
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
2 May 2008 (02.05.2008) PCT WO 2008/049869 Al

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G07F 17/32 (2006.01) kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
(21) International Application Number: CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,

PCT/EP2007/061444 ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,

(22) International Filing Date: 24 October 2007 (24.10.2007) LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,

(25) Filing Language: English PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

(26) Publication Language: English
ZM, ZW

(30) Priority Data:
0621434.0 27 October 2006 (27.10.2006) GB (84) Designated States (unless otherwise indicated, for every

0621436.5 27 October 2006 (27.10.2006) GB kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

(71) Applicant (for all designated States except US): CE- ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

CURE GAMING LIMITED [GB/GB] ; 23 Clayton Road, European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FT,

Heathrow, London Greater London UB3 IAN (GB). FR, GB, GR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,

(72) Inventor; and GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(75) Inventor/Applicant (for US only): KARSTEN, Peter
Olof [FIZGB]; 23 Clayton Road, Heathrow, London Published:
Greater London UB3 IAN (GB). — with international search report

— before the expiration of the time limit for amending the
(74) Agents: COZENS, Paul et al; 120 Holborn, London claims and to be republished in the event of receipt of

Greater London EClN 2SQ (GB). amendments

(54) Title: ONLINE GAMING SYSTEM

r r

r- 116

/

/

(57) Abstract: A method of controlling a game program adapted to operate a game in a device is disclosed. The method comprises
accessing configuration data defining one or more states or events which can occur at the device and which are not related to the
game program, and specifying for each defined state or event a game action to be performed by the game program in response to the
defined state or event. The occurrence of one of the defined states or events at the device is detected, and the game action specified
in the configuration data for the detected state or event is performed in response to detection of the defined state or event. Also
disclosed is an online gaming system adapted to provide access to a plurality of concurrent multiplayer games, comprising a player
allocation component. The allocation component is adapted to access information relating to the history or state of play in one or
more of the plurality of games, select one of the plurality of games for the player in dependence on the information, and allocate the
player to the selected game.

Online Gaming System

The present invention relates to an online gaming system for online

multiplayer games. Particular examples relate to an online gaming system operating

over a mobile telecommunications network. Particular examples relate to wagering

games, for example poker-type games and casino type games.

Online gaming systems typically provide multiple concurrent games in which

players may participate. Games may be categorised into different game types and/or

have game-related attributes which differ from game to game. Within a game type,

there may be a large number of games, having the same attributes. Online gaming

systems typically provide a menu system to allow players to select the game in which

they wish to participate. This menu system may, for example, be referred to as a

lobby, in particular in wagering games such as poker. Often, this is in the form of a

hierarchical menu, where a player can select game types and game attributes and

see a list of games of the selected type. The display of such menus typically requires

a reasonably large screen space, and navigation can be cumbersome. These

difficulties are exacerbated where the gaming system is provided on small-screen

devices and/or devices with limited user interface capabilities, for example mobile

devices, such as mobile telephones. Transmission of the menus and game lists to

mobile devices can require substantial bandwidth, which given the relatively limited

data transmission capabilities of such devices, can lead to an unacceptably slow

service. The relatively high latency of mobile data connections also means that by

the time a mobile device has received game details, the user has made a selection,

and the selection has been transmitted back to the game server, the information in

the lists may be out of date, and the selected game may no longer be available.

Thus, existing gaming systems are typically not suited to the limited screen space,

user input capabilities, bandwidth and latency of mobile devices and mobile

connections.

Other limitations of current online gaming systems include: the inability to use

anything other than direct interaction with the game to input instructions and initiate

events; problems associated with loss of connection, a common occurrence when

dealing with mobile communications; currently when the connection is lost, the user

is generally automatically logged out of the game and will need to log back in and re-

find the game to resume play; the difficulty in setting gaming preferences, especially

when using a small-screen device such as a mobile phone; and other such problems.

The present invention, in its various aspects and features set out below,

seeks to alleviate some of these problems.

Aspects and features relating to detection of observable states/events
In a first aspect of the invention, there is provided a method of controlling a

game program adapted to operate a game in a device, comprising: accessing

configuration data defining one or more states or events which can occur at the

device and which are not related to the game program, and specifying for each

defined state or event a game action to be performed by the game program in

response to the defined state or event; detecting occurrence of one of the defined

states or events at the device; and performing the game action specified in the

configuration data for the detected state or event in response to detection of the

defined state or event.

In this way, a more flexible and efficient method of performing game actions

in a wagering game can be provided. For example, by triggering game actions in

response to states or events not related to the game, game actions can be triggered

in a pseudo-random manner. This can improve the game experience. By providing

configuration data specifying states or events and corresponding game actions,

detection of relevant states/events and identification of appropriate game actions can

be carried out more efficiently. Also, the triggering behaviour can be modified more

easily (by changing the configuration data), which can provide flexibility.

The game program may be a wagering game program adapted to operate

one or more wagering games.
In a further aspect, there is provided a method of controlling a game program

provided in a device adapted to perform communications functions, comprising:

detecting a communications event not related to the game program; determining one

or more characteristics of the communications event; and performing a game action

in relation to the game program in response to the detected communications event in

dependence on the determined characteristics.

This can enhance the apparent pseudo-random nature of the triggering of

game actions. By considering characteristics of a communications event when
triggering a game action, greater flexibility can also be provided.

In a further aspect, the invention provides a method of controlling a wagering

game program adapted to operate a wagering game in a device, comprising:

receiving environmental information relating to a state or event pertaining to the

device's environment (preferably from a sensor provided in the device); and

performing a game action in relation to the wagering game in response to the

received information.

In this way, conditions external to the device can be used to trigger game

actions.
In a further aspect, the invention provides a method of controlling a game

program adapted to operate a game in a device, comprising: receiving status

information relating to an internal state of the device, the state not being related to

the game program; determining whether the status information fulfils a predetermined

criterion; and performing a game action in relation to the game in dependence on the

outcome of the determination.

This allows internal status of the device to be used to trigger game actions.

In a further aspect, the invention provides a method of controlling a game

program adapted to operate a plurality of games, comprising: detecting a state or

event occurring in a first of the plurality of games; and performing a game action in

relation to a second of the plurality of games in response to the detected state or

event.

In this way, states or events in one game can be used to influence another,

preferably in an apparently pseudo-random nature (the state or event in the first

game preferably being unrelated to the second game or game action performed).

In a further aspect of the invention, there is provided a method of controlling a

game program adapted to operate a game in a device, comprising: detecting a

predefined combination of user interactions with the device, the user interactions not

being related to the game; and performing a game action in relation to the game in

response to detection of the combination of user interactions.

In this way, game events can be triggered in an unexpected way, improving

the game experience.

In a further aspect, the invention provides a method of controlling a game

program adapted to operate a game, comprising: detecting a predefined combination

of states and/or events, the states or events not being related to the game; and

performing a game action in relation to the game in response to the detected

combination of states or events.

This provides greater flexibility in the types of conditions that may be detected

and used to trigger game actions.

In a further aspect, the invention provides a method of controlling a game

program adapted to operate a game, comprising: executing the game program to

operate a game; during operation of the game, detecting a state or event not related

to the game; performing a game action in relation to the ongoing game in response to

the detected state or event; and continuing execution of the game program and

operation of the game following the performed game action. Thus, the game action

preferably affects subsequent game events.

This allows a running game to be influenced by unrelated states or events,

which can result in a more surprising and entertaining play experience (the game

action may, for example, comprise submitting a wager in a wagering game).

In a further aspect, there is provided a method of controlling a wagering game

program adapted to operate a wagering game, comprising: detecting a state or event

not related to the wagering game; and in response to the detected state or event,
submitting a wager in the wagering game in relation to a predefined game event or

outcome and/or with a predefined wager amount (the game event/outcome and/or

wager amount may be defined in configuration data).

By using predefined game outcome and wager amount, a wager can be

submitted (a bet placed) without user input, which can result in more efficient

operation of the program.

In a further aspect, the invention provides a method of controlling a game

program adapted to operate a game, comprising: detecting a state or event not

related to the game; and in response to detecting the state or event, determining

randomly or pseudo-randomly (preferably in accordance with a predefined

probability) whether to perform a game action in relation to the game; and performing

the game action in response to a positive determination.

This can introduce a greater degree of unpredictability into the triggering of

game actions, improving the game experience.

In a further aspect, the invention provides a method of controlling a game

program adapted to operate a game, the game program operating in accordance with

stored configuration data, comprising: detecting a state or event not related to the

game program; and modifying the configuration data for the game program in

response to the detected state or event.
This can provide greater flexibility in controlling the game program. Once the

configuration data has been modified in response to the state or event, the changes

will be effective for future runs of the game program and thus influence its operation

(until the configuration data is changed again).

In a further aspect of the invention, there is provided a method of controlling a

game program adapted to operate a game in a device, comprising: detecting a state

or event relating to the game; and performing a device action external and unrelated

to the game program in response to the detected state or event.
This can enable control of the device in a surprising and interesting manner,

and can improve the game experience.

In a further aspect of the invention, there is provided a method of controlling a

wagering game program adapted to operate a wagering game, comprising: receiving

information not related to the wagering game; and performing a game action in

relation to the wagering game in response to the information.

In this way, a more flexible and efficient method of performing game actions

in a wagering game can be provided. For example, by triggering game actions in

response to information not related to the wagering game, game actions can be

triggered in a pseudo-random manner. This can improve the game experience.

The term wagering game preferably refers to a game played for real or virtual

tokens of value, in particular for real or virtual money ("play money"), involving

wagers of a given amount of real or play money submitted in respect of given game

events or outcomes.

The received information preferably relates to an observable, and receiving

the information comprises detecting the observable. The term "observable" preferably

relates to something that can be observed or detected, in particular to a state or

event, or a condition. The observable may be internal or external to the game

program or any device at which the program operates.

Accordingly, the information preferably relates to a state or event, and

receiving the information comprises detecting the state or event. The game program

preferably operates on a device, for example a mobile communications device, and

the observable, state or event preferably occurs at or within the device and is

detected by the device and/or game program.

Accordingly, in a further aspect, the invention provides a method of controlling

a wagering game program adapted to operate a wagering game, comprising:

detecting a state or event not related to the wagering game; and performing a game

action in relation to the wagering game in response to the detected state or event.

The observable, state or event may represent a combination of observables,

states and/or events as described in more detail below.

The various aspects set out above may be combined in any suitable manner.

Some preferred features of the various aspects are set out below. These may be

applied to any of the above aspects as appropriate.

Preferably, the information, observable, state or event is not related to the

(wagering) game program. In this way, game actions can be triggered by events
occurring outside the game program, which can enhance the pseudo-random nature

of the triggered actions and provide an improved game experience for the user.

For example, the (wagering) game program may be one of at least two

programs provided in a device, and the information, observable, state or event may

be related to another of the at least two programs. The observable, state or event

may relate to the initiation or termination of, or an event occurring in, another of the at

least two programs. In this way, events occurring in another program can influence

game actions in the wagering game program.

Preferably, the (wagering) game program is provided on a device connected

to a communications network (for example a mobile telephone), and the information,

observable, state or event relates to an interaction between the device and the

network.

In particular, the information, observable, state or event preferably relates to a

communications event, the method comprising detecting the communications event.

In this way, where the device is a mobile telephone or the like, events related to the

primary function of the communications device can be used to control the game

program. Since the communications events are unrelated to the game but are

expected to occur relatively frequently, an effective pseudo-random triggering

mechanism for triggering game actions can be provided. The communications event

may, for example, comprise receipt of a communication, preferably from a predefined

source. Alternatively, the communications event may comprise initiation or

transmission of a communication, preferably to a predefined destination or recipient.

The communication preferably comprises one or more of: a message, a text

message, a picture message, a voice message, a video message, an instant

messenger service message, an e-mail message, a real-time communications

session, a voice call, and a video call. Thus, in an example, the method may

comprise initiating a game action in response to receipt of a text message or

telephone call from a selected person.

The information, observable, state or event may relate to a user interaction

not intended for the (wagering) game program. For example, the user interaction may

comprise a predefined key press or a predefined combination or sequence of key

presses, preferably regardless of the context in which the key presses occur.

More generally, the information, observable, state or event may relate to a

predefined combination of user interactions, the method comprising detecting the

interactions. These may comprise key presses or other interactions. The combination

may comprise a plurality of substantially simultaneous user interactions, and/or a

predefined sequence of user interactions. The method would then comprise detecting

the interactions substantially simultaneously or in the defined sequence. The

combination of user interactions may be defined in modifiable configuration data,

preferably modifiable by the user and/or remotely over a network to which the device

can be connected.

The (wagering) game program may be provided in a device, and the

information, observable, state or event may relate to a state or event (perhaps

environmental in origin) detected at a sensor connected or connectable to, or

associated with, the device. The method may comprise receiving data from the

sensor, and detecting the event if the data fulfils a predetermined criterion, for

example by exceeding a defined threshold (for simple numerical data) or by matching

a defined pattern (for complex data, for example image data or sound data). The

sensor may form part of a user interface element of the device. The sensor may for

example be one of: an image sensor, a temperature sensor, a motion sensor, a

position sensor, and a microphone. The information, state or event may relate to the

current time. For example, a game action could be performed at a predetermined

time of day.

The (wagering) game program may be adapted to operate a plurality of

concurrent (wagering) games, the method comprising detecting a state or event

related to a first of the plurality of games (and not related to a second of the plurality

of games), and performing a game action in relation to the second of the plurality of

games in response to the detected state or event. In this way, one game can

influence game actions in another game. This can provide improved flexibility and

can allow for efficient control of the game program. For example, a user may take an

action in a first game, in response to which an action is automatically performed in

the second game.

The first and second games may run concurrently. They are preferably

different types of games (e.g. a poker game and a roulette game).

Where the games are wagering games, the state or event related to the first

of the plurality of wagering games may, for example, comprise a wager submitted in

the first of the plurality of wagering games. The state or event related to the first of

the plurality of wagering games may comprise the end of or withdrawal by the user

from the first of the plurality of wagering games, or the end of or withdrawal by the

user from a round in said game (for example, in poker, the end of a hand due to a

player winning the hand, or the withdrawal by the player from the hand by folding). In

this way, a game action in one game can automatically be triggered in response to

the player' involvement in another game ceasing at least temporarily (in other words

in response to a period of inactivity or lull in the other game); for example by starting

a game or submitting a wager. As a specific example, the first game may be a poker

game and the second game a roulette game. If the player folds in the poker game,

this could trigger a bet being placed in the roulette game. This approach can be

used, for example, to fill the waiting time between hands in the poker game, and

more generally, to maximise the user's active playing time.

Thus, the state or event occurring in a first of the plurality of games may

relate to or indicate a period of inactivity for the player in the first game, the method

then preferably comprising performing the game action after the start of the period of

inactivity. Performing a game action may comprise initiating the second game.

More generally, the method may comprise initiating a predefined second

game during a period of inactivity for the player in the first game, the first game

preferably being a multiplayer game, the second game preferably being a single-

player game. In this way, more of the player's time can be spent playing, rather than

waiting for something to happen in their main game.

Preferably, the method comprises returning the player to the first game at the

end of the period of inactivity or at the end of the second game (alternatively, at the

end of the second game, a further game could be started if the period of inactivity in

the first game continues). This can simplify operation of the games for the user,

especially on small devices with limited user interface capability.

The information, observable, state or event may relate to a predefined

combination of observables, states and/or events, the method comprising detecting

the occurrence of the predefined combination of states and/or events, and performing

the game action in response to the occurrence of the combination of states and/or

events. In this way, greater flexibility can be provided. For example, an action may be

performed in response to a predefined event occurring within a predefined time

period (as determined by reference to a clock), and/or whilst the player is at a

predefined location (as determined by reference to a position sensor). This can

provide greater flexibility in how game actions may be triggered.

The states or events of the combination are preferably unrelated to each

other, and may be detected in a defined sequence, or close in time or substantially at

the same time, as described above more specifically for combinations of user

interactions.

The observables, states or events used to trigger game actions, and the

game actions to be triggered in response to the observables, states or events are

preferably configurable by the user. Preferably the user may define one or more

observables or combinations of observables, and the game event to be performed in

response to each. This configuration is preferably stored in the form of preference

data or configuration data. The terms configuration data and preference data are

generally used synonymously herein, unless the context requires otherwise.
Accordingly, the method preferably comprises accessing configuration data

for a user of the wagering game program, the configuration data defining a

combination of states and/or events and specifying a game action to be performed in

response to the specified combination of states and/or events, the method further

comprising, in response to detecting the defined combination of states and/or events,

performing the specified game action.

In this way, greater flexibility can be provided, allowing a user to control how

game events are triggered.

The states/events of the combination may be required to occur (substantially)

simultaneously in order to trigger the game action, or may be required to occur in a

defined sequence. This is typically defined in the configuration data.

Performing a game action may comprise initiating the (wagering) game

program. Thus, the wagering game program may, for example, be initiated in

response to receipt of a telephone call, or at a predetermined time of day.

Performing a game action may alternatively or additionally comprise

performing an action in the game program. For example, performing a game action

may comprise initiating a wagering game. Thus, receipt of a call from a

predetermined source could initiate a poker game.

Performing a game action may alternatively or additionally comprise
performing an action in the game. For example, receipt of a call from a

predetermined source could initiate the spin of a wheel in a roulette game (or could

first initiate the roulette game and then initiate the spin of the wheel). Alternatively or

additionally, performing a game action may comprise submitting a wager (in the case

of a wagering game). Thus, in the above example, the receipt of the phone call could

trigger a wager being placed on a predefined number in the roulette game and could

subsequently initiate the spin of the roulette wheel in the game. The wager is

preferably submitted in relation to a predefined game event or outcome and is

preferably submitted with a predefined wager amount. Thus, continuing the above

example, the user may have specified a wager of £ 1 (the wager amount) to be

placed on number 7 (the game event or outcome) in a roulette game in response to

receipt of a telephone call from a certain friend. Whenever the friend calls, the

roulette game is initiated and the predefined wager is submitted.

Generally speaking, the method may comprise performing a plurality of game

actions in response to detecting the observable, state or event, in particular a defined

sequence of game actions.
Performing a game action may comprise transmitting a message to another

user, the message comprising an invitation to join a game and/or configuration data

for configuring the other user's game program.

The method may comprise selecting one of a plurality of game actions in

dependence on the received information or the detected state or event, and

performing the selected game action. Thus, different actions may be performed for

different events. As mentioned above, this may be governed by user preference data.

Thus, the method may comprise accessing preference or configuration data for a

user of the game program, the preference data specifying a game action to be

performed in response to the detected state or event, and performing the specified

game action. Preferably the preference data specifies for each of a plurality of states

or events not related to the game program, a game action to be performed in

response to the state or event, the method comprising executing the game action

specified for the detected state or event in the preference data in response to the

detection of the state or event. The preference data may specify for each of a

plurality of combinations of states and/or events not related to the game program, a

game action to be performed in response to the occurrence of the combination of

states and/or events, the method comprising executing the game action specified for

the detected combination of states and/or events in the preference data in response

to the detection of the combination of states and/or events.

The method may comprise accessing preference data for a user of the game

program, the preference data specifying one or more parameters for a game action

to be performed in response to the state or event, and wherein performing a game

action comprises performing the game action using the specified parameters. In the

case of a wagering game, the method may comprise accessing preference data for a

user of the game program, the preference data specifying one or more wager

parameters for a wager to be submitted in response to the state or event, and

wherein performing a game action comprises submitting a wager in accordance with

the specified wager parameters. The one or more wager parameters may comprise

one or more of: a game or game type in respect of which a wager is to be submitted,

a game event or outcome in respect of which a wager is to be submitted, and a

wager amount.

By using preference or configuration data to determine the observables,

states or events, and the game actions to be performed (possibly with specified

parameters) in response to those observables, states or events, the user can be

provided with greater control over how game actions are triggered. The method may

comprise modifying stored preference or configuration data in response to input from

a user of the game program, the preference or configuration data defining e.g. one or

more states or events and/or one or more actions to be performed in response to the

defined states or events. In this way, the user can modify the defined triggers and

actions. Alternatively or additionally, the method may comprise modifying the

configuration data in response to information received from a communications

network to which the device is connectable. The method may comprise receiving an

indication from a user of the game program to cease responding to a given state or

event or to any state or event; the method comprising no longer performing a game

action in response to the given state or event or to any state or event after receipt of

the indication. In this way, the user can disable given triggers at any time, or opt out

of the triggering mechanism altogether. Preferably, the user can activate or

deactivate individual triggered actions or the entire triggering mechanism at any time.

In this way, the user can ensure that game actions are only triggered at appropriate

times, for example whilst the user is not at work.

The method may comprise performing the game action substantially

immediately (or directly) in response to detection of the observable, state or event.

Alternatively, the method may comprise performing the game action a time period

after detection of the state or event. This can enhance the apparent pseudo-random

nature of the triggered actions. The time period may be predetermined, for example

fixed or specified in configuration data, or may be selected randomly. The method

may comprise determining randomly or pseudo-randomly (for example based on a

predefined probability) whether or not to perform the game event in response to

detection of the observable, state or event, the game action being performed or not

being performed accordingly.

Where the device has communications functions, the state or event may be a

communications event. The method then preferably comprises determining one or

more characteristics of the communications event, and performing a game action in

dependence on the determined characteristics.

This can provide a greater degree of control of how actions are triggered.

