用于电机的角度测量系统的校准和监控

摘要

本发明涉及一种电机(100)，其具有：用于确定转子(105)的第一旋转角的角度位置探测器(103)；用于产生磁场的定子绕组(107)；用于检测在转子旋转时在定子绕组末端处的磁极转子电压的电压测量器(109)；和用于从磁极转子电压确定第二旋转角以及用于确定第一和第二旋转角之间的角度差的确定电路(111)。
1. 电机(100)，具有：
用于确定转子(105)的第一旋转角度位置探测器(103)；
所述转子(105)的由励磁电流驱动的励磁绕组(113)；
用于产生磁场的定子绕组(107)；
用于检测在转子(105)转动时在定子绕组(107)末端处的磁极转子电压的电压测量器(109)；
和
用于从磁极转子电压确定第二旋转角度以及用于确定第一和第二旋转角度之间的角度差
的确定电路(111)，
其中所述励磁电流被选择为，使得磁极转子电压高于车载网络电压(B+)。
2. 根据权利要求1所述的电机(100)，其中所述电机(100)包括用于存储角度差的存储
器。
3. 根据权利要求1或2所述的电机(100)，其中所述电机(100)包括转子(105)上的励磁
绕组(113)和用于限制励磁绕组中的最大励磁电流的电流限制器。
4. 根据权利要求3所述的电机(100)，其中所述绕组(103)包括用于将磁极转子电压
与参考电压进行比较以便产生比较信号的比较器。
5. 根据权利要求1或2所述的电机(100)，其中所述电机(100)包括用于将磁极转子电压
与参考电压进行比较以便产生比较信号的比较器。
6. 根据权利要求2所述的电机(100)，其中所述电机包括转子(105)上的励磁绕组(113)
和用于限制励磁绕组中的最大励磁电流的电流限制器。
7. 根据权利要求1所述的电机(100)，其中所述电机(100)包括转子(105)上的励磁
绕组(113)和用于限制励磁绕组中的最大励磁电流的电流限制器。
8. 根据权利要求1或2所述的电机(100)，其中所述电机包括转子(105)上的励磁
绕组(113)和用于限制励磁绕组中的最大励磁电流的电流限制器。
9. 根据权利要求3所述的电机(100)，其中所述电机包括转子(105)上的励磁绕组(113)
和用于限制励磁绕组中的最大励磁电流的电流限制器。
10. 根据权利要求1或2所述的电机(100)，其中所述电机包括转子(105)上的励磁
绕组(113)和用于限制励磁绕组中的最大励磁电流的电流限制器。
11. 根据权利要求1或2所述的电机(100)，其中所述电机包括转子(105)上的励磁
绕组(113)和用于限制励磁绕组中的最大励磁电流的电流限制器。
12. 根据权利要求1或2所述的电机(100)，其中所述电机包括转子(105)上的励磁
绕组(113)和用于限制励磁绕组中的最大励磁电流的电流限制器。
13. 用于运行电机(100)的方法，具有如下步骤：
通过角度位置探测器(103)检测电机(100)的转子(105)的第一旋转角；
检测转子(105)转动时在定子绕组(107)末端处的磁极转子电压；
从磁极转子电压中确定第二旋转角；以及
确定第一和第二旋转角之间的角度差。
其中流经转子(105)的励磁绕组(113)的励磁电流被选择为，使得磁极转子电压高于车
載网络电压(B+)。
14. 根据权利要求3所述的方法，还具有步骤：沿着转动体圆周在多个位置处求取角度差。
15. 根据权利要求13或14之一所述的方法，还具有步骤：将第一旋转角校正了所述角度差，以便获得经校正的旋转角。

