发明名称
一种碱性锌锰电池及其制备方法

摘要
本发明属于电化学领域，涉及一种碱性锌锰电池及其制备方法。本发明的碱性锌锰电池采用有机氯化合物对电池的正极和负极材料均进行改性，将聚四氟乙烯磺酸钠粉末掺杂于正极中，作为电解液和石墨粉的粘合剂，利用其自身的高化学稳定性，使电池正极环的稳定性大大提高；将含全氟壬基磺酸钠的电解液分散于负极锌粉中形成保护膜，以在电池不放电的情况下，能够抑制锌粉的电化学腐蚀反应，避免了锌粉的腐蚀，因此有效地减小电池的自放电和析气量。本发明碱性锌锰电池具有大电流放电稳定、贮存期长、析气量低的特点，解决了现有的碱性锌锰电池高倍率放电性能差，锌－镍电池自放电现象严重、电池贮存期短等问题。
1. 一种碱性锌锰电池的制备方法，制备过程为：将正极环压入电池壳中，中间插入隔膜纸筒，隔膜纸筒中注入电解液，待电解液完全被隔膜纸筒和正极环吸收后注入锌膏，插入带有负极盖的铜钉，压紧封口得到产品，其特征在于：所述电池的正极环是用二氧化锰、导电剂、粘合剂和电解液分散搅拌后进行压片造粒打环制成的管式环状体，所述的粘合剂为聚四氟乙烯蜡微粉，负极是含有效量全氟壬烯氧基苯磺酸钠的锌膏，电解液为碱性水溶液。

2. 根据权利要求1所述的制备方法，其特征在于所述的正极环的制备方法为：二氧化锰、导电剂和有效量的聚四氟乙烯蜡微粉，快速搅拌分散后加入电解液，搅拌后滚压成片，造粒。

3. 根据权利要求1或2所述的制备方法，其特征在于：所述的电解液为溶有质量分数2%-6%的氧化锌的氢氧化钾或氢氧化钠水溶液，该氢氧化钾或氢氧化钠水溶液的质量浓度为35%-45%。

4. 根据权利要求1或2所述的制备方法，其特征在于：所述的聚四氟乙烯蜡微粉的粒径范围为0.5～5μm，聚四氟乙烯的分子量范围为1万～10万。

5. 根据权利要求1或2所述的制备方法，其特征在于：所述的聚四氟乙烯蜡微粉的添加量为二氧化锰质量的0.1%～1%。

6. 根据权利要求1或2所述的制备方法，其特征在于：所述的全氟壬烯氧基苯磺酸钠的用量为负极锌膏质量的0.001%～0.05%。

7. 一种根据权利要求1所述的方法制备的碱性锌锰电池，包括正极、负极、隔膜、碱性电解质，其特征在于：在正极环的原料中添加有效量的聚四氟乙烯蜡微粉，作为正极环的粘合剂，负极是含有效量全氟壬烯氧基苯磺酸钠的锌膏。

8. 根据权利要求7所述的碱性锌锰电池，其特征在于：所述的聚四氟乙烯蜡微粉的粒径范围为0.5～5μm，聚四氟乙烯的分子量范围为1万～10万。

9. 根据权利要求7或8所述的碱性锌锰电池，其特征在于：所述的聚四氟乙烯蜡微粉的添加量为二氧化锰质量的0.1%～1%。

10. 根据权利要求7或8所述的碱性锌锰电池，其特征在于：所述的全氟壬烯氧基苯磺酸钠的用量为负极锌膏质量的0.001%～0.05%。
说明书

一种碱性锌锰电池及其制备方法

技术领域
[0001] 本发明属于电化学领域，涉及一种电池，尤其是一种碱性锌锰电池及其制备方法。

背景技术
[0002] 当前越来越多高耗电便携式多功能电子产品进入市场，如数码相机、电动牙刷、电动剃须刀、闪光灯和遥控电动玩具等等。消费者需要选择大功率、大容量电池来满足其使用要求。普通碳性电池和目前一般碱性锌锰电池很难满足高耗电电子产品性能要求。镍电池虽然具有高容量、大电流的性能，但由于其使用无水有机电解液，电池易燃易爆事故常有发生，而且价格昂贵，所以大多数消费者对这种一次型电池选择不是太多。最近新上市的一次性锌－镍电池因其大电流输出功率的电化学特性，较为适合应用在数码相机上。该电池开压为 1.72～1.74V，对于一般的 1.5V 电池设计的电子产品使用存在不安全因素，易造成电子产品的损坏，因而消费者的选择受到限制。锌－镍电池与普通碱性电池比较，因镍矿资源的缺乏，电池的生产成本偏高；作为不可充电电池一次性使用，务必要大量浪费贵重的资源。如中国发明专利 ZL200810306304.5 公开了一种高稳定大电流碱性电池及其制造方法，该电池是用混合的多元素金属氧化物作为正极的主要材料，以减少氧化镍的使用量。选用改性二氧化锰掺混在镍氢氧化镍（NiOOH）正极材料中，降低了生产成本又改善了锌－镍电池各方面的电化学性能。