Performing a game action in dependence on the determined characteristics

preferably comprises performing a game action if the determined characteristics

meet a predetermined criterion. One or more characteristics may relate to the source

or recipient of a communication, for example a name, telephone number or the like.

Alternatively or additionally, one or more characteristics may relate to the content of a

communication. This may for example be text content of a text message, sound

content of a voice call / message, or image content of a picture message or video call

/ message.

Accordingly, the method may comprise analysing the content of the

communication, and performing a game action in dependence on the outcome of the

analysis. This may for example involve text analysis, image pattern recognition (e.g.

face recognition), or sound recognition (e.g. voice recognition). By enabling actions to

be triggered in dependence on the content of a communication, greater flexibility can

be provided, and a variety of interesting applications become possible, such as

triggering an event in response to a certain word in a text message, or a certain voice

being recognised.

Performing a game action preferably comprises initiating the game program

and/or performing an action in the game program. The method preferably comprises

accessing preference or configuration data for a user of the game program, the

preference data defining at least one communications event, the method comprising

performing a game action in response to detection of one of the defined

communications events. The preference data preferably specifies, for each defined

communications event, a game action to be performed in response to the

communications event, the method comprising, in response to detecting one of the

defined communications events, performing the game action specified for the defined

communications event in the preference data.

The communications event preferably comprises receipt of a communication,

preferably from a predefined source, or initiation or transmission of a communication,

preferably to a predefined destination or recipient. The source or destination to which

the communications event relates is preferably defined in the preference data. The

communication may comprise one or more of: a message, a text message, a picture

message, a voice message, a video message, an instant messenger service

message, an e-mail message, a real-time communications session, a voice call, and

a video call.

The detected observable, state or event may relate to an internal state of the

device (the state typically not being related to the game program). In that case, the

internal state may relate to the operational status of the device or a device

component, preferably to one of: network signal strength, remaining battery power,

screen brightness or speaker volume. The internal state may alternatively relate to

the status of a further program or application running in the device which is not

related to the game program.

The observable, state or event may relate to the current time.

As previously mentioned, the game program may operate in accordance with

stored configuration data, in which case the method may comprise modifying the

configuration data in response to detecting the observable, state or event. Instead of

or in addition to influencing the operation of an individual game, this can allow the

configuration or set-up of a game to be controlled in response to observables. The

configuration data may relate to the visual appearance of the game, or to a default or

preferred game type, or to default wager parameters for a wagering game (or a

combination). As mentioned previously, the state or event may, for example, relate to

the time and/or the location of the device running the program, or to a sensor input

received at the device. It may also comprise a communications event.

Configuring the game program in response to observables, states or events

can be particularly advantageous, since it can allow the game to be adapted to the

user or device's current circumstances (such its location), to thereby improve the

game experience.

In another aspect mentioned above, the method may comprise detecting a

state or event relating to the game (for example a predetermined game outcome

such as a win) and performing a device action external and unrelated to the game

program in response to the detected state or event. The device action may be a

communications action, such as sending a message or initiating a call. This can

enable the implementation of novel entertainment functionality.

The invention also provides a computer program or computer program

product comprising software code adapted, when executed on a data processing

apparatus, to perform any method set out above.
In a further aspect, the invention provides a device for running a game

program adapted to operate a game, comprising: storage (e.g. comprising a memory

or other storage device) for storing configuration data defining one or more states or

events which can occur at the device and which are not related to the game program,

and specifying for each defined state or event a game action to be performed by the

game program in response to the defined state or event; a detecting component (e.g.

comprising a processor) adapted to detect occurrence of one of the defined states or

events at the device; and a processing component (e.g. comprising a processor)

adapted to perform the game action specified in the configuration data for the

detected state or event in response to detection of the defined state or event.

In a further aspect, the invention provides a device adapted to perform

communications functions and to run a game program, the device comprising: a

detecting component (e.g. comprising a processor) arranged to detect a

communications event not related to the game program and to determine one or

more characteristics of the communications event; and a processing component (e.g.

comprising a processor) arranged to perform a game action in relation to the game

program in response to the detected communications event in dependence on the

determined characteristics.

In a further aspect, the invention provides a device for running a wagering

game program adapted to operate a wagering game, the device comprising: a sensor

for receiving environmental information relating to a state or event pertaining to the

device's environment; and a processing component (e.g. comprising a processor)

adapted to perform a game action in relation to the wagering game in response to the

received information.

In a further aspect, the invention provides a device for running a game

program adapted to operate a game in the device, comprising: a status monitor (e.g.

comprising a processor) for receiving status information relating to an internal state of

the device, the state not being related to the game program; and a processing

component (e.g. comprising a processor) adapted to determine whether the status

information fulfils a predetermined criterion, and to perform a game action in relation

to the game in dependence on the outcome of the determination.

In a further aspect, the invention provides a device for running a game

program adapted to operate a plurality of games, comprising: a detecting component

(e.g. comprising a processor) for detecting a state or event occurring in a first of the

plurality of games; and a processing component (e.g. comprising a processor)

adapted to perform a game action in relation to a second of the plurality of games in

response to the detected state or event.

In a further aspect, the invention provides a device for running a game

program adapted to operate a game, comprising: a detecting component (e.g.

comprising a processor) for detecting a predefined combination of user interactions

with the device, the user interactions not being related to the game; and a processing

component (e.g. comprising a processor) arranged to perform a game action in

relation to the game in response to detection of the combination of user interactions.
In a further aspect, the invention provides a device for running a game

program adapted to operate a game, comprising: a detecting component (e.g.

comprising a processor) for detecting a predefined combination of states and/or

events, the states or events not being related to the game; and a processing

component (e.g. comprising a processor) adapted to perform a game action in

relation to the game in response to the detected combination of states or events.

In a further aspect, the invention provides a device for running a game

program adapted to operate a game, the device comprising a processor arranged to:

execute the game program to operate a game; during operation of the game, detect

a state or event not related to the game; perform a game action in relation to the

ongoing game in response to the detected state or event; and continue execution of

the game program and operation of the game following the performed game action.

In a further aspect, the invention provides a device for running a wagering

game program adapted to operate a wagering game, comprising: a detecting

component (e.g. comprising a processor) for detecting a state or event not related to

the wagering game; and a processing component (e.g. comprising a processor)

arranged, in response to the detected state or event, to submit a wager in the

wagering game in relation to a predefined game event or outcome and with a

predefined wager amount.

In a further aspect, the invention provides a device for running a game

program adapted to operate a game, the device comprising: a detecting component

(e.g. comprising a processor) for detecting a state or event not related to the game;

and a processing component (e.g. comprising a processor) arranged, in response to

detecting the state or event, to determine randomly or pseudo-randomly whether to

perform a game action in relation to the game, and to perform the game action in

response to a positive determination.

In a further aspect, the invention provides a device for running a game

program adapted to operate a game, comprising: storage (e.g. comprising a memory
or other storage device) for storing configuration data, the game program operating in

accordance with the stored configuration data; a detecting component (e.g.

comprising a processor) for detecting a state or event not related to the game

program; and a processing component (e.g. comprising a processor) adapted to

modify the configuration data for the game program in response to the detected state

or event.

In a further aspect, the invention provides a device for running a game

program adapted to operate a game, comprising: a detecting component (e.g.

comprising a processor) for detecting a state or event relating to the game; and a

processing component (e.g. comprising a processor) arranged to perform a device

action external and unrelated to the game program in response to the detected state

or event.

The invention also provides a device as set out in relation to any of the above

aspects, further adapted to perform any method as set out above, and, more

generally, apparatus (preferably in the form of a mobile communications device or

mobile phone), comprising means for performing any method as set out above.

The components described above in relation to various device aspects (for

example detecting and processing components) may be in the form of or include

software components, for example parts of a program such as a game program, for

execution on a processor.

Though the various aspects set out herein are generally set out in relation to

games programs, they may also be provided in the context of other types of

programs. Thus, for example, the invention may additionally provide a method of

controlling a program adapted to perform a function in a device, comprising:

accessing configuration data defining one or more states or events which can occur

at the device and which are not related to the program or its function, and specifying

for each defined state or event a game action to be performed by the game program

in response to the defined state or event; detecting occurrence of one of the defined

states or events at the device; and performing the game action specified in the

configuration data for the detected state or event in response to detection of the

defined state or event.

The other aspects set out above and below may be modified / generalised in

a similar manner to apply to non-game programs.
Aspects and features relating to player allocation

In a further aspect of the invention, there is provided an online gaming system

adapted to provide access to a plurality of (preferably concurrent) multiplayer games,

comprising a player allocation component adapted to: access information relating to

the history of play or state of play in one or more of the plurality of games; select one

of the plurality of games for the player in dependence on the information; and

allocate or join the player to the selected game.

In this way, players can be efficiently joined to games without the need for

complicated menu-based lobby systems, thus reducing the amount of data that

needs to be transmitted to a player and simplifying the user interface. Joining a

player to a game preferably comprises allocating the player to the game and/or

connecting the player to the game, specifically taking the player to the allocated

game, e.g. by configuring a player interface to display and provide access to the

game.

The allocation component is preferably adapted to allocate a player to a game

in response to one or more of: receiving a request to join a game from the player; the

end of an existing game in which the player was participating (for example due to the

operation of game rules or due to a technical problem); disconnection of the player

from an existing game in which the player is participating; and the current number of

players of an existing game in which the player is participating falling below a defined

threshold.

In this way, the player's play time whilst connected to the system can be

maximised.

The online gaming system preferably operates the plurality of online games,

and preferably operates over a mobile telecommunications network, with players

interacting with the system using mobile devices connected to the mobile

telecommunications network.

The player allocation component is preferably adapted to select the one of the

plurality of concurrent multiplayer games in dependence on one or more

predetermined rules. This can provide greater control over the allocation of players to

games. The games are preferably wagering games.

Accordingly, in a further aspect, the invention provides an online gaming

system for use with a mobile telecommunications network, adapted to provide access

to or operate a plurality of concurrent multiplayer wagering games for participation by

players using mobile devices connected to the mobile telecommunications network,
comprising a player allocation component adapted to select one of the plurality of

concurrent multiplayer wagering games for a given player, preferably in dependence

on one or more predetermined rules; and join the given player to the selected game.

A rule may specify a type of game or attribute(s) or characteristic(s) of a

game. If a game matching the type, attribute(s) or characteristic(s) is available, it may

be selected in accordance with the rule. If there are multiple rules, then they are

preferably applied in a defined priority order (e.g. if there is no game available

matching a first rule, then the next rule is considered etc.) as discussed in more detail

below. Attributes or characteristics may include the number of players currently in the

game, positions available in the game, and the like.

Thus, the one or more rules preferably include selecting one of a plurality of

games in dependence on the number of players already allocated to one or more of

the games. This can help distribute players more evenly. Preferably, the rules

comprise selecting a game having a current number of players within a defined range

in preference to a game having a current number of players outside the defined

range. In this way, player numbers can be controlled more effectively. The range is

preferably between approximately one third and approximately two thirds of a

maximum number of players defined for each game. For a six-player game, the

range is preferably between two and three players. In this way, an efficient balance of

player numbers can be achieved. For the same reason, the one or more rules

preferably include selecting a game having a current number of players below the

defined range in preference to a game having a current number of players above the

defined range. The allocation component preferably selects from those games having

at least one player already allocated.

Preferably, the allocation component seeks to maximise the number of games

having a current number of players at or near a given defined threshold, preferably

between half and three quarters of a maximum number of players defined for the

games, more preferably two thirds of the maximum number (for example, four

players for six-player games). In this way, an efficient balance can be achieved, and

the collapse of existing games due to players leaving can be avoided to some extent.

As mentioned previously, the player allocation component is preferably

adapted to evaluate the state or history of play of one or more of the plurality of

games, and to select one of the plurality of games in dependence on the outcome of

the evaluation. This can enable the selection of a more appropriate game for the

player, thus improving the player's experience and reducing the risk of the player
subsequently leaving the game after only a short time.

Each game may have a defined number of player positions to which players

can be allocated, in which case the player allocation component is preferably

adapted to select one of the plurality of games in dependence on the player positions

not yet allocated to players in one or more of the games. This can assist in identifying

an appropriate game for the player, in particular where player positioning is relevant

to game play. Thus, the player allocation component is preferably adapted to

evaluate, for one or more of the plurality of games, the player position or positions

available in each game in relation to the state of play in the game and to select a

game in dependence on the outcome of the evaluation. The one or more rules

preferably include selecting a game having an available player position meeting a

predetermined criterion in preference to a game not having an available player

position meeting the predetermined criterion. Where the game is a poker-type game

(or other game with forced bets), the one or more rules may, for example, include

selecting a game having an available player position which is not between the blinds

(forced bets) in preference to a game having only available positions between the

blinds. By basing the game selection on available (i.e. not currently allocated) player

positions, as they relate to the state of play, the system can avoid giving unfair

advantages or disadvantages to the joining player and/or to existing players of a

game.

The player allocation component is preferably adapted to evaluate, for one or

more of the plurality of games, the duration of play of one or more players already

participating in the games, and to select one of the plurality of games in dependence

on the outcome of the evaluation. Preferably, the rules include selecting a game in

which players have been playing for longer in preference to a game where players

have been playing for a shorter time. For example, the allocation component may

determine the average length of play by players in certain games, and select a game

with a higher play time average in preference to a game with a lower play time

average. In this way, the formation of stable games can be encouraged, and the risk

of allocating the player to a short-lived game can be reduced.

The allocation component may further be adapted to analyse the style of play

in one or more of the plurality of games, and to select a game having a style of play

similar to a game in which the player was previously participating. This can improve

the play experience for the player, and reduce the risk of the player becoming

dissatisfied and disconnecting from the system. The allocation component may, for

example, be adapted to analyse data representative of one or more past play events

in a given game to determine a characteristic or to access a precomputed

characteristic for the game, and to compare the given game to the game in which the

player was previously participating in relation to the determined or precomputed

characteristic. The characteristic preferably relates to one or more of: the speed of

play in the game, wagers placed in the game, the percentage of players to reach a

defined stage in the game or in individual rounds of the game, or, in a poker-style

game, the percentage of players to see the flop or other community cards.

Where there are multiple rules, the allocation component is preferably

adapted to apply the rules in a predetermined order (e.g. higher-order rules being

applied before lower-order rules, until a game has been allocated). This can allow

complex allocation procedures to be specified.

Where each game has a defined number of player positions, the player

allocation component is preferably further adapted to select an available player

position for the player and assign the player to the selected player position when

joining the player to the game. This can avoid creating unfair advantages or

disadvantages as previously discussed, and can also simplify the user interface. The

allocation component may select a game for the player based on the available player

positions, in particular to select a game having a player position matching a defined

criterion, as already discussed, and then select a player position within the game

matching that criterion accordingly. The player allocation component is preferably

adapted to select an available player position in dependence on the state of play of

the game. Where the game is a poker-type game (or other game with forced bets),

the player allocation component is preferably adapted to select an available player

position which is not between the blinds (forced bets) in preference to a player

position between the blinds.

The allocation component may further be adapted to reallocate players

between running games so as to balance player numbers in the games. This can

enable more efficient operation of the system and improve the overall play

experience for players. The allocation component is preferably adapted to: identify a

current game which meets a predetermined termination criterion; and for each player

currently participating in the identified game, select another of the plurality of

concurrent games and join the player to the selected game, thereby terminating the

identified game. This can enable efficient management of the games. The

predetermined termination criterion may include, for example, the number of players

participating in the game falling below a predefined threshold.

The allocation component is preferably adapted to allocate a player to a

scheduled game for which the player has previously registered before the start of the

scheduled game. The scheduled game, may for example, be a scheduled

tournament, and may be for a scheduled time, or may be scheduled to commence as

soon as a sufficient number of players have registered.

The allocation component may be adapted, before the start of the scheduled

game, to identify a game in which the player is currently participating, and to

automatically remove the player from the game and/or end the game (preferably

depending on whether the game is a single-player game or a multiplayer game),

preferably at the end of a game round, or at another appropriate time so as not to

disrupt the game.

Preferably, the allocation component is further adapted to: access stored

preference data defining one or more game preferences for the player; and select

one of the plurality of games in dependence on the preference data. This can allow a

more appropriate game to be selected for the player, in particular where different

types of game are being provided. Thus, the one or more predetermined rules may

include a rule to select a game matching the player's preferences if available.
Preferably, the allocation component is adapted to identify a plurality of games

matching the game preferences for the player, and to select one of the plurality of

identified games in dependence on one or more of the predetermined rules (and/or

other selection criteria described above).

The various selection rules and criteria described above may be combined in

any appropriate combination. Typically, where multiple rules or criteria are used, they

are applied in a defined priority order. Preferably, as already mentioned, games are

selected initially based on the player's preferences. If multiple matching games exist,

then one or more of the above rules and criteria are applied in a defined priority order

to select one of the games which matches the player's preferences. All the various

criteria described herein may be considered to be rules (and vice versa).

In a further aspect, the invention provides an online gaming system adapted

to provide access to or operate a plurality of concurrent multiplayer games,

comprising a player allocation component adapted to: receive a request from a player

to join a game; access stored preference data defining one or more game

preferences for the player; identify one or more of the plurality of games matching the

preference data; select, if two or more games matching the preference data are

identified, one of the identified games in dependence on one or more predetermined

rules (such as one or more of the rules and other selection criteria mentioned above),

and join the player to the selected game.

In this way, a player can be quickly joined to an appropriate game, without

having to specify the type of game in which the player wishes to participate. This can

simplify the user interface and provide increased efficiency.

Preferably, each game is associated with one or more attributes, the

allocation component being adapted to compare the attributes of one or more games

to the player's game preferences and to select a game in dependence on the

outcome of the comparison. Each game may alternatively or additionally be

associated with a game type (possibly from a defined set of game types); the game

preferences specifying one or more preferred game types, the allocation component

being adapted to select a game having a game type matching one of the player's

preferred game types. One or more of the game attributes may define the game type.

Game attributes or types may, for example, specify game variants or rules, or

specific parameters of a given game such a betting limits or maximum player

numbers. Using this approach, players can more accurately define their preferred

types of game.

The allocation component may be adapted to select a game in dependence

on the players participating in one or more of the games. For example, the player

preferences may specify one or more other players, the allocation component being

adapted to preferentially select a game in which one or more of the specified players

are currently participating. In this way, a player can be taken automatically to a game

in which designated other players (e.g. friends) are playing.

The player preferences may specify a plurality of preferred game types and

an order of preference associated therewith, the allocation component being adapted

to select a game in accordance with the specified order of preference. In this way, a

player can still be automatically allocated to a game even when their most preferred

game type is not available, making the allocation process more efficient and easier

for the user.

The allocation component may be adapted, where no game matching the

player's preferred game type is available, to add the player to a queue associated

with that game type. The allocation component is then preferably further adapted to

identify when a game matching the player's preferred game type becomes available,

and to join the queued player to the identified game. This can remove the need for

further interaction by the user in the situation where a matching game is not

immediately available. Alternatively, the allocation component may be adapted,

where no game matching the player's game preferences is available, to create a new

game, and to allocate the player to the created game.

The online gaming system preferably further comprises a preference

management component adapted to receive preference data from a player device,

and to update stored preferences for the player in dependence on the received

preference data.

In a further aspect, the invention provides an online gaming system adapted

to provide access to or operate a plurality of concurrent multiplayer wagering games,

comprising: a connection management component adapted to receive a connection

request from a player and connect the player to the system in response to the

connection request; and an allocation component adapted to select one of the

plurality of concurrent multiplayer wagering games for the newly connected player (in

response to the connection request), and join the newly connected player to the

selected game. The allocation component is preferably adapted to perform the

selection and joining steps after the player has been connected to the system without

further interaction by the player. In this way, a very simple and efficient way of

connecting to the system and joining a game can be provided, which can maximise

the time spent playing and avoid the need for the player to navigate complex menus

in order to play. Selection of a game is preferably based on preferences, rules and/or

criteria as already mentioned.

The above aspects may be combined in any suitable manner. The allocation

component of each aspect (which may take the form of or comprise a processor,

appropriately programmed) may also be provided as an independent aspect of the

invention.

In a further aspect the invention provides a method of (or a system having

means for or being adapted for, or a computer program product being adapted for)

allocating a first player to a game in an online gaming system providing access to a

plurality of multiplayer games, the method comprising: accessing information relating

to the first player and specifying one or more other players; identifying at least one of

the other players as being available to participate in a game; and allocating the first

player and the identified other player to one of the plurality of games in response to

identifying availability of the other player.

In this way, a player can be automatically allocated to a game when his

friends become available to play. Allocating may comprise allocating all the relevant
players and/or starting a new game. If the player is currently playing a game that

game may be terminated automatically (preferably at an appropriate point so as to

reduce unwelcome disruption). Players may have preferred games or game types

configured, and allocation may occur only when the game to be played with friends

has been allocated a higher preference than a game the player is currently playing.

Preferably, identifying a player comprises monitoring whether the player is

connected to the online gaming system, whether the player is currently participating

in a game and/or the type of game the player is currently participating in. Again,

whether the other player is considered available may depend on that player's

preferences.

In a further aspect, the invention provides a method of (or a device or system

having means for or being adapted for, or a computer program product being

adapted for) registering a new user for an online gaming system using a device

connected to the online gaming system, the online gaming system being arranged to

operate a plurality of online games, the method comprising: selecting one of the

plurality of games for the new user; displaying the selected game to the user on a

screen associated with the device; and displaying a registration interface for

obtaining registration information from the user on the screen; wherein the

registration interface is displayed at the same time as the selected game thereby

allowing the user to view the game during registration.

