FABRIC WINDING-DOWN OR DRAWING-OFF MECHANISM FOR KNITTING MACHINES

Inventors:

Alfred Woodward Kent and Henry Harold Holm

 Attorney
This invention relates to mechanism for winding-down or drawing-off fabric as it is produced on knitting machines, more especially circular knitting machines.

The invention is intended for application mainly to circular knitting machines of the rotary needle cylinder type, but it may also be applied to circular knitting machines of the stationary needle cylinder type.

Moreover, the invention concerns fabric winding-down or drawing-off mechanism of the kind which includes a pair of geared rollers one or each of which is suitably pressed towards the other, e.g. by spring means, and in which the fabric is gripped between the rollers while the latter are rotated, usually in an intermittent manner, by suitable driving means, for drawing off the fabric as it is produced by the needles.

In mechanism of this kind the rollers are geared together at one or each end and the driving means, sometimes in the form of cam actuated pawl and ratchet mechanism, are associated with one of the rollers. The construction is such, moreover, that one or each of the rollers is yieldably mounted so as to permit of separation of the rollers to allow for differences in the thickness of the fabric produced on the machine.

As applied to a circular knitting machine of the rotary needle cylinder type the winding-down or drawing-off mechanism revolves bodily in unison with the needle cylinder or cylinders while the rollers are turned on the axes thereof but in a machine of the stationary needle cylinder type the winding-down or drawing-off mechanism also remains stationary while the rollers are driven.

Now a difficulty commonly experienced with known forms of winding-down or drawing-off mechanism is that under certain conditions the gears tend to jam or bind or to be otherwise caused to mesh improperly or, in some instances, to be taken entirely out of mesh.

With a view to overcoming this difficulty it has heretofore been proposed to employ gears having extra long teeth, i.e. so-called mangle gears, but such gears are not satisfactory for reasons well known to those acquainted with the art concerned. The object of the present invention is to provide an improved form of fabric winding-down or drawing-off mechanism of the kind herein referred to, the construction of which is such as to enable ordinary standard machine cut gears to be used without the disadvantages aforesaid, thereby reducing the cost of producing the mechanism and providing a smooth winding-down or drawing-off action.

In the accompanying drawings, Figure 1 is a plan view, partly in section, of a winding-down or drawing-off mechanism incorporating the invention.

Figure 2 is a part sectional elevational view of the same as viewed in the direction of the arrow A in Figure 1.

Figures 3 and 4 are end elevational views of the mechanism as seen in the direction of the arrows B and C in Figure 1 respectively.

Figure 5 is a perspective view of the coupling member by means of which the yieldably mounted roller is connected with the associated gear.

Figure 6 is a diagram representing the manner in which the improved mechanism operates to overcome the difficulty herein alluded to.

Like parts are designated by similar reference characters throughout the drawings.

For convenience in the following further description the invention will be regarded as applied—as is mainly the intention—to a fabric winding-down mechanism having only one yieldably mounted roller, although, as will be understood, it may be applied to a mechanism in which both of the rollers are yieldably mounted.

The mechanism shown in the drawings is generally of known form and comprises a pair of gear driven rollers 1 and 2 rotatably mounted side by side in a pair of oppositely formed brackets 3 and 4 provided one at each side of a ring-like or a circular part such as 5 which serves to carry the rollers. One of the rollers, i.e. the roller 1, is mounted in fixed bearings 6 (Figure 1), whilst the other roller 2 has a bearing in slideable bearings or slipper blocks 7 suitably arranged in the brackets 3 and 4. Compression springs 8 are provided for action upon the said slideable bearing or slipper blocks to press the rollers 1 and 2 together. Thus one of the rollers, that is to say the roller 2 is yieldably mounted to permit the rollers to separate. The roller 1 is adapted at one end to be driven by pawl and ratchet mechanism hereinafter to be described, and at their ends remote from the driving means the rollers are geared together by a pair of standard machine cut spur gears 9 and 10 so that the drive is positively transmitted from the driven roller 1 to the spring-loaded roller 2. At each end the roller 1 is reduced in diameter so as to form a trunnion 11 which fits in the corresponding fixed bearing 6, and the ends of the spring-loaded roller 2 are somewhat simi-
larily reduced as at 12 and adapted for engagement with the blocks 7. These blocks are adapted to be positioned and to slide between suitable guideways 13 formed in the brackets 3 and 4 and which are secured to the aforesaid brackets by means of screws 19. Thus, by appropriate manipulation of the adjustment screws 16, the effective strength of the springs 8 can be varied as required. Lock nuts 20 are provided on the screws 16 to lock the latter in their adjusted positions. The brackets 3 and 4 consist of appropriately shaped castings which are screwed or otherwise rigidly attached to the top of the ring-like support 5.

