Title: METHOD OF TREATING BREAST CANCER USING A COMBINATION OF VITAMIN D ANALOGUES AND OTHER AGENTS

Inhibition of MCF-7 cells by 1,24 (OH)2 D2

Abstract: The invention provides therapeutic methods for inhibiting, ameliorating or alleviating the hyperproliferative cellular activity of diseases of the breast, e.g., breast cancer, which includes administering to a patient in need thereof an active vitamin D analogue and another anticancer agent. Cell differentiation is promoted, induced or enhanced without causing, to the patient dose-limiting hypercalcemia and hypercalciuria.
METHOD OF TREATING BREAST CANCER
USING A COMBINATION OF VITAMIN D ANALOGUES AND OTHER AGENTS

CROSS-REFERENCE TO RELATED APPLICATIONS
None

TECHNICAL FIELD

This invention relates generally to a method of treating hyperproliferative diseases, particularly breast cancer. The method of the invention uses active compounds of vitamin D in combination with other agents to inhibit the hyperproliferative cellular activity of these diseases and to promote differentiation of the cells.

BACKGROUND OF THE INVENTION

Breast cancer is the most commonly diagnosed cancer in women in both United States and worldwide. Breast cancer rates are the highest in industrialized countries. In the United States, the incidence of breast cancer has more than doubled in the past 30 years. In 1964, the lifetime risk was 1 in 20. Today it's 1 in 8. Approximately 185,700 new cases are diagnosed in the U.S. annually, and breast cancer is responsible for about 44,560 deaths in the U.S. per year. An estimated 3 million women in the U.S. today are living with breast cancer of which 2 million have been diagnosed with the disease and 1 million have the disease but do not yet know it. Worldwide, it is estimated that 1.2 million new diagnoses and 500,000 deaths from breast cancer will occur this year.

While predominantly observed in women, 1,400 cases of breast cancer are diagnosed annually in men, and 260 men die of breast cancer per year. When breast cancer does occur in men, it is usually not recognized until late, and thus, the results of treatment are poor. In women, carcinoma of the breast is rarely seen before the age of 30 and the incidence rises rapidly after menopause.

Breast cancer often first manifests itself as a painless lump, detectable by self-examination and clinical breast exams including mammograms. Commonly, growth initiates in the lining of the ducts or in the lobules of the breast.

No universally successful method for the prevention or treatment of breast cancer is currently available. Management of the disease currently relies on a combination of early diagnosis (through routine breast screening procedures) and aggressive treatment, which may include one or more of surgery, radiotherapy, chemotherapy and hormone therapy.
Current surgical treatments include mastectomy (removal of the entire breast) or lumpectomy (removal of the tumor and surrounding tissue) for localized tumors. Localized disease can be effectively treated by surgery, if all of the cancer can be removed. Surgical treatment is often followed by chemotherapy, radiotherapy, or hormone-blocking therapy, especially if the disease has metastatized. Breast cancer cells can metastasize to the lymph nodes, skin, lungs, liver, brain, or bones. Metastasis may occur early or late in the disease progression, although typically metastasis occurs once the cancerous growth reaches a size of about 20 mm. Currently, there are no therapies that are effective for long term treatment of breast cancer that has metastasized to lymph nodes or distal sites.

It has been reported that certain vitamin D compounds and analogues are potent inhibitors of malignant cell proliferation and are inducers/stimulators of cell differentiation. For example, U.S. Patent No. 4,391,802 issued to Suda et al. discloses that 1α-hydroxyvitamin D compounds, specifically 1α,25-dihydroxyvitamin D₃ and 1α-hydroxyvitamin D₃, possess potent antileukemic activity by virtue of inducing the differentiation of malignant cells (specifically leukemia cells) to nonmalignant macrophages (monocytes), and are useful in the treatment of leukemia. Antiproliferative and differentiating actions of 1α,25-dihydroxyvitamin D₃ and other vitamin D₃ analogues have also been reported with respect to cancer cell lines. More recently, an association between vitamin D receptor gene polymorphism and cancer risk has been reported, suggesting that vitamin D receptors may have a role in the development, and possible treatment, of cancer.

Previous studies of vitamin D compounds and cancer treatment have focused exclusively on vitamin D₃ compounds. Even though these compounds may indeed be highly effective in promoting differentiation in malignant cells in culture, their practical use in differentiation therapy as anticancer agents is severely limited because of their equally high potency as agents affecting calcium metabolism. At the levels required in vivo for effective use as, for example, antileukemic agents, these same compounds can induce markedly elevated and potentially dangerous blood calcium levels by virtue of their inherent calcemic activity. That is, the clinical use of 1α,25-dihydroxyvitamin D₃ and other vitamin D₃ analogues as anticancer agents is severely limited by the risk of hypercalcemia. This indicates a need for compounds with greater specific activity and selectivity of action, i.e., vitamin D compounds with antiproliferative and differentiating effects but which have less calcemic activity. It also indicates a need for co-administration agents which can be
combined with vitamin D₃ agents, allowing for smaller doses of vitamin D₃ compounds to be used while achieving the same or greater beneficial effect.

SUMMARY OF THE INVENTION

The present invention includes a method of inhibiting or reducing the hyperproliferative activity of human breast cancer or neoplastic cells. The method includes use of active vitamin D compounds with other anticancer agents to additively or synergistically inhibit abnormal cell growth and/or promote cell differentiation.