[0003] 碱性锌锰电池，正极主要是 MnO2 与石墨，加入适量的粘合剂和 KOH 电解液混合均匀，经过压片、造粒、打环形成的环式结构的正极混合物；而负极主要是锌粉、水溶性聚合物和 KOH 电解液组成的浆状负极混合物。碱性锌锰电池与普通的碳性电池结构并不一样，普通碳性电池是将锌筒作为电池负极，而碱性锌锰电池的负极是用细的锌合金粉与水溶液聚丙烯酸，加入 38% 左右的 KOH 强碱电解液制成的锌膏。锌锰电池中的锌因强碱电解液的腐蚀而容易引起电池的自放电，主要原因是锌负极溶解的条件是体系中存在一对共轭反应，在 Zn-Mn-H2O 体系中，共轭反应是由析氢反应和锌的阴极氢氧化反应构成的，反应式为 Zn+2OH-=ZnO22-+H2↑。随着电池产品储存时间的延长，慢慢产生 H2，同时降低电池的放电容量，降低电池的产品质量，并且产生不安全因素，如电池产品的气胀而容易发生碱性锌锰电池中碱性电解液的泄露等。

[0004] 在早期碱性锌锰电池生产中，在负极混合物中添加少量汞，形成汞齐化锌粉来提高锌的析氢过电位，抑制锌负极的腐蚀，减少电池的自放电，从而保证了电池产品的质量。而汞的添加造成了环境方面的负面影响，大量汞的使用危害人类的身体健康，因而当前碱性锌锰电池的生产已经禁止在负极锌粉中添加汞来提高电池产品的质量。为了实现锌锰电池的无汞化，选用析氢过电位较高且又不污染环境的金属元素代替汞，如 In、Bi、Sn、Al 等。这些元素添加到锌粉中，形成锌合金可以减少锌粉的腐蚀。

[0005] 目前电池产品要符合大功率数码用电器的输出特性，锌粉种类的选择至关重要。锌粉的粒度及其分布直接影响无汞碱性锌锰电池的性能，粒度大的锌粉制成的电池经过放电后，ZnO 扩散困难，在碱性电解液的作用下易引起锌粉负极的钝化；锌合金粉粒度过细，
比表面积大，锌粉活性过大，使锌粉析气量增大，从而电池的自放电增大，影响电池的贮存性能并导致爬碱。一般选择锌粉的粒经范围在75～500μm，但为了提高高碱性锌锰电池大电流放电的特性，同时加入75μm以下的短锌粉，使得负极锌粉的比表面积大大增加，同时也提高了锌粉的析气量和电池的自放电。目前生产电池的负极使用的是用铋、铋、铅等与锌混合熔炼而成的锌合金粉，以此起到了对锌粉的缓蚀作用，从而减少了锌粉的析气量。虽然这些无机金属元素可替代苄的加入，但过量的加入也会使锌合金粉表面钝化，影响电池产品大电流放电的性能。锌负极汞齐化除了有抑制锌腐蚀作用外，由于形成的汞齐化膜均匀覆盖在锌粉表面，使得电池反应的生成物ZnO 不易停留在锌的表面，因此电池的放电可以连续进行。同时，汞齐化锌接触电阻小，可以提高导电性，改善放电性能，提高了电池的耐冲撞性。虽然在锌粉中适量加入铋、铋、铅等无机金属元素而形成的固体合金对锌粉腐蚀起到了一定的抑制作用，但是这些元素过量地加入对大电流放电性能也是有影响的。如铋的加入量要适当，因为放电时锌粉的析气量随铋量的增加而减小，但过放电时，锌粉的析气量随铋量的增加而增大。近年来，在电池生产中使用有机缓蚀剂均匀地添加在锌粉中，形成负极锌粉混合物，来改善负极锌粉的放电性能。如烷基磺酸类、有机磷酸酯、有机季铵盐等，这些有机缓蚀剂对锌粉在碱性电解液下起到了缓蚀作用，并且能够提高锌电极的过电位。无机缓蚀剂和有机缓蚀剂的协同使用，大大抑制了锌合金负极的析气量的产生，延长了电池的储存期，而且又不影响电池的电化学性能。

如何提高碱性锌锰电池的产品质量，特别是大电流、高稳定的锌锰电池性能，以及碱性锌锰电池原材料的选择和筛选，是目前电化学研究人员面对的首要任务。有机氟化物的各种优良性质以及其独特的化学、物理性能越来越被现代工农业生产所重视。含氟有机化合物分子形成的碳－氟键，C-F 键长为 1.32～1.39 Å，离解能为 119 千卡/摩尔，而 C-H 键长为 1.54 Å，离解能为 83 千卡/摩尔，相比之下氟有机化合物的分子具有化学惰性，在强酸、强碱的水溶液中不发生腐蚀，化学稳定性高。因 C-F 键极性的影响，其化合物的熔点也相应提高，特别是含氟的高分子聚合物，如聚四氟乙烯、聚偏氟乙烯、聚四氟乙烯等作为电池极片的粘合剂，提高了电池生产的效率和电池产品的质量。另外，含氟聚合物分子结构稳定，具有良好的耐化学性、电绝缘性、高阻燃性和热稳定性等。

发明内容

本发明的目的在于针对现有技术中碱性锌锰电池高倍率放电性能差，锌－镍电池自放电现象严重、电池贮存期短等问题，提供一种大电流放电稳定、贮存期长、析气量低的碱性锌锰电池。

