

# UNITED <br> STATES PATENT OFFICE 

2,679,107<br>\title{ MICROMETER FOR CIRCULAR SIZE, ESPECIALLY OF GROOVES }

John T. Gendek, Minneapolis, Minn., assignor to Northern Pump Company, Minneapolis, Minn. a corporation of Minnesota
Application June 19, 1950, Serial No. 169,014
3 Claims. (Cl. 33-178)

2
slots extending longitudinally thereof, a plurality of pins fitting in and movable in said holes respectively, said pins being disposed radially of said casing, a member for moving said pins outwardly having circumferentially spaced ribs with outer sides disposed at an angle to the radii of said pins respectively, said ribs being movable in said slots, the inner ends of said pins having interfitting engagement with said ribs, the inner ends of said pins preferably having slots therein, the bottoms of which engage the outer surfaces of said ribs, together with means for moving said pins inwardly.

These and other objects and advantages of the invention will be fully set forth in the following description made in connection with the accompanying drawings in which like reference characters refer to similar parts throughout the several views and in which
Fig. 1 is a view of the device mostiy in central longitudinal section and partly in side elevation, also showing a member to be measured; Fig. 2 is a view similar to Fig. 1 showing the parts in different positions;
Fig. 3 is a vertical section taken on line 3-3 Fig. 2, as incicated by the arrows; 4 is a one of the pins used;
Fig. 5 is a view similar to Fig. 4, as seen from the right of Fig. 4;

Fig. 6 is a partial view in side elevation showing one use of the device in a member shown in central vertical section;
Fig. 7 is a vertical section taken on line $7-7$ of Pig. 1 and shown on a reduced scale; and Fig. 8 is a partial view similar to Fig .6 shown on an enlarged scale.
Referring to the drawing, a micrometer structure is shown comprising a casing 10. Casing 10 is preferably of general cylindrical form and has an enlarged interiorly threaded end portion 18a. Member 10 is also interiorly threaded at its other end portion 106, said latter portion being shown as of somewhat increased exterior diameter. A member $1!$ is provided having a central annular portion If $a$ and reduced exteriorly threeded end portions $11 b$ and $11 c$. End portion $11 b$ is threaded into the end of portion 10a, the end of portion $10 a$ engaging portion ila. An end member 12 has an enlarged interiorly threaded end portion which is threaded on portion Ilc and the end of which engages portion 110 . Member 12 is closed at its other end. Member 11 is provided in its portion $11 a$ with a plurality of cir55 cumferentially spaced apertures, bores or holes
$11 d$ and while these might be variously formed, they are preferably cylindrical. In the embodiment of the invention illustrated, four of these holes are shown, opposite pairs being coaxial with the axes of said pairs disposed at right angles. Member $\|$ is aiso provided with circumferentially spaced slots $1 f e$ equal in number to the number of holes $1 / d$, , which slots extend longi.tudinally of member 11 and the axes of holes $\| d$ lie in the central planes of slots lle. Member if is shown as having circumferentialiy. spaced longitudinally extending holes $\| f f$, for reducing the weight of member II. Pins is fit in and are movable respectively in the holes II $\bar{d}$. While these pins could be variously formed, in the embodiment of the invention illustrated they are shown as having terminal ribs $13 a$ at their outer enats which extend thereacross, said ribs having their outer ends of semi-circular form in cross section. A member ts of cylindrical rod-like form is provided which has extending therefrom adjacent one end a plurality of circumferentially spaced flat ribs is a disposed at right angles to each other and disposed in and movable in the slots ile of member 11. As shown in Figs. 1 and 2 , the rear ends of ribs $14 a$ extend substantially at right angles to the axis of member is while the outer sides of said ribs for most of their length have outer flat surfaces disposed at an acute angle to the axis of member is and to the axes of the pins 13 . Said ribs have front portions iab extending substantially parallel to the axis of member 14. Member if is disposed coaxially of casing 18 and is longitudinally movable in casing 10 and in member 11 , saic member having a slightly enlarged rear portion tho which is slidable in a sleeve if secured in casing 10. The end portion of member if fits in and is held in a member 10 which is provided with a cylindrical portion fitting in and slidable in the bore l0c in one end of casing 10. The pins 13 have interitting engagement with the ribs $14 a$, the pins being shown as having slots at their inner ends having paraliel sides and a bottom at right angles thereto, as clearly shown in Fig. 3. Said slots have bottoms extending at an angle to the radii respectively of pins 13 , said bottoms engaging and riding on the inclined outer sides of ribs isc. Ribs $\frac{14 a}{a}$ are sulstantially rectanguiar in radial section, as clearly shown in Tigs. 3 and 7 . The angle said bottoms make with the axes of said pins is substantially equal to the angle which the inclined sides of the ribs mase with the axes of said pins. The pairs of pins on opposite sides of casing to have transverse slots adjacent their inner encs in which are disposed the enas of bow spring members $2 \pi$ disposed at right angles to each ocher. Mermbers 20 are disposed in members 11 and 12 , one of them having its bight portion disposed inwardy of the other and engaging said other, the other spring engaging a lug projecting inwardly from the closed end of member 12. Springs 20 are widest at their midportions and taper in width toward their ends, the end portions thereof having parallel stdes, It will be seen that springs 2 tend to move pins 13 inwardly.
Member is has a small central projection $18 a 70$ which is engaged by one end of a screw 32 which is threaded into a member 23 in turn threaded into portion tho of casing 16 . Member 23 has an enlarged portion $2 \hat{a} a$ knurled on its outer surface which is in substantial engagement with
the end of member 10. Member 23 has an outer smooth cylindrical portion on which a member 25 fits and is rotatable. Screw 22 is secured at its outer end to member 25 by being threaded therein. The smooth portion of member 23 is provided with graduations 233 spaced longitudinally thereof and which are appropriately numbered. The inner end of member 25 is beveled and its beveled surface is provided with circumferentially spaced graduations $25 \alpha$ adapted to cooperate with graduations $23 b$ and with a longitudinal line extending longitudinally of meraber *3. The graduations $25 a$ are appropriately numbered.