This can make the registration process more interesting for the user.

The method preferably comprises allowing the user to participate in the

displayed game following (immediately after) completion of the registration process.

This can reduce the delay between completing registration and starting to play.

Preferably, the registration interface and selected game are displayed in separate

regions of the screen and/or the registration interface is displayed at least partially

superimposed on the selected game.

In a further aspect, the invention provides a method of allocating a player to a

game in an online gaming system providing access to a plurality of concurrent

multiplayer games, the method comprising: accessing information relating to the

history or state of play in one or more of the plurality of games; selecting one of the

plurality of games for the player in dependence on the information; and allocating the

player to the selected game.

In a further aspect, the invention provides a method of joining a player to a

game in an online gaming system provided over a mobile telecommunications

network and providing access to a plurality of concurrent multiplayer wagering games

for participation by players using mobile devices connected to the mobile

telecommunications network, the method comprising: selecting one of the plurality of

concurrent multiplayer wagering games for a given player in dependence on one or

more predetermined rules; and joining the given player to the selected game.

In a further aspect, the invention provides a method of allocating a player to a

game in an online gaming system providing access to a plurality of concurrent

multiplayer games, the method comprising: receiving a request from a player to join a

game; accessing stored preference data defining one or more game preferences for
the player; identifying one or more of the plurality of games matching the preference

data; if two or more games matching the preference data are identified, then

selecting one of the identified games in dependence on one or more predetermined

rules; and allocating the player to the identified or selected game.

In a further aspect, the invention provides a method of allocating a player to a

game in an online gaming system providing access to a plurality of concurrent

multiplayer games, the method comprising: receiving a connection request from a

player; connecting the player to the system in response to the connection request;

selecting one of the plurality of concurrent multiplayer wagering games for the newly

connected player in response to the connection request; and joining the newly

connected player to the selected game.

The invention also provides a computer program or computer program

product adapted, when executed on a data processing apparatus, to perform a

method according to any of the above method aspects.

Disconnection protection aspects and features

In a further aspect of the invention, there is provided a method of operating an

online multiplayer game, wherein a plurality of players participate in the game using

(preferably mobile) client devices connected to a game server over a

communications network (preferably a mobile telecommunications network), the

method comprising: monitoring the state of the connection of each client device to

the game server; in response to detecting the disconnection of a client device

associated with a given player from the game server, pausing the game; and in

response to the disconnected client device reconnecting to the game server: joining

the given player to the paused game; and resuming the game with the given player.

In this way, disruption to a game due to disconnection of a player can be

avoided. Disconnections are particularly common where an online game is provided

over a mobile telecommunications network to players using mobile communications

devices such as mobile telephones. In that case, disconnections can, for example,

arise due the player receiving a call, or due to loss of signal (e.g. the player entering

a tunnel). Upon reconnecting, the user is preferably automatically taken to the game

he was last playing to simplify and accelerate the reconnection process.

To avoid the game being paused indefinitely (for example if the client device

cannot or does not attempt to reconnect), the method preferably comprises

performing the joining and resuming steps if the disconnected client device

reconnects to the game server before expiry of a predetermined time period.

Preferably, if the disconnected client device does not reconnect to the game server

within a predetermined time period, the method comprises removing the given player

from the game and/or resuming the game without the given player.

Where the game is a turn-based game, the method preferably comprises

pausing the game at the player's turn after detecting disconnection of the player's

client device. In this way, the game can continue after disconnection until it is the

disconnected player's turn, which can reduce disruption to other players. For

efficiency, the method may comprise pausing the game at the player's turn only if the

player has not reconnected in the meantime.

The disconnection is preferably an involuntary disconnection. Thus, the above

steps are preferably not performed in response to a deliberate disconnection from the

service, for example by the user selecting to leave the game.

To reduce disruption to other players, the method preferably further

comprises, in response to detecting the disconnection, displaying an indication to one

or more of the other players, the indication preferably indicating one or more of: the

game being paused, the disconnected player, and the time until the game is

resumed.

The game is preferably a wagering game.

Preferably, the wagering game uses forced bets (e.g. blinds), the game

server being configured to place forced bets without user involvement, the method

comprising, when a forced bet is to be placed for a given player, testing the

connection between the game server and the client device associated with the given

player prior to placing the forced bet, and, if the client device is disconnected,

pausing the game without placing the forced bet. The forced bet is then preferably

placed if (and only if) the player reconnects, typically within the allowed time period. If

the player does not reconnect, the game continues without the player, and without

the player's forced bet having been submitted. In this way, the player does not lose a

forced bet if he is unable to participate in the game, which could otherwise negatively

affect the play experience.

Testing the connection preferably comprises sending a request to the client

device, and determining that the device is connected if a response to the request is

received from the device (i.e. a challenge-response test). Where multiple forced bets

are involved, the connections for the relevant players may be tested at the same time

(i.e. not waiting for a response from a first player device before sending a challenge

to the second player device) so as to avoid unnecessary delay.

The invention also provides a computer program or computer program

product comprising software code adapted, when executed on a data processing

apparatus, to perform a method as set out above.

The invention also provides a system for operating an online multiplayer

game, wherein a plurality of players participate in the game using mobile client

devices connected to a game server over a mobile telecommunications network, the

system comprising: a monitoring component (e.g. comprising a processor) for

monitoring the state of the connection of each client device to the game server; a

processing component (e.g. comprising a processor) arranged to pause the game in

response to detecting the disconnection of a client device associated with a given

player from the game server; the processing component further being arranged, in

response to the disconnected client device reconnecting to the game server, to:

connect the given player to the paused game; and resume the game with the given

player. The system is preferably adapted to perform a method as set out above.

Over-air-configuration aspects and features

In a further aspect, the invention provides a method of configuring a game

program provided in a first device connected to a communications network,

comprising: accessing, in a second device connected to the communications

network, configuration data relating to a corresponding game program provided in the

second device; transmitting the configuration data to the first device; and configuring

the game program in the first device in accordance with the configuration data.

In this way, a game program can be configured remotely and efficiently by

copying the configuration over the network; one player can send their configuration to

another player, removing the need for manual configuration by the other player.

The method may comprise initiating a game at the first device in accordance

with the received configuration data in response to receipt of the configuration data,

preferably automatically or under control of the user i.e. by way of a user prompt.

The game program is preferably adapted to participate in online games. The

method preferably comprises connecting or joining the first device to a wagering

game in which the second device is participating, preferably in response to receipt of

the configuration data (automatically or via a user prompt). The game to which the

device is to be connected may be specified in the configuration data. In this way, one

user can initiate a game with another user and configure the other user's game

program appropriately in a very simple and efficient manner, without the other user

having to manually configure the game program, search for the relevant game and so

on.

The network is preferably a mobile telecommunications network. The method

preferably comprises transmitting the configuration data in the form of a message,

preferably a short message service (SMS) message, or other standard mobile

telecommunications messaging format (e.g. MMS). This can enable efficient

configuration of mobile telephones and similar devices. The game program or a

game session may be started in response to the message.

Configuring the game program may comprise modifying configuration data

stored at the first device in accordance with the configuration data received from the

second device. Alternatively or additionally, configuring the game program may
comprise transmitting configuration data to the online gaming system (or a game

server thereof). Thus, the configuration data for a user may be stored locally at the

device or remotely at the gaming system (or both).

The game program is preferably a wagering game program. The configuration

data preferably relates to one or more of: a game type or variant, a maximum number

of players, a betting limit, a buy-in quantity, and the appearance of the game

program.

The first and second devices are preferably connectable to a game server via

the communications network to participate in online games. The method preferably

comprises transmitting the configuration data directly from the second device to the

first device over the network, bypassing the game server. Alternatively, the

configuration data may be sent via the game server.

The devices are preferably mobile communications devices connected to the

online gaming system via a mobile telecommunications network. Over-air

configuration of the game program can simplify configuration of the game, in

particular where the devices are mobile devices, since the limited screen space and

user interface capabilities of such devices can make configuration cumbersome.

The configuration data may be transmitted in response to a predefined event,

state or observable occurring at the second device (as set out above), preferably a

game-related event. The predefined event may be the initiation of the game program

at the device or the initiation of a game within the game program. In this way, for

example, an invitation can be sent automatically by one player to another to join a

game, the invitation including the relevant data for configuring the other player's

device for the game.

The game programs may operate wagering games, the predefined event

preferably comprising the submission of a wager by a user of the device.

The method preferably comprises transmitting the message to a

predetermined recipient or to a predetermined group of recipients. The

predetermined event, predetermined recipient and/or predetermined group of

recipients are preferably defined in preference data stored for the user. Thus, the

user may, for example, configure the device by setting preference data specifying

that, whenever the user starts a given game, an invitation is to be sent automatically

to a defined group of contacts to join the game.

The method may comprise, after configuring the first device, detecting a

modification of the configuration data for the second device, and, in response to the

modification, modifying the configuration data for the first device accordingly. In other

words, the first device configuration may be kept synchronized with the second

device configuration automatically. This again simplifies configuration for the user of

the first device. This may be achieved by sending further configuration data or

configuration messages.

In a further aspect, the invention provides a method of configuring a game

program provided on a mobile device connected to a mobile communications

network, the method comprising: inputting configuration data using a computer

terminal connected to the Internet; and transmitting the configuration data to the

mobile device over the mobile communications network. The method may comprise

inputting the configuration data using a web page displayed at the computer terminal,

the web page being provided by a web server connected to the computer terminal via

the Internet, and transmitting the configuration data from the web server to the mobile

device over the mobile telecommunications network. This can simplify configuration

of a game provided on a mobile device, since a more complex and flexible

configuration interface can be provided on a web page.

The invention also provides a method of configuring a game program in a

device connectable via a communications network to an online gaming system (or a

server thereof), the method comprising: analysing at the online gaming system game

information relating to games in which a user of the device has participated to

determine game preferences or playing habits of the user; and transmitting

configuration data to the device over the communications network to thereby

configure the game program in accordance with the outcome of the analysis, or

alternatively or additionally modifying game configuration data stored at the online

gaming system for the user or device. In this way, the user's game program can be

configured automatically in a suitable manner based on the player's habits, which

can improve the user experience.

The invention also provides a computer program or computer program

product adapted, when executed on a data processing apparatus, to perform a

method as set out above.

The invention also provides an online game system comprising first and

second devices connectable to a communications network and adapted to run

respective game programs; wherein the second device is arranged to access

configuration data relating to the game program provided in the second device, and

to transmit the configuration data to the first device; and wherein the first device is

arranged to configure the game program in the first device in accordance with the

(received) configuration data.

The invention also provides an online game system comprising a mobile

device connectable to a mobile communications network and adapted to run a game

program, the system comprising: an input component for inputting configuration data

using a computer terminal connected to the Internet; and a transmission component

adapted to transmit the configuration data to the mobile device over the mobile

communications network.

The device of either aspect is preferably adapted to perform a method as set

out above.

Shadow gaming aspects and features

In a further aspect, the invention provides a method of configuring an online

gaming system adapted to operate a game session for a first user of the gaming

system, the operation of the game session being configurable by the first user using

configuration data associated with the first user, the method comprising: configuring

the game session for the first user in accordance with configuration data associated

with a second user of the game system.

In this way, the user need not manually configure their game session; instead,

the user can "shadow" another user's configuration. The configuration data preferably

includes user preference data defining a preferred game type for a user. For

example, the user may wish to play games of the same type as a celebrity who also

uses the online gaming system. Accordingly, configuring the game session preferably

comprises modifying the configuration data for the first user in dependence on the

configuration data for the second user. Modifying the configuration data for the first

user may comprise copying all or a defined subset of the configuration data for the

second user.

The method preferably comprises receiving a request from the first user

identifying the second user, and configuring the game session in response to the

request. Thus, continuing the above example, the user may send a request to

"shadow" another user, in response to which the user's configuration is modified

accordingly.

The method may alternatively comprise receiving a message from the second

user, and configuring the game session in response to the message. This may occur

automatically, or in dependence on a user prompt. The message preferably

comprises configuration data for the second user, the method comprising configuring

the game session for the first user using the configuration data in the message. In

this way, a user need not configure the game session manually but can instead have

their game session configured remotely by another user, simplifying the configuration

process.

The method preferably comprises detecting a modification of the configuration

data for the second user, and, in response to the modification, modifying the

configuration data for the first user. In this way, if a user is "shadowing" another

user's game preferences, the user's preferences can be automatically updated as the

other user's preferences change, without further interaction by the user.

A game application or program preferably operates the game session, and

configuring the game session preferably comprises configuring the game application

or program. The game application preferably comprises a client game application or

program for execution on a client device associated with the user and a server game

application or program for execution on a game server, the client game application or

program being adapted to communicate with the server game application or program

over a communications network, and wherein configuring the game application or

program preferably comprises configuring one or both of the client game application

or program and the server game application or program. Thus, configuration / user

preference data may be stored locally at a user's client device, or remotely at a game

server, and is updated accordingly.

In a further aspect, the invention provides an online gaming system for

operating wagering games for participation by a plurality of users when connected to

the system via a communications network, adapted to: receive an indication of a first
user and a second user or receive an indication from a first user identifying a second

user; record a wagering action performed by the second user when using the online

gaming system; and perform a wagering action for the first user in dependence on

the recorded wagering action of the second user.

In this way, a user can "shadow" wagering actions performed by another user

(for example a celebrity). For example, the user may configure the online gaming

system to place a bet in a roulette game whenever a celebrity does so, for example

on the same number and/or with the same bet amount as the celebrity. Thus, the

wagering action performed for the first user preferably corresponds at least partly / in

some aspect to the wagering action performed by the second user.

The recorded action preferably relates to a given game type, in which case

the system is preferably adapted to join the first user to a game of the given game

type or initiate a game of the given type for the first user. The recorded action may

comprise a wager submitted in respect of a given game event or outcome; the

system being adapted to submit a wager for the first user in respect of the given

game event or outcome. The recorded action is preferably associated with a wager
amount, the system being adapted to initiate a wager having the same wager amount

as the recorded event or a defined multiple or fraction thereof.

The online gaming system is preferably adapted to initiate the wagering

action for the first user in response to a request from the first user. The user may, for

example, be prompted to confirm whether they wish to shadow a given wagering

action. The system may be adapted to initiate the wagering action for the first user in

response to the first user connecting to the system. For example, when "shadowing"

a celebrity, the system may perform a "shadow" gambling action corresponding to the

last or a randomly selected action of the celebrity when the user connects to the

system. The system may be adapted to initiate the wagering action for the first user

in response to the performing of the action by the second user. In this way, the user

could follow the other user's gambling actions "live", as they happen.

The invention also provides a method of operating wagering games for

participation by a plurality of users when connected to the system via a

communications network, the method comprising: receiving an indication from a first

user identifying a second user; recording a wagering action performed by the second

user when using the online gaming system; and performing a wagering action for the

first user in dependence on the recorded wagering action of the second user. The

invention also provides a computer program or computer program product

comprising software code adapted, when executed on a data processing apparatus,

to perform a method as set out above.

Multiple games aspects and features

In a further aspect of the invention, there is provided a game program or

game program product for use in a mobile device connectable to an online gaming

system via a mobile telecommunications network (the online gaming system

preferably being adapted to operate or provide access to games, e.g. wagering

games), the game program comprising: means or code for communicating with the

online gaming system to participate in a plurality of concurrent games; interface

means or code for providing a game interface to a user of the program relating to a

current one of the plurality of games; and switching means or code for switching the

interface means to a different one of the plurality of games. In this way, a mobile

device user may participate in multiple games (for example multiple wagering games)

simultaneously in a simple and efficient manner.

The switching means is preferably adapted to switch to a different one of the

plurality of games in response to a game event occurring in the current one of the

plurality of games. The game event may, for example, comprise the end of or

withdrawal by the user from the current one of the plurality of games, or the end of or

withdrawal by the user from a round in said game (for example the switching means

may switch from a poker game to another game when the player folds in the poker

game). Where the current game is a turn-based game, the game event may

comprise the end of the user's turn in the current game. In a further example, the

game event may comprise the submission of a wager by the user in the current

game. The switching means may switch to another game whenever a period of
inactivity (for the player) arises in the current game. In this way, switching between

games can be automated in an appropriate manner, simplifying the switching

process and user interface, and increasing the amount of active play time for the

user. The game program preferably further comprises selection means (e.g. a user

interface) for selecting, by the user, one of the plurality of games to be displayed by

the interface means.

The invention also provides a device comprising a game program or program

product as set out above.

The invention also provides a method of operating a plurality of games in a

mobile device connectable to an online gaming system via a mobile

telecommunications network, the method comprising: communicating with the online

gaming system to participate in a plurality of concurrent games; providing a game

interface to a user of the device relating to a current one of the plurality of games;

and switching the game interface to a different one of the plurality of concurrent

games in response to a predefined event, preferably a game event or user input.

The invention also provides a computer program and a computer program

product for carrying out any of the methods described herein and/or for embodying

any of the apparatus features described herein, and a computer readable medium

having stored thereon a program for carrying out any of the methods described

herein and/or for embodying any of the apparatus features described herein.

The invention also provides a signal embodying a computer program for

carrying out any of the methods described herein and/or for embodying any of the

apparatus features described herein, a method of transmitting such a signal, and a

computer product having an operating system which supports a computer program

for carrying out any of the methods described herein and/or for embodying any of the

apparatus features described herein.

The invention extends to methods and/or apparatus substantially as herein

described with reference to the accompanying drawings.

Any feature in one aspect of the invention may be applied to other aspects of

the invention, in any appropriate combination. In particular, method aspects may be

applied to apparatus aspects, and vice versa.

Furthermore, features implemented in hardware may generally be

implemented in software, and vice versa. Any reference to software and hardware

features herein should be construed accordingly.

Preferably, the various aspects and features described above are provided in

the context of a mobile online gaming system, in which mobile devices under the

control of players communicate with the gaming system, or with a game server of the

gaming system, over a mobile telecommunications network, to participate in

multiplayer and/or single-player wagering games.

However, the aspects and features described may also be applied in the

context of games other than wagering games, and in the context of other types of

online gaming systems. For example the aspects and features may be applied to an

online gaming system provided over the Internet, for participation by users using

personal computers connected to the Internet.

Detailed description of preferred embodiments

Preferred features of the present invention will now be described, purely by

way of example, with reference to the accompanying drawings, in which:-

Figure 1 illustrates a mobile gaming system in overview;

Figure 2 illustrates the operation of a player allocation component of the

gaming system;

Figure 3 is an example of a screen displayed on a mobile device during

participation in a game;

Figure 4 illustrates an example of the over-the-air configuration of the user's

gaming preferences;

Figure 5 is a flow diagram illustrating the sequence of events following

recognition of an observable;

Figure 6 illustrates the overall system including the mobile client, server, and

a payment system;

Figure 7 illustrates a disconnection protection feature;

Figure 8 illustrates a mobile device for running a game program and

illustrates the detection of observables at the device; and

Figure 9 illustrates components of a game server.

Overview

The online gaming system of preferred embodiments of the invention

provides the user with a number of features. The user is able to configure their

gaming experience to meet their needs. Once the user has set their preferences the

gaming system can use any observable, such as an incoming telephone call, to

initiate a gambling event, or any other such event. This allows the user to drop in

and out of the mobile gaming environment without the requirement of initiating an

application manually (referred to herein as the observables feature). The online

gaming system also allows for multiple concurrent games to be played, such as

blackjack and poker. The switching mechanism between these games may be an

observable, such as a win in poker.

In order to set the user preferences the user may in the first instance set them

within the gaming system itself. However, the user is also provided with an online

interface, that may be accessed using either a mobile device or an internet

connected PC. This enables the user to configure their preferences using a more

suitable interface than a small-screen mobile device (referred to herein as the over-
the-air configuration feature). Using this system a user may also choose to use or

copy other users' preferences; generally this will be the user's friends, but

alternatively it could be any other user, including a "famous" person (referred to

herein as the shadow gaming feature).

Furthermore, once the gaming system is initiated, in one embodiment, the

present invention allows for users to lose connection to the network and remain

within the game, at least for a short period of time, while they re-instate their

connection; once reconnected the user will be placed back into the game in the same
position as when they lost connection (referred to herein as the drop-out feature).

The system also operates an allocation mechanism for allocating players to games

(referred to herein as the brushing feature). These features will be described in detail

below.

The online gaming system is shown in overview in Figure 1.

The online gaming system comprises a gaming server 6 connected to a

communications network 4 . In the present example, the network includes a mobile

telecommunications network. The network may additionally include other networks,

for example the Internet. A plurality of mobile devices 2 , for example mobile

telephones, are also connected to the network 4 , via which they are able to

communicate with gaming server 6 .

The gaming server 6 comprises various components including a game

manager 8 for operating a plurality of concurrent multiplayer wagering games 14, a

player allocation component 10 for allocating players to games, and a preference

manager 12 for managing player preferences.

A given player can connect to the gaming system using a mobile device 2 and

is allocated to one of the plurality of concurrent multiplayer games 14 by allocation

component 10. Allocation occurs at least in part based on user preferences, which

can be defined using the preference manager 12. Preference manager 12 may be

configured using a mobile device or an internet connected PC. Once a player has

joined a given game, the game manager 8 manages the progress of the game and

communicates with mobile device 2 to transmit game state updates and receive user

input relating, for example, to play actions and wagers.