本发明还提供了上述碱性锌锰电池的制备方法。

本发明的上述技术问题是通过以下技术方案得以实施的：

一种碱性锌锰电池的制备方法，制备过程为：将正极环压入电池壳中，中间插入隔膜纸筒，隔膜纸筒中注入电解液，待电解液完全被隔膜纸筒和正极环吸收后注入锌膏，插入带有负极盖的铜钉，压紧封口得到产品，所述电池的正极环是用氯化亚锡、导电剂、粘合剂和电解液分散搅打后进行压片造粒打环制成的管式环状体，所述的粘合剂为聚四氟乙烯蜡微粉，负极是含有效量全氟壬烯氧基苯磺酸钠（OBS）的锌膏，电解液为碱性水溶液。
作为优选，所述的正极环的制备方法为：二氧化锰、导电剂和有效量的聚四氟乙烯蜡微粉，快速搅拌分散后加入电解液，搅拌后滚压成片，造粒。

作为优选，所述的电解液为溶有质量分数 2%—6% 的氧化锌的氢氧化钾或氢氧化钠水溶液，该氢氧化钾或氢氧化钠水溶液的质量浓度为 35%—45%。

作为优选，所述的聚四氟乙烯蜡微粉的粒径范围为 0.5 — 5 μm，聚四氟乙烯的分子量范围为 1 万—10 万。聚四氟乙烯蜡微粉的粒径范围为 0.5 — 5 μm，聚四氟乙烯蜡微粉的颗粒表面积较大，分散作用优良，在电池的制造过程中可有效减少物料和设备的摩擦，同时提高了正极环的机械性能。聚四氟乙烯蜡微粉一般选择低分子量聚四氟乙烯产品。

作为优选，所述的聚四氟乙烯蜡微粉的添加量为二氧化锰质量的 0.1% ～ 1%。过低的用量不利于正极环的制造，过多会使二氧化锰的含量减少从而使电池的电容量下降。

作为优选，所述的全氟壬烯基苯磺酸钠的用量为负极锌膏质量的 0.001% ～ 0.05%。全氟壬烯基苯磺酸钠的用量过少则缓蚀效果不佳，用量过多则因锌粉表面保护层太多，导致电池的内阻过大，从而造成电池放电性能不良的结果。

为了提高大电流放电性能，二氧化锰 (MnO₂) 正极材料需有较高的碱性电位值，较少的杂质。碱性锌锰电池选择品质较好的电解 MnO₂ 作为电池正极的主要成分，同时加入石墨粉作为正极导电材料，以及在生产过程中起到润滑的作用，有利于提高生产效率。在实际电池生产中，需要添加一定量的粘合剂，这有利于电池正极 MnO₂ 混合物的压片、造粒和打环时的粘合作用，提高了管状 MnO₂ 正极环的强度，减少了电池生产时碎环现象的发生，从而降低了生产成本。在生产过程中碱性锌锰电池的正极粘合剂一般选用聚乙烯微粉、聚四氟乙烯乳液等等。MnO₂ 混合物成形的环状结构正极须保持约 20% 左右孔隙率，使得电解液能够促进锌锰电池的电化学反应，反应式为 2MnO₂ + 2H₂O + 2e⁻ = 2MnO(OH) + 2OH⁻。

本发明采用聚四氟乙烯蜡微粉作为正极电解锰混合物的粘合剂有利于电池的大电流放电性能。低分子聚四氟乙烯蜡微粉在生产过程中一般使用高能电子束照射或在高温无氧下裂解；高分子聚四氟乙烯经该种措施处理和改性后，其表面变的光滑。该聚四氟乙烯蜡分子量一般在 1 ～ 3 万左右，经过特殊的粉碎工艺，其粒度为 1 ～ 2 μm，比表面积大约为 10m²/g，摩擦系数为 0.06 ～ 0.07，润滑性好，能很好地分散在正极 MnO₂ 混合物中；并且抗高温，具有一定的化学惰性，不易氧化，在强碱性电解液中不溶胀、不溶解。低分子聚四氟乙烯蜡微粉分子中有极性较大的 C-F 原子键，而又因碳链上氟原子的对称分布，降低了分子的极性，具有憎水性。这种含氟化合物低聚物具有非离子表面活性剂的作用，均匀分散于正极 MnO₂ 混合物中，减小了 MnO₂、石墨和强碱电解液之间的界面张力，降低了摩擦阻力，提高了离子在正极混合物中的扩散和转移，有益于锌锰电池的电化学反应，提高了电池的放电容量。

为了较好地提高碱性锌锰电池的产品质量，本发明选用含氟表面活性剂——全氟壬烯基苯磺酸钠 (OBS) 作为电池的有机缓蚀剂。OBS 是一种含氟阴离子表面活性剂，微黄色固体，能溶解在水中，熔点 250 ～ 260°C，分解温度为 295 ～ 300°C，在 30%NaOH 水溶液中加热至 80°C 时稳定性良好，它与一般的碳氢结构分子的表面活性剂比较，具有高表面活性、高耐热稳定性、高化学惰性、憎水性和憎油性。