It is anticipated that the vitamin D compounds used in combination with various anticancer drugs can give rise to a significantly enhanced cytotoxic or antineoplastic effect on cancerous cells, thus providing an increased therapeutic effect. Specifically, a significantly increased growth-inhibitory effect is obtained with the above disclosed combinations utilizing lower concentrations of the anticancer drugs compared to the treatment regimes in which the drugs are used alone. Such combinations provide therapy wherein adverse side effects associated with the various anticancer drugs are considerably reduced compared to side effects normally observed with the anticancer drugs used alone in larger doses. Alternatively, such combination therapy allows for a greater antineoplastic effect to be derived from the usual dose of anticancer drugs used in standard treatment regimes, enhancing the effectiveness of the therapy and/or reducing the total number of treatments required.

The foregoing are realized in one aspect by providing a pharmaceutical combination comprising a first and second agent. The first agent comprises 1α,24-dihydroxyvitamin D₂ and the second agent comprises doxorubicin, cisplatin and paclitaxel or combinations thereof. The first and second agents are suitably present in therapeutically effective amounts and agents work synergistically to inhibit the growth of human breast cancer cells.

The invention also provides a method of synergistically inhibiting the growth of human breast cancer cells. The method comprises contacting the cells with a first composition which comprises 1α,24-dihydroxyvitamin D₂ and a second composition which comprises an agent selected from the group consisting of doxorubicin, cisplatin and paclitaxel or combinations thereof.

The invention also provides for a combination of vitamin D agents and anticancer agents that work additively. In this aspect of the invention, a pharmaceutical combination
is provided. The pharmaceutical combination comprises a first agent which is 1α,24-dihydroxyvitamin D₂ and a second agent which is selected from the group consisting of busulfan, carboplatin, etoposide, 5-fluorouracil and tamoxifen. The first and second agents have additive properties for inhibiting growth of human breast cancer cells.

The invention also provides another pharmaceutical combination for the inhibition of human breast cancer cells. The pharmaceutical combination comprises a therapeutically effective dose of an additive combination of a first agent which is 1α,24-dihydroxyvitamin D₂ and a second agent which is selected from the group consisting of busulfan, carboplatin, etoposide, 5-fluorouracil and tamoxifen.

In another embodiment the invention provides a method of additively inhibiting the growth of human breast cancer cells. The method comprises contacting the cells with a first composition which comprises 1α,24-dihydroxyvitamin D₂ and a second composition which comprises an agent selected from the group consisting of busulfan, carboplatin, etoposide, 5-fluorouracil and tamoxifen or combinations thereof.

Effective amounts of active vitamin D compounds can be administered to patients with cancer or neoplasms. When administered the proliferative activity of the abnormal neoplastic cells is inhibited, reduced, or stabilized, and/or cell differentiation is induced, promoted or enhanced.

The effective amounts of vitamin D compound can be given in an administration protocol in a variety of dose ranges depending on the particular need of the patient. One such suitable dose range is a range from .01 μg to 400 μg. Another suitable dose range is administered on a daily basis per kilogram of body weight, the dose ranges being from 0.001 μg/kg/day to 5.0 μg/kg/day. Another dosing regimen calls for a high dosage, generally 10 μg/dose or greater up to 400 μg/dose or greater, given episodically or intermittently. The protocol or dosage regimen in accordance with the present invention provides an improved therapeutic index for active forms of vitamin D analogues compared to administration via conventional regimens. The episodic dosing is also cost effective as a lower quantity of active agent is needed.

Administration of the active vitamin D may be prior to, simultaneous with, or after administration of the other therapeutic agents.

All routes of administration of the active vitamin D or its co-administration with other therapeutic agents are suitable. However, parenteral administration of the active
vitamin D compounds alone or in combination with other agents, provides advantages over other treatment modalities. Parenteral administration bypasses the increased calcemic activity that occurs in the gastrointestinal tract from oral administration and reduces incidence or risk of esophagitis. Parenteral dosing also provides for greater compliance and safety because the drugs are generally administered by a health care professional.

A fuller appreciation of specific adaptations, compositional variations, and physical attributes will be gained upon an examination of the following detailed description of preferred embodiments, taken in conjunction with the appended claims.

BRIEF DESCRIPTION OF THE DRAWING(S)

FIG. 1 shows the growth inhibition of MCF-7 cells by 1α,24-dihydroxyvitamin D₂.

FIG. 2 shows the growth inhibition of MCF-7 cells by etoposide and 1α,24-dihydroxyvitamin D₂.

FIG. 3 shows an isobologram of etoposide and 1α,24-dihydroxyvitamin D₂ in MCF-7 cells.

FIG. 4 shows the growth inhibition of MCF-7 cells by etoposide and .1 nM 1α,24-dihydroxyvitamin D₂.

FIG. 5 shows the growth inhibition of MCF-7 cells by doxorubicin and 1α,24-dihydroxyvitamin D₂.

FIG. 6 shows an isobologram of doxorubicin and 1α,24-dihydroxyvitamin D₂ in MCF-7 cells.

FIG. 7 shows the growth inhibition of MCF-7 cells by doxorubicin and .01 nM 1α,24-dihydroxyvitamin D₂.

FIG. 8 shows the growth inhibition of MCF-7 cells by doxorubicin and .1 nM 1α,24-dihydroxyvitamin D₂.

FIG. 9 shows the growth inhibition of MCF-7 cells by doxorubicin and 1 nM 1α,24-dihydroxyvitamin D₂.

FIG. 10 shows the growth inhibition of MCF-7 cells by doxorubicin and 10 nM 1α,24-dihydroxyvitamin D₂.