Though shown as a single server, the game server 6 may alternatively be

implemented as multiple connected servers, which may be in the same location or

may be geographically remote. For example, individual games or groups of games

may be operated on one or more remote servers, with the game manager managing

access to the remote servers by the mobile devices and initiating participation in a

game by a device, but not itself controlling operation of the games. In that case, once

participation in a game by a device has been initiated, communication between the

device and relevant server may be via the game server 6 , or may be direct between

the device and the server. However, for simplicity, it will be assumed here that game

server 6 itself operates the games.

The server 6 also includes functionality (for example in the form of a

connection management component, not shown) for managing connections to mobile

devices, including setting up new connections and terminating connections.

Allocation of a newly connected player to a game may be performed automatically as

soon as a connection has been established. In this way, the player can connect to

the system and start participating in a game in a single action, thus maximising play

time and user convenience. Alternatively, a menu may be displayed, allowing the

user to request to join a game as well as performing other operations, such as

managing the player's preferences. Whether allocation occurs automatically on

successful connection to the system, or is initiated via a menu displayed after a

connection is established, may also be configurable, for example as part of the

player's preferences.

The operation of the system, and in particular the allocation component 10, is

illustrated in more detail in Figure 2 .

The mobile device 2 includes operating system software 24 which manages

the basic functionality of the mobile device, including communication with the mobile

network, and a client game application 26. The client game application may, for

example, be downloaded by the player over the mobile communications network

from the gaming server or some other source, or may be installed on the device in

some other way.
The client application 26 is preferably a thin client, providing essentially

display and user input functionality and communicating with the gaming server 6 . The

gaming server 6 manages the operation of the games and transmits display

instructions to the client application 26, for example to provide menus and update the

display with the current game state during game play. The client application receives

user input typically via a mobile telephone keypad, and transmits the received input

to the gaming server 6 .

In particular, after starting the client application 26, a menu screen is

displayed, which includes a menu option for joining a game. If the player selects this

option, the client application transmits a request to the gaming server to join a game.

The request is processed by allocation component 10, which accesses user

preferences 16 to obtain the player's game preferences for the particular variety of

game they have chosen. The preferences specify the type of game the player prefers

to participate in. The allocation component then accesses the available games 14 to

select an appropriate game based on the player's preferences.

Each game 18 comprises a current game state 20 and attributes 22. The

game state 20 includes information such as the current number of players, the

positions the players have been allocated to, and the current state of play. The

attributes specify the type of the game, specifying, for example, where applicable,

game types and variants, the maximum number of players for the game, and other

game-related information such as buy-in and betting limits.

The allocation component 10 selects a game 18 having attributes matching

the player's preferences, and which is not full. There will typically be several such

games available, and the allocation component therefore in a second stage also

evaluates the game state of any games matching the player preferences, in particular

the number of players currently participating in each game and the player positions.

The rules applied in selecting a game will be discussed in more detail below.

Once a suitable game has been selected, the allocation component 10

assigns the player to the selected game. The game manager 8 then initiates

participation by the player in the game, by transmitting instructions to the client

application to display the current game state and to start receiving input as

appropriate.

If no suitable game matching the player's preferences is available, then a new

game of that type is created and the player is allocated to the new game. Thus, the

first player to log in to the service with a different set of preferences will be allocated

to a new game, and subsequent players joining with similar preferences will

automatically be joined to that game.

Instead of matching the player's preferences exactly, the allocation

component could alternatively select a game of a type similar to the player's

preferences where no exact match is available. Similarity could be determined based

on one or more configurable rules (for example, to select a game with different

betting limits). In that case, when setting user preferences, the players may also have

the option of specifying which game attributes may be varied and which attributes

must be exactly matched when a suitable game is selected for the player.

Once players have configured their preferences, they do not need to specify

the type of game in which they wish to participate again unless their preferences

change, and can quickly and easily join a game of the desired type relying on the

automatic allocation mechanism when connecting to the system in the future. In this

way, the player's playing time while connected to the system can be maximised.

Though the described system can be applied to any type of online game

(including games provided over the Internet or other networks), the context of the

present examples is that of wagering games, in particular Poker-type games,

provided over a mobile telecommunications network.

More particularly, the operation of the system and the selection rules applied

by the allocation component 10 will now be described in more detail in relation to the

specific example of "Texas Hold'em" poker. To assist in the understanding of the

described embodiments, the rules of "Texas Hold'em" will now be summarised

briefly.

Texas Hold'em uses one deck of 52 cards. Aces are high and low. There are

no jokers or wild cards. Tables consist of up to 10 players. Each player is assigned

as dealer on a round-robin basis (dealing is of course automatic in the online game).

The dealer position is usually represented by the "dealer button", which is

represented graphically in the online game by an appropriate icon. The player to the

left of the dealer posts small-blind and the player to his left posts big-blind (usually

twice the small-blind). The blinds ensure that there is always money in the pot. Two

cards are then dealt face down to each player (the hole or pocket cards). This is

followed by a betting round, starting with the player to the left of the big-blind. Each

player must fold, call or raise the bet. The bet in the first instance is the big-blind.

Bets are limited to a set amount (usually equal to the big-blind amount). The betting

round continues until all bets have been called or all but one player has folded.

Next comes the "flop". Three cards are dealt face-up in the middle of the table

(the board or community cards). Another betting round ensues, starting with the

player to the left of the dealer. His choice is to check or bet. As no bets have been

placed (he his first to act and there are no blinds) he has the choice to check, which

costs him nothing and lets him stay in the game. Once a bet has been made, there is

no checking and all players must call or raise the bet. The betting round continues

until all bets have been called, everybody checked or all but one player has folded.

Then comes the "turn". One more card is dealt face-up in the middle of the

table. Another betting round ensues, starting with the player to the left of the dealer.

At this point the betting limits go up, usually to double the big-blind amount. His

choice again is to check or bet. The betting round continues until all bets have been

called, everybody checked or all but one player has folded.

The final stage is known as the "river". One more card is dealt face-up in the

middle of the table. Another betting round ensues, starting with the player to the left

of the dealer. His choice again is to check or bet. The betting round continues until all

bets have been called, everybody checked, or all but one player has folded.

If more than one player is left in, then a showdown commences. The player

that was called must show his cards. The hand is made up of the best five cards from

the players' two pocket cards and five community cards. Each remaining player must

then either muck their cards (if they lost) or show them (usually if they won, but

players may choose to show losing cards if they were particularly strong). The player

with the best hand is declared the winner and gets the pot.

Position is a crucial factor in the game. The dealer is in late-position as he is

last to act in all betting rounds. This means he gets to see how everyone else is

betting before he makes his move. This is considered highly advantageous and the

best position to be in. The big-blind is at a considerable disadvantage because he is

committed to the pot no matter how good his hand is. There is therefore a scale of

worst-to-best position from the big-blind to the dealer.

In the context of poker, the active games 14 are referred to as "tables", since

each game represents a virtual poker table. Each table has a number of defined

player positions, mirroring the seats at a real poker table. Play proceeds in the proper

order according to the player positions, following the standard rules of the game.

Each table has a maximum number of players (in the described embodiment, two-

player and six-player tables are provided due to the limitations of mobile telephone

screens). However, at any given time, not every player position need be taken by a

participating player; instead, individual positions or seats can be empty. Play

nevertheless proceeds with those players present, assuming there is more than one

player at the table. New players are allocated to tables with available seats by the

allocation component 10. Players can also choose to leave a table at any time.

Again, play continues as long as at least two players remain.

When a player is participating in a game, the game state is represented

graphically on screen of the player device 2 , as shown in the example screen of

Figure 3 . The example screen 30 shows details for each participating player 32

around a representation of a poker table, with the community cards 34 represented at

the centre. A dealer button icon 36 highlights the current dealer position. The player's

pocket cards and other details 38 are shown below the representation of the poker

table, along with available actions 40 if it is the player's turn. Information such as the

current size of the pot and the player's stacks is also displayed.

The operation of several of the features previously mentioned will now be

described in more detail in turn. First, the operation of the allocation component 10

will be described in more detail. The allocation component 10 operates an allocation

mechanism referred to herein as "the brush" (after the name sometimes given to an

employee in a card room who is responsible for managing the seating list). The over-

the-air-configuration feature will then be described in further detail with reference to

Figure 4 , and the shadow gaming feature will also be described in that context. This

will be followed by a detailed description of the observables feature, with reference to

Figures 5 and 7 . Finally, a more detailed description of certain aspects of the

implementation of the gaming system will be provided.

The Brush

Instead of a traditional lobby interface, where the user is presented with

menus and lists of games, the online gaming system of preferred embodiments of the

invention employs an automatic allocation system (also referred to herein as the

brush mechanism), using which players are automatically sat in available seats

(brushed). In this way, much of user interface complexity of conventional systems

can be avoided. The approach also fits well with the "in-and-out approach" of the

mobile gaming environment, where players are expected to drop-in for a quick game

and drop-out after a fairly short time period, say 20 minutes. The described approach

also allows easier balancing of tables, and avoids the need for collusion detection, as

it removes players' ability to choose which game to participate in.

The brush provides a way of seating players in optimal seating positions

without a full lobby service.

Given limited player liquidity and the in-and-out nature of mobile poker, a full

lobby with lists and lists of tables is both cumbersome to navigate and difficult to

implement. Mobile communications latency means that the list of tables with open

seats is likely to be out of date quite quickly, and would need to be refreshed

constantly. The brush also means that the server controls on which table and in

which seat the player is sat, an important factor in creating a good play experience at

the tables.

Further, it is possible for two mobile players to physically stand next to each

other. This invites collusion possibilities that are prevented by existing online poker

rooms based on IP addresses. Colluding players may find each other in traditional

lobby services by scanning the players at each table, or communicating with each

other to agree the tables they are going to sit at.

Using the present brush mechanism, there is no list of tables and players

cannot select to sit at any particular table. This avoids the need for a cumbersome

lobby user interface, as well as the need for a collusion detection component.

Furthermore, the aforementioned mobile communications latency and refresh

problems can also be addressed.

The brush can also improve the poker experience for the player by simplifying

access to the game and avoiding the complex lobby-style interfaces to which online

poker players are accustomed. However, it should preferably still be possible for a

serious player to select the type of game in which they wish to participate.

To achieve this, the preference management component 12 (see Figure 1)

allows the players to define their preferred game types, by providing selections for a

set of available game options. Examples of such options may include:

• Currencies: Play Money, British Pounds Sterling, Euros, ...

• Categories: Ring Games, Sit & Go Tournaments, Multi-table

Tournaments, ...

• Games: Texas Hold'em, Omaha Hi/Lo, Crazy Pineapple, 7 Card Stud,

5 Card Draw, Dealer Choice, ...

• Handedness: 2-Max (heads-up), 4-Max, 6-Max, 10-Max (full handed),

• Structures: Fixed Limit, Pot Limit, No Limit, ...

• Limits: £0.20/0.40, £0.50/1 .00, £ 1.00/2.00, £2.00/4.00, £5.00/10.00,
£5+1 , £10+2, £20+2, ...

• Buy-In: £5=€7.20, £10=€14.50, £20=€29.00, £30=€43.57,
£40=€58.09, £50=€72.62, ...

The actual set of options will of course depend on the type of games being

provided and on the service operator's requirements.

To enable the user to set their preferences quickly and easily, the preference

management component 12 preferably provides a wizard-style interface which is

displayed at the player device 2 and which takes the player through the available

options. On completion of the wizard, the selected options are then transmitted from

the mobile device to the preference management component 12 and stored in the

user preference database 16.

Once the player has completed the wizard and asks to join a game it is the

job of the brush to sit him at an appropriate table. Specifically, the allocation

component selects a table in accordance with the configured preferences and joins

the user to the selected game.

In some embodiments, upon logging into the system in the future, a user can

be brushed immediately into his/her preferred game without the requirement of

selecting the game manually, based on the preferences previously set using the

preferences wizard. Should the user wish to play a different type of game, the user

has the option of leaving the automatically selected game and accessing the

preference wizard to modify the stored preferences, before again invoking the

allocation component by requesting to join a new game.

As illustrated in Figure 2 , each active game (or table) 18 comprises a set of

attributes 22. These correspond to the user preference options which can be

selected in the preference wizard, and define the type of a given game. The

allocation component 10 selects a game for the player by matching the game

attributes to the user preferences.

There will usually be several tables of a given type (i.e. matching a given set

of preferences) running, with varying numbers of players currently at each one. In

addition to selecting a table matching the player's preferences, the allocation

component 10 therefore also seeks to balance the tables, by selecting the most

appropriate table as well as selecting an appropriate seat for the player at the

selected table. More specifically, from the tables which match the player's

preferences (and which are neither completely empty nor full), the allocation

component selects an appropriate table based on a defined set of rules, as will now

be described in detail. The selection process will be described in relation to six-player

tables. However, the process can be adapted for any number of players.

For a six-player game, the optimal number of players at a table has been

found to be 4 or more. This allows for players to drop-out without disturbing the game

greatly. Obviously if there were only two players (heads-up) then the game would be

over if either of them left, and dropping from 4 to 3 players has many ramifications for

the other positions and makes it rather difficult to seat new players. When deciding at

which table to sit the new player, the following priorities are therefore observed, in the
given order:

1. Join a 2-player table, not between the blinds

2 . Join a 2-player table, between the blinds

3 . Join a 3-player table, not between the blinds

4 . Join a 3-player table, between the blinds

5 . Join a 1-player table

6 . Join a 4-player table

7 . Join a 5-player table

8 . Join a 0-player table (i.e. start a new table)

Therefore the brush will prioritise 2-player tables as these are seen as close

to inactive. 3-Player tables come next, even where it means that the new player will

have to sit out a couple of hands because they will be seated between the blinds.

Keeping tables at optimal numbers of 4 or more players therefore takes precedence

over propping up orphaned tables and creating new tables.

This has the effect of continually building tables of 4 or more players, which is

a good number of players in case anybody drops out, while not filling the table to

capacity and leaving no available seats.

The selection of appropriate tables and seats at a given table is guided by the

available player positions (or seats) and the current state of play in a given game,

since the player position can confer an advantage or disadvantage on a player as

mentioned above. In the game of "Texas Hold'em" it is usually not possible to sit

between the dealer-button and the big-blind. These seats are referred to collectively

as "between the blinds". Online players can sit between the blinds, but they will not

be dealt in until the dealer-button passes (they are "sat out"). Alternatively, the option

may be provided for the player to post a penalty-blind in order to be dealt-in, instead

of waiting for the big-blind to come around.

The brush mechanism therefore attempts not to sit players between the

blinds. Instead, it attempts to sit new players in the optimal seat to the left of the

current big-blind. This would then lead to a natural blind and would not penalise

either the new player or the existing players. In practice however, this is rarely

practicable. The following describes possible scenarios in the cases of empty, 1-

player, 2-player (heads-up) and 3-player tables.

Joining an Empty Table

The brush will always attempt to join players to existing active tables with play

in progress. However, where all existing tables are full, there is a need to join a
player to an empty table (in other words creating a new table). The new player will be

seated in the first position. If after some time another player comes along, they will be

seated to the left of the existing player as in the one-player table example below. If,

after some greater time no other players join the table, a prop (human player acting

for the game service provider) or a bot (computer-controlled player) may be seated

to-the-left-of the existing player.

Joining a 1-Player Table

A single player sitting at a table means that there is no game in-progress.

Another player joining is quite natural, and leads to a normal heads-up game (where

the blinds are reversed). The new player is seated to-the-left-of the dealer-button,

with no seats in-between, as illustrated below:

Seat 1 Seat 2 Situation

Button Empty New 2nd player joins

Button + Small Big Normal heads-up game, blinds reversed

Joining a 2-Player Table

In heads-up (2-player) play, the blinds are reversed, so the dealer is always

small-blind. When there are 2-players at a 6-max table there are 4 open seats, but

not necessarily to-the-left-of the big-blind. Where possible, the new player will be

seated to-the-left-of the current big-blind. This is quite natural and leads to the

transition from a heads-up game to a multiplayer game. The solution presented here

means that the player on the dealer-button has the advantage of getting it a second

time. This is done to avoid any player having to pay big-blind more than once and

completely avoids the need for a penalty-blind.

Seat 1 Seat 2 Seat 3 Situation

Button + Small Big Empty New 3rd player

Button Small Big Double dealer

Big Button Small Normal

It is necessary to sit the new player between the blinds when these are the

only positions available. The actual seat is irrelevant, as the player will have to wait

for one more hand in all cases. Once the next hand has passed, the above case

kicks in as usual in the transition from a heads-up game to a multiplayer game. The

brush will allow this to happen, as it is important to keep up the number of players at

each table. The brush will not prioritise other tables, as 2-player tables would quickly

die if this were the case.

Seat i Seat 2 Seat 3 Situation

Big Button + Small Empty New 3rd player

Button + Small Big Out New player out

Button Small Big Double dealer

Big Button Small Normal

Joining a 3-Plaver Table

Where there are 3-players at a 6-max table there are 3 open seats, but not

necessarily to-the-left-of the big-blind. Where possible, the new player will be seated

to-the-left-of the current big-blind. This will lead naturally to a big-blind on the next

hand.

Seat 1 Seat 2 Seat 3 Seat 4 Situation

Button Small Big Empty New 4th player

Player Button Small Big Normal

Sometimes it is necessary to sit the new player between the blinds. The

player will have to wait for the dealer-button to pass before he can be dealt in, which

can take one or two hands. The brush will try not to do this by prioritising tables

where this is not necessary. However, where no other tables are available this can

happen, in which case a penalty blind could optionally be required.

Seat i Seat 2 Seat 3 Seat 4 Situation

Button Small Empty Big New 4th player

Big Button Out Small Out

Small Big In Button New player dealt in

Button Small Big Player Normal

In addition to the allocation rules set out above (based in particular on player

numbers and positions), other characteristics of games may be taken into account by

the brush mechanism when selecting one of a number of tables identified as

matching the player's preferences. For example, the mechanism may make a
selection based on length of play at the tables. In particular the brush mechanism

may select tables which are more stable, i.e. where players have played for longer, in

preference to less stable ones. This may, for example, be achieved by calculating the

average play time of the players at a given table and selecting tables where the

average play time is highest. Alternatively, the drop-out rate could be calculated. In

this way, the development of stable games can be promoted.

Leaving a Table & Position Juggling

The brush mechanism may optionally provide additional functionality to

manage games appropriately when players leave tables (this functionality could

alternatively be provided as part of the game manager 8).

In particular, when the players on the dealer-button or either of the blinds

leave the table it affects the next dealer position and both the blind positions. There

are some principles that govern the movement of the button and the blinds. The

brush mechanism preferably adopts the following principles, which are adhered to in

this order:

1. No player should ever miss a big-blind. The big-blind is a considerable

disadvantage and other principles should not undermine this.

2 . The player on the dealer button is at a considerable advantage.

Players should not be on the button more than once, unless it is to

preserve the order of the big-blind.

3 . It is not possible to sit between the big-blind and the dealer button.

4 . In heads-up the blinds are reversed, so the dealer is also on small-

blind. The dealer is at an advantage in playing second, and so should

not also be the big-blind and heavily committed to the pot. The small-

blind would need a very good hand to justify entering the pot on every

hand, if this were not the case.

5 . The small-blind is fairly irrelevant, given the above principles, and

generally the first thing to go when juggling the button and blind

positions.

In the real-life game, it is usually not possible to leave a table until a full round

of 10 hands has been played-out (in a full handed game). Typically, there will either

be a penalty in a ring-game, or a forfeiture of chips in a tournament; so these

situations do not arise.

However, in an online or mobile game it is understood that players may leave

the table in-between hands. The application of the above principles to an online

game leads to strange movements of the button and blinds (position juggling). There
is no perfect solution, but not to apply them leads to complications in later hands that

can make the game unfair, at best, and could break the game and crash the server,

at worst.

The three positions that affect the game when they leave are the small-blind,

big-blind and dealer-button. Each has a different effect depending on whether the

game is 3-players or more than 3 . In heads-up this is not important as the game is

effectively over if a player leaves.

The solution introduces the concept of a dead dealer-button. This simply

means that the dealer-button is put on an empty seat to indicate that it is dead. As

the dealer is a virtual one, it has no meaning other than to signify the betting order.

In the following examples, leaving refers to the current player leaving, not the

player that would receive the position in the next hand.

If the big-blind leaves with more than 3-Players, then the small-blind is

skipped once and a dead-button is needed once:

Seat 1 Seat 2 Seat 3 Seat 4 Situation

Button Small Big Player Big leaves

Player Button Empty Big No small

Big Player Dead Button Small Dead button

Small Big Empty Button Normal

If the dealer leaves with more than 3-Players, then no action is necessary:

Seat i Seat 2 Seat 3 Seat 4 Situation

Button Small Big Player Dealer leaves

Empty Button Small Big Normal

If the small-blind leaves with more than 3-Players, then a dead-button is

needed once:

Seat i Seat 2 Seat 3 Seat 4 Situation

Button Small Big Player Small leaves
Player Dead Button Small Big Dead button

Big Empty Button Small Normal

If the big-blind leaves with 3-Players, then a player is put on small-blind twice,

but this is preferable to big-blind having the dealer-button:

Seat 1 Seat 2 Seat 3 Situation

Button Small Big Big leaves

Big Small + Button Empty Repeat small

If the dealer leaves with 3-Players, then a relatively complicated situation

arises. In order not to put a player on big-blind twice, instead the dealer is put on the

big-blind. This satisfies principle (1) but breaks principle (2). Note that the blinds are

reversed in heads-up play, so the dealer will also be the small-blind during normal

play:

Seat i Seat 2 Seat 3 Situation

Button Small Big Dealer leaves

Empty Big + Button Small Big gets Button

Empty Small + Button Big Normal

If the small-blind leaves with 3-Players, then play continues in normal heads-

up mode, since in heads-up play, the blinds are reversed anyway:

Seat 1 Seat 2 Seat 3 Situation

Button Small Big Small leaves

Big Empty Small + Button Normal

The above examples describe the rules that are applied when a player leaves

a table. Additionally, the brush mechanism may provide further functionality to

dissolve tables with too few players (in particular those with only a single, "orphaned"

player) and redistribute the players from the dissolved table to other tables. This is

referred to as a "sweep". Preferably, the system uses a configurable threshold

specifying the minimum number of players needed for a table to remain active; tables

below the threshold are dissolved. Different thresholds may be provided for tables of

different sizes (for example, for six-player tables the threshold may be two, while for

ten-player tables, a threshold of four could be used). The service provider may

modify the thresholds at any time, for example to adjust the behaviour of the system

during busier or less busy times.