OBS 阴离子表面活性剂在水中不溶解成全氟壬烯基苯磺酸钠阴离子，在碱性锌锰电池中，负极锌粉在碱性电解液中捕获 OH⁻，使锌粉表面略带有负电荷。OBS 在中性水溶液中
溶解度很大，但在强碱性电解液中溶解度极为有限，所以 OBS 在碱性电解液中慢慢地沉积于附着于 OH⁻ 的锌粉表面上，在锌粉表面和电解液之间形成一层薄薄的有机涂层，而且 OBS 的有机憎水基团分子有序地排列在锌粉表面，形成保护锌粉的“屏障”。这个“屏障”抑制了碱性电解液对锌粉表面的侵蚀而减少了锌粉表面的腐蚀，减少了负极锌粉的析气量，延长了电池的储存期，从而提高了电池的产品质量。OBS 有机阴离子表面活性剂作为电池负极锌粉的缓蚀剂，与无机金属氧化剂抑制剂不同，当 OBS 加入到负极锌粉的混合物时，OBS 的亲水基与锌粉表面之间的静电排斥达到平衡后，锌粉表面形成了微弱的吸附力保护膜。当电池外联负荷时，在电场的作用下，电流不断从锌粉表面流过，改变了锌粉表面的 OBS 有机化合物保护膜的物理性质，使锌粉表面快速接受来自碱性电解液的 OH⁻ 离子，电池的锌粉源源不断的接收 OH⁻ 的补充，从而使电池的电化学反应继续进行，提供电流。这种有机缓蚀剂与无机金属氧化剂和锌粉冶炼成的锌合金不一样，它是一种可逆的保护膜。当电池不放电“休眠”的状态下，有效阻止了锌粉表面与碱性电解液的接触，在一定程度上抑制了锌粉的腐蚀作用，同时不影响电池的电化学性能。

【0019】OBS 可溶解在水中，但其在碱性条件下溶解性很小。在生产过程中可以首先用中性去离子水溶解 OBS，然后再快速搅拌下分散于碱性溶液中，形成乳白色的电解液后，与负极锌粉混合物搅拌均匀，脱气。OBS 也可用阴离子型或非离子型的助溶剂协助下，快速搅拌分散而成，这类助溶剂可选择低分子量的聚乙二醇及其衍生物，如聚氧乙烯醚、烷基聚氧乙烯醚、聚氧乙烯磷酸酯等。

【0020】一种上述方法制备的碱性锌锰电池，包括正极、负极、隔膜、碱性电解质，在正极环的原料中添加有效量的聚四氟乙烯蜡微粉，作为正极环的粘合剂，负极是含有效量全氟壬烯氧基苯磺酸钠的锌膏。

【0021】作为优选，所述的聚四氟乙烯蜡微粉的粒径范围为 0.5～5 μm，聚四氟乙烯的分子量范围为 1 万～10 万。作为优选，所述的聚四氟乙烯蜡微粉的添加量为二氧化锰质量的 0.1%～1%。作为优选，所述的全氟壬烯氧基苯磺酸钠的质量为负极锌膏质量的 0.001%～0.05%。根据锌膏中加入 OBS 对锌膏析气量的影响的对照实验可知，加入 200ppm OBS 碱性电解液的锌膏与空白实验的锌膏比较析气量有所减少。

【0022】试验 1：称取含质量分数 0.03% OBS 的锌膏（制备方法同实施例 1）45 g 于塑料杯中，随之，使杯内无气泡。在桌面上将装有石蜡的烧杯中，依次罩上玻璃罩和玻璃刻度管，形成一个完全密闭的状态，20℃恒温近 1 小时，记录时间和液体凹液面的刻度值，即 V₁。再放入 60℃水浴槽内恒温 7 天，通过定时读取变化了的该液体凹液面的高度，即 V₂。锌膏析出氢气的体积为 V₁ 与 V₂ 的差值。同时做空白。析气量用 ml/7 天表示。公式为：锌膏的析气量 (ml/7 天) = V₁ - V₂，式中：V₀——七天前的读数，ml；V₁——七天后的读数，ml。重复上述试验 3 次，取平均值，得到的试验结果如表 1 所示。

【0023】表 1 锌膏析气量 (ml) 数据对比表
添加OBS与不添加OBS的AA锌锰电池410mA恒流放电曲线对比结果见图1。以上试验结果证明，OBS对碱性锌锰电池的锌负极有显著抑制腐蚀，减少析气量的作用，同时适量溶解于碱性电解液中能够降低电解液的表面张力。质量分数0.01%的OBS水溶液中，OBS在水中表面张力为30.5mN/m，而水在20℃时的表面张力为73mN/m。由锌粉和有水溶性聚合物混合制成的锌膏粘度很大，在电化学过程中锌粉表面不断地堆积ZnO，阻碍OH-进一步向锌粉表面扩散传递。而加入OBS的锌膏可以降低溶液的粘度，干扰ZnO的沉淀，有利于促进离子的转移，在电池放电后期更利于电化学反应进行，可提高电池的电容量。