FIG. 11 shows the growth inhibition of MCF-7 cells by tamoxifen and 1α,24-dihydroxyvitamin D₂.

FIG. 12 shows an isobologram of tamoxifen and 1α,24-dihydroxyvitamin D₂ in MCF-7 cells.
FIG. 13 shows the growth inhibition of MCF-7 cells by tamoxifen and .01 nM 1α,24-dihydroxyvitamin D2.

FIG. 14 shows the growth inhibition of MCF-7 cells by tamoxifen and .1 nM 1α,24-dihydroxyvitamin D2.

FIG. 15 shows the growth inhibition of MCF-7 cells by chlorambucil and 1α,24-dihydroxyvitamin D2.

FIG. 16 shows an isobologram of chlorambucil and 1α,24-dihydroxyvitamin D2 in MCF-7 cells.

FIG. 17 shows the growth inhibition of MCF-7 cells by chlorambucil and .1 nM 1α,24-dihydroxyvitamin D2.

FIG. 18 shows the growth inhibition of MCF-7 cells by busulfan and 1α,24-dihydroxyvitamin D2.

FIG. 19 shows an isobologram of busulfan and 1α,24-dihydroxyvitamin D2 in MCF-7 cells.

FIG. 20 shows the growth inhibition of MCF-7 cells by busulfan and .1 nM 1α,24-dihydroxyvitamin D2.

FIG. 21 shows combination index values for chemotherapeutic agents and 1α,24-dihydroxyvitamin D2 combinations in MCF-7 cells.

Before the embodiments of the invention are explained in detail, it is to be understood that the phraseology and terminology used herein are for the purpose of description and should not be regarded as limiting. The use of “including”, “having” and “comprising” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items and equivalents thereof.

DETAILED DESCRIPTION OF THE INVENTION

The present invention includes an effective method for the treatment of neoplastic and hyperplastic diseases. Particularly, the present invention relates to therapeutic methods for inhibiting, ameliorating or alleviating the hyperproliferative cellular activity of diseases of the breast, e.g., breast cancer, and inducing, enhancing or promoting cell differentiation in the diseased cells. The present invention includes a method of inhibiting or reducing the hyperproliferative activity of human breast cancer cells. The method includes use of active vitamin D compounds with other anticancer agents to additively or synergistically inhibit
abnormal cell growth and/or promote cell differentiation. Suitably, the active vitamin D analogs is 1α,24-dihydroxyvitamin D₂.

As used herein the term "additively inhibits" means that the total inhibitory effect of the agents administered is approximately the sum of their individual inhibitory effects.

As used herein the term "synergistically inhibits" means that the total inhibitory effect of the agents administered is greater than the sum of the individual inhibitory effects of the agents.

It is known that vitamin D₃ must be hydroxylated in the C-1 and C-25 positions before it is activated, i.e., before it will produce a biological response. A similar metabolism appears to be required to activate other forms of vitamin D, e.g., vitamin D₂ and vitamin D₄. Therefore, as used herein, the term "activated vitamin D" or "active vitamin D" is intended to refer to a vitamin D compound or analogue that has been hydroxylated in at least the C-1 position of the A ring of the molecule and either the compound itself or its metabolites in the case of a prodrug, such as 1α-hydroxyvitamin D₂, binds the vitamin D receptor (VDR). Vitamin D compounds which are hydroxylated only in the C-1 position are referred to herein as "prodrugs." Such compounds undergo further hydroxylation in vivo and their metabolites bind the VDR.

Also, as used herein, the term "lower" as a modifier for alkyl, alkenyl acyl, or cycloalkyl is meant to refer to a straight or branched, saturated or unsaturated hydrocarbon radical having 1 to 4 carbon atoms. Specific examples of such hydrocarbon radicals are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, ethenyl, propenyl, butenyl, isobutenyl, isopropenyl, formyl, acetyl, propionyl, butyryl or cyclopropyl. The term "aromatic acyl" is meant to refer to a unsubstituted or substituted benzoyl group.

As used herein, the term "hydrocarbon moiety" refers to a lower alkyl, a lower alkenyl, a lower acyl group or a lower cycloalkyl, i.e., a straight or branched, saturated or unsaturated C₁-C₄ hydrocarbon radical.

The term "contacting" is used herein interchangeably with the following: combined with, added to, mixed with, passed over, incubated with etc. Moreover, the compounds of present invention can be "administered" by any conventional method such as, for example, parenteral, oral, topical and inhalation routes as described herein.

Thus, the present invention includes a method of treating malignant breast cells (i.e., inhibiting or reducing their hyperproliferative activity and/or inducing and enhancing
their differentiation) with an effective amount of a vitamin D analog, co-administered with various inhibitory agents such that the combination of the vitamin D analog and inhibitory agent provides additive or synergistic effects in the inhibition of hyperproliferative activity of the breast cancer cells, i.e., the cells are treated or contacted with both agents.

The term "co-administration" is meant to refer to a combination therapy by any administration route in which two or more agents are administered to cells, to a patient or to a subject. Co-administration of agents may be referred to as combination therapy or combination treatment. In regard to treatment of patients, the agents may be the same dosage formulations or separate formulations. For combination treatment with more than one active agent, where the active agents are in separate dosage formulations, the active agents can be administered concurrently, or they each can be administered at separately staggered times. The agents may be administered simultaneously or sequentially, as long as they are given in a manner sufficient to allow both agents to achieve effective concentrations in the body. The agents may be administered by different routes, e.g., one agent may be administered intravenously while a second agent is administered intramuscularly, intravenously or orally. The agents also may be in an admixture, as, for example, in a single tablet.