Players who are removed from tables in this way are reallocated to other

tables based on their defined preferences, and using the standard allocation rules, as

already described above. The brushing mechanism could also apply additional rules

in selecting an appropriate table. For example, the brushing mechanism could

attempt to identify games with a similar style of play so as to maintain the player's

game experience. Similarity could be determined based on characteristics such as

the speed of play at a given table, the total volume of "chips" (i.e. real or play money)

at the table; or the average percentage of players at a table to see the flop (which

indicates whether the style of play at the table is high- or low-risk). Such

characteristics may be determined by analysis of the game history (using logs of past

play events). Alternatively, the game manager 8 may continuously maintain statistics

and other relevant data as play progresses as part of the game state data 20,

allowing the allocation component simply to access the relevant pre-calculated

characteristics in order to make a comparison.

The above characteristics could also be provided as additional user

preference options. Thus, the user could define a preferred play style (e.g. high-risk /

low risk) in the preference wizard, and the allocation component, in addition to

comparing player preferences to game attributes as already described, would then

also analyse play style at the tables to identify the most appropriate table for the

player. The analysis may again be based on statistics maintained by the game

manager 8 whilst running the games.

When reallocating a player from a dissolved table, the brush mechanism may

also select tables based on length of play at the tables - i.e. selecting tables which

are more stable - as already described above. In this way, the mechanism can avoid

reallocating a player to a table which is itself likely to collapse shortly, thereby

avoiding further disruption to the player.

Instead of just dissolving tables with low player numbers, the mechanism may

alternatively also dissolve fuller tables (even completely full tables) and redistribute

their players to several smaller tables so as to balance player numbers. This

approach may be used, for example, when operating tournaments (a tournament

typically begins with a set of starting players distributed across a number of tables,

which are slowly reduced to a single table as players are eliminated).

In alternative embodiments, the sweep of orphaned players can be omitted,

instead leaving it to the players themselves to leave a table and rejoin a new game

using the normal brush mechanism.

To alleviate the problem of players dropping out of tables, a system of penalty

blinds could optionally be provided. Generally speaking, the mobile gaming service is

intended allow a player to participate for only a short time. In the online world, players

sitting at a table often either have to wait for the big-blind to come around, which may

take 10 hands, or elect to pay a penalty-blind equal to the big-blind. This is to ensure

that all players contribute an equal number of blinds. Not to cover this situation

means that players can sit down, see a few hands for free and leave before

contributing a penny (if the cards they are dealt are not to their liking). This is in direct

contrast to the principles of Texas Hold'em, where the forced blinds create the action

and make the game exciting.

To this end, players who sit down and are dealt in are forced to pay a penalty-

blind upon exiting, if they do so before the big-blind comes around. In this way
players do not need to wait before being dealt in or suffer a penalty if they are not

going to play for long, which is expected in the mobile game. On a 6-max table this

means players will be dealt in on the next hand after they sit down, and will be

expected to play at least 6 hands before leaving. The penalty does not kick in if they

have paid big-blind once and then elected to leave, as this is up to the player if he

does not wish to see free hands after the big-blind.

The allocation process used by allocation component 10 to allocate players to

tables can be applied not just when a player who is not currently participating in a

game specifically requests to join a game, but also in other situations. One example,

already mentioned above, is when a table is dissolved, and the players from that

table are reallocated to other tables. This can occur in order to balance tables to

improve efficiency and game play experience and can also occur during tournaments

or other structured gaming events where players are moved between tables by the

system. Depending on the type of game, reallocation of players may also be carried

out, for example, if an existing game comes to an end in accordance with the rules of

the game (though this would typically not apply in poker where the only end condition

is the elimination of all but one of the players), or if a game is terminated due to a

technical problem or the player loses his connection to a game. More generally, the

described methods may be applied in any situation where a player is to be assigned

to a game or moved from one game to another.

Further features relating to player allocation which may be implemented as

part of the allocation component will now be described. These may be implemented

as extensions to the methods described above, or may be implemented

independently thereof, using any other suitable allocation methods.

Preferably, the allocation component supports a dynamic brushing feature,

whereby the user can set his/her preferences not only to include the types of games

that he/she prefers to play, but also the people (his/her friends) that he/she wants to

play with. When enough of the user's friends are available to play a specific type of

game the game will automatically be set up and the players brushed onto that table,

if appropriate removing the player from a game they are currently playing. The

allocation component is preferably configured only to remove a player from a current

game at the end of a round in that game or at an otherwise appropriate point;

additionally, the allocation component may be configured to remove the player only
from certain types of game (for example from single player games but not multiplayer

games).

For example, if player A likes to play Texas Hold'em with players B, C, and D

player A would set his/her preferences as such. Player A could then be playing

Roulette and be alerted, and subsequently taken to the table, when players B, C, and

D are available to play Texas Hold'em. In this way players can be brushed to their

preferred games without the need for them to search manually for their friends.

In addition, players can be reallocated between tables based on detection of

predetermined states or events, referred to herein as observables. The performance

of game actions in response to such observables will be described in more detail
later.

There will not necessarily always be a game available matching a given

user's game preferences, e.g. when there are not enough players logged on for a

certain type of game. Preferably, the user can create a hierarchy of different games

(as part of their preferences) which the system will brush the player into as and when

they become available; the system always attempts to place the player in the most

preferable game available. For example the user could be brushed to a slots

machine while waiting for a poker tournament to start. If the user has been allocated

to a less preferred game, and a more preferred game becomes available (in

accordance with the user's ordered preferences), the system may prompt the user or

automatically move the player to the more preferred game, or may simply alert the

user that a better game is available.

In a specific example of this, the brushing system can be used to keep

players occupied whilst waiting, for example, for a tournament to start, and then

taking them to the tournament at the appropriate time. For example, "Sit-and-Go"

tournaments (SNG) are where players sit down at a table and wait for others to join

(these are often single table tournaments). The rules are preset and related to the

table in question. Once the required number of players have sat down at the table,

the tournament begins immediately. Typically, this could be a 100+10 tournament,

where each player puts $100 on the table plus also gives the house $10 as a tip (or

fee) for playing. The resulting pot (the number of players times $100) is then won by

the winner. Sometimes the runner-up may also get a prize. The benefit is that the

player knows precisely how much many the player has put at risk ($1 10) and how

much can be won (say $ 1 ,000 for 10 players).

For mobile phone gaming systems, Sit-and-Go tournaments can be difficult to

provide because there is nothing for the player to do while waiting for the tournament

to start. It would therefore be beneficial if the idle waiting time could be reduced as

much as possible. This can be achieved by allowing players to drift off and then

automatically get brushed to the right table when the time is right.

In certain embodiments, observables can drive gaming setup (this is

described in more detail below). Preferably, a new sit-and-go tournament is started

by the system with an ideal size (say 6 seats). If insufficient players register for the

tournament, the size can then be reduced as a function of time to a lower number of

seats to accommodate a reasonable starting time during less busy periods (this can

be provided as an independent aspect of the invention). If it takes 15 minutes to fill

two seats, then it may make sense to automatically reduce the table size to 4 seats

to enable it to be filled in (perhaps) 30 minutes time.

A player may start a multi-player poker application and have preset

preferences such as participating in a sit-and-go tournament. The player is then

automatically brushed to that initial table. Given that the player probably is not the

last player to join that table, the player can be brushed also to a 2nd choice (this can

be cascaded), such as another sit-and-go tournament or a game of Blackjack.

When the initial table can be filled (and the tournament started) due to

changes such as the availability of players or changes in the table setup (or other

observables), then the player is brushed to the initial table.

The system may modify the allocation strategy for a player in response to

how the player uses the game system. For example, the system may observe the

number of times a user has played certain types of game and automatically adjust

the brushing preferences in response - e.g. if a user starts playing a certain game

type more than others, the system may in future automatically take the player to a

game of that type. Alternatively, if the user starts to play a game less often the

system may prompt the user to start playing again, but in a different game. More

generally, a user's playing habits may be considered "observables" and used to

trigger game actions or configuration actions as described in more detail later.

The system is preferably enabled to receive requests from users to place

them in games dependent on the amount of time they have available to play; for

example, if the user only has 10 minutes then the allocation component would

suggest a heads-up poker tournament, and if the user has 2 hours then the allocation

component would suggest a multi-player poker tournament.

Instead of taking the player directly to the allocated game, the system may

indicate to the player details of the game that has been selected and give the player

the option of accepting or rejecting the allocation. If the user rejects the allocation,

the allocation component may select an alternative game, or the user may be invited

to modify their game preferences if no alternative is available.

As already mentioned, information about a player's playing style may also be

used by the allocation component when allocating a player to a table (for example,

allocation may occur based on a player's playing speed). In a further example, the

system may additionally provide functionality for managing the orderly shut-down of

games. For example, when a player is registered for a tournament starting at a future

time, he may continue to play one or more other games while waiting for the

tournament to start. Close to the starting time, the system may shut down any

existing games for the player (and for other players playing in the tournament) in an

orderly fashion. This involves, for example, waiting for a current round or hand to

end, so as to avoid disruption.

The system may analyse the average time a given player takes to play a

hand and use this information to determine how many hands a user can play before

being taken to the tournament automatically. This check may be carried out

automatically a certain time (e.g. 5 minutes) before the scheduled start of the

tournament. Thus, a first player may be allowed to play four more hands of poker,

while a second, slower player may only be allowed to play two more hands (or

analogously, a certain number of spins of the wheel in roulette). After those hands

have been played, the players are then automatically taken to the tournament (either

to a tournament overview screen or directly to their allocated tournament table). In

this way it can be ensured that all players are ready to start the tournament at the

right time.

This shut-down and tournament set-up functionality may be provided as part

of the allocation component and/or other system components. In preferred

embodiments, the allocation component generally controls all player allocations to

and movements between games, and, where appropriate, termination of games.

Typically, in many of the above examples, a player who is to be allocated to a

game will have previously registered with the online gaming system, and the

allocation component can make use of e.g. user preferences, information about past

play style and the like when selecting a game for the player. The registration process

itself can be lengthy and boring, as it requires the user to input various data such as

name, address, credit card details, and the like. When using the limited user interface

of a mobile phone, this process can be particularly cumbersome. In certain

embodiments, to make the registration process more interesting and involving for the

user, the system preferably allocates a new player to a game prior to the completion

of registration, and displays the chosen game in the background while taking the user

through the registration process.

Specifically, in the example of a poker game, when the user starts the

application for the first time and/or requests registration, a table is selected by the

allocation component and a seat at the table is allocated to the new player. The table

selected preferably has a game in progress.
The registration process is then carried out with the registration interface

superimposed on the display of the game in progress (e.g. using distinct colours,

transparency effects or any other suitable technique), or with the registration

interface displayed alongside the game in a separate region of the screen. For

example, with a small screen, the registration process may consist of a sequence of

queries displayed to the user, in response to which the user inputs various required

pieces of information. On a larger screen, multiple inputs may be included on a single

screen. The queries and entry fields may be shown superimposed at the centre of

the screen. The registration process may commence with a text query asking

whether the user would like to register now or would like to obtain more information

(or perform some other available action).

In this way, the user is able to watch the game in progress whilst completing

the registration process, which can help to maintain the user's interest. It can also

give the user an overview of how the game works. Once the registration is complete,

the user immediately becomes an active player in the displayed game.

To prevent the seat being taken by another user during registration, the

allocation component preferably selects a game and allocates a seat in that game to

the player at the start of the registration process and marks the game and seat as

reserved. The selected seat may be marked or highlighted on the screen. However,

the player does not become active (he in effect "sits out") until registration is

complete, thus allowing the game to continue unimpeded during registration.

Player allocation may be performed using any of the methods described

above (except that information on player preferences and play style will typically not

be available for new players), or any other suitable methods.

Drop-out feature

In preferred embodiments the online gaming system is adapted to enable

user devices to lose connection with the gaming server while maintaining the user's

session, at least for a limited period of time. This enables the user to reinstate their

connection and rejoin the game.

The mobile application provides a limited period of time for players to respond

to requests for action, for example to fold, call or bet while playing poker, before

being "timed-out". This is required to provide the other players at the multiplayer

table with an acceptable play speed. If the player fails to respond prior to being

"timed-out", generally around 25 - 40 seconds, and he/she has not lost connection,

then he/she will be actively removed from any further participation in the game until

he/she has requested to be reinstated into the game (the player is "sat out") - this

may incur penalties, such as a big blind bet if playing poker. However, if the player is

"timed-out" of the game due to a loss of connection, for whatever reason (though

typically this will be due to an involuntary disconnection), then an added period of

time will be provided to that player in order for them to reconnect to the server. To

this end, the server preferably monitors the state of the connection of each player,

and if detecting a loss of connection by a player, pauses the game for an additional

time period, during which the player can reconnect to the game. The remaining

players at the table will be informed of the loss of connection, by displaying an

indication to the other players, preferably indicating that the game is paused, the

disconnected player, and the time until the game is resumed.

The player could lose connection for a number of reasons (voluntary or

involuntary), for example he/she loses signal to his/her phone, or he/she receives a

phone call. The system has the ability to cope with a large number of failure

reasons, including battery failure in the mobile device, and more importantly, server

failure. The example of server failure will be described further below.

Therefore, the player is provided with a suitably long period of time to re

establish his/her connection and re-initiate the application. To enable the player to

rejoin the table as efficiently as possible, the table, environment etc, that the player

was in prior to losing connection will be automatically reinstated. Provided that the

player has reconnected within the added period of time he/she will rejoin the game in

the same situation in which he/she left, for example while playing poker he/she will

be in the same hand with the same bets. If the player does not reconnect in time

he/she will be removed from the table and the game will resume without him/her.

The feature of allowing a player to rejoin a game in the same condition as

when he/she lost connection is also available to single player games, such as

blackjack. Therefore, this feature is available even though these types of games do

not necessarily have a limited period of time to act. In this case, upon loss of

connection the details of the game are saved. The details, are specifically the game

state, and include, for the example of blackjack, the players cards, the dealer cards,

the bet amount, and the state of the rest of the deck of cards, among other variables.

This would enable the player, at any time after the loss of connection, to resume the

game in the same state as when he/she lost connection.

In the mobile game it is important to provide an efficient speed of game play,

mobile play tending to be slower than normal online play. To achieve this, in the

example of poker-type games, all of the blinds are posted automatically, and, unlike

other online poker games, a separate mechanism for players leaving the table is

provided. This means that the game is not held up waiting for players to post blinds,

and dealing commences immediately. However, it is necessary to deal with users

becoming disconnected while blinds are posted. Therefore, the server sends out the

normal "Action Requests" to post blinds. The client (gaming application) should

respond automatically and immediately with a positive "Action Response"; if this is

not received, then the blind is not posted, and the game is paused for a time to await

reconnection as described above. In this manner, if a user has become

disconnected, the player does not automatically post a blind, and the player is left out

of the game; the server does not commence the deal and game-play with a

disconnected player. The client may silently reconnect and post the blind, for

example if there is a brief disconnection the client is able to reinstate the connection,

alternatively the player may login again and the blind will be posted, automatically,

putting the player in the game, albeit with a long delay.

The small and big blinds are requested simultaneously by the server in order

to decrease the time taken to post blinds. However, if a user is seriously

disconnected as described above, then the blind is rejected by the server on the

player's behalf. This means that another request to post a blind is sent to the player

in the next position. There are many scenarios in which this may result in dead

positions or complex position balancing; these have been described previously with

reference to "the brush".

In the event that the player does not reconnect to the table in the given time

that player is deemed to be all-in to protect the player's monetary position. Such all-

ins do, however, introduce an unfair advantage to the player, who can in effect stay

in a pot in which the odds are not good enough to warrant a call or a bet. Therefore

all-ins due to a disconnection (called disconnection protection) are capped at 2 per

game. In this case the server will automatically place the player all-in for whatever

bet he has on the table.

The game continues in a side pot if there are more players left to act. If there

is more than one other player in the pot with the disconnected player then betting

continues as normal; the side pot being contested by all of the players, the main pot

being contested by the remaining, still connected, players. In the case that there is

only one player in the pot capable of making a bet the game goes immediately to

showdown; bets are dragged and any remaining community cards are dealt and the

showdown commences.

The drop-out feature is summarised in Figure 7 .

As shown, the server 6 comprises a processing component in the form of

game manager 8 for running a game in which a plurality of user devices 2 are

participating. Server 6 additionally comprises a monitoring component 150 for

monitoring the state of the connection of each client device 2 to the game server 6 .

The monitoring component 150 informs game manager 8 when a connection is lost.

Game manager 8 is arranged to pause the game in response to detecting the

disconnection of a client device associated with a given player from the game server.

The game manager is further arranged, in response to the disconnected client device

reconnecting to the game server within a certain permitted time, to connect the given

player to the paused game; and to resume the game with the given player.

Over-the-air configurable gambling

In preferred embodiments the system may be configured to allow the user to

input their preferences remotely. This may be accomplished using either a mobile

device, or preferably an internet connected PC. The user is provided with an internet

web page adapted to receive their preferences. This provides the user with the

ability to quickly and efficiently set-up their online gaming system preferences without

necessarily using small-screen mobile devices. The preferences are then

downloaded from the website in order to implement them in the mobile gaming

system.

In the specific embodiment concerned with wagering games a user is enabled

to set preferred wagering parameters from a web site, and download their

preferences by clicking a button on the website. In addition to setting preferences

such as game type, betting preferences, and observable preferences (see more

detailed description below), the user can utilise their already known contacts, as

found in their mobile device for example, to set preferences in relation to specific

contacts (friends, etc). In this case the preferences would be such that the user can

define who they prefer to play particular games with and other such multiple user

type preferences.

Referring now to Figure 4 , a PC 50 connected to the network 4 via the

internet is utilised by a user to set preferences. Alternatively a mobile device 2 is

utilised by the user to connect to the network 4 to set the preferences. Via network 4 ,

and PC 50, the user inputs the preferences into the server 6 . Server 6 includes,

among other components, an SMS server 52 which is utilised by the server 6 to send

data to the mobile device 2 . The SMS message contains information regarding the

new user preferences. The SMS is configured in such a way that it automatically

updates the mobile device with the new preferences.

Alternatively, user preferences may be transferred from one mobile device to

another. For example, one user may transmit his/her preferences to another user to

configure the other user's game program or session. This can simplify configuration,

especially for a new user, who can in effect copy a friend's configuration settings.

The transfer may again occur via an SMS message, either via the server 6 as

mentioned above, or more preferably directly, mobile device to mobile device. Upon

receipt of the message, the recipient device updates its configuration using the

configuration data in the message.

Further examples of the preferences which may be set using this feature are

listed below, with further detailed description following:-

• Brand

• Game logic

• Betting preferences

• Place bet

• Seating preferences

o Where at a table

o Against which contacts

• Opponent preferences (automatic accepted and declined opponents) per

game

o For example the user could set preferences such as: " I like playing

backgammon against Jim, but not poker against Jim"

• Each parameter could be a function of time (e.g. different brand on Sundays)

• Send information about the games to a contact

• Invite a contact to play or compete

As mentioned above, the game includes the ability to send gambling

application parameters (or user preferences) to contacts. Therefore, a complete, or

partial template of a user's preferences is generated and sent to a contact where

applicable. The template may include an invitation to join a certain game.

This template is then sent to the contact via SMS, in which the contact(s) are

invited to play at a specific poker table, for example. The SMS in this instance is

used to set-up the contact's preferences to immediately take them to the desired

table where the original user is playing (using the seat allocation aspect of the

brushing feature to select a seat for the player). Therefore, it is possible for a user to

set-up a private poker table in which the user's contacts (friends) are invited to play.

In this way a user could set-up a "buddy list" which includes a group of

contacts that the user wishes to play poker with; for example, when the user wishes

to play with those contacts he/she initiates a group SMS message inviting all of the

contacts on the "buddy list" to join a game, automatically configuring the contact's

phone when they accept the invitation. This would be on a first-come, first-served

basis, therefore once the 6-person table was full the remaining contacts would be

informed that the table is no longer available.

In certain embodiments, configuration may also be carried out based on

observed player behaviour. For example, the online gaming system or game server

may analyse current or previous games played by a player to determine game

preferences or playing habits of the player. For example, the system may determine

preferred game types (e.g. Omaha, Hold'em) or typical play style (e.g. high-risk or

low-risk, tight or loose etc) by observing how the user uses the gaming system.