试验2：本试验利用电化学交流阻抗光谱学作为腐蚀研究的新手段，特别是在对腐蚀与抗腐蚀过程中与系统的物理和电化学相关性，来证明OBS在锌粉表面的抑制腐蚀性能。添加OBS与不添加OBS的锌粉负极AA碱性锌锰新电池交流阻抗对比结果见图2，添加OBS与不添加OBS的锌粉负极AA碱性锌锰电池恒阻3.9欧姆（Ohm）连续放电到0.8V的交流阻抗对比结果见图3。由图2可知，当电池内部的锌负极表面有OBS涂层存在时，电子传导阻碍作用增强，电解液中OH-难以通过膜层孔隙到达电池表面，锌电极阳极电化学反应容抗增大，因而AA碱性锌锰电池高频部分半圆弧很大；而无OBS涂层时的锌粉混合物负极没有明显的高频区域的容抗弧。由图3可知，当AA电池经过3.9欧放电后，加入OBS的AA碱性锌锰电池高频区域容抗弧半径变小，而不加入OBS的AA碱性锌锰电池因锌粉表面有ZnO膜生成，所以容抗弧相对增大，但是两组电池的电阻变化不是十分明显。锌膏加入OBS后的AA—碱性锌锰电池所测得交流阻抗谱图的等效电路如图4所示。电解液的电阻变化不大，而加入OBS的锌粉负极混合物中电荷传递电阻和双电层电容变化则比较明显。双电层电容量的大小与锌粉表面吸附层的性质，即加入OBS的锌粉负极混合物紧密相关，吸附层的化学组成、浓度、PH值以及温度等。当带有OBS涂层的电池经过3.9欧恒阻放电后，电场的作用下，锌粉表面OBS涂层经过电流的扰动，锌粉表面电化学显数大的化学物质发生变化的改变，使Cd双电层电容量下降，而与之对应的无OBS涂层的AA碱性锌锰电池经过3.9欧放电后，电阻的变化不大，但锌粉表面堆积ZnO形成涂层，随着放电的深入，该涂层形成致密的涂膜，使其容抗增大，高频部分半圆直径逐渐增大，锌粉表面ZnO膜层对电子阻碍作用增强，而低频部分阻抗也逐渐增大，这是由于电极与OH-之间传递穿过所生成的ZnO层向锌粉表面扩散的阻力引起。

本发明的电池采用反极式正极环状结构。正极环为二氧化锰加入导电剂石墨，粘合剂聚四氟乙烯蜡微粉、电解液分散搅拌后进行压片造粒打环，制成的管式环状体。负极为锌合金粉、聚丙烯酸钠和或聚丙烯酸、全氟乙烯基苯磺酸钠、电解液组成的锌膏。桶式隔膜纸，外壳为一端封闭的涂锡钢壳，作为电池正极。中间锌膏部分插入镀锡铜钉作为负极集电体固定于负极金属盖上。电解液为质量浓度35%~45%的氢氧化钾或氢氧化钠水溶液，也
可用氨氧化钾和氨氧化钠混合水溶液，内溶质量分数 2%~6% 的氧化锌。

[0026] 导电剂可选择普通石墨、合成石墨、膨胀石墨也可以掺入一定比例乙炔黑和高导电性碳黑材料。隔膜材料可选择磺化聚丙烯膜、聚酰胺无纺膜、交联聚乙烯醇膜和再生纤维素膜。电池负极主要选用无汞锌合金粉为主的锌膏。合金锌粉锂的含量为 300~600ppm，钙为 100~300ppm，铅为 80~250ppm，铝为 80~150ppm，锌粉粒径为 100~250μm。锌膏中的悬浮粘合剂选用聚丙烯酸钠、聚丙烯酸、交联聚丙烯酸、聚丙烯酰胺、羧甲基纤维素中的一种或二种以上以任意比例的混合物，用量为锌粉重量的 0.5%~2%。

[0027] 本发明采用有机氟化合物对电池的正极和负极材料进行改性，用聚四氟乙烯微粒掺杂于电池的正极中，作为电解锰和石墨粉的粘合剂，利用其自身的高化学稳定性，使电池正极的稳定性大大增强。另外，电池的电解液分散于负极锌粉中形成保护膜，在电池不放电的情况下，能够抑制锌粉的电化学腐蚀反应，阻碍了锌粉的腐蚀，因此有效地减小电池的自放电和析氢气；OBS 作为碱性锌锰电池的负极锌粉混合物的缓蚀剂，有效降低了电池的析氢气，延长了电池的贮存期，保证了电池产品的质量。有机氟化合物在电池中的应用，大大提高了电池的贮存性能，从而提高了电池的产品质量。

附图说明

[0028] 图 1 是添加 OBS 与不添加 OBS 的 AA 铅酸电池 410mA 恒流放电曲线对比图。

[0029] 图 2 是添加 OBS 与不添加 OBS 的 AA 碱性锌锰新电池交流阻抗对比图，其中，高频：100000Hz，低频：0.01Hz，振幅：0.005V。

[0030] 图 3 是添加 OBS 与不添加 OBS 的锌粉负极 AA 碱性锌锰电池恒阻 3.9 欧姆（Ohm）连续放电到 0.8V 的交流阻抗曲线图。

[0031] 图 4 是锌粉加入 OBS 后的 AA—碱性锌锰电池所测得交流阻抗谱图的等效电路图。其中，R_0：电解质溶液电阻，R_x：电荷传递阻抗，Z_W：沃泊（warburg）阻抗行为，C_d：双电层电容。

[0032] 图 5 是本发明制备的碱性电池的径向剖面结构示意图。

[0033] 标号说明：1 负极盖，2 密封圈，3 隔膜纸，4 钢钉，5 电池外壳，6 正极环，7 锌膏。

具体实施方式

[0034] 下面通过实施例，并结合附图，对本发明的技术方案作进一步具体的说明。

[0035] 如图 1 所示，该碱性电池主要由电池外壳 5、正极环 6、锌膏 7 和隔膜纸 3 组成；电池外壳 5 为一端封闭的涂锡圆柱壳，既是电池的容器又是作为电池的正极；正极环 6 是用二氧化锰、导电剂、粘合剂——聚四氟乙烯微粉和电解液分散锡粉后形成压片造粒打坏制成的管式环状体；正极环 6 中间插隔膜纸 3 将电池正负极隔离，隔膜纸 3 中加入锌膏 7，锌膏 7 作为电池负极主要由锌合金粉、聚丙烯酸钠和或羧聚丙烯酸、缓蚀剂——全氟壬烯氧化基苯磺酸钠、电解液组成；电池的密封圈 2 与负极盖 1 组合在一起制成电池负极盖帽，与作为负极集电体的镀锡钢钉 4 焊接在一起，插入负极锌膏 7 中，最后将电池封口成型。

