一种水性弹性保温隔热涂料及其制备方法

摘要

一种水性弹性保温隔热涂料及其制备方法，本发明采用弹性乳液和硅丙两种乳液作为成膜物，还采用了隔热材料、金红石型钛白粉等材料。制备过程：在 500r/min 的搅拌速度下将水中依次加入分散剂、消泡剂 A、适量 pH 调节剂、丙二醇、钛白粉，转速调至 1500r/min，分散细度至 25μm 以下；然后在 500r/min 速度下加入抗静电剂，防霉剂、消泡剂 B、硅丙乳液、弹性乳液以及成膜助剂，搅拌 10 分钟，再调至 300r/min，并将 2/3 的隔热材料加入，搅拌 20 分钟；最后在 300r/min 的转速下加入剩余的隔热材料，搅拌 20 分钟，加入增稠剂 A、B，搅拌 15 分钟，将 pH 值调至 7.5～9 之间，后加入防腐剂，搅拌 10 分钟后即制得本发明的涂料。
1. 一种水性弹性保温隔热涂料，其特征在于：其各组分和重量份数比为：

<table>
<thead>
<tr>
<th>成分</th>
<th>重量比例</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>240-250,</td>
</tr>
<tr>
<td>消泡剂 A</td>
<td>1.5-2.5,</td>
</tr>
<tr>
<td>丙二醇</td>
<td>25-35,</td>
</tr>
<tr>
<td>抗沾污剂</td>
<td>20-40,</td>
</tr>
<tr>
<td>消泡剂 B</td>
<td>4.5-6.5,</td>
</tr>
<tr>
<td>弹性乳液</td>
<td>350-380,</td>
</tr>
<tr>
<td>隔热材料</td>
<td>20-40,</td>
</tr>
<tr>
<td>增稠剂 A</td>
<td>1.5-2.5,</td>
</tr>
<tr>
<td>增稠剂 B</td>
<td>5-8,</td>
</tr>
<tr>
<td>pH 调节剂</td>
<td>适量,</td>
</tr>
<tr>
<td>钛白粉</td>
<td>160-200,</td>
</tr>
<tr>
<td>防霉剂</td>
<td>3.5-4.5,</td>
</tr>
<tr>
<td>成膜助剂</td>
<td>3-6,</td>
</tr>
<tr>
<td>增稠剂 A</td>
<td>1.5-2.5,</td>
</tr>
<tr>
<td>防腐剂</td>
<td>1-1.5,</td>
</tr>
<tr>
<td>硅丙乳液</td>
<td>70-90,</td>
</tr>
</tbody>
</table>

其中硅丙乳液是具有核壳结构的硅丙乳液，固体含量为 47 ± 1%; 弹性乳液是具有高弹的丙烯酸乳液，固体含量为 48.5 - 51.5%; 消泡剂 A 主要由矿物油、金属皂、表面活性剂和少量有机硅组成；消泡剂 B 主要由改性有机硅与表面活性物质组成；增稠剂 A 是非离子聚氨酯缩合型增稠剂；增稠剂 B 是疏水改性碱溶胀缩合型增稠剂；pH 调节剂为 2-氨基-2-甲基-1-丙醇。

2. 根据权利要求 1 所述的水性弹性保温隔热涂料，其特征在于：其各组分和重量份数比为：

<table>
<thead>
<tr>
<th>成分</th>
<th>重量比例</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>246,</td>
</tr>
<tr>
<td>消泡剂 A</td>
<td>2,</td>
</tr>
<tr>
<td>pH 调节剂</td>
<td>适量,</td>
</tr>
<tr>
<td>分散剂</td>
<td>5,</td>
</tr>
</tbody>
</table>
丙二醇: 30, 钛白粉: 180,
防霉剂: 4, 消泡剂 B: 5,
硅丙乳液: 80, 弹性乳液: 370,
成膜助剂: 4, 隔热材料: 35,
抗沾污剂: 30, 增稠剂 A: 2,
增稠剂 B: 6, 防腐剂: 1.2,