In time-sequential co-administration, one agent may directly follow administration of the other or the agents may be give episodically, i.e., one can be given at one time followed by the other at a later time, e.g., within a week. An example of a suitable co-administration regimen is where an active vitamin D compound is administered from 0.5 to 7 days prior to administration of a cytotoxic or other therapeutic agent.

Use of an active vitamin D analog in combination with various anticancer drugs can give rise to a significantly enhanced cytotoxic effect on cancerous cells, thus providing an increased therapeutic effect. Specifically, as a significantly increased growth-inhibitory effect is obtained with the above disclosed combinations utilizing lower concentrations of the anticancer drugs compared to the treatment regimes in which the drugs are used alone, there is the potential to provide therapy wherein adverse side effects associated with the anticancer drugs are considerably reduced than normally observed with the anticancer drugs used alone in larger doses. Possible dose ranges of these co-administered second anticancer agents are found below in Table 1

TABLE 1
<table>
<thead>
<tr>
<th>Agent</th>
<th>Dose Ranges per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busulfan</td>
<td>0.01 – 0.1 mg/kg</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>7.8 mg/kg</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>0.4 – 2.6 mg/kg</td>
</tr>
<tr>
<td>Chlorambucil</td>
<td>0.1 – 0.4 mg/kg</td>
</tr>
<tr>
<td>Daunomycin</td>
<td>0.65 – 1.0 mg/kg</td>
</tr>
<tr>
<td>Doxorubicin (Adriamycin)</td>
<td>1.3 – 1.6 mg/kg</td>
</tr>
<tr>
<td>Estramustine (Emcyt)</td>
<td>14 mg/kg</td>
</tr>
<tr>
<td>Etoposide</td>
<td>0.75 – 2.2 mg/kg</td>
</tr>
<tr>
<td>5-Fluorouracil</td>
<td>10 – 25 mg/kg</td>
</tr>
<tr>
<td>Hydroxyurea</td>
<td>20 – 80 mg/kg</td>
</tr>
<tr>
<td>Hydroxycarbamide (Hydrea)</td>
<td>7 mg/kg</td>
</tr>
<tr>
<td>Idarubicin</td>
<td>0.26 mg/kg</td>
</tr>
<tr>
<td>Melphalan (Alkeran)</td>
<td>0.08 – 0.2 mg/kg</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>0.03 – 260 mg/kg</td>
</tr>
<tr>
<td>Mitomycin</td>
<td>0.1 – 0.5 mg/kg</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>2.9 – 3.8 mg/kg</td>
</tr>
<tr>
<td>Prednimustine</td>
<td>2.15 mg/kg</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>0.14 mg/kg</td>
</tr>
</tbody>
</table>

Depending on the combination of the particular vitamin D analog and second anticancer agent, and other factors such as concentration and amount of the agents, additive, synergistic or antagonistic inhibiting growth effects on human breast cancer cells can be found.

1α,24-dihydroxyvitamin D₂ when utilized in combination with the agent doxorubicin, cisplatin and paclitaxel can synergistically inhibits the growth of human breast cancer cells. 1α,24-dihydroxyvitamin D₂ can also be utilized with a second composition to additively inhibit the growth of human breast cancer cells. Such second compositions include busulfan, carboplatin, etoposide, 5-fluorouracil and tamoxifen and combinations thereof.

The effective amounts of vitamin D compound can be given in an administration protocol in a variety of dose ranges depending on the particular need of the patient. One such suitable dose range is administered on a daily basis per kilogram of body weight, the dose ranges being from 0.001 μg/kg/day to 5.0 μg/kg/day. Another dosing regimen calls for a high dosage, generally 10 μg/dose or greater up to 400 μg/dose or greater, given episodically or intermittently. Such protocols or dosage regimens provide an improved therapeutic index for active forms of vitamin D analogues compared to administration via
conventional regimens. The episodic dosing is also cost effective as less active agent is needed.

In an episodic dosing regimen, each single dose is sufficient to upregulate vitamin D hormone receptors in target cells. It is believed that continuous dosing is not required because the binding and upregulation by vitamin D compounds is sufficient to initiate the cascade of intracellular metabolic processes occurring with receptor binding. Intermittent dosing reduces the risk of hypercalcemia, and thus, the method in accordance with the present invention can be used to treat hyperproliferative diseases by administering any active vitamin D compound. At the same time, it is contemplated that the risk of hypercalcemia can be further mitigated if the active vitamin D compound is a hypocalcemic active vitamin D compound.

It is further believed that the intermittent dose regimen can be used to effect any therapeutic effect that is attributable to active vitamin D, e.g., antiproliferative activity, reduction of loss of bone mass, etc. In regard to antiproliferative activity, the value of the intermittent dosing is that antihyperproliferative activity and upregulation of vitamin D receptors occurs with a single dose without the side effects of hypercalcemia and hypercalciuria that occur with recurrent daily dosing.

The episodic dose can be a single dose or, optionally, divided into 2-4 subdoses which, if desired, can be given, e.g., twenty minutes to an hour apart until the total dose is given. The compounds in accordance with the present invention are administered in an amount that raises serum vitamin D levels to a supraphysiological level for a sufficient period of time to induce differentiation or regression of a tumor or neoplasm without causing hypercalcemia or with substantially reduced risk of hypercalcemia. The properties of the hypocalcemic vitamin D compounds are particularly beneficial in permitting such supraphysiologic levels.

