O 000 0O

128 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
25 May 2001 (25.05.2001)

T 01000 A

(10) International Publication Number

WO 01/37128 A2

GO6F 17/20

(51) International Patent Classification’:

(21) International Application Number: PCT/US00/41870

(22) International Filing Date:
3 November 2000 (03.11.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/163,850
09/609,202

5 November 1999 (05.11.1999)
30 June 2000 (30.06.2000)

Us
us

(71) Applicant: MICROSOFT CORPORATION [US/US};
One Microsoft Way, Redmond, WA 98052 (US).

(72) Inventors: WANG, Hai-Feng; iSilk, G032, Tech Centre,
HKUST, Clear Water Bay, Kowloon, Hong Kong (CN).
HUANG, Chang-Ning; Suite 307 of Building No. 1, 48A
Baishigiao Road, Beijing 100081 (CN). LEE, Kai-Fu;
14233 214th Way NE, Woodinville, WA 98072 (US). DI,
Shuo; 103 Spit Brook Road #C18, Nashua, NH 03062
(US). CAl, Dong-Feng; 6F, Spt. 3, No. 53 Bei Ling
Street, Huang Gu District, Shen Yang, Liaoning Province
100034 (CN). CHIEN, Lee-Feng; One Microsoft Way,
Redmond, WA 98052 (US). GO, Jianfeng; Dormitory

Building 402, room 13, Beijing Rubber Industrial Design
Institute, Beijing 100039 (CN).

(74) Agents: SPONSELLER, Allan, T. et al.; Suite 500, 421

W. Riverside Avenue, Spokane, WA 99201 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, F, GB, GD, GE, GH, GM, HR,
HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:
Without international search report and to be republished
upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

|y (54) Title: A SYSTEM AND ITERATIVE METHOD FOR LEXICON, SEGMENTATION AND LANGUAGE MODEL JOINT

L)

O 01/

OPTIMIZATION

(57) Abstract: A method for optimizing a language model is presented comprising developing an initial language model from a
lexicon and segmentation derived from a received corpus using a maximum match technique, and iteratively refining the initial
language model by dynamically updating the lexicon and re-segmenting the corpus according to statistical principles until a threshold

of predictive capability is achieved.

10

15

20

25

WO 01/37128 ' PCT/US00/41870

A SYSTEM AND ITERATIVE METHOD FOR LEXICON, SEGMENTATION AND
LANGUAGE MODEL JOINT OPTIMIZATION

This application claims priority to a provisional patent application No. 60/163,850,
entitled “An iterative method for lexicon, word segmentation and language model

joint optimization”, filed on 11/5/99 by the inventors of this application.

TECHNICAL FIELD

This invention generally relates to language modeling and, more specifically,
to a system and iterative method for lexicon, word segmentation and language

model joint optimization.

BACKGROUND OF THE INVENTION

Recent advances in computing power and related technology have fostered
the development of a new generation of powerful software applications including
web-browsers, word processing and speech recognition applications. The latest
generation of web-browsers, for example, anticipate a uniform resource locator
(URL) address entry after a few of the initial characters of the domain name have
been entered. Word processors offer improved spelling and grammar checking
capabilities, word prediction, and language conversion. Newer speech recognition
applications similarly offer a wide variety of features with impressive recognition
and prediction accuracy rates. In order to be useful to an end-user, these features
must execute in substantially real-time. To provide this performance, many
applications rely on a tree-like data structure to build a simple language model.

Simplistically, a language model measures the likelihood of any given

sentence. That is, a language model can take any sequence of items (words,

WO 01/37128 PCT/US00/41870

10

15

20

25

2

characters, letters, etc.) and estimate the probability of the sequence. A common
approach to building a prior art language model is to utilize a prefix tree-like data
structure to build an N-gram language model from a known training set of a textual
corpus.

The use of a prefix tree data structure (a.k.a. a suffix tree, or a PAT tree)
enables a higher-level application to quickly traverse the language model, providing
the substantially real-time performance characteristics described above.
Simplistically, the N-gram language model counts the number of occurrences of a
particular item (word, character, etc.) in a string (of size N) throughout a text. The
counts are used to calculate the probability of the use of the item strings.
Traditionally, a tri-gram (N-gram where N=3) approach involves the following
steps:

(a) a textual corpus is dissected into a plurality of items (characters, letters,

numbers, etc.);

(b) the items (e.g., characters (C)) are segmented (e.g., into words (W)) in
accordance with a small, pre-defined lexicon and a simple, pre-defined
segmentation algorithm, wherein each W is mapped in the tree to one or
more C’s;

(c) train a language model on the dissected corpus by counting the
occurrence of strings of characters, from which the probability of a
sequence of words (W;, Wy, ...Wy) is predicted from the previous two

words:

P(Wy, Wy, W,... W) = [TP(W; | Wi, W) (1)

WO 01/37128 PCT/US00/41870

10

15

20

25

3

The N-gram language model is limited in a number of respects. First, the
counting process utilized in constructing the prefix tree is very time consuming.
Thus, only small N-gram models (typically bi-gram, or tri-gram) can practically be
achieved. Second, as the string size (N) of the N-gram language model increases,
the memory required to store the prefix tree increases by 2". Thus, the memory
required to store the N-gram language model, and the access time required to utilize
a large N-gram language model is prohibitively large for N-grams larger than three
(i.e., a tri-gram).

Prior art N-gram language models tend to use a fixed (small) lexicon, a
simplistic segmentation algorithm, and will typically only rely on the previous two
words to predict the current word (in a tri-gram model).

A fixed lexicon limits the ability of the model to select the best words in
general or specific to a task. If a word is not in the lexicon, it does not exist as far
as the model is concerned. Thus, a small lexicon is not likely to cover the intended
linguistic content.