[0036] 本实施例中采用的试剂如下：

二氧化锰，纯度 ≥ 90%、比表面面积 30 ~ 35m²/g、碱性电位 ≥ 270mV 的电解二氧化锰，广西埃赫曼康密密化工有限公司生产。
468 锌合金粉，深圳中金岭南公司生产，其中锌的质量含量为 0.025%，铅的质量含量为 0.022%，钙的质量含量为 0.008%，粒度为 300 ~ 750 μm，占锌粉总质量的 70% 左右，松装密度为 2.9 g/cm³。

聚四氟乙烯蜡微粉，聚四氟乙烯蜡 XY-300，珠海市鑫盛实业有限公司。聚四氟乙烯蜡微粉的粒径范围为 0.5 ~ 5 μm，聚四氟乙烯的分子量范围为 1 万 ~ 10 万，优选为 4 万。聚四氟乙烯蜡微粉的添加量为二氧化硅质量的 0.1% ~ 1%。

全氟壬烯氧基苯磺酸钠（以下实施例简称 OBS），常州市宝丰金属防腐材料厂生产，纯度为 98%。OBS 的用量为负极锌膏质量的 0.001% ~ 0.05%。

实施例 1：碱性锌锰电池的制造
（1）正极环的制造
500g 电解二氧化锰，40g 膨胀石墨粉（包头晶元）和 2.5g 平均粒径 2 μm 的聚四氟乙烯蜡 XY-300，快速搅拌分散后加入质量浓度 38% 的氢氧化钾电解液 25g，继续搅拌 10 分钟后滚压成片，造粒。造粒后的正极材料尺寸为 20 目 ~ 80 目颗粒，视比重为 1.54g/ml，打环后 AA 型（5 号）电池正极材料环高 10.5mm，外径 13.4mm，每个电池 4 个正极环总重 10.6 ~ 10.7g。

（2）负极锌膏的制备
向 50g 含质量分数 6%Zn 的质量浓度为 37% 的氢氧化钾水溶液中加入 100g 468 锌合金粉，0.5g 聚丙烯酸 720B，0.4g 聚丙烯酸钠 DK500 和占混合物总质量 0.03% 的 OBS，搅拌均匀后真空脱气制成锌膏，作为电池的负极材料。

（3）电池的组装
将总重为 10.6 ~ 10.7g 的四个正极环压入内层涂有导电膜的 AA 型电池的镍镍铜壳中，在铜壳内正极环中间插入 VLM25S35（日本 NKK 生产）；向电池的隔膜纸筒内注入质量浓度 36.5% 的氢氧化钾电解液 1.4g，然后将 6.3g 铅膏装入到隔膜纸筒内，上机器卷边，涂抹密封胶，最后插入带有负极盖的铜钉，压紧封口。新制备的电池在 20℃ 下经过 24 小时放置后，进行恒温检测并放电比较，具体见试验实施例。

实施例 2：碱性锌锰电池的制造
（1）正极环的制造
500g 电解二氧化锰，40g 膨胀石墨粉（包头晶元）和 3g 平均粒径 0.5 μm 的聚四氟乙烯蜡 XY-300，快速搅拌分散后加入质量浓度 45% 的氢氧化钾电解液 25g，继续搅拌 10 分钟后滚压成片，造粒。制备的正极环的参数同实施例 1。

（2）负极锌膏的制备
向 50g 含质量分数 2%Zn 的质量浓度为 40% 的氢氧化钾水溶液中加入 100g 468 锌合金粉，0.5g 聚丙烯酸 720B，0.4g 聚丙烯酸钠 DK500 和占混合物总质量 0.001% 的 OBS，搅拌均匀后真空脱气制成锌膏，作为电池的负极材料。

（3）电池的组装
具体方法同实施例 1，不同之处在于：氢氧化钾电解液的质量浓度为 38%。

实施例 3：碱性锌锰电池的制造
（1）正极环的制造
500g 电解二氧化锰，40g 膨胀石墨粉（包头晶元）和 4g 平均粒径 5 μm 的聚四氟乙烯蜡
xy-300，快速搅拌分散后加入质量浓度 40% 的氢氧化钾电解液 25g，继续搅拌 10 分钟后滚压成片，造粒。制备的正极环的参数同实施例 1。

[0047] (2) 负极锌膏的制备

向 50g 含质量分数 4%ZnO 的质量浓度为 35% 的氢氧化钾水溶液中加入 100g468 钴合金粉 0.5g 聚丙烯酸 720B，0.4g 聚丙烯酸钠 DK500 和占混合物总质量 0.01% 的 OBS，搅拌均匀后真空脱气制成锌膏，作为电池的负极材料。

[0048] (3) 电池的组装

具体方法同实施例 1，不同之处在于，氢氧化钾电解液的质量浓度为 38%。

[0049] 实施例 4：碱性锌锰电池的制造

(1) 正极环的制造

500g 电解二氧化锰，40g 膨胀石墨粉 (包头晶元) 和 5g 平均粒径 1.5 μ m 的聚四氟乙烯蜡 xy-300，快速搅拌分散后加入质量浓度 40% 的氢氧化钾电解液 25g，继续搅拌 10 分钟后滚压成片，造粒。制备的正极环的参数同实施例 1。