As described above, the present invention relates to a method of co-administration of active vitamin D compounds with an anticancer or antineoplastic agent. Therapeutic antihyperproliferative benefits are achieved with intermittent dosing of active vitamin D with cytotoxic, i.e., other chemotherapeutic or antineoplastic, agents. Many antineoplastic or cytotoxic agents must be delivered through a parenteral route of administration, and thus, a protocol of injectable active vitamin D and antineoplastic agent can be set up on a routine basis. The co-administration of active vitamin D and antineoplastic agents can be prior to, after, or simultaneous with each other. However, it is believed that the prior administration
of active vitamin D with the later episodic administration of a cytotoxic or antineoplastic agent is of benefit. For example, a high dose active vitamin D upregulates the receptors, and primes, and promotes cell differentiation. Such upregulation and priming, potentially permits less cytotoxic or antineoplastic agent than would typically be required if the cytotoxic agent were administered alone.

Those of ordinary skill in the art will readily optimize effective doses and co-administration regimens as determined by good medical practice and the clinical condition of the individual patient. Regardless of the manner of administration, it will be appreciated that the actual preferred amounts of active compound in a specific case will vary according to the efficacy of the specific compound employed, the particular compositions formulated, the mode of application, and the particular situs and organism being treated. For example, the specific dose for a particular patient depends on age, body weight, general state of health, on diet, on the timing and mode of administration, on the rate of excretion, and on medicaments used in combination and the severity of the particular disorder to which the therapy is applied. Dosages for a given patient can be determined using conventional considerations, e.g., by customary comparison of the differential activities of the subject compounds and of a known agent, such as by means of an appropriate conventional pharmacological protocol. A physician of ordinary skill can readily determine and prescribe the effective amount of the drug required to counter or arrest the progress of the condition. Optimal precision in achieving concentrations of drug within the range that yields efficacy without toxicity requires a regimen based on the kinetics of the drug's availability to target sites. This involves a consideration of the distribution, equilibrium, and elimination of a drug. The dosage of active ingredient in the compositions of this invention may be varied; however, it is necessary that the amount of the active ingredient be such that an efficacious dosage is obtained. The active ingredient is administered to patients (animal and human) in need of treatment in dosages that will provide optimal pharmaceutical efficacy.

The active vitamin D analogs and inhibitory agents can be co-administered separately at the same time, at proximate times, or can be delivered simultaneously in an admixture. Both the vitamin D analog, the inhibitory agent, or the admixed combination of the two can be employed in admixtures with conventional excipients, e.g., pharmaceutically acceptable carrier substances suitable for enteral (e.g., oral) or parenteral application which do not deleteriously react with the active compounds.
Active vitamin D compounds can be formulated in pharmaceutical compositions in a conventional manner using one or more conventional excipients, which do not deleteriously react with the active compounds, e.g., pharmaceutically acceptable carrier substances suitable for enteral administration (e.g., oral), parenteral, topical, buccal or rectal application, or by administration by inhalation or insufflation (e.g., either through the mouth or the nose).

Generally, acceptable carriers for pharmaceutical formulation include, but are not limited to, water, salt solutions, alcohols, gum arabic, vegetable oils (e.g., almond oil, corn oil, cottonseed oil, peanut oil, olive oil, coconut oil), mineral oil, fish liver oils, oily esters such as Polysorbate 80, polyethylene glycols, gelatine, carbohydrates (e.g., lactose, amylose or starch), magnesium stearate, talc, silicic acid, viscous paraffin, fatty acid monoglycerides and diglycerides, pentaerythritol fatty acid esters, hydroxy methylcellulose, polyvinyl pyrrolidone, etc.

Of particular interest is the parenteral, e.g., injectable, dosage form. Using the parenteral route of administration allows for bypass of the first pass of active vitamin D compound through the intestine, thus avoiding stimulation of intestinal calcium absorption, and further reduces the risk of esophageal irritation which is often associated with high dose oral administration. Because an injectable route of administration is typically done by a health care professional, the dosing can be more effectively controlled as to precise amount and timing. Parenteral administration suitably includes subcutaneous, intramuscular, or intravenous injection, nasopharyngeal or mucosal absorption, or transdermal absorption. Where indicated, the vitamin D compounds may also be given by direct injection into the tumor by intraarterial delivery or delivery via the portal vein.

The injectable compositions may take such forms as sterile suspensions, solutions, or emulsions in oily vehicles (such as coconut oil, cottonseed oil, sesame oil, peanut oil or soybean oil) or aqueous vehicles, and may contain various formulating agents. Alternatively, the active ingredient may be in powder (lyophilized or non-lyophilized) form for reconstitution at the time of delivery with a suitable vehicle, such as sterile water. In injectable compositions, the carrier is typically sterile, pyrogen-free water, saline, aqueous propylene glycol, or another injectable liquid, e.g., peanut oil for intramuscular injections. Also, various buffering agents, preservatives, suspending, stabilizing or dispensing agents, surface-active agents and the like can be included. Aqueous solutions may be suitably buffered, if necessary, and the liquid diluent first rendered isotonic with sufficient saline or
glucose. Aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intraperitoneal injection purposes. In this connection, the sterile aqueous media employed are all readily obtainable by standard techniques well-known to those skilled in the art. The oily solutions are suitable for intra-articular, intramuscular and subcutaneous injection purposes. The preparation of all these solutions under sterile conditions is readily accomplished by standard pharmaceutical techniques well-known to those skilled in the art. Additionally, it is also possible to administer the compounds of the present invention topically when treating pathological conditions of the skin, and this may suitably be done by way of creams, jellies, gels, pastes, ointments and the like, in accordance with standard pharmaceutical practice.