16. 根据权利要求13或14之一所述的方法，还具有步骤：与经校正的第一旋转角同步地产生旋转场。
用于电机的角度测量系统的校准和监控

技术领域
[0001] 本发明涉及具有角度测量系统的电机。

背景技术
[0002] 印刷版DE 10 2009 029 396 A1涉及一种用于运行电机的方法，其中电机具有定片(stator)和转动体(rotor)并且转动体相对于定片的角度位置通过解析器原理被确定。解析器原理所基于的是，借助于一个线圈，也即要么转动体绕组要么定片绕组在电机内建立磁场。该磁场在相应另一绕组中感应出电压，该电压的参数取决于转动体相对于定片的角度位置。如果对感应的电压进行分析，则因此可以推断出角度位置，而电机不必具有附加的传感器。

发明内容
[0003] 本发明所基于的任务是，提高角度测量的可靠性。
[0004] 该任务通过电机和用于运行电机的方法来解决，其中所述电机包括：用于确定转子的第一旋转角的角度位置探测器；所述转子的由磁磁电流流经的励磁绕组；用于产生磁场的定子绕组；用于检测在转子旋转时在定子绕组两端处的磁极转子电压的电压测量器；和用于从磁极转子电压确定第二旋转角以及用于确定第一和第二旋转角之间的角度差的确定电路，
[0005] 其中所述磁极电流被选择为，使得磁极转子电压高于车载网络电压B+。
[0006] 本发明所基于的认识是，可以通过角度测量根据磁极转子电压来检验角度位置探测器(Winkellagegeber)的测量。
[0007] 本发明的优点
[0008] 根据一个方面，本发明的任务通过一种电机来解决，该电机具有用于确定转子的第一旋转角的角度位置探测器，用于产生磁场的定子绕组，用于检测在转子旋转时在定子绕组两端处的磁极转子电压的电压测量器，以及用于从磁极转子电压中确定第二旋转角以及用于确定第一和第二旋转角之间的角度差的确定电路。由此例如实现的系统上的优点是，即使在车辆中运行期间也可以规则地执行对角度信号的可信度测试，使得识别出例如由旋转、异响影响或去磁引起的可能改变。尤其是实现如下优点，即通过简单的和成本低廉的方式确定角度信号的零位置并且使得既能够初次习得(Einlernen)角度信号也能够事后检验该角度信号。
[0009] 在一个有利的实施方式中，电机包括用于存储角度差的非易失性存储器。由此例如实现的技术上的优点是，所述角度差持久地可供旋转角校正使用。
[0010] 在另一有利的实施方式中，电机包括转子上的励磁绕组和用于限制该励磁绕组中的最大励磁电流的电流限制器。由此例如实现的技术上的优点是，可以看到电流限制器来调整所产生的磁极转子电压。
[0011] 在另一有利的实施方式中，电流限制器被构造为根据转速通过在参考电压之下调
整最大励磁电流来调整磁极转子电压。由此例如实现的技术上的优点是,防止参考电压、例如车载网络电压被超过并且没有由于定子电感而改变电压信号的相位值的电流流过。
[0012] 在另一有利的实施方式中,电机包括用于将磁极转子电压与参考电压进行比较以便产生比较信号的比较器。由此例如实现的技术上的优点是,可以根据所获得的比较信号执行角度校准。
[0013] 在另一有利的实施方式中,所述比较器被构造为一旦磁极转子电压低于参考电压就输出比较信号。由此例如实现的技术上的优点是,如果未改变磁极转子电压的相位值的电流流过,则输出信号。
[0014] 在另一有利的实施方式中,确定电路被构造为在存在比较信号时确定角度差。由此例如实现的技术上的优点是,特别精确地执行角度校准。
[0015] 在另一有利的实施方式中,确定电路被构造为将第一旋转角校正所述角度差,以便获得经校正的旋转角。由此例如实现的技术上的优点是,获得可靠地反映转子的位置的旋转角。
[0016] 在另一有利的实施方式中,确定电路被构造为将经校正的旋转角与第二旋转角进行比较。由此例如实现的技术上的优点是,提高角度测量的可靠性。
[0017] 在另一有利的实施方式中,确定电路被构造为如果经校正的旋转角和第二旋转角彼此有偏差则输出故障信号。由此例如实现的技术上的优点是,防止电机的错误运行。
[0018] 在另一有利的实施方式中,所述电机包括用于与经校正的第一旋转角同步地产生旋转场的操控装置。由此例如实现的技术上的优点是,实现对转子的特别精确的操控。
[0019] 在另一有利的实施方式中,电机的磁极对的数目大于1。由此例如实现的技术上的优点是,校准的精度提高。
[0020] 根据另一方面,本发明的任务通过一种用于运行电机的方法来解决,所述方法具有步骤:通过角度位置探测器检测电机的转子的第一旋转角;检测在转子旋转时在定子绕组末端处的磁极转子电压;从磁极转子电压中确定第二旋转角;以及确定第一和第二旋转角之间的角度差。由此可以实现与通过根据第一方面的电机相同的优点。
[0021] 在一个有利的实施方式中,所述方法包括步骤:将角度差存储在操控电子设备中。由此例如实现的技术上的优点是,确定的角度差可供任意其他的数据处理步骤使用。
[0022] 在一个有利的实施方式中,所述方法包括步骤:沿着转动体圆周在多个位置处求取角度差。由此实现的优点是,沿着转动体圆周在多于一个的位置处求取角度差,并且旋转角的校正沿着转动体圆周改变。通过求取多个校正值,进一步改善所述方法的安全性。
[0023] 在一个有利的实施方式中,所述方法包括步骤:将第一旋转角校正所述角度差,以便获得经校正的旋转角。由此例如同样实现的技术上的优点是,获得更准确的和更精确的旋转角。
[0024] 在一个有利的实施方式中,所述方法包括步骤:与经校正的第一旋转角同步地产生旋转场。由此例如同样实现的技术上的优点是,精确地操控所述电机的转子。