The segmentation algorithms are often ad-hoc and not based on any
statistical or semantic principles. A simplistic segmentation algorithm typically
errors in favor of larger words over smaller words. Thus, the model is unable to
accurately predict smaller words contained within larger lexiconically acceptable
strings.

As a result of the foregoing limitations, a language model using prior art
lexicon and segmentation algorithms tend to be error prone. That is, any errors
made in the lexicon or segmentation stage are propagated throughout the language
model, thereby limiting its accuracy and predictive attributes.

Finally, limiting the model to at most the previous two words for context (in

a tri-gram language model) is also limiting in that a greater context might be

10

15

20

WO 01/37128 PCT/US00/41870

4

required to accurately predict the likelihood of a word. The limitations on these
three aspects of the language model often result in poor predictive qualities of the
language model.

Thus, a system and method for lexicon, segmentation algorithm and
language model joint optimization is required, unencumbered by the deficiencies
and limitations commonly associated with prior art language modeling techniques.

Just such a solution is provided below.

SUMMARY OF THE INVENTION

This invention concerns a system and iterative method for lexicon,
segmentation and language model joint optimization. To overcome the limitations
commonly associated with the prior art, the present invention does not rely on a
predefined lexicon or segmentation algorithm, rather the lexicon and segmentation
algorithm are dynamically generated in an iterative process of optimizing the
language model. According to one implementation, a method for improving
language model performance is presented comprising developing an initial
language model from a lexicon and segmentation derived from a received corpus
using a maximum match technique, and iteratively refining the initial language
model by dynamically updating the lexicon and re-segmenting the corpus according

to statistical principles until a threshold of predictive capability is achieved.

BRIEF DESCRIPTION OF THE DRAWINGS

The same reference numbers are used throughout the figures to reference

like components and features.

WO 01/37128 PCT/US00/41870

10

15

20

25

5

Fig. 1 is a block diagram of a computer system incorporating the teachings
of the present invention;

Fig. 2 is a block diagram of an example modeling agent to iteratively
develop a lexicon, segmentation and language model, according to one
implementation of the present invention;

Fig. 3 is a graphical representation of a DOMM tree according to one aspect
of the present invention;

Fig. 4 is a flow chart of an example method for building a DOMM ftree;

Fig. 5 is a flow chart of an example method for lexicon, segmentation and
language model joint optimization, according to the teachings of the present
invention;

Fig. 6 is a flow chart detailing the method steps for generating an initial
lexicon, and iteratively altering a dynamically generated lexicon, segmentation and
language model until convergence, according to one implementation of the present
invention; and

Fig. 7 is a storage medium with a plurality of executable instructions which,
when executed, implement the innovative modeling agent of the present invention,

according to an alternate embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

This invention concerns a system and iterative method for lexicon,
segmentation and language model joint optimization. In describing the present
invention, an innovative language model, the Dynamic Order Markov Model
(DOMM), is referenced. A detailed description of DOMM 1is presented in
copending U.S. Patent Application No. 09/XXX, XXX entitled 4 Method and

WO 01/37128 PCT/US00/41870

10

15

20

25

6
Apparatus for Generating and Managing a Language Model Data Structure, by

Lee, et al., the disclosure of which is expressly incorporated herein by reference.

In the discussion herein, the invention is described in the general context of
computer-executable instructions, such as program modules, being executed by one
or more conventional computers. Generally, program modules include routines,
programs, objects, components, data structures, etc. that perform particular tasks or
implement particular abstract data types. Moreover, those skilled in the art will
appreciate that the invention may be practiced with other computer system
configurations, including hand-held devices, personal digital assistants,
multiprocessor systems, microprocessor-based or programmable consumer
electronics, network PCs, minicomputers, mainframe computers, and the like. In a
distributed computer environment, program modules may be located in both local
and remote memory storage devices. It is noted, however, that modification to the
architecture and methods described herein may well be made without deviating

from spirit and scope of the present invention.

Example Computer System

Fig. 1 illustrates an example computer system 102 including an innovative
language modeling agent 104, to jointly optimize a lexicon, segmentation and
language model according to the teachings of the present invention. It should be
appreciated that although depicted as a separate, stand alone application in Fig. 1,
language modeling agent 104 may well be implemented as a function of an
application, e.g., word processor, web browser, speech recognition system, etc.
Moreover, although depicted as a software application, those skilled in the art will

appreciate that the innovative modeling agent may well be implemented in

WO 01/37128 PCT/US00/41870

10

15

20

25

7
hardware, e.g., a programmable logic array (PLA), a special purpose processor, an
application specific integrated circuit (ASIC), microcontroller, and the like.

It will be evident, from the discussion to follow, that computer 102 is
intended to represent any of a class of general or special purpose computing
platforms which, when endowed with the innovative language modeling agent
(LMA) 104, implement the teachings of the present invention in accordance with
the first example implementation introduced above. It is to be appreciated that
although the language modeling agent is depicted herein as a software application,
computer system 102 may alternatively support a hardware implementation of LMA
104 as well. In this regard, but for the description of LMA 104, the following
description of computer system 102 is intended to be merely illustrative, as
computer systems of greater or lesser capability may well be substituted without
deviating from the spirit and scope of the present invention.

As shown, computer 102 includes one or more processors or processing units
132, a system memory 134, and a bus 136 that couples various system components
including the system memory 134 to processors 132.

The bus 136 represents one or more of any of several types of bus structures,
including a memory bus or memory controller, a peripheral bus, an accelerated
graphics port, and a processor or local bus using any of a variety of bus
architectures. The system memory includes read only memory (ROM) 138 and
random access memory (RAM) 140. A basic input/output system (BIOS) 142,
containing the basic routines that help to transfer information between elements
within computer 102, such as during start-up, is stored in ROM 138. Computer 102
further includes a hard disk drive 144 for reading from and writing to a hard disk,
not shown, a magnetic disk drive 146 for reading from and writing to a removable

magnetic disk 148, and an optical disk drive 150 for reading from or writing to a

WO 01/37128 PCT/US00/41870

10

15

20

25

8
removable optical disk 152 such as a CD ROM, DVD ROM or other such optical

media. The hard disk drive 144, magnetic disk drive 146, and optical disk drive
150 are connected to the bus 136 by a SCSI interface 154 or some other suitable bus
interface. The drives and their associated computer-readable media provide
nonvolatile storage of computer readable instructions, data structures, program
modules and other data for computer 102.