The compounds formulated for parenteral administration by injection may be administered, by bolus injection or continuous infusion. Formulations for injection may be conveniently presented in unit dosage form, e.g., in ampoules or in multi-dose, multi-use containers, with an added preservative.

In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example, subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example, as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, e.g., a sparingly soluble salt.

Although it is considered that episodic parenteral administration of active vitamin D is highly beneficial, it is also contemplated within the scope of the present invention that enteral dosing, e.g., oral administration, can also be of benefit. Thus, episodic enteral dosing of high dose active vitamin D is also considered of benefit in achieving the upregulation of cell receptors.

For enteral application, particularly suitable are tablets, dragees, liquids, drops, suppositories, lozenges, powders, or capsules. A syrup, elixir, or the like can be used if a sweetened vehicle is desired. For oral administration, the pharmaceutical compositions may take the form of, for example, tablets or capsules prepared by conventional means with pharmaceutically acceptable excipients such as binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose); fillers (e.g., lactose, microcrystalline cellulose or calcium hydrogen phosphate); lubricants (e.g., magnesium stearate, talc or silica); disintegrants (e.g., potato starch or sodium starch glycolate); or
wetting agents (e.g., sodium lauryl sulphate). The tablets may be coated by methods well known in the art.

Liquid preparations for oral administration may take the form of, for example, solutions, syrups or suspensions, or they may be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations may be prepared by conventional means with pharmaceutically acceptable additives such as suspending agents (e.g., sorbitol syrup, cellulose derivatives or hydrogenated edible fats); emulsifying agents (e.g., lecithin or acacia); non-aqueous vehicles (e.g., almond oil, oily esters, ethyl alcohol or fractionated vegetable oils); and preservatives (e.g., methyl or propyl-p-hydroxybenzoates or sorbic acid). The preparations may also contain buffer salts, flavoring, coloring and sweetening agents as appropriate.

Preparations for oral administration may also be suitably formulated to give controlled release of the active compound. Many controlled release systems are known in the art.

For buccal administration, the compositions may take the form of tablets, lozenges or absorption wafers formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol, the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g. gelatin, for use in an inhaler or insufflator may be formulated containing a powder mix of the active compound and a suitable powder base such as lactose or starch.

The compounds may also be formulated in rectal or vaginal compositions such as suppositories containing conventional suppository bases or retention enemas. These compositions can be prepared by mixing the active ingredient with a suitable non-irritating excipient which is solid at room temperature (for example, 10° C to 32° C) but liquid at the rectal temperature, and will melt in the rectum or vagina to release the active ingredient. Such materials are polyethylene glycols, cocoa butter, other glycerides and wax. To prolong storage life, the composition advantageously may include an antioxidant such as ascorbic acid, butylated hydroxyanisole or hydroquinone.
The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration.

The pharmaceutical preparations can be sterilized and, if desired, be mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, coloring, flavoring and/or one or more other active compounds, for example, conjugated estrogens or their equivalents, anti-estrogens, calcitonin, bisphosphonates, calcium supplements, cobalamin, pertussis toxin, boron, and antihypercalcemic agents.

The present invention is further explained by the following examples which should not be construed by way of limiting the scope of the present invention.

VDR BINDING ANALYSES

Example 1: 1α,24-dihydroxyvitamin D$_2$ [1α,24-(OH)$_2$D$_2$]

The affinity of 1α,24-(OH)$_2$D$_2$ for the mammalian vitamin D receptor (VDR) was assessed using a commercially available kit of bovine thymus VDR and standard 1,25-(OH)$_2$D$_3$ solutions from Incstar (Stillwater, Minnesota). The half-maximal binding of chemically synthesized 1α,24-(OH)$_2$D$_2$ was approximately 150 pg/ml whereas that of 1α,25-(OH)$_2$D$_3$ was 80 pg/ml. Thus, the 1α,24-(OH)$_2$D$_2$ had a very similar affinity for bovine thymus VDR as did 1α,25-(OH)$_2$D$_3$, indicating that 1α,24-(OH)$_2$D$_2$ has potent biological activity.

Example 2: 1α,24-dihydroxyvitamin D$_2$ [1α,24-(OH)$_2$D$_2$]

VDR binding of vitamin D compounds by breast cells is demonstrated using the techniques of Skowronski et al., 136 *Endocrinology* (1995) 20-26, which is incorporated herein by reference. Breast-derived cell lines are cultured to near confluence, washed and harvested by scraping. Cells are washed by centrifugation, and the cell pellet resuspended in a buffered salt solution containing protease inhibitors. The cells are disrupted by sonication while cooling on ice. The supernatant obtained from centrifuging the disrupted cells at 207,000 x g for 35 min at 4°C is assayed for binding. 200 µL of soluble extract, (1-2 mg protein/ml supernatant) is incubated with a 1 nM 3H-1α,25-(OH)$_2$D$_3$ and increasing concentrations of 1α,24-(OH)$_2$-D$_2$ (0.01-100 nM) for 16-20 hr at 4°C. Bound and free
hormones are separated with hydroxylapatite using standard procedures. Specific binding is calculated by subtracting nonspecific binding obtained in the presence of a 250-fold excess of nonradioactive 1α,25-(OH)2D3 from the total binding measured. The results demonstrate that 1α,24-(OH)2D2 has strong affinity for breast VDR, indicating that 1α,24-(OH)2D2 has potent biological activity in respect of breast cells.