附图说明
[0025] 本发明的实施例在附图中示出并且在下文中予以更详细的描述。
[0026] 图1示出电机的示意性视图；
图2示出用于电机的电路；
图3示出用于具有一个极对的电机的磁极转子电压和角度传感器信号的时间变化曲线的图表；
图4示出在使用比较器系统时的输出电压；和
图5示出用于具有两个极对的电机的相电压和角度检测器(Winkelgeber)的时间信号变化曲线的图表。

具体实施方式

本发明可以例如在机动车中在发电机情况下用于将机械能转换成电能。所述发电机大多由爪极发电机组成，其装备有励磁磁装置。因为爪极发电机大多多相地产生三相电流，因此为常见的机动车直流电压车载网络产生所发生的电压的整流，例如通过基于半导体二极管的整流器。

此外附加地存在可以附加地用于起动内燃机的发电机，其也称为起动发电机。一般地，这种起动发电机仅在非常小的转速情况下才以电动机的方式来运行，因为它可产生的转矩在较高转速情况下快速下降。

用于机动车驱动的另外的发电机从混合动力车辆的领域中已知。这些发电机在低转速情况下支持内燃机，在所述低转速情况下该内燃机不提供其满转矩（推动运行，涡轮迟滞补偿）。在电动机运行中，在这种驱动中使用角度位置检测器，以便在定子绕组中产生角度同步的旋转场。

为了调准角度位置检测器，可以对发电机的相通电。由此转子在特定位置对准，该位置被识别为零位置。但是，这种调准的可再现性由于摩擦效应或外部力矩而小的并且所述方法在运行中仅能差地被应用，也就是说在停止中并且在没有外部转矩情况下被应用。另外，所述方法引起损耗功率并且不对称地对附加负荷。

图1示出本发明电机100的示意性视图。电机100包括转子105，其可旋转地围绕旋转轴115设置。该转子105包括励磁绕组113。也称为电枢或转动体的转子105是以电磁方式起作用的电机的一部分并且构成电机的运动部分。