[0050] (2) 负极锌膏的制备

向 50g 含质量分数 4%ZnO 的质量浓度为 35% 的氢氧化钾水溶液中加入 100g468 钴合金粉 0.5g 聚丙烯酸 720B，0.4g 聚丙烯酸钠 DK500 和占混合物总质量 0.05% 的 OBS，搅拌均匀后真空脱气制成锌膏，作为电池的负极材料。

[0051] (3) 电池的组装

具体方法同实施例 1，不同之处在于，氢氧化钾电解液的质量浓度为 38%。

[0052] 实施例 5：碱性锌锰电池的制造

(1) 正极环的制造

500g 电解二氧化锰，40g 膨胀石墨粉 (包头晶元) 和 0.5g 平均粒径 3 μ m 的聚四氟乙烯蜡 xy-300，快速搅拌分散后加入质量浓度 40% 的氢氧化钾电解液 25g，继续搅拌 10 分钟后滚压成片，造粒。制备的正极环的参数同实施例 1。

[0053] (2) 负极锌膏的制备

向 50g 含质量分数 4%ZnO 的质量浓度为 35% 的氢氧化钾水溶液中加入 100g468 钴合金粉 0.5g 聚丙烯酸 720B，0.4g 聚丙烯酸钠 DK500 和占混合物总质量 0.006% 的 OBS，搅拌均匀后真空脱气制成锌膏，作为电池的负极材料。

[0054] (3) 电池的组装

具体方法同实施例 1，不同之处在于，氢氧化钾电解液的质量浓度为 38%。

[0055] 试验实施例：

(1) 随机取本发明实施例 1-5 新制备的电池 6 个在 20℃下经过 24 小时放置后，与对照电池进行恒温放电情况比较，对照电池采用常规碱性电池用的聚乙烯粘合剂微粉作为正极粘合剂，对照电池的负极锌膏未加入 OBS。实验结果见表 2 和表 3。放电方式：[1500mw, 650mw] [2s, 28s] (10T)/1h 24h/day, 检测环境：20 ± 2℃，RH45～75%，检测仪器：CPS 电池恒功率智能放电检测系统。

[0056] 表 2
<table>
<thead>
<tr>
<th>序号</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>序号</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>开压</td>
<td>1.652</td>
<td>1.652</td>
<td>1.652</td>
<td>1.652</td>
<td>1.652</td>
<td>1.652</td>
<td>开压</td>
<td>1.635</td>
<td>1.635</td>
<td>1.635</td>
<td>1.635</td>
<td>1.635</td>
<td>1.635</td>
</tr>
<tr>
<td>首荷</td>
<td>1.551</td>
<td>1.547</td>
<td>1.546</td>
<td>1.550</td>
<td>1.550</td>
<td>1.547</td>
<td>首荷</td>
<td>1.540</td>
<td>1.537</td>
<td>1.540</td>
<td>1.537</td>
<td>1.532</td>
<td>1.533</td>
</tr>
<tr>
<td>电量</td>
<td>0.871</td>
<td>0.866</td>
<td>0.866</td>
<td>0.871</td>
<td>0.866</td>
<td>0.866</td>
<td>电量</td>
<td>0.636</td>
<td>0.642</td>
<td>0.642</td>
<td>0.689</td>
<td>0.642</td>
<td>0.642</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>到各指定电压值的时间（单位：次）</th>
<th>1.40 V</th>
<th>1.30 V</th>
<th>1.20 V</th>
<th>1.15 V</th>
<th>1.10 V</th>
<th>1.05 V</th>
<th>到各指定电压值的时间（单位：次）</th>
<th>1.40 V</th>
<th>1.30 V</th>
<th>1.20 V</th>
<th>1.15 V</th>
<th>1.10 V</th>
<th>1.05 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40 V</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>1.40 V</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>1.30 V</td>
<td>47</td>
<td>46</td>
<td>45</td>
<td>47</td>
<td>47</td>
<td>46</td>
<td>1.30 V</td>
<td>36</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>1.20 V</td>
<td>77</td>
<td>76</td>
<td>69</td>
<td>77</td>
<td>76</td>
<td>76</td>
<td>1.20 V</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>59</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>1.15 V</td>
<td>99</td>
<td>98</td>
<td>97</td>
<td>99</td>
<td>98</td>
<td>98</td>
<td>1.15 V</td>
<td>66</td>
<td>66</td>
<td>65</td>
<td>66</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>1.10 V</td>
<td>127</td>
<td>126</td>
<td>119</td>
<td>126</td>
<td>126</td>
<td>126</td>
<td>1.10 V</td>
<td>75</td>
<td>76</td>
<td>76</td>
<td>76</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>1.05 V</td>
<td>148</td>
<td>147</td>
<td>147</td>
<td>148</td>
<td>147</td>
<td>147</td>
<td>1.05 V</td>
<td>108</td>
<td>109</td>
<td>109</td>
<td>117</td>
<td>109</td>
<td>109</td>
</tr>
</tbody>
</table>