Although the exemplary environment described herein employs a hard disk
144, a removable magnetic disk 148 and a removable optical disk 152, it should be
appreciated by those skilled in the art that other types of computer readable media
which can store data that is accessible by a computer, such as magnetic cassettes,
flash memory cards, digital video disks, random access memories (RAMs) read
only memories (ROM), and the like, may also be used in the exemplary operating
environment.

A number of program modules may be stored on the hard disk 144, magnetic
disk 148, optical disk 152, ROM 138, or RAM 140, including an operating system
158, one or more application programs 160 including, for example, the innovative
LMA 104 incorporating the teachings of the present invention, other program
modules 162, and program data 164 (e.g., resultant language model data structures,
etc.). A user may enter commands and information into computer 102 through
input devices such as keyboard 166 and pointing device 168. Other input devices
(not shown) may include a microphone, joystick, game pad, satellite dish, scanner,
or the like. These and other input devices are connected to the processing unit 132
through an interface 170 that is coupled to bus 136. A monitor 172 or other type of
display device is also connected to the bus 136 via an interface, such as a video
adapter 174. In addition to the monitor 172, personal computers often include other

peripheral output devices (not shown) such as speakers and printers.

WO 01/37128 PCT/US00/41870

10

15

20

25

9

As shown, computer 102 operates in a networked environment using logical
connections to one or more remote computers, such as a remote computer 176. The
remote computer 176 may be another personal computer, a personal digital
assistant, a server, a router or other network device, a network “thin-client” PC, a
peer device or other common network node, and typically includes many or all of
the elements described above relative to computer 102, although only a memory
storage device 178 has been illustrated in Fig. 1.

As shown, the logical connections depicted in Fig. 1 include a local area
network (LAN) 180 and a wide area network (WAN) 182. Such networking
environments are commonplace in offices, enterprise-wide computer networks,
Intranets, and the Internet. In one embodiment, remote computer 176 executes an
Internet Web browser program such as the “Internet Explorer” Web browser
manufactured and distributed by Microsoft Corporation of Redmond, Washington
to access and utilize online services.

When used in a LAN networking environment, computer 102 is connected to
the local network 180 through a network interface or adapter 184. When used in a
WAN networking environment, computer 102 typically includes a modem 186 or
other means for establishing communications over the wide area network 182, such
as the Internet. The modem 186, which may be internal or external, is connected to
the bus 136 via a input/output (I/O) interface 156. In addition to network
connectivity, /O interface 156 also supports one or more printers 188. In a
networked environment, program modules depicted relative to the personal
computer 102, or portions thereof, may be stored in the remote memory storage
device. It will be appreciated that the network connections shown are exemplary
and other means of establishing a communications link between the computers may

be used.

WO 01/37128 PCT/US00/41870

10

15

20

25

10

Generally, the data processors of computer 102 are programmed by means of
instructions stored at different times in the various computer-readable storage media
of the computer. Programs and operating systems are typically distributed, for
example, on floppy disks or CD-ROMs. From there, they are installed or loaded
into the secondary memory of a computer. At execution, they are loaded at least
partially into the computer’s primary electronic memory. The invention described
herein includes these and other various types of computer-readable storage media
when such media contain instructions or programs for implementing the innovative
steps described below in conjunction with a microprocessor or other data processor.
The invention also includes the computer itself when programmed according to the
methods and techniques described below. Furthermore, certain sub-components of
the computer may be programmed to perform the functions and steps described
below. The invention includes such sub-components when they are programmed as
described. In addition, the invention described herein includes data structures,
described below, as embodied on various types of memory media.

For purposes of illustration, programs and other executable program
components such as the operating system are illustrated herein as discrete blocks,
although it is recognized that such programs and components reside at various times
in different storage components of the computer, and are executed by the data
processor(s) of the computer.

Example Language Modeling Agent

Fig. 2 illustrates a block diagram of an example language modeling agent
(LMA) 104, incorporating the teachings of the present invention. As shown,
language modeling agent 104 is comprised of one or more controllers 202,
innovative analysis engine 204, storage/memory device(s) 206 and, optionally, one

or more additional applications (e.g., graphical user interface, prediction

WO 01/37128 PCT/US00/41870

10

15

20

25

11

application, verification application, estimation application, etc.) 208, each
communicatively coupled as shown. It will be appreciated that although depicted in
Fig. 2 as a number of disparate blocks, one or more of the functional elements of
the LMA 104 may well be combined. In this regard, modeling agents of greater or
lesser complexity which iteratively jointly optimize a dynamic lexicon,
segmentation and language model may well be employed without deviating from
the spirit and scope of the present invention.

As alluded to above, although depicted as a separate functional element,
LMA 104 may well be implemented as a function of a higher level application, e.g.,
a word processor, web browser, speech recognition system, or a language
conversion system. In this regard, controller(s) 202 of LMA 104 are responsive to
one or more instructional commands from a parent application to selectively invoke
the features of LMA 104. Alternatively, LMA 104 may well be implemented as a
stand-alone language modeling tool, providing a user with a user interface (208) to
selectively implement the features of LMA 104 discussed below.

In either case, controller(s) 202 of LMA 104 selectively invoke one or more
of the functions of analysis engine 204 to optimize a language model from a
dynamically generated lexicon and segmentation algorithm. Thus, except as
configured to effect the teachings of the present invention, controller 202 is
intended to represent any of a number of alternate control systems known in the art
including, but not limited to, a microprocessor, a programmable logic array (PLA),
a micro-machine, an application specific integrated circuit (ASIC) and the like. In
an alternate implementation, controller 202 is intended to represent a series of
executable instructions to implement the control logic described above.