Accordingly, once the player's play style/preferences have been analysed, the

system preferably transmits configuration data to the user's device over the

communications network to configure the game client at the device in accordance

with the results of the analysis. For example, game preferences may be modified to

change the types of games presented to the user by default. Alternatively or

additionally, game preferences or configuration may be stored centrally at the game

server and modified there.

The information resulting from the analysis may also be used to allocate

players to games, for example to allocate players to games with players of matching

or complementary play styles (as described above in relation to the allocation

component or "brush") and may be used to trigger game actions at the user's device

(see description of the "observables" feature below).

Shadow gaming feature

In the preferred embodiment the online gaming system provides for a shadow

gaming feature. The shadow gaming feature allows the user to select, using the

over-the-air configuration feature or otherwise, to follow another user's gaming

preferences. As a result, instead of the user's mobile device using that user's

preferences it will use another user's preferences (this may correspond in some

respects to the over-the-air configurable gambling features described above, in

particular in relation to direct device-to-device configuration).

A player may wish to follow a given other player's habits (such as a celebrity),

and thus automatically always play the most recent game with the most recent brand

that the celebrity played. Referring to Figures 1 or 4 , this can be achieved by the

celebrity's phone 2 automatically sending messages to the server 6 (over GPRS,

MMS, SMS, or other) about game play containing the gambling application

parameters in use. Any other user 2 may choose to use those preferences. This

feature may be selected while configuring the preferences, thereby negating the

requirement for any other preferences to be set-up. Alternatively the user may wish

to only follow the other user's gaming in particular instances, for example, they may

wish to use the other user's preferences and betting habits for blackjack but not for

poker.

Therefore, a user could choose to gamble like a famous footballer, or a

famous poker player. The user therefore becomes a "copycat" for the other user.

In a further example, a user may copy not just another player's gambling

preferences, but actual gambling actions. For example, a user may choose to

shadow a celebrity's bets in a roulette game - if the celebrity places a bet on, say,

number 7 , a bet would automatically be placed for the user on the same number.

This bet may be placed with the same amount, with a multiple/fraction of the

"shadowed" bet amount (e.g. half, or double) or alternatively with a predefined

amount. Gambling actions could be shadowed live, as they happen, or in response to

a request from a user, or when the user first connects to the system. For example,

when the user connects to the system, the system may automatically place a wager

for the user based on the last action performed by the selected celebrity, or based on

a randomly selected action previously performed by the selected celebrity. Preferably

the user can specify in their user preferences the user to shadow, which gambling

actions to shadow, and/or how to respond to those gambling actions. Actions by

another user may also be defined as an "observable", as described in more detail

below. Information defining gambling preferences or actions which are to be

"shadowed" may be transferred directly between devices 2 via network 4 , or may be

sent from one device to server 6 from where they are forwarded to other devices as

required.

Observables

In preferred embodiments, the system may be configured to automatically

perform gambling actions for the user in response to certain events occurring at the

user's device, or to certain states detected by the device. These states or events are

referred to herein as "observables".

More specifically, observables in this context are defined as 'an observable
state or event within or without an application used to trigger one or a series of other

events within that application'. Therefore, an observable, or a combination of one or

more observables, could be used to trigger an event, such as a gambling action, in a

pseudo-random manner.

Where the user device is a mobile device, such as a mobile telephone, typical

classes of observable may include communications; user interactions; and sensors.

Additionally, events occurring in other applications in the device, or in other games

running in the game application, may also be observables. To achieve the above-

mentioned pseudo-random nature, an observable used to trigger an action in a game

is preferably unrelated to at least that game, and may not be related to the game

application at all.

Any single observable may be used independently, or in combination with any

other observable. All of the observables and the events they trigger are determined

by the user by setting preferences. The user can use the over-the-air configuration

feature in order to accomplish this task.

Here follows a list of examples of observable events that could initiate another

event or could be used in combination to initiate a separate event in relation to a

mobile phone/device:-

• A received communication (defined as an MMS, SMS, email, phone call, or

any other form of communication with another person or machine), possibly

from one or more specified persons. For example, the observable event could

be a call from a specific person with whom the player associates 'luck'.

• Content of a received call or message (e.g. specific words appearing in a text

message, or the audio content could be analysed for specific characteristics

or words)

• Other information about call, messaging or other communications events, e.g.

sender /recipient, call length, text length, MMS picture content

• The observable event could be based on a phone's call register (missed,

received, called or currently actioned call) for instance when a person has a

certain number (possibly a lucky number to that individual) of missed or

received calls from a contact/contacts within a set time period; or on voice

mails stored at the phone or remotely (e.g. the number of unheard voice

mails)

• The time of day

• Light conditions (measured by a light sensor or standard phone camera)

• The ambient temperature.

• Phone vibration.

• Images observed by the camera on a phone (i.e. a certain object, such as a

face)

• Sequences of keys pressed on the phone (i.e. whenever the sequence "007"

is used when dialling a telephone number)

• Other user inputs, for example hyperlinks selected in web/wap browser

• Network / WAP portal used by the user, or user's MS ISDN

• Gambling application demands

• The activation or operation of other applications (thereby creating a possible

cascading effect)

• Voice recognition

• Day of the year (i.e. birthday)

• Screen contents

• Configuration / status of mobile device, e.g. whether or not Bluetooth is

activated; the remaining battery power; network signal strength

• Available credit

• Device's / user's current location (obtained using GPS on the mobile device

or other location determining technology, for example cell-based)

• Motion sensor within the mobile device (i.e. the phone could be used to roll

the dice in a game of craps)

• Camera input - the image could be analysed and an event triggered if the

image matches certain criteria, e.g. as to colour / contrast; the image could

also be analysed over time, with detected changes triggering events

• Microphone input - detection of certain types of noise (loudness, pitch) or

even recognising specific sounds (e.g. words)

• The observable event could also be an action within a gaming application (for

example folding in poker could be used to trigger blackjack)

As mentioned above these observables could be used in combination, for

instance:

• Time of day and person calling

• Time of day and location - if a user is at a certain place at a certain time, an

event is triggered

• Day of the year and number of calls received (i.e. if date within a month

equals number of calls received during that month/day)

• Phone image and time of day

Any number of observables may be combined together to produce the

desired result.

The observable events above could be used to trigger a variety of game

actions relating to one or more games. For example, an observable could trigger

starting or ending a game, or carrying out an action within a game, such as Poker,

Casino, Bingo, and Betting, both on the phone itself and through a central server.

For instance:-

• An observable could initiate a spin of the roulette wheel, betting preset

numbers.

• An observable could trigger a bet on a slot machine. For example, an

incoming call could trigger a slot machine game (possibly with associated

sound effects), which in effect adopts the function of (and may take the place

of) a ring tone

• Replace a default ring tone on a phone with a video poker hand.

• Use the green call button on a phone to accept a bet and phone call

• Playing a defined amount of time on one table could trigger the award of a

bonus, or cause the player to be moved to another, higher-stakes table

• The game system could use the "location" observable to present different

games to the user based on location, e.g. a country-themed game could be

presented when abroad, or a medieval-themed game could be presented

when the user is near the Tower of London.

• Loss of signal could trigger an offline game, and the user could automatically

be returned to an online game when the signal is reacquired

• An observable could trigger the configuring of a game (described in more

detail later)

• Some characteristic or parameter relating to the game could be modified in

response to an observable, e.g. credit may be awarded or taken away (or

passed to another player), or the game difficulty could be increased or

decreased

• The device status / configuration (possibly not related to the game itself)

could be modified in response to the observable, e.g. the volume or screen

brightness could be changed

• An event could initiate an SMS message to a contact to provide information

on the game being played or invite them to join the game, e.g. to join a

specific poker table.

In the example of using an observable to initiate an SMS to a contact to invite

them to a specific poker table the SMS could include specific configuration

information. The information would automatically configure the contact's phone to

take them to the specific poker table upon acceptance of the invite (see the

description of the over-the-air configuration feature above). This feature is available

to all community games, and is not just limited to poker. As mobile devices are

generally always on, and always connected, this feature enables a group of friends to

initiate a gaming session quickly and easily, with no requirement of fixed locations, as

with online PC gaming.

The relationship between observable and triggered game action may be fixed,

so that the same observable always triggers the action defined for that observable.

Alternatively, a random element may be introduced. For example, the game action

performed in response to an observable may be selected randomly, for example from

a defined set of possible actions. For example, a random event could be triggered at

certain times of the day. As a further alternative, the defined (or randomly selected)

event may be triggered only some of the times that the corresponding observable is

detected. This may be determined (pseudo-)randomly, i.e. the event is triggered in

response to the observable with a certain probability.

Apart from triggering the game action, information from the observables may

also be used to provide some parameter for the game action. For example, a roulette

game could be triggered in response to the receipt of a message, with a bet

automatically placed on a number corresponding to the time the message is received

or the length of the message (or corresponding to the number of texts received

during the day at that point).

In most cases (though there may be some exceptions), observables are

typically unrelated to (disconnected from) at least the action that they are used to

trigger; they may be unrelated to the game in relation to which an action is triggered;

and they may be unrelated to the game program as a whole. They may be related or

unrelated to the device (e.g. mobile phone) on which the game is being run, or

unrelated to the normal operation of that device. They may be completely unrelated

to the device and communications network. These varying degrees of unrelatedness

between the observable on the one hand and the game action it triggers on the other

hand can give rise to a random or pseudo-random effect - i.e. the triggered events

may often happen unexpectedly or surprisingly. This can improve the gaming

experience, in particular for wagering games.

Figure 5 provides a flow diagram of the processes involved in acting upon an

observable event. An observable event, 90, as described above, e.g. an incoming

phone call from a particular person, is registered. This observable event is turned into

data which can be processed, input 9 1 . The application on the phone, which has pre

defined preferences, then makes the decision, at the discrimination stage 92, as to

whether the input is to be acted upon, depending on those preferences. If the input is

not defined to initiate an event, it is discarded, 95. If the input is defined as an

actionable observable then depending on the type of action required the information

is either sent to the server, the server actuation stage 93, or is handled internally by

the mobile phone/device, the internal program actuation stage 94. The appropriate

action defined for the detected observable is then taken by the server/mobile client,

the output stage 96, for example to initiate the appropriate application, place a bet in

a game, or send an SMS to a contact as in the examples above.

The observable feature may therefore be used to initiate multiple gambling

events on the mobile device. In a traditional online PC gambling application the user

is able to have multiple gambling games open. Due to the limitations of the mobile

screen it is often not possible to have multiple games viewable at the same time.

Observables may therefore be used to initiate gambling events while playing a poker-

type game, for example. In this situation the user could set-up their observables

preferences to initiate a blackjack application whenever they fold a hand. This

feature therefore allows the user to maximise the time spent playing games on the

phone during any one session. There are many other examples in which an action

within a game may be used as an observable, such as when a player makes a bet or

wins a large pot.

In an alternative the observable could be the action of running an application,

for example a poker-type game, which then initiates a further game, such as

blackjack. The user could therefore set-up their mobile device to automatically

initiate the applications that they require every time they play a certain game.

In a further example the observable could trigger a cascade of events. An

observable, such as the initiation of a poker-type game by one user will be an

observable for another user, that will be an observable for another game for that

user, that will be an observable for a further user and so on. Thus the observable

mechanism could in some circumstances initiate a long cascade of events.

Due to the consequences of the use of observables, users have the ability to

opt-out of any observable type actions. Using the preferences, which could be set-up

on the mobile device or using over-the-air configuration, a user may select and

deselect any observable that his/her device is capable of recognising. The user may

also combine the observables, using Boolean operators to produce the desired

effect.

The client game application provided on the mobile device preferably allows

the user to participate in multiple games at the same time (either of the same game

type or of different game types). Given the small screen space, however, the

application preferably displays, and allows interaction with, one game at a time. The

user can preferably switch between active games (for example moving up or down a

defined sequence, or by explicitly selecting a given game). Additionally, as

mentioned above, observables may be used to automatically switch between games.

In particular, an event in one game may trigger the switch to another, already running

game. For example, if the player withdraws from a round in a game (e.g. folding in

Poker), the game application may automatically switch to another game. More

generally, the game application may switch to another game at the start of or during

a period of inactivity for the player. In this way, the waiting time between hands in the

Poker game can be filled with other gaming activity, thereby maximising the player's

play time. Similarly, the game application may switch to another game while the

player is waiting for a scheduled tournament to start.

As mentioned above, in addition to switching between currently running

games, the game application may also initiate a new game in response to an

observable, and then switch the user interface to the new game. The observable may

be used to trigger the brushing mechanism described previously (i.e. the allocation

component 10, Figure 1) to select a suitable game for the user

As a further example, the outcome of one gaming event can be used to

determine the next game played, or the next action performed. In this way, the

gaming experience can be extended by automatically proceeding to the next

game/action.

In the above examples, game actions are triggered directly in response to

detection of a given observable (or combination of observables). In an alternative

approach, observables may also be used to trigger configuration actions in relation to

the game(s) provided, i.e. to modify the game set-up.

For example, default preferred game types, betting limits and the like (as

specified in user preferences) could be modified in response to a communications

event, the time of day, the location (or a change of location) or any other observable.

If, for example, a user's preferred game type is changed in response to an

observable, then the next time the user starts the game program, the allocation

component will automatically allocate the player to a game of the new type.

As another example, if it is observed that a player deposits a large amount of

money into their betting account, then the player's preferences could be configured

so that in future he would be taken to high stakes games.

The user interface used by the player can also be an observable, and

therefore drive the type of game played. For example, if the player is using a mobile

device with a small screen then games that are not graphically intense will be

provided. However, if the player is using a PDA type device then games that require

large screens to show large amounts of in-game actions will be provided (the type of

user interface could be determined by the actual hardware, the platform, or even the

firmware).

In general the gaming applications can preferably be skinned to provide

different 'looks' to the game to appeal to different audiences. For example slot

machines may be skinned; the theme of the skin may be for a charity or for a

commercial sponsor, with the pictures on the slots being related to the sponsor

company. In some cases the user may be able to choose a skin (via user

preferences).

Alternatively, a skin may be selected based on an observable. For example,

skins may be selected based on location, such as the country or city the mobile

device is located in.

Instead of triggering game actions in response to non-game observables,

events or conditions within a game can also be observables, for example to trigger

game events in other games. For example, a particularly fortuitous event, such as

four-of-a-kind in poker, could trigger a bonus game. Statistical information concerning

a current game could also be used as an observable, e.g. to trigger a bonus game if

a user has won or lost a certain number or proportion of hands, or to end a game /

take the user to a new game in response to perceived unfavourable conditions (e.g. a

lack of balance on a roulette table because of a predominance of red over black

numbers).

Alternatively, a game event can trigger an event in the phone external to the

game program, for example a communications event. As an example, in response to

a significant win, a message (e.g. SMS, MMS) could be transmitted to one or more

predefined contacts (for example any contacts stored in the phone who are also

users of the game service) informing them of the win, a call could be placed

automatically or an appointment could be automatically scheduled in the phone's

calendar program to meet up with his/her friends to celebrate the win.

A given observable (which may be a defined state or event or a combination

of states and/or events) can lead to multiple game actions or configuration actions.

For example, an observable may trigger the set-up of a private table tournament.

The above description has given a large variety of examples of different types

of observables that may be detected, and of different types of actions that may be

performed in response to the observables. The detection and processing of

observables by a device (in this example a mobile telephone) will now be described

in more detail with reference to Figure 8 .

The mobile device comprises storage means 100 for storing software,

configuration and operational data, processing means 102 for executing software

components, and a set of hardware devices 104, in particular for input/output

purposes. The storage means 100 may be provided, for example, by volatile memory

(RAM), a permanent storage device, such as FLASH ROM, a memory card reader or

a hard disk drive, or a combination of different storage devices. Processing means

102 may be provided by a processor (CPU) or a set of cooperating processors.

The storage means 100 may store the game software 106 itself, for execution

by the processor 102. Additionally, the storage means preferably stores game

configuration data 108, game status data 110, other device configuration/status data

112 and an observables table 114.

Game configuration data 108 may include user preferences, for example

relating to preferred game types and betting limits. Additionally, game configuration

data may define operational settings, for example relating to the visual appearance of

the game program's user interface (e.g. colours, fonts), default game servers and the

like.

Game state data 110 defines the game status of one or more games in

progress. In preferred embodiments, the remote game server controls the execution

of the game and therefore keeps track of game status in detail (e.g. quantities bet,

whose turn it is etc.), and the game state data stored at the device may be less

detailed; for example it may merely identify the games the device is currently

participating in. However, the game state data may nevertheless track additional

game status information for the purpose of detecting observables, even if that

information is not required to run the game at the device. Additionally, some games

may be run locally at the device (e.g. single-player games), in which case the full

game state would be recorded in game status data 110.

Other device configuration or status data 112 may also be stored which does

not relate (directly) to the game program. This may relate to configuration or status of

hardware components of the device or to configuration or status of other applications

/ programs running in the device.

Observables table 114 defines the observables that are to be detected, and

for each observable, the action to be carried out in response to detection of the

observable. The observables table may specify additional information, such as a

probability that the specified action should be taken in response to an observable

being detected.

The table may link multiple alternative observables to the same action (each

triggering the action) or may specify that a combination of observables must occur to

trigger an action. Additionally, a single observable may be linked to multiple actions,

either to indicate that each of the actions are to be carried out in response to the

observable (possibly in a specified sequence), or to indicate that one of the actions is

to be selected, for example randomly. In this case the table may again specify a

probability for each action, an action being selected randomly in accordance with the

probabilities.

The processor 102 may execute a number of software components. A game

operating component 116 provides the main game functionality (typically acting as a

game client and interacting with a remote game server). Other applications 118 may

also be provided for execution on the device which are not related to the game

program, for example a calendar application, calculator application, or other games.

Observables detection component 120 is provided to detect the relevant

observables, as defined in observables table 114, and instruct the game operating

component 116 to carry out the corresponding game action in response to detection

of one of the defined observables.

Observables configuration component 122 allows the contents of the

observables table to be modified. This may occur in response to a configuration

message received over the communications network (that is, the observables are

configured remotely). Alternatively or additionally, the observables configuration

component may provide a user interface to allow the user to configure the

observables. In this way, the user can set up which actions should be triggered in

response to which events, and specify any relevant action parameters, for example a

wager amount for a bet which is to be placed in response to a telephone call.

The software components discussed above may run at the same time or at

different times. For example, the observables detection component 120 is typically

active at the same time as the game operating component 116 (both may form part

of a single application), whilst the observables configuration component 122 may be

invoked as and when needed and not necessarily at the same time that the game

program is being run.

The hardware I/O devices 104 comprise the standard telephone user

interface components 124 (e.g. screen, keypad, microphone, speaker), along with

other external / internal sensors 126 (e.g. camera, GPS, temperature sensor, battery

voltage sensor etc.). A communications subsystem 128 is also provided to manage

interaction with the communications network, e.g. for the making and receiving of

calls, sending/receiving of messages, Internet access and the like.

In operation, the game operating component 116 runs one or more games for

the user by interacting with a remote game server. The observables detection

component 120 monitors the various elements of the system to determine if an

observable, that is some predefined state or event, has occurred. If an observable

which is defined in the observables table 114 occurs then the observables detection

component 120 determines the appropriate action from the table and instructs the

game operating component to carry out the action. In some cases some other action,

external to the game program, may be required, in which case the observables

detection component also initiates the relevant action (e.g. to send an SMS using

communications subsystem 128).

The observables detected may relate to game status data 110 (for example

when an observable in one game triggers an action in relation to another game), to

other device configuration / status data 112, or to another currently running

application 118. Alternatively, the observable may relate to input received from

standard user interface devices 124, other sensors 126 or communications

subsystem 128.

Though a large number of examples of possible observables have been given

above, for practical purposes, the system will typically be configured to work with a

defined set of observables which are detectable by the observables detection

component, with observables table 114 specifying actions for some or all of those

available observables (similarly, there may be a defined set of available actions

which can be performed in response to the observables).

Detection can occur in a number of ways. The observables detection

component 120 may regularly poll the potential sources of observables (e.g. sensors)

to obtain information on their current states or inputs. In some cases, the sources of

observables may be configured to alert the observables detection component 120

when certain conditions arise. This may correspond immediately to detection of an

observable, or alternatively the detection component may first analyse data received

from the source to determine whether it meets certain criteria, and/or may in some

cases request further information from the relevant source.

Analysis of data received from a source may, for example, take the form of

comparing a temperature received from a temperature sensor to a threshold, or

analysing the image content of one or more images received from a camera to

determine whether the image content meets certain criteria for example to detect

certain colours or objects.

As previously mentioned, the observables configuration component 122 is

used to specify the link between observables and actions to be triggered. This may

allow arbitrary mapping between the available observables and the available game

actions. Configuration can occur automatically over the network, or can be carried

out manually by the user. Thus, as an example, the user may specify:

• that receipt of an SMS message should trigger a game action

• that the message should be received from one or more specified

contacts

• the game to be initiated in response to the message;

• the game outcome and wager amount of a bet that is to be placed in

the game.

This allows the user to define a trigger such as "when Jack or Peter send me a

message, start the roulette game, and bet £ 1 on red". Various other specific

examples have already been described above, and many more are possible.

In other embodiments, instead of using the observables table 114, observable

/ action triggers may be hard-coded within the game program. Though less flexible,

this solution may be appropriate where only a limited range of observables/action

triggers are catered for, and these are not intended to be changed easily or

frequently.

The following sections describe details of certain aspects of the

implementation of the game system, in an exemplary embodiment.