3. 根据权利要求 2 所述的水性弹性保温隔热涂料，其特征在于：所述的抗沾污剂为水稀释型硅树脂乳液，活性物质含量为 41-43%，密度为 1.07g/mL。

4. 根据权利要求 2 所述的水性弹性保温隔热涂料，其特征在于：所述的成膜助剂为 2, 2, 4-三甲基-1, 3-戊二醇单异丁酸酯。

5. 根据权利要求 2 所述的水性弹性保温隔热涂料，其特征在于：所述的钛白粉为金红石型进口钛白粉。

6. 根据权利要求 2 所述的水性弹性保温隔热涂料，其特征在于：所述的分散剂为聚丙烯酸盐。

7. 根据权利要求 2 所述的水性弹性保温隔热涂料，其特征在于：所述的隔热材料为闭式空心玻璃微珠，平均粒径为 55 微米，最大粒径小于 95 微米，密度为 0.15g/cc。

8. 根据权利要求 2 所述的水性弹性保温隔热涂料，其特征在于：所述的防霉剂为亚胺苯唑氨基甲酸脂、2-正辛基-4-异噻唑啉-3-酮和尿素衍生物的混合物。

9. 根据权利要求 2 所述的水性弹性保温隔热涂料，其特征在于：
所述的防腐剂是一种由 5-氯-2-甲基-4-异噻唑啉-3-酮\2-甲基-4-异
噻唑啉-3-酮和甲醛浓缩物组成的混合物

10、根据以上任一项权利要求所述的涂料的制备方法，其特征在于:

①、在生产设备中加入配方中的水，在 500-800 r/min 的搅拌速度
下依次加入分散剂、消泡剂 A、适量 pH 调节剂、丙二醇、钛白粉，
加完后将转速调至 1500-2500 r/min，分散细度至 25μm 以下；

②、在 500-800 r/min 的搅拌速度下将抗沾污剂、防霉剂、消泡
剂 B、硅丙乳液、弹性乳液以及成膜助剂依次加入，搅拌 10 分钟，
再将分散机转速调至 300-400 r/min，并将 2/3 的隔热材料加入，搅
拌 20-30 分钟；

③、在 300-400 r/min 的转速下将剩余的 1/3 隔热材料加入，搅
拌 20-30 分钟后，加入增稠剂 A 和增稠剂 B，继续搅拌 15-25 分钟，
再用 pH 调节剂将漆的 pH 值调至 7.5-9 之间，加入防腐剂，搅拌 10-20
分钟后可包装，即制得水性弹性保温隔热涂料。
一种水性弹性保温隔热涂料及其制备方法

技术领域

本发明涉及一种涂料，特指一种涂于建筑物内外墙表面的水性弹性保温隔热涂料及其制备方法。

背景技术

世界工业日益发达，人口日益增多以及人类对大自然的破坏，使地球地表温度也日益升高，地球资源日益枯竭，人类的生活和生存受到越来越大的影响和威胁，因此，节能降耗工作已引起了世界各国的关注和重视，各节能材料也已成为世界的科学研究和技术开发的基本目标之一，节能材料也将越来越受到人们的青睐，尤其是与人们生活密切相关的建筑业。

据统计，我国的建筑能耗约占全国能耗的30%以上，这主要是空调和供暖所消耗，要想有效降低建筑能耗，节能建材起主导作用，通过节能建材来降低建筑物表面温度，减少室内、外热量通过墙体互相对流和传递。过去我国对建筑物的外表实行的保温隔热材料多为：膨胀聚苯（EPS）板薄抹灰外墙外保温系统、膨胀聚苯（EPS）颗粒外墙外保温系统以及硅酸盐隔热涂料等，但这些系统和涂料都存在着施工复杂、使用寿命短、维护费用高、不环保以及节能效果达不到预期效
果等问题，专利申请号为 CN200410048047.1 的专利，虽是通过加入空心陶瓷珠来减小导热系数达到隔热效果，但是该涂料采用了二甲苯，对环境有害，专利申请号为 CN02134827.8 的专利是使用苯丙乳液的水性隔热涂料，既没有弹性效果，又不能提供良好的耐候性和耐老化性，中国专利 99106112.8 公开的外墙涂料以纯丙乳液为基料，以钛白粉、轻质碳酸钙等为填料，这样的产品的耐老化、耐热性和隔热性能比较差。