As shown, the innovative analysis engine 204 is comprised a Markov

probability calculator 212, a data structure generator 210 including a frequency

10

15

20

25

WO 01/37128 PCT/US00/41870

12

calculation function 213, a dynamic lexicon generation function 214 and a dynamic
segmention function 216, and a data structure memory manager 218. Upon
receiving an external indication, controller 202 selectively invokes an instance of
the analysis engine 204 to develop, modify and optimize a statistical language
model (SLM). More specifically, in contrast to prior art language modeling
techniques, analysis engine 204 develops a statistical language model data structure
fundamentally based on the Markov transition probabilities between individual
items (e.g., characters, letters, numbers, etc.) of a textual corpus (e.g., one or more
sets of text). Moreover, as will be shown, analysis engine 204 utilizes as much data
(referred to as “context” or “order” as is available to calculate the probability of an
item string. In this regard, the language model of the present invention is aptly
referred to as a Dynamic Order Markov Model (DOMM).

When invoked by controller 202 to establish a DOMM data structure,
analysis engine 204 selectively invokes the data structure generator 210. In
response, data structure generator 210 establishes a tree-like data structure
comprised of a plurality of nodes (associated with each of the plurality of items)
and denoting inter-node dependencies. As described above, the tree-like data
structure is referred to herein as a DOMM data structure, or DOMM ftree.
Controller 202 receives the textual corpus and stores at least a subset of the textual
corpus in memory 206 as a dynamic training set 222 from which the language
model is to be developed. It will be appreciated that, in alternate embodiments, a
predetermined training set may also be used.

Once the dynamic training set is received, at least a subset of the training set
222 is retrieved by frequency calculation function 213 for analysis. Frequency
calculation function 213 identifies a frequency of occurrence for each item

(character, letter, number, word, etc.) in the training set subset. Based on inter-node

10

15

20

25

WO 01/37128 PCT/US00/41870

13

dependencies, data structure generator 210 assigns each item to an appropriate node
of the DOMM tree, with an indication of the frequency value (C;) and a compare bit
(by).

The Markov probability calculator 212 calculates the probability of an item
(character, letter, number, etc.) from a context (j) of associated items. More
specifically, according to the teachings of the present invention, the Markov
probability of a particular item (C;) is dependent on as many previous characters as

data “allows”, in other words:

P(C1, Cs, Capeves C) # [T P(C, | Crty Crzs Cisy o20s C)))

The number of characters employed as context (j) by Markov probability
calculator 212 is a “dynamic” quantity that is different for each sequence of
characters C;, C;.;, Ci, Ci3, etc. According to one implementation, the number of
characters relied upon for context (j) by Markov probability calculator 212 is
dependent, at least in part, on a frequency value for each of the characters, i.e., the
rate at which they appear throughout the corpus. More specifically, if in identifying
the items of the corpus Markov probability calculator 212 does not identify at least
a minimum occurrence frequency for a particular item, it may be “pruned” (i.e.,
removed) from the tree as being statistically irrelevant. According to one
embodiment, the minimum frequency threshold is three (3).

As alluded to above, analysis engine 204 does not rely on a fixed lexicon or
a simple segmentation algorithm (both of which tend to be error prone). Rather,
analysis engine 204 selectively invokes a dynamic segmentation function 216 to
segment items (characters or letters, for example) into strings (e.g., words). More

precisely, segmentation function 216 segments the training set 222 into subsets

10

15

20

25

WO 01/37128 PCT/US00/41870

14
(chunks) and calculates a cohesion score (i.e., a measure of the similarity between
items within the subset). The segmentation and cohesion calculation is iteratively
performed by segmentation function 216 until the cohesion score for each subset
reaches a predetermined threshold.

The lexicon generation function 214 is invoked to dynamically generate and
maintain a lexicon 220 in memory 206. According to one implementation, lexicon
generation function 214 analyzes the segmentation results and generates a lexicon
from item strings with a Markov transition probability that exceeds a threshold. In
this regard, lexicon generation function 214 develops a dynamic lexicon 220 from
item strings which exceed a pre-determined Markov transition probability taken
from one or more language models developed by analysis engine 204. Accordingly,
unlike prior art language models which rely on a known, fixed lexicon that is prone
to error, analysis engine 204 dynamically generates a lexicon of statistically
significant, statistically accurate item strings from one or more language models
developed over a period of time. According to one embodiment, the lexicon 220
comprises a “virtual corpus” that Markov probability calculator 212 relies upon (in
addition to the dynamic training set) in developing subsequent language models.

When invoked to modify or utilize the DOMM language model data
structure, analysis engine 204 selectively invokes an instance of data structure
memory manager 218. According to one aspect of the invention, data structure
memory manager 218 utilizes system memory as well as extended memory to
maintain the DOMM data structure. More specifically, as will be described in
greater detail below with reference to Figs. 6 and 7, data structure memory manager
218 employs a WriteNode function and a ReadNode function (not shown) to
maintain a subset of the most recently used nodes of the DOMM data structure in a

first level cache 224 of a system memory 206, while relegating least recently used

10

15

20

25

WO 01/37128 PCT/US00/41870

15

nodes to extended memory (e.g., disk files in hard drive 144, or some remote drive),
to provide for improved performance characteristics. In addition, a second level
cache of system memory 206 is used to aggregate write commands until a
predetermined threshold has been met, at which point data structure memory
manager make one aggregate WriteNode command to an appropriate location in
memory. Although depicted as a separate functional element, those skilled in the
art will appreciate that data structure memory manager 218 may well be combined
as a functional element of controller(s) 202 without deviating from the spirit and

scope of the present invention.