The gear 9 associated with the driven roller 1 is rigidly secured by means of a dowel pin 21 to the handle of the said roller and is disposed on the outside of the bracket 4. In accordance with the characteristic feature of the present invention, the other gear 10 is mounted independently of and connected to the spring-loaded roller 2 in the manner now to be described. As shown more clearly in Figure 1, the said gear is furnished with a boss 18 adapted to have a bearing in a portion 23a of a bracket or like support 22 which is made separately from but is removably attached to the roller supporting bracket 4, for example by means of one or more screws 23 (Figure 4). The bracket 22 is extended so as to have a portion 22b which surrounds the gear 9. In this respect, therefore, the bracket 22 may be said not only to constitute a housing in which the gear 10 is rotatably mounted but also a casing for the gear 9. A cover plate 24 is attached to the outside of the bracket 22 by means of screws such as the screw 25; for the sake of clarity in Figure 4 the said cover plate has been omitted. The separately mounted gear 10 is appropriately positioned to mesh with the gear 9 and is formed with an axial bore 26 of a diameter sufficient to accommodate one end of the shaft of the coupling roller 27. When the various parts of the mechanism have been assembled the rod 27 extends from the interior of the separately mounted gear 10 into the spring-loaded roller 2 which is made hollow as at 28 for the purpose. It is convenient to mention here that the hollow bore 28 extends also through the reduced end 12 of the roller 2, which end projects into and works within a suitable slot or opening 29 in the roller supporting bracket 4. At its inner end 27a the coupling rod 27 is ball shaped (see more particularly Figure 5) and adapted for engagement with a pin 30 which passes through a hole, or, as shown, through an open-ended slot 27b formed in the ball and extends at right angles to the axis of the spring-loaded roller 2, midway between the ends of the latter. This pin has a screw-threaded engagement with the roller as indicated at 31 although it may be secured in the roller in any other suitable manner. The opposite ends of the slot 27b in the ball 27a are suitably enlarged, e.g. flared slightly in the manner indicated at 32 in Figure 1, to enable the roller 2 and the coupling rod 27 to move readily to assumed different angular positions relatively to each other. In any event the slot or opening in the ball-shaped end 27a is made sufficiently large to permit of freedom of movement within limits of the pin 30 within the said end. The construction is, in effect, such that the inner end of the coupling rod is connected to the roller 2 midway between its ends. At its opposite end the coupling rod is similarly shaped in the form of a ball and thereto a hole 31 (Figure 1) for accommodation of one end of the associated compression spring 8, the other end of which latter bears against a collar 15 provided on an adjustment screw 16. The screws 16 are supported in bosses 17 formed on plates 18 which are secured to the aforesaid brackets by means of screws 19. Thus, by appropriate manipulation of the adjustment screws 16, the effective strength of the springs 8 can be varied as required. Lock nuts 20 are provided on the screws 16 to lock the latter in their adjusted positions. The brackets 3 and 4 consist of appropriately shaped castings which are screwed or otherwise rigidly attached to the top of the ring-like support 5.

The construction so far described is therefore such that when the rollers are driven, the coupling rod 27 rotates together with the spring-loaded roller 2 and the associated gear 10 and thereby serves to transmit the drive from the latter to the said roller. When the rollers are separated the coupling rod turns about the pin 30 in the gear 10 and at such times as the spring-loaded roller 2 assumes an angular position as aforesaid the pin 30 turns in the ball-shaped end 27a of the rod.

In Figures 1 to 4 the mechanism is shown with the rollers 1 and 2 pressed firmly together by means of the springs 8. The manner in which the spring-loaded roller 2 moves relatively to the companion roller 1 without affecting the gears is, however, shown diagrammatically in Figure 6. As will be seen, the roller 2 is not only separated from the roller 1 but has assumed an angular position relatively to the latter. In these circumstances the gears 9 and 10 remain properly in mesh and the roller 2 moves through the gear 10 through the coupling rod 27. During movement of the roller 2 into such a position as that shown the pin 30 turns in the end 27a of the coupling rod, whilst the end 27c of the latter moves within the gear 10. In this way the roller 2 is enabled to move independently of the gear 10 without interrupting the drive.