发明内容

本发明旨在解决上述问题，而提供一种水性弹性保温隔热涂料及其制备方法。

这种水性弹性保温隔热涂料，其特征在于：其各组分和重量份数比为：

水：240-250，分散剂：4.5-6，
消泡剂 A：1.5-2.5，pH 调节剂：适量，
丙二醇：25-35，钛白粉：160-200，
抗沾污剂：20-40，防霉剂：3.5-4.5，
消泡剂 B：4.5-6.5，硅丙乳液：70-90，
弹性乳液：350-380，成膜助剂：3-6，
隔热材料：20-40，增稠剂 A：1.5-2.5，
增稠剂 B：5-8，防腐剂：1-1.5，

其中硅丙乳液是具有核壳结构的硅丙乳液，固体含量为 47 ± 1%；
弹性乳液是具有高弹的丙烯酸乳液，固体含量为 48.5～51.5%；消泡剂 A 主要由矿物油、金属皂、表面活性剂和少量有机硅组成；消泡剂 B 主要由改性有机硅与表面活性物质组成；增稠剂 A 是非离子聚氨酯缩合型增稠剂；增稠剂 B 是疏水改性碱溶胀缩合型增稠剂；pH 调节剂为 2-氨基-2-甲基-1-丙醇。

优选各组分和重量份数比为：

<table>
<thead>
<tr>
<th>成分</th>
<th>重量份数</th>
<th>成分</th>
<th>重量份数</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>246</td>
<td>分散剂</td>
<td>5</td>
</tr>
<tr>
<td>消泡剂 A</td>
<td>2</td>
<td>pH 调节剂</td>
<td>适量</td>
</tr>
<tr>
<td>丙二醇</td>
<td>30</td>
<td>钛白粉</td>
<td>180</td>
</tr>
<tr>
<td>防霉剂</td>
<td>4</td>
<td>消泡剂 B</td>
<td>5</td>
</tr>
<tr>
<td>硅丙乳液</td>
<td>80</td>
<td>弹性乳液</td>
<td>370</td>
</tr>
<tr>
<td>成膜助剂</td>
<td>4</td>
<td>隔热材料</td>
<td>35</td>
</tr>
<tr>
<td>抗沾污剂</td>
<td>30</td>
<td>增稠剂 A</td>
<td>2</td>
</tr>
<tr>
<td>增稠剂 B</td>
<td>6</td>
<td>防腐剂</td>
<td>1.2</td>
</tr>
</tbody>
</table>

抗沾污剂为水稀释型硅树脂乳液，活性物质含量 41～43%，密度约为 1.07g/mL。

成膜助剂为 2,2,4-三甲基-1,3-戊二醇单异丁酸酯。

钛白粉为金红石型进口钛白粉。

分散剂为聚丙烯酸盐。

隔热材料为闭式空心玻璃微珠，平均粒径为 55 微米，最大粒径小于 95 微米，密度为 0.15g/cc。

防霉剂为亚胺苯唑氨基甲酸酯、2-正辛基-4-异噻唑啉-3-酮和尿
素衍生物的混合物。

防腐剂是一种由 5-氯-2-甲基-4-异噻唑啉-3-酮、2-甲基-4-异噻唑啉-3-酮和甲醇浓缩物组成的混合物。

这种涂料的制备方法是:

①、在生产缸中加入配方中的水，500-800 r/min 的搅拌速度下依次加入分散剂、消泡剂 A、适量 pH 调节剂、丙二醇、钛白粉，加完后将转速调至 1500-2500 r/min，分散细度至 25μm 以下；