Example Data Structure — Dynamic Order Markov Model (DOMM) Tree

Fig. 3 graphically represents a conceptual illustration of an example
Dynamic Order Markov Model tree-like data structure 300, according to the
teachings of the present invention. To conceptually illustrate how a DOMM tree
data structure 300 is configured, Fig. 3 presents an example DOMM data structure
300 for a language model developed from the English alphabet, i.e., A, B, C, ...Z.
As shown the DOMM tree 300 is comprised of one or more root nodes 302 and one
or more subordinate nodes 304, each associated with an item (character, letter,
number, word, etc.) of a textual corpus, logically coupled to denote dependencies
between nodes. According to one implementation of the present invention, root
nodes 302 are comprised of an item and a frequency value (e.g., a count of how
many times the item occurs in the corpus). At some level below the root node level
302, the subordinate nodes are arranged in binary sub-trees, wherein each node

includes a compare bit (b;), an item with which the node is associated

(A, B, ...), and a frequency value (Cy) for the item.

10

15

20

WO 01/37128 PCT/US00/41870

16

Thus, beginning with the root node associated with the item B 306, a binary
sub-tree is comprised of subordinate nodes 308-318 denoting the relationships
between nodes and the frequency with which they occur. Given this conceptual
example, it should be appreciated that starting at a root node, e.g., 306, the
complexity of a search of the DOMM tree approximates log(N), where N is the

total number of nodes to be searched.

As alluded to above, the size of the DOMM tree 300 may exceed the space
available in the memory device 206 of LMA 104 and/or the main memory 140 of
computer system 102. Accordingly, data structure memory manager 218 facilitates
storage of a DOMM tree data structure 300 across main memory (e.g., 140 and/or
206) into an extended memory space, e.g., disk files on a mass storage device such

as hard drive 144 of computer system 102.

Example Operation and Implementation

Having introduced the functional and conceptual elements of the present
invention with reference to Figs. 1-3, the operation of the innovative language

modeling agent 104 will now be described with reference to Figs. 5-10.

Building DOMM Tree Data Structure

Fig. 4 is a flow chart of an example method for building a Dynamic Order
Markov Model (DOMM) data structure, according to one aspect of the present
invention. As alluded to above, language modeling agent 104 may be invoked
directly by a user or a higher-level application. In response, controller 202 of LMA

104 selectively invokes an instance of analysis engine 204, and a textual corpus

10

15

20

25

WO 01/37128 PCT/US00/41870

17

(e.g., one or more documents) is loaded into memory 206 as a dynamic training set
222 and split into subsets (e.g., sentences, lines, etc.), block 402. In response, data
structure generator 210 assigns each item of the subset to a node in data structure
and calculates a frequency value for the item, block 404. According to one
implementation, once data structure generator has populated the data structure with
the subset, frequency calculation function 213 is invoked to identify the occurrence

frequency of each item within the training set subset.

In block 406, data structure generator determines whether additional subsets
of the training set remain and, if so, the next subset is read in block 408 and the
process continues with block 404. In alternate implementation, data structure
generator 210 completely populates the data structure, a subset at a time, before
invocation of the frequency calculation function 213. In alternate embodiment,
frequency calculation function 213 simply counts each item as it is placed into

associated nodes of the data structure.

If, in block 406 data structure generator 210 has completely loaded the data
structure 300 with items of the training set 222, data structure generator 210 may
optionally prune the data structure, block 410. A number of mechanisms may be

employed to prune the resultant data structure 300.

Example Method for Lexicon, Segmentation and Language Model Joint Optimization

Fig. 5 is a flow chart of an example method for lexicon, segmentation and
language model joint optimization, according to the teachings of the present
invention. As shown, the method begins with block 400 wherein LM 104 is
invoked and a prefix tree of at least a subset of the received corpus is built. More

specifically, as detailed in Fig. 4, data structure generator 210 of modeling agent

WO 01/37128 PCT/US00/41870

10

15

20

25

18

104 analyzes the received corpus and selects at least a subset as a training set, from

which a DOMM tree is built.

In block 502, a very large lexicon is built form the prefix tree and pre-
processed to remove some obvious illogical words. More specifically, lexicon
generation function 214 is invoked to build an initial lexicon from the prefix tree.
According to one implementation, the initial lexicon is built from the prefix tree
using all sub-strings whose length is less than some pre-defined value, say ten (10)
items (i.e., the sub-string is ten nodes or less from root to the most subordinate
node). Once the initial lexicon is compiled, lexicon generation function 214 prunes
the lexicon by removing some obvious illogical words (see, e.g., block 604, below).
According to one implementation, lexicon generation function 214 appends a pre-
defined lexicon with the new, initial lexicon generated from at least the training set
of the received corpus.

In block 504, at least the training set of the received corpus is segmented,
using the initial lexicon. More particularly, dynamic segmentation function 216 is
invoked to segment at least the training set of the received corpus to generate an
initial segmented corpus. Those skilled in the art will appreciate that there are a
number of ways in which the training corpus could be segmented, e.g., fixed-length
segmentation, Maximum Match, etc. To do so without having yet generated a
statistical language model (SLM) from the received corpus, dynamic segmentation
function 216 utilizes a Maximum Match technique to provide an initial segmented
corpus. Accordingly, segmentation function 216 starts at the beginning of an item
string (or branch of the DOMM tree) and searches lexicon to see if the initial item
(I)) is a one-item “word”. Segmentation function then combines it with the next
item in the string to see if the combination (e.g., [;1,) is found as a “word” in the

lexicon, and so on. According to one implementation, the longest string (I, I,

WO 01/37128 PCT/US00/41870

10

15

20

25

19

...In) of items found in the lexicon is deemed to be the correct segmentation for that
string. It is to be appreciated that more complex Maximum Match algorithms may
well be utilized by segmentation function 216 without deviating from the scope and
spirit of the present invention.