The winding-down or drawing-off mechanism herein described with reference to the drawings revolves bodily in unison with the needle cylinder or cylinders of the machine to which the mechanism is applied at the same time as the rollers 1 and 2 are being intermediately rotated (in the manner hereinafter to be described). In this connection the ring-like part 5 aforesaid is adapted to be driven in suitable timed relation with the rotatable parts of the cylinder or cylinders, for which purpose it is conveniently supported in a bracket 34 and formed with a depending flange 35 to which is rigidly attached a gear wheel 36 adapted to mesh with a pinion 37 in turn driven from any suitable part, e.g. the main shaft. In this instance, if, as is mainly the intention, the improved mechanism is applied to a knitting machine of the type having superposed needle cylinders, then the pinion 37 may be driven from the main shaft of the knitting machine of the type having superposed needle cylinders, then the pinion 37 may be driven from the main shaft of
the machine, that is to say from the same shaft as that from which the needle cylinders are driven. In one specific arrangement a vertical shaft or spindle 36 (see Figure 1) is provided for, example through bevel gearing, and has rigidly secured to the lower end thereof a gear wheel 33 adapted to mesh with the pinion 31. In this way the ring-like part 5, together with all that it carries, is rotated continuously and in unison with the needle cylinders.

A drum or cannister 40 for reception of the knitted fabric as it is drawn off from the needles of the machine is also secured to the depending flange 35. For this purpose the drum or cannister is conveniently provided at the top with an upwardly extending circular flange 41 which is arranged to surround the flange 35 and is rigidly secured to the latter by means of screws 42. Thus the ring-like part 5, the gear wheel 36 and the drum or cannister 40 in effect constitute a single, bodily rotatable unit.

The bracket 34 is made of circular form and has formed integrally therewith a horizontally disposed annular flange 34c which is disposed within the bracket and constitutes a supporting ledge for the ring-like part 5. Lugs or similar portions such as 34b are conveniently formed on the bracket to enable it to be readily secured in position on a convenient part of or on the machine frame 43 (Figure 1).

The roller 1 is adapted to be driven in an intermittent manner by any suitable driving means. In the specific example illustrated, however, the said roller is driven by a generally known cam actuated pawl and ratchet mechanism, the driving means being associated with the end of the roller remote from the gear 9. As will be seen, a ratchet wheel 44 formed with teeth of relatively fine pitch is rigidly secured to the spindle of the roller 1 and disposed on the outside of and adjacent to the roller supporting bracket 3. In association with said ratchet wheel there is provided a spring-controlled pawl 45 which is pivotally mounted upon an arm 46. In turn this arm is pivotally mounted at 47 upon a part of or on adjacent to the machine frame 43 and is conveniently controlled by a tension spring 48. The said spring is connected at one end to a peg or projection 49 extending laterally from the bracket 3 and at the other end is anchored to a lug or extension 55 formed on the arm 46. On that side of the pivot 47 remote from the spring 48 the fore-mentioned arm is formed with an appropriately shaped extension 51 which carries a roller 52 for action upon the upper edge of a circular flanged portion 34c of the bracket 34. This flanged portion is appropriately formed so as to constitute a cam ring which is presented to the rotor 52 during bodily rotation of the winding-down or drawing-off mechanism. The construction is consequently such that as the mechanism rotates bodily the roller 52 is acted upon at appropriate times by the cam ring to turn the arm 46 on the bracket 3 and thereby impart operative strokes to the pawl 45 and rotate the ratchet wheel 44 and hence also the roller 1 intermittently in a clock-wise direction as viewed in Figure 3. Immediately after each turning movement of the arm 46 on the bracket 3 and thereby to its normal position under the spring action, thereby imparting a reverse or idle stroke to the pawl. A spring-controlled back stop pawl or detent 53, which is conveniently mounted upon a pivot pin 54 carried by the roller supporting bracket 3, is provided in association with the ratchet wheel to prevent backward rotation of the latter during reverse or idle strokes of the pawl 45. Movement of the arm 46 under the action of the spring 48 is limited by an abutment screw 55 (see Figure 3) which is carried by the extension 50 and adapted for contact with the ring-like part 5, on the one hand movement of the said arm in the opposite direction, i.e. against the spring action, is determined by an abutment screw 56 which is carried by the lug or extension 50 and similarly adapted for contact with the ring-like part 5. Thus by appropriate adjustment of the screws 55 and 56 the stroke of the pawl 45 can be varied. This provision for adjustment, in addition to the adoption of a ratchet wheel having fine teeth, enables the setting of the mechanism to be varied so that the rollers 1 and 2 will be driven at one of a fairly wide range of different speeds, according to requirements.