表 3

<table>
<thead>
<tr>
<th>序号</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>序号</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>首荷</td>
<td>1.460</td>
<td>1.455</td>
<td>1.460</td>
<td>1.456</td>
<td>1.462</td>
<td>1.467</td>
<td>首荷</td>
<td>1.421</td>
<td>1.439</td>
<td>1.448</td>
<td>1.453</td>
<td>1.456</td>
<td>1.442</td>
</tr>
<tr>
<td>电量</td>
<td>0.565</td>
<td>0.512</td>
<td>0.565</td>
<td>0.524</td>
<td>0.518</td>
<td>0.565</td>
<td>电量</td>
<td>0.539</td>
<td>0.389</td>
<td>0.400</td>
<td>0.447</td>
<td>0.453</td>
<td>0.460</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>到各指定电压值的时间（单位：次）</th>
<th>1.40 V</th>
<th>1.30 V</th>
<th>1.20 V</th>
<th>1.15 V</th>
<th>1.10 V</th>
<th>1.05 V</th>
<th>到各指定电压值的时间（单位：次）</th>
<th>1.40 V</th>
<th>1.30 V</th>
<th>1.20 V</th>
<th>1.15 V</th>
<th>1.10 V</th>
<th>1.05 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40 V</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1.40 V</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1.30 V</td>
<td>17</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>1.30 V</td>
<td>9</td>
<td>8</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>1.20 V</td>
<td>39</td>
<td>36</td>
<td>38</td>
<td>38</td>
<td>39</td>
<td>45</td>
<td>1.20 V</td>
<td>28</td>
<td>28</td>
<td>34</td>
<td>37</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>1.15 V</td>
<td>56</td>
<td>48</td>
<td>55</td>
<td>49</td>
<td>55</td>
<td>56</td>
<td>1.15 V</td>
<td>38</td>
<td>38</td>
<td>45</td>
<td>47</td>
<td>47</td>
<td>45</td>
</tr>
<tr>
<td>1.10 V</td>
<td>69</td>
<td>67</td>
<td>69</td>
<td>68</td>
<td>69</td>
<td>76</td>
<td>1.10 V</td>
<td>48</td>
<td>48</td>
<td>56</td>
<td>58</td>
<td>58</td>
<td>56</td>
</tr>
<tr>
<td>1.05 V</td>
<td>96</td>
<td>87</td>
<td>96</td>
<td>89</td>
<td>88</td>
<td>96</td>
<td>1.05 V</td>
<td>66</td>
<td>66</td>
<td>68</td>
<td>76</td>
<td>77</td>
<td>68</td>
</tr>
</tbody>
</table>

（2）取本发明实施例 1-5 新制备的电池 6 个在 20℃下经过 24 小时放置后, 进行恒温
检测并放电比较, 实验结果见表 4 和表 5。放电方式 : 3.90h 24h/day 每天, 检测环境 : 20 ± 2℃, RH45~75%, 检测仪器同上。

[0057] 表 4
表 5

<table>
<thead>
<tr>
<th>序号</th>
<th>本发明电池新放电</th>
<th>本发明电池新放电</th>
<th>对照电池新放电</th>
<th>对照电池新放电</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td>电压 V</td>
<td>1.652</td>
<td>1.651</td>
<td>1.651</td>
<td>1.651</td>
</tr>
<tr>
<td>容量 Ah</td>
<td>2.263</td>
<td>2.264</td>
<td>2.237</td>
<td>2.275</td>
</tr>
<tr>
<td>到各指定电压值的时间（单位：分钟）</td>
<td>20.9</td>
<td>20.7</td>
<td>20.3</td>
<td>20.6</td>
</tr>
</tbody>
</table>

电池于 70℃温度下储存 7 天, 3.90h 时放, 放电终止电压 0.8V 后的析气量 (ml) 对比数据见表 6。
结论：根据以上实验数据可知，将低分子量的聚四氟乙烯酯微粉加入正极二氧化锰混合物中，在正极粉的搅拌、碾压、造粒、打环的制造过程中，聚四氟乙烯酯微粉不但起到了润滑、减少摩擦的作用，提高了生产设备的使用率；而且在打环时的机械重压下，使电池的正极环具有良好的粘合效果。含有低分子量聚四氟乙烯酯微粉掺入的正极环在碱性电解液浸润下，不易膨胀裂环，保持了正极环的原有导电性和电解液的离子通道；同时又由于其自身作为一种低分子量聚合物，具备化学表面活性剂的作用，降低了界面张力，提高了碱性电解液的扩散速度，因此有利于大电流的放电特性。一般较好的碱性锌锰电池变功率放电（模拟数码相机放电模式）累积间放 110~130 次左右，而本发明方法制造的碱性锌锰电池变功率放电累积间放可达 130 次以上。

【0059】全氟壬烯氧基苯磺酸钠（OBS）作为一种含氟表面活性剂，在碱性锌锰电池中作为负极锌粉的缓蚀剂，由于其具有优良的化学性能，耐碱、耐高温，而且能够很好地降低碱性电解液的张力，有利于离子的快速传递。电池高温贮存后的放电数据显示，OBS 的加入降低了电池的析气量，减小了电池的气胀并抑制了电解液的泄露等不利因素；减轻了负极锌粉的腐蚀，延长了碱性锌锰电池的储存期，保证了电池产品良好的质量。

【0060】本发明中所描述的具体实施例仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例进行各种修改或补充或采用类似的方式替代，但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。尽管对本发明已做出了详细的说明并引证了一些具体实例，但是对本领域熟练技术人员来说，只要不离开本发明的精神和范围则可作各种变化或修正也是显然的。
图 3

图 4
图 5