Having developed an initial lexicon and segmentation from the training
corpus, an iterative process is entered wherein the lexicon, segmentation and
language model are jointly optimized, block 506. More specifically, as will be
shown in greater detail below, the innovative iterative optimization employs a
statistical language modeling approach to dynamically adjust the segmentation and
lexicon to provide an optimized language model. That is, unlike prior art language
modeling techniques, modeling agent 104 does not rely on a pre-defined static
lexicon, or simplistic segmentation algorithm to generate a language model.
Rather, modeling agent 104 utilizes the received corpus, or at least a subset thereof
(training set), to dynamically generate a lexicon and segmentation to produce an
optimized language model. In this regard, language models generated by modeling
agent 104 do not suffer from the drawbacks and limitations commonly associated
with prior art modeling systems.

Having introduced the innovative process in Fig. 5, Fig. 6 presents a more
detailed flow chart for generating an initial lexicon, and the iterative process of
refining the lexicon and segmentation to optimize the language model, according to
one implementation of the present invention. As before, the method begins with
step 400 (Fig. 4) of building a prefix tree from the received corpus. As discussed
above, the prefix tree may be built using the entire corpus or, alternatively, using a
subset entire corpus (referred to as a training corpus).

In block 502, the process of generating an initial lexicon begins with block

602, wherein lexicon generation function 214 generates an initial lexicon from the

10

15

20

25

WO 01/37128 PCT/US00/41870

20

prefix tree by identifying substrings (or branches of the prefix tree) with less than a
select number of items. According to one implementation, lexicon generation
function 214 identifies substrings of ten (10) items or less to comprise the initial
lexicon. In block 604, lexicon generation function 214 analyzes the initial lexicon
generated in step 602 for obvious illogical substrings, removing these substrings
from the initial lexicon. That is, lexicon generation function 214 analyzes the initial
lexicon of substrings for illogical, or improbable words and removes these words
from the lexicon. For the initial pruning, dynamic segmentation function 216 is
invoked to segment at least the training set of the received corpus to generate an
segmented corpus. According to one implementation, the Maximum Match
algorithm 1s used to segment based on the initial lexicon. Then the frequency
analysis function 213 is invoked to compute the frequency of the occurrence in the
received corpus for each word in the lexicon, sorting the lexicon according to the
frequency of occurrence. The word with the lowest frequency is identified and
deleted from the lexicon. The threshold for this deletion and re-segmentation may
be determined according to the size of the corpus. According to one
implementation, a corpus of 600M items may well utilize a frequency threshold of
500 to be included within the lexicon. In this way, we can delete most of the

obvious illogical words from the initial lexicon.

Once the initial lexicon is generated and pruned, step 502, the received
corpus is segmented based, at least in part, on the initial lexicon, block 504. As
described above, according to one implementation, the initial segmentation of the

corpus is performed using a maximum matching process.

Once the initial lexicon and corpus segmentation process is complete, the

iterative process of dynamically altering the lexicon and segmentation begins to

WO 01/37128 PCT/US00/41870

10

15

20

25

21
optimize a statistical language model (SLM) from the received corpus (or training
set), block 506. As shown, the process begins in block 606, wherein the Markov
probability calculator 212 utilizes the initial lexicon and_segmentation to begin
language model training using the segmented corpus. That is, given the initial
lexicon and an initial segmentation, a statistical language model may be generated
therefrom. It should be noted that although the language model does not yet benefit
from a refined lexicon and a statistically based segmentation (which will evolve in
the steps to follow), it is nonetheless fundamentally based on the received corpus

itself. Thus, while the initial language model

In block 608, having performed initial language model training, the
segmented corpus (or training set) is re-segmented using SLM-based segmentation.
Given a sentence wl, w2, ...wn, there are M possible ways to segment it (where
M2>1). Dynamic segmentation function 216 computes a probabili;ry (p;) of each
segmentation (S;) based on an N—gram statistical language model. According to one
implementation, segmentation function 216 utilizes a tri-gram (i.e., N=3) statistical
language model for determining the probability of any given segmentation. A
Viterbi search algorithm is employed to find the most probable segmentation Sy,

where:
Si=argmax(p;) (3)

In block 610, the lexicon is updated using the re-segmented corpus resulting
from the SLM-based segmentation described above. According to one
mmplementation, modeling agent 104 invokes frequency analysis function 213 to
compute the frequency of occurrence in the received corpus for each word in the
lexicon, sorting the lexicon according to the frequency of occurrence. The word

with the lowest frequency is identified and deleted from the lexicon. All

10

15

20

WO 01/37128 PCT/US00/41870

22

occurrences of the word must then be re-segmented into smaller words, as the uni-
count for all those words are re-computed. The threshold for this deletion and re-
segmentation may be determined according to the size of the corpus. According to
one implementation, a corpus of 600M items may well utilize a frequency threshold

of 500 to be included within the lexicon.

In block 612, the language model is updated to reflect the dynamically
generated lexicon and the SLM-based segmentation, and a measure of the language
model perplexity (i.e., an inverse probability measure) is computer by Markov
probability calculator 212. If the perplexity continues to converge (toward zero
(0)), i.e., improve, the process continues with block 608 wherein the lexicon and
segmentation are once again modified with the intent of further improving the
language model performance (as measured by perplexity). If in block 614 it is
determined that the language model has not improved as a result of the recent
modifications to the lexicon and segmentation, a further determination of whether
the perplexity has reached an acceptable threshold is made, block 616. If so, the

process ends.

If, however, the language model has not yet reached an acceptable perplexity
threshold, lexicon generation function 214 deletes the word with the smallest
frequency of occurrence in the corpus from the lexicon, re-segmenting the word

into smaller words, block 618, as the process continues with block 610.

It i1s to be appreciated, based on the foregoing, that innovative language
modeling agent 104 generates an optimized language model premised on a
dynamically generated lexicon and segmentation rules statistically predicated on at

least a subset of the received corpus. In this regard, the resultant language model

10

15

20

25

WO 01/37128 PCT/US00/41870

23

has improved computational and predictive capability when compared to prior art

language models.