②、在 500-800 r/min 的搅拌速度下将抗沾污剂、防腐剂、消泡剂 B、硅丙乳液、弹性乳液以及成膜助剂依次加入，搅拌 10 分钟，再将分散机转速调至 300-400 r/min，并将 2/3 的隔热材料加入，搅拌 20-30 分钟；

③、300-400 r/min 的转速下将剩余的 1/3 隔热材料加入，搅拌 20-30 分钟后，加入增稠剂 A 和增稠剂 B，继续搅拌 15-25 分钟，再用 pH 调节剂将漆的 pH 值调整至 7.5-9 之间，加入防腐剂，搅拌 10-20 分钟后可包装，制成得水性弹性保温隔热涂料。

通过以上配比和制备方法生产的涂料具有如下有益效果:

1、涂膜对太阳光具有极高的反射率、低导热性和低储热性，涂层薄，隔热效果突出。

2、涂膜良好的弹性和拉伸力能覆盖细小裂纹和防止墙面细小裂纹的产生。

3、由于使用了硅丙乳液和抗沾污助剂，涂料成膜后具有良好的抗沾污性和自洁功能，良好的耐水性、耐光性和耐候性。良好的防霉
防藻性，出色的耐湿擦性，乳液粒子小，对基层具有良好的渗透性和附着力等特性。

4. 超低 VOC 的含量，使涂料在使用前后均无毒、环保、无污染，施工简单方便，无需专用工具，施工后的维护费用基本为零。

具体实施方式

下面将结合实施例对本发明作进一步的说明。

实施例 1

这种水性弹性保温隔热涂料，其各组分和重量份数比为：

<table>
<thead>
<tr>
<th>组分</th>
<th>重量份数</th>
</tr>
</thead>
<tbody>
<tr>
<td>水</td>
<td>240</td>
</tr>
<tr>
<td>分散剂</td>
<td>4.5</td>
</tr>
<tr>
<td>消泡剂 A</td>
<td>2.5</td>
</tr>
<tr>
<td>pH 调节剂</td>
<td>适量</td>
</tr>
<tr>
<td>丙二醇</td>
<td>25</td>
</tr>
<tr>
<td>钛白粉</td>
<td>200</td>
</tr>
<tr>
<td>抗沾污剂</td>
<td>20</td>
</tr>
<tr>
<td>防霉剂</td>
<td>4.5</td>
</tr>
<tr>
<td>消泡剂 B</td>
<td>6.5</td>
</tr>
<tr>
<td>硅丙乳液</td>
<td>90</td>
</tr>
<tr>
<td>弹性乳液</td>
<td>380</td>
</tr>
<tr>
<td>成膜助剂</td>
<td>6</td>
</tr>
<tr>
<td>隔热材料</td>
<td>40</td>
</tr>
<tr>
<td>增稠剂 A</td>
<td>2.5</td>
</tr>
<tr>
<td>增稠剂 B</td>
<td>5</td>
</tr>
<tr>
<td>防腐剂</td>
<td>1</td>
</tr>
</tbody>
</table>