GENE EXPRESSION

Example 3: 1α,24(S)-dihydroxyvitamin D2 and 1α,24(R)-dihydroxy-vitamin D2 1α,24(S)-(OH)2D2 and 1α,24(R)-(OH)2D2

Using the plasmids pSG5-hVDR1/3, a vitamin D receptor (VDR)-expressing plasmid, and p(CT4)4TKGH, a plasmid containing a Growth Hormone (GH) gene, under the control of a vitamin D-responsive element (VDRE), experiments were conducted to explore the ability of 1α,24-(OH)2D2 to induce vitamin D-dependent growth hormone acting as a reporter gene compared to that of 1α,25-(OH)2D3. Cells in culture were co-transfected into Green monkey kidney, COS-1 cells with these two plasmids. One plasmid contained the gene for Growth Hormone (GH) under the control of the vitamin D responsive element (VDRE) and the other plasmid contained the structural gene for the vitamin D receptor (VDR). These transfected cultures were incubated with 1α,24-(OH)2D2 or 1α,25-(OH)2D3, and the production of growth hormone was measured.

As shown in Table 2, both 1α,24(S)-(OH)2D2 and its epimer, 1α,24(R)-(OH)2D2, had significantly more activity in this system than 25-OH-D3, with 1α,24(S)-(OH)2D2 having nearly the same activity as 1α,25-(OH)2D3.

<table>
<thead>
<tr>
<th>Vitamin D Inducible Growth Hormone Production</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>In Transfected COS-1 Cells</td>
<td></td>
</tr>
<tr>
<td>Vitamin D Inducible Growth Hormone Production</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inducer</th>
<th>Molar Concentration</th>
<th>Total GH Production (ng/ml)</th>
<th>Net vitamin D inducible GH-production (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td></td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>25-OH-D3</td>
<td>1x10^-7</td>
<td>245</td>
<td>201</td>
</tr>
<tr>
<td></td>
<td>1x10^-6</td>
<td>1100</td>
<td>1056</td>
</tr>
<tr>
<td></td>
<td>1x10^-5</td>
<td>775</td>
<td>731</td>
</tr>
</tbody>
</table>
17

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration</th>
<th>1x10^{-10}</th>
<th>1x10^{-9}</th>
<th>1x10^{-8}</th>
<th>1x10^{-7}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1α,25-(OH)_2D_3</td>
<td></td>
<td>74</td>
<td>925</td>
<td>1475</td>
<td>881</td>
</tr>
<tr>
<td>1α,24(S)-(OH)_2D_2</td>
<td>5x10^{-10}</td>
<td>425</td>
<td>1350</td>
<td>1182</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>5x10^{-9}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5x10^{-8}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1α,24(R)-(OH)_2D_2</td>
<td>1x10^{-9}</td>
<td>80</td>
<td></td>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>1x10^{-8}</td>
<td>1100</td>
<td></td>
<td></td>
<td>1056</td>
</tr>
<tr>
<td></td>
<td>1x10^{-7}</td>
<td>1300</td>
<td></td>
<td></td>
<td>1256</td>
</tr>
</tbody>
</table>

Averages of duplicate determinations

INHIBITION OF CELL PROLIFERATION

Example 4: 1α,24-dihydroxyvitamin D2 [1α,24-(OH)_2D_2]

Inhibition of cell proliferation is demonstrated using the techniques of Skowronski et al., 132 Endocrinology (1993) 1952-1960 and 136 Endocrinology (1995) 20-26, both of which are incorporated herein by reference. The cell line MCF-7 is seeded in six-well tissue culture plates at a density of about 50,000 cells/plate. After the cells have attached and stabilized, about 2-3 days, the medium is replenished with medium containing vehicle or the active vitamin D analogue 1α,24-(OH)_2D_2, at concentrations from 10^{-11} M to 10^{-7} M. Medium containing test analogue or vehicle is replaced every three days. After 6-7 days, the medium is removed, the cells are rinsed, precipitated with cold 5% trichloroacetic acid, and washed with cold ethanol. The cells are solubilized with 0.2 N sodium hydroxide, and the amount of DNA determined by standard procedures. The results show that cultures incubated with 1α,24-(OH)_2D_2 have significantly fewer cells than the control cultures.

CLINICAL STUDIES

Example 5: General Treatment of Cancers with Vitamin D Compounds with Vitamin D Compounds

Patients with a known vitamin D receptor positive tumor (e.g., adenocarcinoma of the prostate, breast, lung, colon or pancreas, or transitional cell carcinoma of the bladder, or melanoma) participate in an open-label study of an active vitamin D compound in accordance with the present invention. Patients are placed on a reduced calcium diet prior
to treatment, to help minimize intestinal absorption and allow ever higher doses of the active vitamin D. This reduced calcium diet may be continued for the duration of treatment, and for one week after the last dose of the active vitamin D. The diet ideally restricts daily calcium intake to 400-500 mg. Patients also discontinue use of any vitamin D supplements or vitamin D replacement therapies. Each patient is also asked to drink 4-6 cups of fluid more than usual intake to assure adequate oral hydration.