As shown more clearly in Figure 2, the cam ring 34c is inclined in such a way that the ratchet wheel is ratched on one step for each complete revolution of the ring-like part 5. It desired, however, the contour of the cam ring may be such that the ratchet wheel is ratched on two or even more steps per revolution of the said part.

The improved mechanism is such as to enable the gears to mesh in a proper manner irrespective of the various parallel and angular positions assumed by the yieldably mounted roller with respect to the companion roller during passage of fabric between the rollers. In this way the yieldably mounted roller can readily adapt itself to different thicknesses of fabric such, for example, as heel and toe pouches in hosiery, and assume an angular position, for instance when the fabric moves to one end of the rollers, without in any way adversely affecting the operation of the mechanism and thereby enabling the fabric to be drawn off in a steady manner.

The improved winding-down or drawing-off mechanism is applicable to knitting machines, more especially circular knitting machines—in general for producing fabric in continuous lengths, and to similar machines for producing garment lengths or portions separately, but is applicable more particularly to machines for producing seamless hosiery, the dimensions of the mechanism being varied according to requirements.

What we claim then is:
1. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a pair of drawing-off rollers between which the fabric is gripped and at least one of which is yieldably mounted so that said rollers are normally pressed together but permitted to separate as and when required, intermeshing gears by means of which said rollers are geared together, the gearing including a gear which is associated with the members of the independently yieldably mounted roller, driving means for rotating one of the rollers and thereby effecting rotation of the other roller through the said intermeshing gears, and a universal coupling for connecting the independently mounted gear with and transmitting the drive from said gear to, the yieldably mounted roller, said coupling enabling the yieldably mounted roller to move relatively to the companion roller.
without affecting the drive transmitting function of the said intermeshing gears.

2. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a pair of drawing-off rollers between which the fabric is gripped and at least one of which is yieldably mounted so that said rollers are normally pressed together but permitted to separate as and when required, roller supporting brackets having therein bearings for said rollers, intermeshing gears by means of which the said rollers are geared together, the gearing including a gear which is associated with and mounted independently of the yieldably mounted roller, driving means for rotating one of the rollers and thereby effecting rotation of the other roller through the said intermeshing gears, and a coupling member for connecting the independently mounted gear with, and transmitting the drive from said gear to, the yieldably mounted roller, driving means for rotating one of the rollers and thereby effecting rotation of the other roller through the said intermeshing gears, two parts, one of which is secured in the yieldably mounted roller and the other in the independently mounted gear, and a universal coupling in the form of a member which extends between the last mentioned parts and is provided with ball-shaped ends adapted to engage with said parts so as to connect the independently mounted gear with, and transmit the drive from said gear to, the yieldably mounted roller, said coupling member enabling the yieldably mounted roller to move relatively to the companion roller without affecting the drive-transmitting function of the said intermeshing gears.

4. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a pair of drawing-off rollers between which the fabric is gripped and at least one of which is yieldably mounted so that said rollers are normally pressed together but permitted to separate as and when required, roller supporting brackets having therein bearings for said rollers, intermeshing gears by means of which said rollers are geared together, the gearing including a gear which is associated with the yieldably mounted roller and furnished with a boss, a bracket having therein a bearing for reception of said boss, said bracket being made separately from but attached to the appropriate roller supporting bracket, driving means for rotating one of the rollers and thereby effecting rotation of the other roller through the said intermeshing gears, and means for connecting the independently mounted gear with, and transmitting the drive from said gear to, the yieldably mounted roller, said last mentioned means being adapted to enable the yieldably mounted roller to move relatively to the companion roller without affecting the drive-transmitting function of the said intermeshing gears.

5. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a pair of drawing-off rollers between which the fabric is gripped and at least one of which is yieldably mounted so that said rollers are normally pressed together but permitted to separate as and when required, roller supporting brackets furnished with bearings for said rollers, one of said brackets having therein an opening which is disposed in the region of the said hollowed out portion of the yieldably mounted roller, intermeshing gears by means of which the rollers are geared together, the gearing including a gear which, besides being associated with and mounted independently of the yieldably mounted roller, is also formed with an axial bore, driving means for rotating one of the rollers and thereby effecting rotation of the other roller through the said intermeshing gears, and means for connecting the independently mounted gear with, and transmitting the drive from said gear to, the yieldably mounted roller, said coupling member being accommodated at its outer end within the axial bore in the last mentioned gear and from thence extending from said gear, through the opening in the adjacent roller supporting bracket into the hollowed out portion of the yieldably mounted roller, the construction and arrangement being such that the said yieldably mounted roller can move relatively to the companion roller without affecting said drive-transmitting function of the aforesaid intermeshing gears.

6. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a pair of drawing-off rollers between which the fabric is gripped and at least one of which is yieldably mounted so that said rollers are normally pressed together but permitted to separate as and when required, intermeshing gears by means of which said rollers are geared together, the gearing including a gear which is associated with and mounted independently of the yieldably mounted roller, driving means for rotating one of the rollers and thereby effecting rotation of the other roller through the said intermeshing gears, two pins, one of which is secured in the yieldably mounted roller and the other in the independently mounted gear, and a universal coupling in the form of a member which extends between the pins and is provided with ball-shaped ends slotted for reception of and engagement with said pins so as to connect the independently mounted gear with, and transmit the drive from said gear to, the yieldably mounted roller, said coupling member enabling the yieldably mounted roller to move relatively to the companion roller without affecting the drive-transmitting function of the said intermeshing gears.

7. Mechanism according to claim 6, wherein the pin in the yieldably mounted roller is disposed midway between the ends of the latter and at right angles to the axis thereof, while the pin in the independently mounted gear is disposed midway between the ends of the latter and at right angles to the axis thereof.
posed at right angles both to the first mentioned pin and to the axis of said gear.

8. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a pair of drawing-off rollers between which the fabric is gripped and at least one of which is yieldably mounted so that said rollers are normally pressed together but permitted to separate as and when required, intermeshing gears by means of which said rollers are geared together, the gearing including a gear which is associated with and mounted independently of the yieldably mounted roller, driving means for rotating one of the rollers and thereby effecting rotation of the other roller through the said intermeshing gears, and a universal drive-transmitting coupling in the form of a rod having ends adapted to engage the independently mounted gear and the yieldably mounted roller respectively in such a way as to enable the yieldably mounted roller to move relatively to the companion roller without affecting the drive-transmitting function of the said intermeshing gears.

9. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a drawing-off roller, roller supporting brackets having therein fixed, another roller which is bored axially from one end thereof so as to provide therein a hollowed out portion, the roller supporting bracket adjacent to the said hollowed out portion having an opening formed therein, and the last mentioned gear being yieldably mounted in said brackets so that the two rollers are thereby adapted to grip the fabric between them and are normally pressed together but permitted to separate as and when required, intermeshing gears by means of which the rollers are geared together, the gearing including a gear which is associated with the yieldably mounted roller and has a boss and an axial bore, a bracket having therein a bearing for reception of said boss, said bracket being made separately from but attached to that roller supporting bracket which has the opening therein as aforesaid for rotating the roller which is mounted in fixed bearings and thereby effecting rotation of the yieldably mounted roller through the said intermeshing gears, two pins, one of which is secured within the yieldably mounted roller so as to extend axially of the said roller and the other within the independently mounted gear so as to extend across the axial bore thereof, and a universal coupling in the form of a member provided with ball-shaped ends adapted for reception of and engagement with said pins, said coupling being accommodated at one end within the axial bore in the last mentioned gear and from thence extending from said gear, through the opening in the adjacent roller supporting bracket into the hollowed out part of the yieldably mounted roller so as to connect the independently mounted gear with and transmit the drive from said gear to, the yieldably mounted roller in such a manner as to enable said roller to move relatively to the companion roller without affecting the drive-transmitting function of the said intermeshing gears.

10. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a pair of drawing-off rollers between which the fabric is gripped and at least one of which is yieldably mounted so that said rollers are normally pressed together but permitted to separate as and when required, a gear which is associated with but mounted independently of the yieldably mounted roller, another gear which is mounted on the other roller, said two gears being arranged to intermesh, whereby the rollers are directly geared together, driving means for rotating one of the rollers and thereby effecting rotation of the other roller through the said intermeshing gears, and coupling means for connecting the independently mounted gear with, and transmitting the drive from said gear to, the yieldably mounted roller, said coupling means being constructed and arranged so as to enable the yieldably mounted roller to move to various parallel and angular positions with respect to the companion roller without affecting the drive-transmitting function of the said intermeshing gears.

11. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a pair of drawing-off rollers between which the fabric is gripped and at least one of which is yieldably mounted so that said rollers are normally pressed together but permitted to separate as and when required, roller supporting brackets having therein bearings for said rollers, a gear which is associated with, another roller which is mounted independently of the yieldably mounted roller, another gear which is mounted on the other roller, said two gears being arranged to intermesh, whereby the rollers are directly geared together, a part having therein a bearing for the first mentioned gear, which bearing is separate from the bearings in the said roller supporting brackets, driving means for rotating one of the rollers and thereby effecting rotation of the other roller through the said intermeshing gears, and coupling means for connecting the said first mentioned and independently mounted gear with, and transmitting the drive from said gear to, the yieldably mounted roller, said coupling means being constructed and arranged so as to enable the yieldably mounted roller to move to various parallel and angular positions with respect to the companion roller without affecting the drive-transmitting function of the said intermeshing gears.

12. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a drawing-off roller, roller supporting brackets having therein fixed, another roller which is yieldably mounted in said brackets, the two rollers being thereby adapted to grip the fabric between them and being normally pressed together but permitted to separate as and when required, a gear which is associated with and mounted independently of the yieldably mounted roller, another gear which is mounted on the other roller, said two gears being arranged to intermesh, whereby the rollers are directly geared together, driving means for driving the roller which is mounted in fixed bearings and thereby effecting rotation of the yieldably mounted roller through the said intermeshing gears, and coupling means for connecting the first mentioned gear with, and transmitting the drive from said gear to, the yieldably mounted roller, said coupling means being constructed and arranged so as to enable the yieldably mounted roller to move to various parallel and angular positions with respect to the companion roller without affecting the drive-transmitting function of the said intermeshing gears.
13. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising in combination, a drawing-off roller, roller supporting brackets having therein fixed bearings in which said roller is mounted, another roller which is yieldably mounted in said brackets, the two rollers being thereby adapted to grip the fabric between them and being normally pressed together but permitted to separate as and when required, a gear which is associated with and mounted independently of the yieldably mounted roller, another gear which is mounted on the other roller, said two gears being arranged to intermesh, whereby the rollers are directly geared together, pawl and ratchet mechanism in association with the roller which is mounted in fixed bearings, cam means for effecting operation of said mechanism and thereby driving the last mentioned roller in an intermittent manner, the drive being transmitted to the yieldably mounted roller through the said intermeshing gears, and coupling means for connecting the first mentioned gear with, and transmitting the drive from said gear to, the yieldably mounted roller, said coupling means being constructed and arranged so as to enable the yieldably mounted roller to move to various parallel and angular positions with respect to the companion roller without affecting the drive-transmitting function of the said intermeshing gears.

14. Mechanism for drawing-off fabric as it is produced on a knitting machine, comprising, in combination, a pair of drawing-off rollers between which the fabric is gripped and at least one of which is yieldably mounted so that said rollers are normally pressed together but permitted to separate as and when required, roller supporting brackets having therein bearings for said rollers, intermeshing gears by means of which said rollers are geared together, the gearing including a gear which is associated with the yieldably mounted roller, a part having therein a bearing for the said gear, which bearing is separate from the bearings in the said roller supporting brackets, driving means for rotating one of the rollers and thereby effecting rotation of the other roller through the said intermeshing gears, and means for connecting the independently mounted gear with, and transmitting the drive from said gear to, the yieldably mounted roller, the said roller supporting bracket adjacent to the part in which the independently mounted gear rotates having an opening through which the aforesaid connecting and drive transmitting means.

ALFRED WOODWARD KENT.
HENRY HAROLD HOLMES.