ALTERNATE EMBODIMENTS

Fig. 7 is a block diagram of a storage medium having stored thereon a
plurality of instructions including instructions to implement the innovative
modeling agent of the present invention, according to yet another embodiment of
the present invention. In general, Fig. 7 illustrates a storage medium/device 700
having stored thereon a plurality of executable instructions 702 including at least a
subset of which that, when executed, implement the innovative modeling agent 104
of the present invention. When executed by a processor of a host system, the
executable instructions 702 implement the modeling agent to generate a statistical
language model representation of a textual corpus for use by any of a host of other
applications executing on or otherwise available to the host system.

As used herein, storage medium 700 is intended to represent any of a number
of storage devices and/or storage media known to those skilled in the art such as,
for example, volatile memory devices, non-volatile memory devices, magnetic
storage media, optical storage media, and the like. Similarly, the executable
instructions are intended to reflect any of a number of software languages known in
the art such as, for example, C++, Visual Basic, Hypertext Markup Language
(HTML), Java, eXtensible Markup Language (XML), and the like. Moreover, it is
to be appreciated that the storage medium/device 700 need not be co-located with
any host system. That is, storage medium/device 700 may well reside within a
remote server communicatively coupled to and accessible by an executing system.

Accordingly, the software implementation of Fig. 7 is to be regarded as illustrative,

WO 01/37128 PCT/US00/41870

24

as alternate storage media and software embodiments are anticipated within the

spirit and scope of the present invention.

Although the invention has been described in language specific to structural
features and/or methodological steps, it is to be understood that the invention
defined in the appended claims is not necessarily limited to the specific features or
steps described. Rather, the specific features and steps are disclosed as exemplary

forms of implementing the claimed invention.

WO 01/37128 PCT/US00/41870

25
CLAIMS

1. A method comprising:
developing an initial language model from a lexicon and segmentation

5 derived from a received corpus; and
iteratively refining the initial language model by dynamically updating the
lexicon and re-segmenting the corpus according to statistical principles until a

threshold of predictive capability is achieved.

10 2. A method according to claim 1, wherein the step of developing an
initial language model comprises:
generating a prefix tree data structure from items dissected from the received
corpus;

identifying sub-strings of N items or less from the prefix tree data structure;

15 and
populating the lexicon with the identified sub-strings.
3. A method according to claim 2, wherein N is equal to three (3).
20 4. A method according to claim 1, wherein the step of iteratively refining

the initial language model comprises:
re-segmenting the corpus by determining, for each segment, a probability of

occurrence for that segment.

10

15

20

25

WO 01/37128 PCT/US00/41870

26

5. A method according to claim 4, wherein determining the probability of

occurrence for a segment is calculated using an N-gram language model.

6. A method according to claim 5, wherein the N-gram language model is

a tri-gram language model.

7. A method according to claim 4, wherein determining the probability of

occurrence for a segment is calculated using two prior segments.

8. A method according to claim 4, wherein the step of iteratively refining
the language model comprises:

updating the lexicon from the re-segmented corpus.

9. A method according to claim 8, wherein updating the lexicon
comprises:
identifying a frequency of occurrence for each word of a lexicon in the

received corpus; and

deleting the word with the smallest identified frequency from the lexicon.

10. A method according to claim 9, further comprising:
re-segmenting the deleted word into two or more smaller words and updating

the lexicon with the re-segmented words.

11. A method according to claim 8, further comprising:
computing a predictive measure for the language model using the updated

lexicon and the re-segmented corpus.

WO 01/37128 PCT/US00/41870

27

12. A method according to claim 11, wherein the predictive measure is

language model perplexity.

13. A method according to claim 11, further comprising:
5 determining whether the predictive capability of the language model
improved as a result of the steps of updating and re-segmenting; and
performing additional updating and re-segmenting if the predictive capability

improved until no further improvement is identified.

10 14. A method according to claim 1, wherein the initial language model is

derived using a maximum match technique.

15. A method according to claim 1, wherein predictive capability is

quantitatively expressed as a perplexity measure.

15
16. A method according to claim 15, wherein the language model is
refined until the perplexity measure is reduced below an acceptable predictive
threshold.
20 17. A method according to claim 1, further comprising:

utilizing the iteratively refined language model in an application to predict a

likelihood of another corpus.

10

15

20

WO 01/37128 PCT/US00/41870

28

18. A method according to claim 17, wherein the application is one or
more of a spelling and/or grammatical checker, a word-processing application, a

language translation application, a speech recognition application, and the like.

19. A storage medium comprising a plurality of executable instructions
including at least a subset of which, when executed, implement a method according

to claim 1.

20. A computer system comprising:

a storage device having stored therein a plurality of executable instructions;
and

an execution unit, coupled to the storage device, to execute at least a subset
of the plurality of executable instructions to implement a method according to claim

1.

21. A storage medium comprising a plurality of executable instructions
including at least a subset of which, when executed, implement a language
modeling agent, the language modeling agent including a function to develop an
initial language model from a lexicon and segmentation derived from a received
corpus, and a function to iteratively refine the initial language model by
dynamically updating the lexicon and re-segmenting the corpus according to

statistical principles until a threshold of predictive capability is achieved.

10

15

20

25

WO 01/37128 PCT/US00/41870

29

22. A storage medium according to claim 21, wherein the language
modeling agent quantitatively determines predictive capability using a perplexity

measure.

23. A storage medium according to claim 21, wherein the language
modeling agent derives the lexicon and segmentation from the received corpus

using a maximum matching technique.

24. A storage medium according to claim 21, wherein the function to
develop the initial language model generates a prefix tree data structure from items
dissected from the received corpus, identifies sub-strings of N items or less from

the prefix tree, and populates the lexicon with the identified sub-strings.

