage 16 and a second cooling passage 18. Each of the cooling passages 16 and 18 is formed using refractory metal core technology. Each of the cooling passages has an inlet 20 which communicates with a source (not shown) of cooling fluid via a common central channel or fluid conduit 19 within the airfoil portion 12. Each cooling circuit 16 and 18 may be desirably located at a mid-plane level of the as-cost shroud. By “mid-plane”, it is meant that there is an equal thickness of the shroud above and below each cooling circuit 16 and 18. Offset cooling passages may be advantageous to some specific designs.

Each of the cooling passages 16 and 18 may have a one or more exits for allowing cooling fluid over desired portions of the tip shroud 14, such as over exterior surfaces of the shroud, or directly out of the shroud. As can be seen from FIG. 7, the cooling passage 16 may have an exit 22 on one side of the tip shroud 14 and a plurality of exits 24 and 26 on an opposite side of the tip shroud 14. The cooling passage 18 may have an exit 28 on one side of the tip shroud 14 and three cooling exits 30, 32, and 34 on an opposite side of the tip shroud 14. The number of cooling exits and their locations in each cooling passage 16 or 18 may be tailored as needed to promote efficient cooling of the shroud. A tip shroud 14 having as-cost cooling passages 16 and 18 with the exits as shown in FIG. 7 provides efficient cooling at low cost and weight.

The turbine blade 10 with the airfoil portion 12 and the tip shroud 14 may be formed using any suitable casting technique in which a primary ceramic core 100 (such as that shown in FIG. 8) is used to form the primary blade radial inner passages with the primary ceramic core 100 being centrally positioned within the die having the shape of the outer portions of the turbine blade. As can be seen from FIG. 8, a plurality of refractory metal cores (RMCs) 102 and 104 are joined to the primary ceramic core 100. The refractory metal cores 102 and 104 may be formed from any suitable refractory material known in the art, such as molybdenum or a molybdenum alloy. Each of the refractory metal cores 102 and 104 may be joined to the primary ceramic core 100 by means of one or more tabs 108 bent over and inserted into slots 110 in the tip 112 of the primary ceramic core 100. The turbine blade 10 with the outer tip shroud 14 may be formed by casting any suitable superalloy material in a known manner. After the molten superalloy material has been poured into a mold (not shown) and cooled to solidify and form the turbine blade 10, the airfoil portion 12 and the tip shroud 14, the primary ceramic core 100 may be removed using any suitable leaching technique known in the art. Thereafter, the refractory metal cores 102 and 104 may be removed using any suitable leaching technique known in the art. Once the refractory metal cores 102 and 104 are removed, there is left an as-cost shroud having the as-cost, thin cooling passages 16 and 18.

If desired, the refractory metal cores 102 and 104 may each be provided with a plurality of slots or holes for forming a plurality of pedestals or a plurality of trip strips in each cooling circuit 16 and 18 for enhancing cooling effectiveness.

If desired, as shown in FIG. 9, a single refractory metal core 122 may be used to form more than one passage in the finished part. The portions 124 and 126 are outside the envelope of the finished casting and are removed after the pot is formed. Also, it may be desirable to have one cooling passage, rather than multiple passages.

One advantage to the approach described herein is that the exits for the cooling circuits may be sized to provide a desirable level of cooling without the need to employ machining of the as-cast material. Thus, the technique described herein is a cost effective technique for introducing extensive cooling features in a turbine blade tip shroud, with minimal increase in shroud thickness. This allows turbine tip shrouds to be an effective option in engine environments where the gas temperature is substantially above the useful temperature capability of the airfoil alloy where they were previously not practical and/or cost effective. This is of potential value for low pressure turbine blades that can benefit from a conical OD flowpath and reduced tip leakage provided by shrouded stages.

It is apparent that there has been provided in accordance with the instant disclosure a RMC cooled turbine blade shroud. While the RMC cooled turbine blade shroud has been described in the context of specific embodiments thereof, other unforeseen variations, alternatives, and modifications may become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, variations, and modifications as fall within the broad scope of the appended claims.

1. A process for forming a turbine blade comprising the steps of:
 forming an as-cast turbine blade having an airfoil portion and a tip shroud; and
 said forming step comprising forming at least one as-cost cooling circuit within said tip shroud.

2. The process according to claim 1, wherein said airfoil portion forming step comprises using a primary ceramic core to form at least one radial inner passage within said airfoil portion of said turbine blade; and said at least one as-cost cooling circuit forming step comprises attaching a plurality of refractory metal cores to said primary ceramic core.

3. The process according to claim 2, wherein said attaching step comprises joining each of said refractory cores to said primary ceramic core by inserting a plurality of tabs on each said refractory metal core into a plurality of slots in a tip of the primary ceramic core.

4. The process of claim 2, wherein at least one cooling circuit forming step comprises forming at least one cooling circuit at a mid-plane level of the as-cast shroud.

5. The process of claim 2, wherein at least one cooling circuit forming step comprises forming two cooling circuits at a mid-plane level of the as-cast shroud.

6. The process of claim 2, wherein said forming step comprises forming each said cooling circuit with a first cooling fluid exit on one side of the shroud and at least two additional cooling fluid exits on a second side of the shroud.