其中，水为去离子水，是整个配方的分散介质；弹性乳液是具有高弹的丙烯酸乳液，固体含量为 48.5 - 51.5%，给涂膜提供良好的拉伸力和弹性效果，同时为涂料的基料之一；所述的硅丙乳液为高抗结构的硅丙乳液，其分子对称性好，键能高，给涂膜提供良好的耐光、耐老化、耐沾污、耐水性、耐碱性及增强附着力等作用，同时也是涂料
的基料之一，其固体含量为 47 ±1%；分散剂为聚丙烯酸盐，用于提高生产效率，改善涂料的储存稳定性和施工性；钛白粉为进口金红石型钛白粉，具有高折射率和高白度，对太阳光可产生高折射和反射作用，同时耐候性良好；防霉剂为亚胺苯唑氯基甲酸酯，2-正辛基-4-异噻唑啉-3-酮和尿素衍生物的混合物，能有效防止霉类和藻类在涂膜上生长；消泡剂 A 和消泡剂 B 用于消除在生产、包装、运输、施工等过程中所产生的机械泡，提高生产效率，改善储存稳定性和施工性，本发明中消泡剂 A 主要由矿物油、金属皂、表面活性剂和少量有机硅组成，消泡剂 B 主要由改性有机硅与表面活性物质组成；丙二醇用于改善涂料的低温储存性和调节涂料施工后涂膜的干燥速率；成膜助剂为 2,2,4-三甲基-1,3-戊二醇单异丁酸酯，其作用是用来降低乳液的最低成膜温度，使涂料能在更低的室外温度条件下使用；隔热材料是一种表面光滑、正圆球状、质轻、粒径小的进口闭式空心玻璃微珠，这种材料的平均粒径 55 微米，最大粒径小于 95 微米，密度 0.15g/cc，具有对太阳光高反射率、低导热系数、低储热系数、耐碱耐腐蚀和隔音等作用；防腐剂是由 5-氯-2-甲基-4-异噻唑啉-3-酮（CIT），2-甲基-4-异噻唑啉-3-酮（MIT）和甲醛浓缩物组成的混合物，用于杀死所有原辅材料有可能携带的各种细菌或细菌孢子，防止细菌在涂料中滋生，延长涂料的保质期；增稠剂 A 是非离子聚氯酯缔合型增稠剂，增稠剂 B 是疏水改性碱溶胀缔合型增稠剂，主要用于调整涂料的黏度，改善涂料的储存性和施工性，提高涂料施工后的流平性等作用；抗沾污剂是一种水稀释型硅树脂乳液，其中活性物质含量为 41-43%,
密度约为 1.07g/mL，主要是提高涂层的耐沾污效果和耐老化；pH 调
节剂为 2-氨基-2-甲基-1-丙醇，主要用于调节涂料最终的 pH 值，以
保证涂料的储存稳定性。

以上涂料的制备方法如下：

①、在生产缸中加入配方中的水，在 500 r/min 的搅拌速度下依
次加入分散剂、消泡剂 A、适量 pH 调节剂、丙二醇、钛白粉，加完
后将转速调至 1500 r/min，分散细度至 25μm 以下；

②、在 500 r/min 的搅拌速度下将抗沾污剂、防霉剂、消泡剂 B、
硅丙乳液、弹性乳液以及成膜助剂依次加入，搅拌 10 分钟，再将分
散机转速调至 300 r/min，并将 2/3 的隔热材料加入，搅拌 20-30 分
钟；

③、在 300 r/min 的转速下将剩余的 1/3 隔热材料加入，搅拌
20-30 分钟后，加入增稠剂 A 和增稠剂 B，继续搅拌 15-25 分钟，再
用 pH 调节剂将漆的 pH 值调至 7.5-9 之间，加入防腐剂，搅拌 10-20
分钟后可包装，即制得水性弹性保温隔热涂料。

涂料状态：无硬块，搅拌后成均匀状态；涂膜外观：无针孔、流
挂，涂膜均匀；施工性：涂刷 2 道无障碍；干燥时间（表干）: < 2h;
耐水性：96h 无异常；耐碱性：48h 无异常；耐温变性：5 次循环无
异常；耐老化（600h）：粉化 1 级，变色 1 级；耐刷洗性：> 5000 次；
耐沾污性：15%；断裂拉伸率：>230%；太阳反射率：> 0.83；半球
发射率：> 0.85。

实施例 2
这种水性弹性保温隔热涂料，其各组分和重量份数比为:

水: 250，分散剂: 6，
消泡剂 A: 1.5，pH 调节剂: 适量，
丙二醇: 35，钛白粉: 200，
抗粘污剂: 40，防霉剂: 3.5，
消泡剂 B: 4.5，硅丙乳液: 70，
弹性乳液: 350，成膜助剂: 3，
隔热材料: 20，增稠剂 A: 1.5，
增稠剂 B: 8，防腐剂: 1.5。

制备方法如下:

① 在生产缸中加入配方中的水，在 650r/min 的搅拌速度下依次加入分散剂、消泡剂 A、适量 pH 调节剂、丙二醇、钛白粉，加完后将转速调至 2000r/min，分散细度至 25μm 以下；

② 在 600 r/min 的搅拌速度下将抗粘污剂、防霉剂、消泡剂 B、硅丙乳液、弹性乳液以及成膜助剂依次加入，搅拌 10 分钟，再将分散机转速调至 350r/min，并将 2/3 的隔热材料加入，搅拌 20—30 分钟；

③ 在 350 r/min 的转速下将剩余的 1/3 隔热材料加入，搅拌 20—30 分钟后，加入增稠剂 A 和增稠剂 B，继续搅拌 15—25 分钟，用 pH 调节剂将漆的 pH 值调至 7.5—9，加入防腐剂，搅拌 10—20 分钟后可包装，即制得水性弹性硅丙保温隔热涂料。

涂料状态: 无硬块，搅拌后成均匀状态；涂膜外观: 无针孔、流
挂，涂膜均匀；施工性：涂刷 2 道无障碍；干燥时间（表干）：＜2h；
耐水性：96h 无异常；耐碱性：48h 无异常；耐温变性：5 次循环无异常；耐老化（600h）：粉化 1 级，变色 1 级；耐刷洗性：＞5000 次；
耐沾污性：16%；断裂拉伸率：＞200%；太阳反射率：＞0.85；半球发射率：＞0.87。

实施例 3

这种水性弹性保温隔热涂料，其各组分和重量份数比为：

水：

消泡剂 A：

丙二醇：

抗沾污剂：

消泡剂 B：

弹性乳液：

隔热材料：

增稠剂 A：

增稠剂 B：

pH 调节剂：

钛白粉：

防霉剂：

硅丙乳液：

成膜助剂：

防腐剂：

适量，

5，

2，

30，

30，

5，

370，

35，

2，

6，

1.2。

制备方法如下：

① 在生产缸中加入配方中的水，在 800 r/min 的搅拌速度下依次加入分散剂、消泡剂 A、适量 pH 调节剂、丙二醇、钛白粉，加完后将转速调至 2500 r/min，分散细度至 25μm 以下；

② 在 800 r/min 的搅拌速度下将抗沾污剂、防霉剂、消泡剂 B、硅丙乳液、弹性乳液以及成膜助剂依次加入，搅拌 10 分钟，再将分散机转速调至 400 r/min，并将 2/3 的隔热材料加入，搅拌 20—30
分钟；

③. 在 400 r/min 的转速下将剩余的 1/3 隔热材料加入，搅拌 20—30 分钟后，加入增稠剂 A 和增稠剂 B，继续搅拌 15—25 分钟，用 pH 调节剂将漆的 pH 值调至 7.5—9，加入防腐剂，搅拌 10—20 分钟后可包装，即制得水性弹性硅丙保温隔热涂料。

涂料状态：无硬块，搅拌后成均匀状态；涂膜外观：无针孔、流挂，涂膜均匀；施工性：涂刷 2 道无障碍；干燥时间（表干）：<2h；
耐水性：96h 无异常；耐碱性：48h 无异常；耐温变性：5 次循环无异常；耐老化（600h）：粉化 1 级，变色 1 级；耐刷洗性：>5000 次；
耐沾污性：17%；断裂拉伸率：>160%；太阳反射率：>0.86；半球发射率：>0.89。

以上内容是结合具体的优选实施方式对本发明所述的进一步详细说明，不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说，在不脱离本发明构思的前提下，其架构形式能够灵活多变，可以派生系列产品。只是做出若干简单推演或替换，都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。