励磁绕组113是由导线绕组构成的线圈，当该线圈被电流流经时，该线圈产生用于能量转换的磁场，也称为主磁场或空隙磁场。所述电流被称为励磁电流。

电机另外包括定片或定子117。定片117构成电机100的固定部分。该定片117在许多情况下同时构成电机100的壳体并且在电动机和发电机情况下由成片的钢或者浇铸的金属形成。定片117用作定子绕组107的芯和载体。

通过定子绕组107在电机100运行时产生旋转场，该旋转场与励磁绕组的磁场耦合，使得转子105被置于旋转中。通过定子绕组107，在电机100的发电机运行中电能被馈入到所连接的网络中，而在发动机运行中电能被从网络中取得。

为了检测转子105的角度，电机100包括角度位置探测器103。该角度位置探测器103是用于检测转子105的当前位置的传感器，以便在定子绕组107中产生角度同步的旋转场。作为角度位置探测器例如可以使用巨磁电阻传感器(GMR传感器)或者增量探测器，使其检测转子的角度改变。

由传感器产生的角度信号的零位取决于安装容差。此外，传感器的信号可能由于
磁场而在传感器附近失真。

【0041】因此有利的是，一次校准角度位置探测器103的绝对位置并且保存在操控软件中。此外有利的是，即使在运行期间，例如在机动车中运行时也可以规则地执行所获得的角度信号的可信度测试，以便识别可能的故障源，例如由旋转、异体影响或者去磁所引起。

【0042】因此，电压测量器109与定子绕组107的末端连接。一旦转子105旋转并且电流流经励磁绕组113，就在定子绕组中感应出电压，其也称为磁极转子电压。电压测量器109检测所感应的磁极转子电压。根据其分析，此使用磁极转子电压来均衡角度位置。磁极转子电压可以被置于与角度位置探测器的角度信号的关系中。为此目的，电机100包括确定电路111。

确定电路可以处理角度位置探测器103和电压测量器109的信号并且计算两个信号之间的相移或者角度差。确定电路111可以例如通过具有中央计算单元(CPU)的控制设备来构成。

【0043】图2示出3相电机100的电路图。

【0044】开关元件201，例如MOSFET经由汇流排一方面与定子绕组107连接并且另一方面与起动发电机的直流电压端子连接。起动发电机的直流电压端子又与机动车的电池连接。这可以与如在通常在机动车中所使用的电池中那样12V电压不同地也具有诸如48V的其他电压。MOSFET的栅极端子与包括确定电路111的操控逻辑电路205连接。通过分析转子105的位置，各个MOSFET的接通和关断时刻得以确定。

【0045】励磁绕组113通过功率开关207以时钟控制的方式被接通和关断，使得输送给励磁绕组113的电流可以被控制和限制。功率开关207的操控通过场调节器209来进行。励磁电流的调节可以由经由经由“2点”调节来进行。在定子绕组107的端子处由电压测量装置109测量至少一个相电压。

【0046】图3示出在极对数为1的电机情况下由角度位置探测器或转动体位置传感器103返回的信号V_y(s)[n]和V_x(cos)和由电压测量装置在定子绕组处所检测的电压U_相。角度位置探测器103的信号是两个彼此偏移90°的正弦信号，从其中可以通过正交计算计算转子的第一旋转角。该角度信号的零位置定位于传感器磁体的安装位置，其一般不与通过励磁线圈所产生的转动体场的定向一致。在较高的极对数目的情况下，所测量的相电压的频率对应地提高。

【0047】该磁场在转子105旋转时在定子绕组107中感应出近似正弦电压的电压U_相，即所谓的磁极转子电压，其可以在定子绕组107的绕组末端处被测量。只要没有电流在定子绕组中流动的。该电压U_相被用于均衡角度位置，其方式是确定第二旋转角。电机可以为此以恒定的转速来运行。但是不需要转速具有预先给定的值。