Compatibility

In order to provide the mobile application with compatibility with multiple types

of mobile devices, each with varying screen sizes and operating systems - Symbian,

Windows CE or a proprietary system - each phone is catered for individually. The

screen images, for example of a poker table, are individually drafted, to ensure

correct scaling, for each phone requiring compatibility. As a further example, the

numbers shown on the screen, current table balance for example, are also

individually drafted for each device.

Furthermore, the phone's operating system is catered for by compiling the

software individually for each appropriate system. A resource manager compiles all

of the fonts, graphics and so on, into a compressed format so that it is small and

easy to handle on the mobile device, given its limited processing capacity.

Server

The server is built on top of the gaming platform, GP. The main hook is via

the Session object, which the server overrides. The components provided by the GP

and its default implementation, include:

• Communications & Security

• Session Management

• Account Management

• Authentication

• Cashier

In a preferred embodiment, see Figure 6 , the games server 74 and the poker

server 76 both sit on the global game platform 78. The global game platform 78

functions as a server in which all of the individual games server sit, therefore the

poker server 76 and any number of other games servers 74, are actioned through the

global game platform. The clients communicate with the server via the network (not

shown). Below the global game platform 78 is the wallet 80 in which is held the

user's account details; which include the user account balance etc.

Application architecture

The preferred embodiment of the invention is run as a server/thin client

arrangement. Therefore, the majority of the processing is accomplished at the
server, with the instructions then sent from the server to the thin client detailing the

screen update. The thin client transmits the user actions from the mobile device to

the server to be dealt with. This greatly reduces the processing required in the

mobile device and therefore improves game speed and allows the thin client to

remain small. Preferably, all of the screen updates come from the server. Another

advantage of this system is that the user can be reconnected to the game very

quickly after a loss of connection.

A limited amount of information is sent between the thin client and the server,

again, in order to reduce the lag between user actions and a screen update. For

example, the server sends a bit pattern to the client, preferably 16 bits to update and

create the interface screen.

Application environment

The preferred embodiment utilises a mobile device, specifically a mobile

phone, to connect to the server 6 via network 4 . A brief description of the

communication protocols follows.

Mobile phones ("Phones") are linked to the internet using packet

communications such as GPRS.

• Phones use GPRS and other packet based wireless technologies to

connect to "local area network".

• Phones address an access point ("Access Point Name", "APN"), which

is a computer with an IP address within the operator address space

• The APN looks at the identity of the phone (or in fact the MS-ISDN,

the phone number) to deduce whether this phone is allowed to talk to

the APN

• If the phone is allowed to talk to the APN, then the APN can obtain a

temporary IP address from the real internet for the phone, and

connect the phone to the internet.

The phone communicates using a protocol with an APN. The protocol used

by the phone to connect to the internet depends on the phone. For example, it might

be a low level protocol based directly on TCP/IP, or higher level communication with,

for instance, http over TCP/IP - or the mobile phone protocol WTP used in wap APN

gateways. Low-level protocols on TCP/IP are sometimes referred to as socket based

communications.

Independently thereof and at a less low level, the phone uses an operating
system such as Symbian, Windows CE or a proprietary operating system by the

relevant phone manufacturer.

Independently thereof and at a slightly higher level, the thin client gaming

application sits on top of the mobile devices operating system, along with other

application such as email, an internet browser, etc.

The mobile device may use different connection protocols for each

application, for example, the device may use a TCP/IP APN as the default gateway

for email, a wap WTP APN as default for browsing, and a wap WTP APN for a

downloaded Java game, and a TCP/IP APN for a preinstalled Symbian calendar. In

the preferred embodiment the mobile device uses a TCP/IP APN to connect to the

network in order to reduce the latency times and thereby improve the payability of

the gaming system.

Server application

The server component of the gaming system is preferably implemented using

a n object-oriented framework, which simplifies reuse of components in other similar

applications (e.g. a multiplayer blackjack application). For example, the system may

be implemented in Java.

The following are examples of some classes used in a n example

implementation:

• PokerServer

• Session

o PokerSession

• ggaammee

O Table

O Dealer

O Player

O Ring

O Action

O chips

■ Bet

■ Pot

■ Stack

■ Contribution

■ Split

o cards
■ Card
■ Hand
■ Deck

• lobby

o Brush

o WaitingList

• model

o Limits

o Buyln

The PokerServer class is responsible for managing the lobby and game

elements, a s well a s ancillary tasks such a s daily reports. When it is created it

initialises the server based o n configuration files and database settings. It runs o n its

own thread and exposes management operations, such as start and stop. It is the

central object that can act system-wide and provides a single place to store and

retrieve core objects, making them available a s necessary to other components.

A player's connection to the system is represented by a "PokerSession" class.

Individual games are represented by a "table" class. A s is clear from the above

example, elements of the game itself, such as cards, bets, pots and the like are also

represented by classes, as are game attributes such as limits and buy-in values

(grouped under "model" above).

A "Lobby" class is also provided which implements the brush mechanism,

which takes the place of a conventional menu/list-based lobby (though in some

embodiments, the brush mechanism could be provided in addition to such a

menu/list-based lobby).

It is the primary job of the lobby to implement the brush. It does this using a

combination of waiting lists and a state model, containing all running tables, including

details of empty seats. In a preferred implementation, many of the lists provided by

the lobby are generalised into a WaitingList object. The brush runs multiple such lists.

For instance, and depending on the configured limits, the brush might be running a

set of lists such as the following:

• props:Waitingl_ist (all props logged-in and available to play)

• bots:Waitingl_ist (all bots logged-in and available to play)

• guests:Waitingl_ist (all guest accounts free and available to play)

• Real Money

o Heads-Up
■ 20/40p:Waitingl_ist
■ 50/100p:Waitingl_ist

o 6-Max
■ 20/40p:Waitingl_ist
■ 50/100p:Waitingl_ist
■ 100/200p:Waitingl_ist

• Play Money

o headsUp:Waitingl_ist

o sixMax:Waitingl_ist

The first three lists record available participants (including computer-

controlled players referred to as bots), while the latter lists record participants waiting

to join specific types of games. A player is added to the appropriate waiting list if no

table matching the player's preferences is available when the request to join a game

is received.

While the prime real-money 6-max waiting lists are not expected to contain

any players for any significant amount of time, other waiting lists such as heads-up

may keep players waiting for longer. Therefore a well-defined waiting list mechanism

is employed and generalised for all cases.

In alternative implementations, instead of placing players on waiting lists, a

new table may be created for a player when no table matching that player's

requirements is available. Alternatively, new tables may be created as long as a

maximum table limit (overall, or within a given game type) has not been reached.

Once the maximum table limit has been reached, waiting lists are then used.

In addition to waiting lists, the Brush maintains game state information for

running tables in detail. Using the waiting lists and state information, the Brush

decides on which tables and in which seats to sit waiting players. As tables become

full it is the job of the Brush to start new tables, and as tables become empty it also

closes them. A table, as described below, exists in its own right and manages its own

threads, and is not in control of starting and stopping itself.

The brush operates as previously described. The table state is represented

using a data model which provides sufficient information to make efficient decisions

in order to implement such operations. Referring back to Figure 2 , this preferably

includes a master list 14 of running tables in a well-defined order that makes it simple

and efficient to identify the appropriate table and seat at which to sit new players,

with each table including attributes 22 and game state data 20, including, for

example:

• Table currency (real or play-money)

• Table handedness (heads-up or 6-max)

• Table limits (20/40, 50/100, 100/20Op)

• Buy-in

• Empty seats (according to table balancing rules)

• Seat positions (according to between-the-blinds rules)

As the Brush maintains the waiting lists and table state information, it can also

provide operational data to an external management or reporting system, for

example:

• Number of waiting players (and average wait time, etc.)

• Coverage of bots and props (and warnings when coverage is below

thresholds)

• Running tables and betting statistics (average hands per hour, etc.)

Player menu and preference interface

In one example, the lobby menu presented to the player may include the

following options:

• Play for Real Link

• Play for Fun Link

• Cashier Link

• Profile Link

• Instructions Link

• Options Link

• Exit Link

The first two links initiate the brush mechanism for "real money" and "play

money" games respectively. The "profile" link provides access to the user preference

wizard, allowing the player to define their preferred game type. In this example, the

user may separately define their preferred "real money" and "play money" game

types, with games of the selected types being initiated via the "play for real" and "play

for fun" links.

The available game types are dependent on constants set by the game

server 6 at start-up of the gaming system. In order to select the player's preferred

type of game and options such as buy-in, the preference wizard provided by the

preference manager 12 takes the player through the following wizard-style options:

• Play for Real

o Heads-Up Tables:
■ £0.20/0.40 Limit

• Buy-in: £2.50 / £5.00 / £7.50
■ £0.50/1 .00 Limit

• Buy-in: £5.00 / £10.00 / £15.00

o 6-Max Tables
■ £0.20/0.40 Limit

• Buy-in: £4.00 / £8.00 / £12.00
■ £0.50/1 .00 Limit

• Buy-in: £10.00 / £20.00 / £30.00
■ £ 1.00/2.00 Limit

• Buy-in: £20.00 / £40.00 / £60.00

• Play for Fun (one set of limits, automatic buy-in)

o Heads-Up Tables

o 6-Max Tables

6-Max tables may not be available, depending on the connection speed, in

which case this wizard step is preferably not displayed. There are likely fewer limits

available on heads-up tables in order to avoid splitting liquidity. In this example, there

are no limit options for play-money; all play-money users play at the same limits.

By specifying values for the various options presented by the wizard, the

player can select their preferred game type.

Once the user has navigated the game selection wizard, the client submits

the selection to the server in the form of a message, for example

"GBP,6,50, 100,2000" for a real-money, 6-max, £0.50/1 .00 table with a £20 buy-in, or

"PLM,2 ,0,0" for a play-money heads-up game where there are no defined limits and

buy-in is automatic. With this mechanism it is also possible to select indeterminate

games, where the server will determine what game to serve, depending on what is

available. This may in particular be useful for bots and props. The preference wizard

could also allow the player to leave certain parameters unspecified.

The wizard may also present other table information relevant to the selected

game type. What is displayed will usually depend on the available screen real estate

and may vary depending on the platform. For example, for a £0.20/0.40 table this

additional information could include:

• Limits = £0.20/0.40

• Blinds = £0.10/0.20

• Min buy-in = £4.00 (10 x the upper-limit)

• Max buy-in = £4.00 (30 x the upper-limit)

• Rake = 4% (max £ 1 per pot)

• Disconnection protection = 2

None of this information is critical as it can be defined in the rules. It is

information that is often available in online poker rooms with a full lobby service and it

is information that the server usually has available. There is information that is not

relevant when using the described brush mechanism which is therefore typically not

displayed, primarily because the player is unable to choose particular tables,

including for example:

• Number of players

• Average hands per hour

• Average pot size

• Average players in the flop

In the described embodiment, the player does not get to select a seat at the

table. Instead, the Brush mechanism sits each player in the most effective seat, such

as those not between-the-blinds, as already discussed.

Instead of or in addition to providing a wizard interface (typically accessed

through a menu option on the main menu) for setting preferences, the preferences,

or a subset thereof, may be displayed on the main screen/menu, allowing the user to

access and modify them immediately. The preferences presented may be the most

important or most commonly modified preferences. For example, the game type

(Omaha, Hold'em etc.) and preferred betting limit may be part of the main menu

screen. A wizard or other preference interface may then separately be provided to

enable modification of all the available preferences.

A player search is preferably provided in order for users to search for other

players - the search can be based on playing style, name, location etc. Players found

can, for example, be added to a "buddies" list. The system may in some

implementations also allow the player to choose to join a game in which a given

player is currently participating, instead of using the automatic "brushing" allocation

mechanism.

Poker-type application

The user interface for an example implementation of a poker-type application

will now be described (see also Figure 3).

In-Game Menu

During a game there are a number of menu items that are accessible. The

menu is generally accessed with the right-hand soft-key of the mobile device. A soft-

key label is displayed to indicate this. Menu items include:

• Leave/Stay

• History Console

• Chat Message

o Nice Hand

o Very Nice Hand

o Bad Beat

o Nudge

o Etc...

• Sounds on/off

• Vibration on/off

The left-hand soft-key may also pull down the History Console, and is labelled

as such. In the history console the left-hand soft-key closes the console, and is

labelled as such. The right-hand soft-key allows the user to filter messages:

• All messages

• Dealer Only

• Dealer Summary

Game screen

Various aspects of the client can be "skinned" for different appearances

depending on the user's preference. The term "skinning" refers to the ability to

change the look of the application without changing the function. The aspects of the

application that may be "skinned" are listed below:-

• Graphics

O Splash Screens

O Card Faces

O Card Backs

O Chips

O Table

Menus

O Backgrounds

O Colours

O Text

Sounds

O Launch

O Congratulations

Game Play

There are two game-play screens (in the poker-type application), one for

heads-up and one for 6-max tables. Smaller devices, i.e. those with small screens,

do not support 6-max tables and so the server will not serve them. In all other cases

the server defines the available games by setting constants at application launch,

which will be dependent on the speed of the connection.

Control Panel

A control panel is always visible at the bottom of the screen. This displays:

• Player pocket cards

• Possible actions

• Current rake

• Timer

Pocket cards are displayed only when the current player is in. When the

current player has folded they are greyed out. At all other times the space is empty,

apart from a subtle outline indicating that this is a placeholder for pocket cards.

Possible actions are displayed only when it is the current players turn to act.

Possible actions include:

• Fold

• Check

• Call *

• Bet *

• Raise *

• AII-In *

• Show

• Muck

• Small *

• Big *

• Reject

Actions marked with an asterisk * also have monetary values attached. Only

certain combinations of the above are displayed at any one time. The complete list of

possible combinations follows (all monetary values are examples only):

• Small £0.10

• Reject

• Big £0.20

• Reject

• Check

• Bet £0.20

• Fold

• Call £0.20+

• Raise £0.40+

• Fold

• Show

• Muck

AII-In is a special case and may appear instead of call, bet or raise at any

time. It will not appear instead of the blinds; where a player cannot meet the blind

level he will be automatically removed from the table.

The current rake value is displayed on the control panel whenever rake has

been taken from the pot. The values are likely to be very small, such as £0.01 . The

rake value is taken from the Chip Transaction message where chips are moved to

the dedicated rake position.

The timer control is displayed whenever it is a players turn to act, both for the

current player and any opponents. Each "Action Request" broadcast by the server

contains a timeout value that is to be used to immediately start the timer animation.

Times are not precise and largely subject to network latency, but the indication is

more important than the accuracy. The face is segregated into five-second intervals

with 12 segments in total (60 seconds). The final segment flashes rather than

disappears as it is by no means accurate; anything may happen during these five

seconds, including a forced action by the server; it is unlikely that the server will

receive an "Action Response" during this time if the player selects his action now.

Chips

Chips are used to represent real or play money in the game. Their complete

and accurate representation is usually an important factor in any betting decision

made by a player. Therefore all of them are displayed, all of the time.

All chip movements are specified by Chip Transaction messages that detail

precisely how many chips to move from where and to where. However, due to the

constraints of the screen, chips are represented notionally, with an exact amount in

figures displayed alongside. When animating chip movements, notional amounts of

chips are moved from one position to one or more other positions. Sometimes the

movement takes place between a position that does not display chip graphics (such

as player stacks) and one that does (such as player bet positions), and vice versa. In

these cases the movement may be quite abstract, with the specifics detailed below;

the important information to get across is that chips moved from one place to

another, and this movement flows with the action as it moves around the table.

Main Pot

The main pot, which is the game, is displayed centrally on the table. As rake

is taken the amount is shown on the control panel and the main pot debited

accordingly. The main pot (in fact all pots) can be split between one or more players

at showdown, or in the likely event that a showdown is not reached, then a takedown

ensues where the whole pot is dragged to the one remaining player. The splitting or

takedown animation will display a notional amount of chips moving from the main pot

to the benefiting player stacks.

Side Pots

All side pots are visible at all times. Side pots are just as important as the

main pot, as the game is wholly concerned with the current side pot, where the main

pot is now largely irrelevant in betting decisions. Side pots are displayed with a

number indicator and they are displayed smaller than the main pot, not because they

are less important but because there is not much space on the table and they are

less likely to come into play than the main pot. Side pots are split or taken down in

the same manner as the main pot.

Bets

Player bets are placed in front of the players pocket cards. They are a good

indication of who is left in the game (a critical factor in betting decisions) and illustrate

action, although the player pocket cards are the final indication of who is in and who

is out, as bets do not appear in every betting round. As bets are dragged into the

main pot or side pots a notional amount of chips move across the table and into the

relevant positions.

Stacks

Player stacks, the amount of chips (money) a player has at the table, are not

so critical in fixed limit games. Small stacks generally indicate desperation and

therefore are displayed at all times as they do affect the game. In pot-limit and no-

limit games the stacks become critical. As players make bets a notional amount of

chips is moved from the players stack and animates around the player symbol and

into the bet position.

Pocket Cards

The player pocket cards are dealt face down in a twice-around-the-table

motion, starting with the player to-the-left-of the dealer. Animation emanates from the

left of the community cards (of which there will be none at the time of the pocket

cards being dealt). A player holding cards indicates that the player is in the game,

whether or not any bets are on the table. A player folding or mucking results in the

cards being animated across the table to the left of the community cards, in whatever

orientation they are currently (face up or down). A flash message "dealing" will be

displayed across the screen at the time of the deal.

Community Cards

Up to five community cards can be dealt into the middle of the table. Not

necessarily all of them will be dealt if the game does not go to showdown. In the case

of an all-in, any remaining community cards may be dealt simultaneously. Animation

emanates from the left of the community cards (of which there will be none at the

time of the flop). A flash message "flop", "turn" or "river" will be displayed across the

screen as the cards are dealt. When the table is cleared at the end of a game the
community cards are animated to the emanating position.

Dealer Button

The dealer button is displayed next to the dealer position and animates

around the table in a round-robin fashion between games, usually skipping empty

seats. It is possible that the button will not move or that it will be placed in an empty

position.

Next to Act

The next player to act is clearly highlighted at all times. From the posting of

the small-blind to the final call, one player's position will be highlighted. The action

timer in the control panel will apply to this player. During the showdown one or more

winners may be highlighted in the same manner.

Messages

There are several classes of messages during the game. Balancing the major

events, such as winning hands, and the minor events, such as a fold, will remain in

the control of the server at all times. The client provides the mechanisms to display

messages, and the server decides which mechanism to use and the text of the

message itself. All messages are delivered by the server as Write Console

messages.

Action Bubbles

As a player acts the server simultaneously sends a Write Console message

with a seat position and the text. The client displays this as a speech bubble above

the relevant position. The bubble is either displayed for five seconds, and then

removed on timeout, or the next player acts, in which case it is removed immediately.

The entire text is formatted by the server and may be up to 12 characters long.

Flash Messages

Certain phases of the game and other major events may be displayed as

flash messages across the screen. This may be text such as;

• Dealing...

• The flop...

• Smokin shows full-house, aces full of kings

• Slick wins £999.99 from the main pot

These messages are sometimes critical, sometimes less so and, more often,

simply confidence building. Building confidence in the service by clearly showing

what just happened, particularly for the novice player and the new customer who has

never used the application, or any mobile poker service.

The messages are short and to the point. They are displayed long enough for

the player to read, but should not get in the way of the ongoing game. There is no

natural timeout at which the message can be cleared, and so a reasonable time such

as 5 seconds is used; this may be altered depending on the game type.

During a showdown these messages may come thick and fast and in concert

with other events, such as winning hands to highlight and pots to split.

Congratulations Message

If the current player wins this is communicated with a "congratulations"

message, part of the media, at such times as the appropriate Write Console

message is sent by the server. This will only happen during a showdown.

History Console

All of the above Action Bubbles, Flash Messages and Congratulations

Messages are sent as Write Console messages. The Write Console messages will

also contain many lower priority messages, which may not be displayed on the game

screen. All messages go to the text console, whether or not they have been written

elsewhere. The console serves as a recent history of actions and events in a purely

text-based format. The console can be pulled down at any time during game-play

using the menu key.

Showdowns

Showdowns are a complex sequence of events that can involve many players

and many pots. Defining a clear sequence and displaying appropriate and quite

detailed information to the players is a difficult balance.

Information that must be displayed clearly includes:

• The pot in-play must be indicated

• The winning players must be highlighted

• The winning amounts must be displayed

• The winning hand must be highlighted, every card

• The winning hand strength must be displayed "Pair of Deuces, Ace Kicker"

This can happen for every pot.

As the final call is made on the fourth betting round, so the showdown

commences. Usually this entails a round of showing and mucking. In this game the

showing and mucking of cards is automatic, based on whether the hand beat the

previous show or not. This is still a round though. The server evaluates all hands in-

turn, and then sends appropriate Sprite Transactions to reveal all the hands that

would have been revealed in a live showdown. Sprite Transactions between the

server and the thin client initiate screen updates, and include information relating to

the portions of the screen that require updating, the view of the cards in this example.

Pocket cards are revealed face-up in the positions of the current face-down pocket

cards. These are bigger than the face-down cards and will cover some of the player

information, such as bet (which will be empty) and possibly stack and nickname.

Where the current player reveals cards these will also be shown face-up on the table,

in the current player position, as well as the current face-up representation in the

control panel. The representation must be clear and potentially all pocket cards may

be revealed on the table at the same time, so there is a lot of information on the

table. During a showdown it is the pocket cards, community cards and pots that are

important, and therefore other information may be obscured; this will depend on the

screen size.