25. A storage medium according to claim 21, wherein the function to
iteratively refine the initial language model by determining, for each segment, a
probability of occurrence for that segment, and re-segmenting the corpus to reflect
an improved segment probability.

26. A storage medium according to claim 25, wherein the language
modeling agent utilizes hidden Markov probability measures to determine the

probability of occurrence for each segment.

27. A storage medium according to claim 19, further comprising at least
a subset of instructions which, when executed, implements an application utilizing

the language model developed by the language modeling agent.

WO 01/37128 PCT/US00/41870

30
28. A system comprising:
a storage medium drive, to removably receive a storage medium according to
claim 19; and
an execution unit, coupled to the storage medium drive, to access and
5 execute at least a subset of the plurality of executable instructions populating the

removably received storage medium to implement the language modeling agent.

29. A modeling agent comprising:
a statistical calculator, to determine a likelihood of corpus segmentation; and
10 a data structure generator, to develop and initial language model from a
lexicon and segmentation dynamically derived from a received corpus, and
iteratively refine the language model until the likelihood of corpus segmentation

reaches an acceptable threshold.

15 30. A modeling agent according to claim 29, wherein the statistical
calculator utilizes Markov modeling techniques to determine the likelihood of

corpus segmentation.

31. A modeling agent according to claim 29, wherein the data structure
20 generator generates a prefix tree data structure from items dissected from a received
corpus, identifies sub-strings of N items or less from the prefix tree, and populates

the lexicon with the identified sub-strings.

WO 01/37128 PCT/US00/41870

31
32. A modeling agent according to claim 31, wherein the statistical
calculator determines the likelihood of the identified sub-strings, and wherein the

modeling agent re-segments the corpus in an attempt to improve sub-string

likelihood.

PCT/US00/41870

WO 01/37128

1/5

sweilbold Y9l ~ 9k 091 ~ 841 ~
uones|ddy Jaug ' eleq ‘'soinpoyy | sweibolig wa)sAg
091 — . agl —1 | Paeoghey weibo.id 1BY10 uoneoiddy | Bunesadp
8L~ ¢ 99l o .
= }JoMiaN -c| /
=1 nm ealy %_>>vam_8_>_ A M @ i g
Z8l 981 w 891 [0]
; 0S1L ~ | 9})
‘ ————
N—os1 = _Mgnm__ (V9T eeqg)
8l — 9G1 | = = Junoo2oYy/weibold
- 4
) [¥S1 —~ —
(\ soep9U| ’ 29T sonpopy)
Sospont | E10d | osnopy e9BpIaIU] ISOS (_Weiboid 12uio)
081 SHOMBN _ HOMISN O/l || /pieoghey r ~
Baly |20 N— < -
0L1 jusby
T I 71
N .&om sng , v abenbue
9€l L Y0l
091 sweiboiy
uonesddy
S N J
) & ™
Jaydepy [') waysAg Bujelado
O9pPIA - \
oVl (NVY)
“ nun Buissasoid :
VLl
clLl l\ 44"
soid
_/ L TN (now)
cel -/ Z0L Aloway wasAs
el

PCT/US00/41870

WO 01/37128

2/5

\ 1444 ™

¢ae ™\ 0¢e ™ !

lesgng
ainpong
eled
WWOa

1°S
Bujuiel)
olweuAQg

uooIXan
olweuAQq

Aowaspebelo)g

90z —/

w_‘w) 9L ~ v_,w) mrw) NFNJ
Jebeuepy ux4 uxq ux4 v
Aowapy uonejuswboeg |uonelsusg| sisAjleuy Joje|nojen
ainonig olweuAq uodixa | Aouenbaug || Aujigeqoid Aoxuepn
ejed lojessusg aunponis eyeq
|l|||t|mm.N|||\N |||||||||||||||||||||||| i

(s)19)j0u0D

¢0¢ —1

80¢

(s)uoneonddy

T —

WO 01/37128 PCT/US00/41870
3/5
- ‘? ~—300
302 D
306'
(Crcen) (Bc (__zcy
-
C b1,¢, C, 5308
310 312
(" b,AC, ") (" b,0.C,)
3044 314 316
C bﬂQ (CbEC)
318
(byF.Cy)
.

400
=

LMA invoked as corpus
is loaded into memory
and split into subsets

y

502

Data structure generator
assigns each item of subset to
a node in data structure and
icalculates a frequency value for]

the item

— 506
%

Additional Yes

504

508

read next subset

A

subsets?

510

Minimize data structure
size utilizing pruning
technique

WO 01/37128 PCT/US00/41870

4/5

Fig. 6
-
v

400

Build prefix tree from received
corpus

v — 602

Generate an initial lexicon from

the prefix tree using substrings
less than a given length (L)

502 < v 604

Process the lexicon to remove

obvious illogical words form the
initial lexicon

504

Segment the corpus based on
the initial lexicon to generate a
segmented corpus

y
Perform language model training| — 606
using the segmented corpus

! 608
Language Model Re-segment the segmented 8
corpus using SLM-based
segmentation
v — 610

Update lexicon from re-
segmented corpus

~ 506
. . — 612 618
Re-build the language model and|
compute language model Delete word with the
perplexity based on current lowest uni-count and
lexicon and segmentation re-segment into
614 smaller words

No

Converge?

616

Threshold
met?

WO 01/37128

5/5

Fig. S

PCT/US00/41870

o~ 500
400
Build a prefix tree from the
received corpus
y — 502
Get a very large lexicon
from the prefix tree and pre-
process the lexicon to
remove some obvious
illogical words
v 504
Segment the corpus based
on the initial lexicon
y 506

Alter the lexicon,
segmentation and the
language model to lower
perplexity. and iterate until
convergence

End

Zig. 7

700
/_ a2

Storage Medium/Device

702

Executable Instructions to
Implement Language
Modeling Agent

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