【0048】励磁电流的高度根据转速被调整为，使得在相点处所测量的磁极转子电压U_相不超过车载网络的电压，因为在超过车载网络的电压时在定子绕组107处将会有电流流动，该电流将会由于定子电感而改变电压信号U_相的相位角值。

【0049】因此在励磁绕组113中调整定义的励磁电流。励磁绕组113的励磁电流和转速的高低被选用为，使得电机100将在(knap)在其发电机的起始转速以下运行并且恰好还不输出电流到所连接的车载网络中。

【0050】如果现在测量磁极转子电压U_相和由角度传感器所产生的角度信号V_y(s)[n]和V_x(cos)，则可以确定信号的相移以及因此确定第一和第二角度之间的校正角度。该校正角度是零偏移。
零偏移以合适的形式保存在电机100的操控软件的非易失性存储器中。优选地，将转子的励磁电流和转速选择为，使得可以在车辆在空转转速时进行第一和第二旋转角的可信度测试。为此可以例如将第一旋转角数校正角度，并且然后与第二旋转角进行比较。

如果校正的第一旋转角和第二旋转角彼此有偏差，则可以输出故障信号。

图4示出用于调节主动式整流器的比较器系统。一旦相电压UL超过车载网络电压B+，该比较器系统就产生信号。该比较器信号可以用于启动体位置校准。

对相电压U-相的确定可以例如通过经由模拟数字转换器输入端（ADC输入端）记录相电压并由此分析信号的过零或者最大和最小值来进行。此外可以借助于比较器信号和接合相移求取来评估相信号。

在另一实施方式中，励磁电流可以被选择为，使得最小的发电机电流被输出到车载网络中，即磁极转子电压最小与车载网络电压B+。在该情况下，为了检测相位角可以使用比较器信号，所述比较器信号也被用于主动地整流。

该方法可以利用作为角度位置探测器的不同的角度检测系统被使用，例如增量探测器。一般说来，在说明书的图中所阐述的主题并不限于根据权利要求所述的本发明保护范围。所有所示出的和所述的特征都可以通过任意方式有意义地彼此组合，以便同时实现其有利的效果。

一般来说，本发明方法也可以在磁极对数目大于1的电机中使用。

图5示出用于具有两个极对的电机的角度探测器和相电压的信号变化曲线。因为相电压具有两倍频率，分析得出两个不同的零偏移值，因为在一次机械转动可以分析出相电压的两次过零，例如在150°和330°时。通过比较电路可以产生数字信号，使得可以分析偏移补偿的开关边沿。

在理想地对称地构成的转动体情况下，两个零偏移值具有360°/极对数目的差。如果该涉及机械转动的偏移值被换算成相电压的电频率，则在每次过零时得出相同的值。转动体位置补偿于是可以如所述那样进行。

如果得出不同的偏移值，例如转动体构造由于制造容差不是精确对称的，则所述方法在该情况下附加地提供通过与角度有关的特征线补偿非对称性的可能性。在当前情况下，该特征线具有两个控制点，即两个不同地求取的偏移值，在这两个偏移值之间可以线性地内插。电机的极对数目越高，该特征线就越准确。例如在极对数为8时得出具有8个控制点的特征线。

此外也可以使用典型多个相电压用于偏移值确定，使得得出附加的控制点。在极对数为8时的相电机情况下，由此例如得出24个控制点。

附图标记列表

- 100 电机
- 103 角度位置探测器
- 105 转子
- 107 定子绕组
- 109 电压测量器
- 111 确定电路
- 113 励磁绕组
115 旋转轴
117 定子
201 开关元件
203 电池
205 操控逻辑电路
207 功率开关
209 场调节器
U一相 磁极转子电压
Vx(cos) 角度位置探测器信号
Vy(sin) 角度位置探测器信号
B十 车载网络电压
α 转子角度。
图 1
图 3

图 4
图 5