Once all cards have been revealed the server will send a Sprite Transaction

that indicates to the client which five cards make up the winning hand. The client

must highlight the winning hand from the pocket cards and community cards. There

may be more than one winner in the case of a split pot, in which case the server will

indicate multiple pocket cards to reveal. To emphasise the winners, Action Bubbles

are used with text such as "WIN 99.99". And if the current player is the winner, a

congratulations message is displayed, along with sound and vibration (subject to

optional settings).

At the same time as the winning hand is revealed a Flash Message is

delivered. This will contain the absolute hand strength, including relevant kickers.

Rather than simply saying "Two Pair", the message will read "Two Pair, Aces and

Kings". If kickers came into play then the message will get longer, for example "Two

Pair, Aces and Kings, Queen Kicker". At no point should the user be left wondering

why he was beat. The Flash Message is displayed across the middle of the screen

for some seconds. There is no natural timeout, and therefore the suggested time of 5

seconds should provide enough time for players to read it and ascertain its accuracy

from the winning cards, as presently highlighted on the table.

The server sends a Chip Transaction straight after the Flash Message. The

client should make the chip movements as the Flash Message is removed after its

timeout. The current pot can be split between more than one player. The movements

should be clear so as to indicate how the pot was split and to whom.

The online gaming system described herein in various embodiments typically

comprises one or more user devices, typically mobile telephones or the like,

communicating with a game server.

The user device has been described above with reference to Figure 8 . In

accordance with preferred embodiments, the user device is adapted to enable

participation in multiple concurrent games as will now be briefly described.

Referring to Figure 8 , the mobile device is connectable to the online gaming

system via the mobile telecommunications network. Specifically, the mobile device

comprises means, in the form of communications subsystem 128, for communicating

with the online gaming system to participate in a plurality of concurrent games. The

device additionally comprises interface means, for example in the form of standard Ul

components 124 (e.g. keypad, screen) for providing a game interface to a user of the

program relating to a current one of the plurality of games.

The game program 116 also provides means for switching the interface to a

different one of the plurality of games, for example in response to a user input

received from the keypad, or in response to some event in the game (as described in

more detail above in relation to the observables feature). When switching from one

game to another, the user interface for the first game presented via Ul components

124 is replaced with a user interface for the second game, showing the game state of

the second game. This information is preferably obtained from game status data 110

(alternatively, the required information may be obtained from the remote game

server, though this may make switching less responsive). In this way, the user can

participate in multiple concurrent games, despite the limited user interface

capabilities (in particular screen space) typically available in such devices.

The game server is illustrated in more detail in Figure 9 . The server 6 typically

comprises (amongst other components) permanent storage 160 (e.g. a hard disk

drive) for storing game software and player information and preferences. CPU 164

controls execution of the game software to operate the plurality of games provided by

the gaming system. RAM 162 stores game software during execution, along with

game data (e.g. game data 14 shown in Figure 2). The game software typically

operates in the context of a server operating system (not shown). A communications

interface 166 is provided to enable communication with devices connected to mobile

communications network 4 . Communication may occur via a gateway 168, which

provides access to the mobile communications network 4 from other networks, e.g. a

LAN or the Internet.

It will be understood that the present invention has been described above

purely by way of example, and modification of detail can be made within the scope of

the invention.

Each feature disclosed in the description, and (where appropriate) the claims

and drawings may be provided independently or in any appropriate combination.

CLAIMS

1. A device for running a game program adapted to operate a game, comprising:

storage for storing configuration data defining one or more states or events

which can occur at the device and which are not related to the game program, and

specifying for each defined state or event a game action to be performed by the

game program in response to the defined state or event;

a detecting component adapted to detect occurrence of one of the defined

states or events at the device; and

a processing component adapted to perform the game action specified in the

configuration data for the detected state or event in response to detection of the

defined state or event.

2 . A device according to Claim 1, wherein the game program is one of at least

two programs provided in the device, and wherein the state or event is related to

another of the at least two programs.

3 . A device according to Claim 2 , wherein the state or event relates to the

initiation or termination of, or an event occurring in, another of the at least two

programs.

4 . A device according to any of the preceding claims, wherein the device is

connectable to a communications network, and wherein the state or event relates to

an interaction between the device and the network.

5 . A device according to any of the preceding claims, wherein the state or event

relates to a communications event, the detecting component being arranged to

detect the communications event.

6 . A device according to Claim 5 , wherein the communications event comprises

receipt of a communication, preferably from a predefined source.

7 . A device according to Claim 5 , wherein the communications event comprises

initiation or transmission of a communication, preferably to a predefined recipient.

8 . A device according to Claim 6 or 7 , wherein the communication comprises

one or more of: a message, a text message, a picture message, a voice message, a

video message, an instant messenger service message, an e-mail message, a rea l

time communications session, a voice call, and a video call.

9 . A device according to any of the preceding claims, wherein the state or event

relates to a user interaction not intended for the game program.

10 . A device according to any of the preceding claims, wherein the state or event

relates to a state or event detected using a sensor connected to the device.

11. A device according to any of the preceding claims, wherein the game

program is adapted to operate a plurality of concurrent games, the detecting

component being adapted to detect a state or event related to a first of the plurality of

games, and the processing component being arranged to perform a game action in

relation to a second of the plurality of games in response to the detected state or

event.

12. A device according to any of the preceding claims, wherein the configuration

data defines one or more combinations of states and/or events and specifies a game

action to be performed in response to each specified combination of states and/or

events, the device being adapted, in response to detecting a defined combination of

states and/or events, to perform the specified game action.

13. A device according to any of the preceding claims, wherein the game action

comprises initiating the game program.

14. A device according to any of the preceding claims, wherein the game action

comprises performing an action in the game program.

15. A device according to any of the preceding claims, wherein the game action

comprises initiating a game in the game program.

16. A device according to any of the preceding claims, wherein the game action

comprises performing an action in the game operated by the game program.

17. A device according to any of the preceding claims, wherein the game

program is a wagering game program adapted to operate one or more wagering

games.

18. A device according to Claim 17, wherein the game action comprises

submitting a wager.

19. A device according to Claim 18, wherein the wager is submitted in relation to

a predefined game event or outcome.

20. A device according to Claim 18 or 19, wherein the wager is submitted with a

predefined wager amount.

2 1. A device according to any of Claims 18 to 20, further adapted to access

configuration data for a user of the game program, the configuration data specifying

one or more wager parameters for a wager to be submitted in response to the state

or event, and wherein the game action comprises submitting a wager in accordance

with the specified wager parameters.

22. A device according to Claim 2 1, wherein the one or more wager parameters

comprise one or more of: a game or game type in respect of which a wager is to be

submitted, a game event or outcome in respect of which a wager is to be submitted,

and a wager amount.

23. A device according to any of the preceding claims, adapted to modify the

configuration data in response to input from a user of the game program.

24. A device according to any of the preceding claims, wherein the device is

connectable to a communications network, and is adapted to modify the configuration

data in response to information received from the network.

25. A device according to any of the preceding claims, adapted to receive an

indication to cease responding to a given state or event or to any state or event; and

to no longer perform a game action in response to the given state or event or to any

state or event after receipt of the indication.

26. A device according to any of the preceding claims, wherein the processing

component is adapted to perform the game action substantially immediately in

response to detection of the state or event.

27. A device according to any of Claims 1 to 25, wherein the processing

component is adapted to perform the game action a time period after detection of the

state or event.

28. A device adapted to perform communications functions and to run a game

program, the device comprising:

a detecting component arranged to detect a communications event not

related to the game program and to determine one or more characteristics of the

communications event; and

a processing component arranged to perform a game action in relation to the

game program in response to the detected communications event in dependence on

the determined characteristics.

29. A device according to Claim 28, wherein the processing component is

adapted to perform a game action if the determined characteristics meet a

predetermined criterion.

30. A device according to Claim 29, wherein one or more characteristics relate to

the source or recipient of a communication.

3 1 . A device according to Claim 29 or 30, wherein one or more characteristics

relate to the content of a communication.

32. A device according to any of Claims 28 to 3 1, adapted to analyse the content

of the communication, and perform a game action in dependence on the outcome of

the analysis.

33. A device according to any of Claims 28 to 32, wherein the game action

comprises initiating the game program and/or performing an action in the game

program.

34. A device according to any of claims 28 to 33, adapted to access configuration

data for a user of the game program, the configuration data defining at least one

communications event, the processing component being arranged to perform a game

action in response to detection of one of the defined communications events.

35. A device according to Claim 34, wherein the configuration data specifies, for

each defined communications event, a game action to be performed in response to

the communications event, the processing component being adapted, in response to

detecting one of the defined communications events, to perform the game action

specified for the defined communications event in the configuration data.

36. A device according to any of Claims 28 to 35, wherein the communications

event comprises receipt of a communication, preferably from a predefined source, or

initiation or transmission of a communication, preferably to a predefined recipient.

37. A device according to Claim 36 when dependent on Claim 34 or 35, wherein

the source or destination to which the communications event relates is defined in the

configuration data.

38. A device according to Claim 36 or 37, wherein the communication comprises

one or more of: a message, a text message, a picture message, a voice message, a

video message, an instant messenger service message, an e-mail message, a rea l

time communications session, a voice call, and a video call.

39. A device for running a wagering game program adapted to operate a

wagering game, the device comprising:

a sensor input for receiving environmental information relating to a state or

event pertaining to the device's environment from a sensor connected to the device;

and

a processing component adapted to perform a game action in relation to the

wagering game in response to the received information.

40. A device according to Claim 39, wherein the sensor is provided in the device.

4 1. A device according to Claim 40, adapted to receive data from the sensor, and

detect the state or event if the data fulfils a predetermined criterion.

42. A device according to Claim 39, wherein the sensor forms part of a user

interface element of the device.

43. A device according to any of claims 40 to 42, wherein the sensor is one of: an

image sensor, a temperature sensor, a motion sensor, a position sensor, and a

microphone.

44. A device for running a game program adapted to operate a game, comprising:

a status monitor for receiving status information relating to an internal state of

the device, the state not being related to the game program; and

a processing component adapted to determine whether the status information

fulfils a predetermined criterion, and to perform a game action in relation to the game

in dependence on the outcome of the determination.

45. A device according to Claim 44, wherein the internal state relates to the

operational status of the device or a device component, preferably to one of: network

signal strength, remaining battery power, screen brightness, speaker volume.

46. A device according to Claim 44, wherein the internal state relates to the

status of a further program or application running in the device which is not related to

the game program.

47. A device according to any of claims 39 to 46, wherein the state or event

relates to the current time.

48. A device for running a game program adapted to operate a plurality of games,
comprising:

a detecting component for detecting a state or event occurring in a first of the

plurality of games; and

a processing component adapted to perform a game action in relation to a

second of the plurality of games in response to the detected state or event.

49. A device according to Claim 48, wherein the first and second games run

concurrently.

50. A device according to Claim 48 or 49, wherein the first and second games are

different types of games.

5 1 . A device according to any of Claims 48 to 50, wherein the games are

wagering games, wherein the state or event related to the first of the plurality of

wagering games comprises a wager submitted in the first of the plurality of wagering

games.

52. A device according to any of Claims 48 to 50, wherein the state or event

related to the first of the plurality of games comprises the end of or withdrawal by the

user from the first of the plurality of games, or the end of or withdrawal by the user

from a round in said game.

53. A device according to any of Claims 48 to 52, wherein the state or event

occurring in a first of the plurality of games relates to or indicates a period of inactivity

for the player in the first game, the processing component being adapted to perform

the game action after the start of the period of inactivity.

54. A device according to any of Claims 48 to 53, wherein the game action

comprises initiating the second game.

55. A device according to any of Claims 48 to 54, adapted to initiate a second

game during a period of inactivity for the player in the first game, the first game

preferably being a multiplayer game, the second game preferably being a single-

player game.

56. A device according to Claim 55, adapted to return the player to the first game

at the end of the period of inactivity or at the end of the second game.

57. A device according to any of Claims 39 to 56, wherein the processing

component is adapted to select one of a plurality of game actions in dependence on

the detected state or event, and perform the selected game action.

58. A device according to any of Claims 39 to 57, adapted to access configuration

data for a user of the game program, the configuration data specifying a game action

to be performed in response to the detected state or event, the processing

component being adapted to perform the specified game action.

59. A device according to Claim 58, wherein the configuration data specifies for

each of a plurality of states or events not related to the game program, a game action

to be performed in response to the state or event, the device being arranged to

execute the game action specified for the detected state or event in the configuration

data in response to the detection of the state or event.

60. A device for running a game program adapted to operate a game, comprising:

a detecting component for detecting a predefined combination of user

interactions with the device, the user interactions not being related to the game; and

a processing component arranged to perform a game action in relation to the

game in response to detection of the combination of user interactions.

6 1 . A device according to Claim 60, wherein the user interactions comprise key

presses.

62. A device according to Claim 60 or 6 1 , wherein the combination comprises a

plurality of substantially simultaneous user interactions.

63. A device according to Claim 60 or 6 1, wherein the combination comprises a

predefined sequence of user interactions.

64. A device according to any of Claims 60 to 63, wherein the combination of

user interactions is defined in modifiable configuration data, preferably modifiable by

the user and/or modifiable remotely over a network to which the device can be

connected.

65. A device for running a game program adapted to operate a game, comprising:

a detecting component for detecting a predefined combination of states

and/or events, the states or events not being related to the game; and

a processing component adapted to perform a game action in relation to the

game in response to the detected combination of states or events.

66. A device according to Claim 65, wherein the states or events of the

combination are unrelated to each other.

67. A device according to Claim 65 or 66, wherein the detecting component is

adapted to detect occurrence of the states and/or events in a defined sequence.

68. A device according to Claim 65 or 66, wherein the detecting component is

adapted to detecting occurrence of the states and/or events of the combination close

in time or substantially at the same time.

69. A device for running a game program adapted to operate a game, the device

comprising a processor arranged to:

execute the game program to operate a game;

during operation of the game, detect a state or event not related to the game;

perform a game action in relation to the ongoing game in response to the

detected state or event; and

continue execution of the game program and operation of the game following

the performed game action.

70. A device according to Claim 69, wherein the game action affects subsequent

game events.

7 1 . A device according Claim 69 or 70, wherein the game action comprises

submitting a wager in a wagering game.

72. A device for running a wagering game program adapted to operate a

wagering game, comprising:

a detecting component for detecting a state or event not related to the

wagering game; and

a processing component arranged, in response to the detected state or event,

to submit a wager in the wagering game in relation to a predefined game event or

outcome and with a predefined wager amount.

73. A device according to Claim 72, wherein the game event or outcome and/or

wager amount are defined in configuration data.

74. A device for running a game program adapted to operate a game, the device

comprising:

a detecting component for detecting a state or event not related to the game;

and

a processing component arranged, in response to detecting the state or

event, to determine randomly or pseudo-randomly whether to perform a game action

in relation to the game, and to perform the game action in response to a positive
determination.

75. A device according to Claim 74, wherein the determination is made in

accordance with a predefined probability.

76. A device for running a game program adapted to operate a game, comprising:

storage for storing configuration data, the game program adapted to operate

in accordance with the stored configuration data;

a detecting component for detecting a state or event not related to the game

program; and

a processing component adapted to modify the configuration data for the

game program in response to the detected state or event.

77. A device according to Claim 76, wherein the configuration data relates to the

visual appearance of the game.

78. A device according to Claim 76 or 77, wherein the configuration data relates

to a default or preferred game type.

79. A device according to any of Claims 76 to 78, wherein the configuration data

relates to default wager parameters for a wagering game.

80. A device according to any of Claims 76 to 79, wherein the state or event

relates to the time and/or the location of a device in which the program operates, or

to a sensor input received at the device.

8 1 . A device according to any of Claims 76 to 79, wherein the state or event

comprises a communications event.

82. A device for running a game program adapted to operate a game, comprising:

a detecting component for detecting a state or event relating to the game; and

a processing component arranged to perform a device action external and

unrelated to the game program in response to the detected state or event.

83. A device according to Claim 82, wherein the device action comprises a

communications action.

84. A device according to Claim 83, wherein the device action comprises sending

a message or initiating a call.

85. A device according to any of Claims 82 to 84, wherein the state or event is a

predetermined game outcome, preferably a win.

86. A method of controlling a game program adapted to operate a game in a

device, comprising:

accessing configuration data defining one or more states or events which can

occur at the device and which are not related to the game program, and specifying

for each defined state or event a game action to be performed by the game program

in response to the defined state or event;

detecting occurrence of one of the defined states or events at the device; and

performing the game action specified in the configuration data for the

detected state or event in response to detection of the defined state or event.

87. A method of controlling a game program provided in a device adapted to

perform communications functions, comprising:

detecting a communications event not related to the game program;

determining one or more characteristics of the communications event; and

performing a game action in relation to the game program in response to the

detected communications event in dependence on the determined characteristics.

88. A method of controlling a wagering game program adapted to operate a

wagering game in a device, comprising:

receiving environmental information relating to a state or event pertaining to

the device's environment; and

performing a game action in relation to the wagering game in response to the

received information.

89. A method of controlling a game program adapted to operate a game in a

device, comprising:

receiving status information relating to an internal state of the device, the

state not being related to the game program;
determining whether the status information fulfils a predetermined criterion;

and

performing a game action in relation to the game in dependence on the

outcome of the determination.

90. A method of controlling a game program adapted to operate a plurality of

games, comprising:

detecting a state or event occurring in a first of the plurality of games; and

performing a game action in relation to a second of the plurality of games in

response to the detected state or event.

9 1 . A method of controlling a game program adapted to operate a game in a

device, comprising:

detecting a predefined combination of user interactions with the device, the

user interactions not being related to the game; and

performing a game action in relation to the game in response to detection of

the combination of user interactions.

92. A method of controlling a game program adapted to operate a game,

comprising:

detecting a predefined combination of states and/or events, the states or

events not being related to the game; and

performing a game action in relation to the game in response to the detected

combination of states or events.

93. A method of controlling a game program adapted to operate a game,

comprising:

executing the game program to operate a game;

during operation of the game, detecting a state or event not related to the

game;

performing a game action in relation to the ongoing game in response to the

detected state or event; and

continuing execution of the game program and operation of the game

following the performed game action.

94. A method of controlling a wagering game program adapted to operate a

wagering game, comprising:

detecting a state or event not related to the wagering game; and

in response to the detected state or event, submitting a wager in the wagering

game in relation to a predefined game event or outcome and with a predefined wager

amount.

95. A method of controlling a game program adapted to operate a game,
comprising:

detecting a state or event not related to the game; and

in response to detecting the state or event, determining randomly or pseudo-

randomly whether to perform a game action in relation to the game; and

performing the game action in response to a positive determination.

96. A method of controlling a game program adapted to operate a game, the

game program operating in accordance with stored configuration data, comprising:

detecting a state or event not related to the game program; and

modifying the configuration data for the game program in response to the

detected state or event.

97. A method of controlling a game program adapted to operate a game in a

device, comprising:

detecting a state or event relating to the game; and

performing a device action external and unrelated to the game program in

response to the detected state or event.

98. A computer program or computer program product comprising software code

adapted, when executed on a data processing apparatus, to perform a method as

claimed in any of Claims 86 to 97.

99. An online gaming system comprising a device as claimed in any of claims 1 to

85 and/or adapted to perform a method as claimed in any of claims 86 to 97.

A. CLASSIFICATION OF SUBJECT MATTER
INV. G07F17/32

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G07F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

WO 2004/095383 A (IGT RENO NEV [US]; WELLS 1-99
WILLIAM R [US]; ' MATTICE HAROLD E [US];

GRISWO) 4 November 2004 (2004-11-04)
page 6 , lines 9-31
page 7 , lines 1-9

page 8 , lines 19-22
page 14, lines 28-30
page 15, lines 30,31
page 17, lines 22,23
page 19, lines 4-8
page 20, lines 8,9 '

EP 1 394 713 A (MICROSOFT CORP [US]) 1-99
3 March 2004 (2004-03-03)
abstract
paragraphs [0003], [0007], [0013],
[0028], [0031], [0032]

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :
"T" later document published after the international filing date

or priority date and not in conflict with the application but
'A' document defining the general state of the art which is not ' cited to understand the principle or theory underlying the

considered to be of particular relevance invention
'E' earlier document but published on or after the international 'X' document of particular relevance; the claimed invention

filing date cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone

which is cited to establish the publication date of another 'Y' document of particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu¬
other means ments, such combination being obvious to a person skilled

'P' document published prior to the international filing date but in the art.

later than the priority date claimed '&' document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report

• 26 March 2008 03/04/2008

Name and mailing address of the ISA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

TeI. (+31-70) 340-2040, Tx. 3 1 651 epo nl,
Fax: (+31-70) 340-3016 Verhoef, Peter

Form PCT/ISA/210 (second sheet) (April 2005)

Patent document Publication Patent family Publication
cited in search report date member(s) date

WO 2004095383 04-11-2004 AU 2004232143 Al 04-11-2004
CA 2518083 Al 04-11-2004
EP 1606776 Al 21-12-2005
US 2004192442 Al 30-09-2004

EP 1394713 03-03-2004 JP . 2004164599 A 10-06-2004
US 2004041836 Al 04-03-2004
US 2006190827 Al 24-08-2006
US 2004205091 Al 14-10-2004

Form PCT/ISA/S10 (patent family annex) (April 2005)

	front-page
	description
	claims
	drawings
	wo-search-report