In operation, when it is desired to measure the interior of a bore or a concave cylindrical surface, mernber 25 will be rotated and this will move screw 22 longitudinally. Screw 22 engages nember 19 and member 19 together with mernber 14 is moved longitudinally of casing 10. The outer surfaces of ribs $14 a$ engage the bottoms of the slots in pins 13 and said pins are moved outwardly until their terminals engage the surface to be measured. The ribs $14 a$ and thus member IA are guided by the slots in the ends of pins 13. The dimension can then be read on the graduations $22 b$ and $25 a$. When member 25 is rotated in the opposite direction, member 22 will be moved toward member 23 and the springs 20 will then move the pins 13 inwardiy as permitted by the ribs $14 a$. It is now common to have annular grooves in bores such as shown by the grooves $20 a$ in the member 28 . Such grooves are commonly used to receive o-rings now used in large numbers for sealing purposes or to receive snap ring fasteners. O-rings are now well known in the art and are shown in U. S. Patent No. 2,384,364. The portions i $3 a$ on the pins 13 are very well suited for measuring the diameter of the grooves 23a, as shown in Fig. 2. In some cases the grooves are narrow so that only portions la $a$ can enter the same. it is common to have grooves, such as shown at 286 in member 28, as shown in Fig. 2, which grooves 285 are of trapezoidal form in cross section. These grooves have to be very accurately made and it has heretofore been dificult to accurately locate and finish the same. With the present mircrometer the inclined side of the groove can ke engaged by the semi-circular surface on portions $13 a$, as shown in Figs. 6 and 8 , and the inclined side can thus be finished to properly receive a snap ring which has an inclined side engaging the inclined side of the groove. The end of member to will be placed in contact with one end of the bore 28, as shown in Fig. 6. The proper finishing of the groove is made much easier since fewer dimensions are necessary. The semicireular surface of the portions $13 a$ will engage the inclined side of the groove at a point equal to the diameter of the sealing ring. The angle of the inclined side of the groove is known and the diameter of the semi-circular surface on portion $13 a$ is known as is the distance of the pins 13 from the end of bore 29 so that the inclined side can thus be accurately measured and finished.

The disclosed structure of micrometer has several advantages over the standard structures now on the market. The pins 13 are engaged at spaced points. They are held at their inner ends by the engagement of the grooves therein with the ribs $14 a$ and are guided accurately in the holes in casing Ita. With the described struc-
ture a large range of movement is possible for the pins 13. In the present standard micrometers the range of movement is very small. The bores or holes Ild have considerable length and a long bearing surface is provided for pins 13 which results in great accuracy
From the above description it will be seen that I have provided a novel structure of micrometer and one which performs new functions and attains new results. The structure is comparatively simple and is easily operated. The device has been amply demonstrated in actual practice and found to be very successful and efficient.
It will of course be understood that various changes may be made in the form, details, arrangement and proportions of the parts, without departing from the scope of applicant's invention, which generally stated, consists in a device capable of carrying out the objects above set forth, in the parts and combinations of parts disclosed and defined in the appended claims.

What is claimed is:

1. A micrometer structure having in combination, a casing having a central longitudinal axis and three or more substantially equally and circumferentially spaced apertures extending radially therethrough, a cylindrical pin fitting in and movable radially of said casing in each of said apertures, each of said pins having a groove in its inner end extending transversely thereof, a wedge member having circumferentially spaced ribs with fiat outer surfaces extending at an acute angle to said axis, said ribs fitting in said grooves in the bottoms of said pins respectively, said ribs being slidable in said grooves so that the bottoms of said grooves bear on said outer surfaces of said ribs and the sides of said grooves engage the sides of said ribs, means for moving said wedge member longitudinally of said axis, and resilient means for moving said pins inwardly and holding the same against said ribs.
2. The structure set forth in claim 1 , said cas-
ing being substantially cylindrical in form and having a closed chamber therein extending in front of and enclosing said wedge member.
3. A micrometer structure having in combination, a casing of general cylindrical form thus having a central longitudinal axis, said casing having four circumferentially and substantially equally spaced cylindrical apertures extending radially therethrough, a cylindrical pin movable
radially in and fitting radially in and fitting in each of said apertures, said casing, a member movable in said casing longitudinally thereof having four circumferentially and substantially equally spaced ribs with flat outer sides inclined at an acute angle to said axis, said ribs having sides at right angles to said outer sides, the inner ends of said pins having slots in the bottoms thereof shaped to fit over said ribs with the bottoms of said slots bearing on said outer surfaces of said ribs, means for moving said member longitudinally of said casing, and resilient means engaging said pins for moving the same inwardly, said pins having narrow ribs extending from their outer ends centrally thereof having outer convex surfaces whereby said last mentioned ribs can engage circumferentially spaced points of a cylindrical surface.

References Cited in the flle of this patent UNITED STATES PATENTS