Each subject is monitored at regular intervals for: (1) hypercalcemia, hyperphosphatemia, hypercalciuria, hyperphosphaturia and other toxicity; (2) evidence of changes in the progression of metastatic disease; and (3) compliance with the prescribed test drug dosage.

A non-daily, episodic dosing regimen is used, e.g., 10 μg or 20 μg per dose to about 200 μg or 400 μg/dose given once a week to once every 12 weeks. The route of administration can vary from oral to intravenous to regional delivery (e.g., arterial infusion, via the portal vein). Oral is typically the easiest route; however, intravenous administration is advantageous for high dosing because, for example, it generally avoids hypercalcemia due to stimulation of calcium absorption in the intestine. Regional delivery also permits high dosing and generally avoids any hypercalcemia. Although, in the case of the hypocalcemic compounds of the present invention, these compounds are inherently of low risk of producing hypercalcemia.

After 18 months of treatment, CAT scans, X-rays and bone scans used for evaluating the progress of metastatic disease show stable disease and partial or complete remission in many patients treated at the high dosage episodic regimen.

Example 6: Treatment of Breast Cancer

The method of Example 5 is used is used to treat patients with breast cancer. After 18 months of treatment, the progress of the cancer shows stable disease or partial remission.

Example 7: 1α,24-dihydroxy vitamin D₃ [1α,24-(OH)₂D₃]

Patients with breast cancer participate in an open-labeled study of 1α,24-(OH)₂D₃. Qualified patients are at least 40 years old. On admission to the study, patients begin a course of therapy with oral 1α,24-(OH)₂D₃ lasting 26 weeks, while discontinuing any previous use of calcium supplements, vitamin D supplements, and vitamin D hormone replacement therapies. During treatment, the patients are monitored at regular intervals for: (1) hypercalcemia, hyperphosphatemia, hypercalciuria, hyperphosphaturia and other
toxicity; (2) evidence of changes in the progression of metastatic disease; and (3) compliance with the prescribed test drug dosage.

The study is conducted in two phases. During the first phase, the maximal tolerated dosage (MTD) of daily oral 1α₂4-(OH)₂D₂ is determined by administering progressively higher dosages to successive groups of patients. All doses are administered in the morning before breakfast. The first group of patients is treated with 25.0 µg of 1α₂4-(OH)₂D₂. Subsequent groups of patients are treated with 50.0, 75.0 and 100.0 µg/day. Dosing is continued uninterrupted for the duration of the study unless serum calcium exceeds 11.6 mg/dL, or other toxicity of grade 3 or 4 is observed, in which case dosing is held in abeyance until resolution of the observed toxic effect(s) and then resumed at a level which has been decreased by 10.0 µg.

Results from the first phase of the study show that the MTD for 1α₂4-(OH)₂D₂ is above 20.0 µg/day, a level which is 10- to 40-fold higher than can be achieved with 1α₂5-(OH)₂D₃. Analysis of blood samples collected at regular intervals from the participating patients reveal that the levels of circulating 1α₂4-(OH)₂D₂ increase proportionately with the dosage administered, rising to maximum levels well above 100 pg/mL at the highest dosages, and that circulating levels of 1α₂5-(OH)₂D₃ are suppressed, often to undetectable levels. Serum and urine calcium are elevated in a dose responsive manner. Patients treated with the MTD of 1α₂4-(OH)₂D₂ for at least six months report that bone pain associated with metastatic disease is significantly diminished.

During the second phase, patients are treated with 1α₂4-(OH)₂D₂ for 24 months at 0.5 and 1.0 times the MTD. After one and two years of treatment, CAT scans, X-rays and bone scans used for evaluating the progression of metastatic disease show stable disease or partial remission in many patients treated at the lower dosage, and stable disease and partial or complete remission in many patients treated at the higher dosage.

CO-ADMINISTRATION OF VITAMIN D ANALOGS AND CYTOTOXIC AGENTS

Example 8: Co-administration of Vitamin D analogs and cytotoxic agents protocol

Vitamin D agents are tested for synergistic and additive interactions with anticancer drugs on human MCF-7 cancer cell lines. MCF-7 cells were plated in 96-well plates in triplicate and allowed to grow 48 hours. The medium was removed and replaced with medium containing vehicle (0.1% Ethanol), vitamin D compound 1,24(OH)₂D₂, and/or
chemotherapeutic agents (busulfan, 5-fluorouracil, paclitaxel, tamoxifen, cisplatin, carboplatin, doxorubicin, chlorambucil, or etoposide). Cells were allowed to grow for an additional 6 days with media changed on day 3. Cell number was then determined by a colorimetric MTS assay and expressed as a % of change from control cells grown in vehicle only. ID30 values (dose required to inhibit proliferation by 30%) were calculated to compare growth inhibitory effects of the compounds alone and in combination. Isobologram analysis was used to characterize the interaction between vitamin D compounds and anti-cancer drugs as synergistic, additive, or antagonistic.

Example 9: Growth Inhibition of MCF-7 Cells by 1,24(OH)2D2 alone.

MCF-7 cells were plated in 96-well plates in triplicate and allowed to grow 48 hours. The medium was removed and replaced with medium containing vehicle (0.1% Ethanol) and 1,24(OH)2D2 in various concentrations. Cells were allowed to grow for an additional 6 days with media changed on day 3. Cell number was then determined by a colorimetric MTS assay and expressed as a % of change from control cells grown in vehicle only. The growth inhibition of the cells by 1,24(OH)2D2 are shown in FIG. 1.

Example 10: Growth inhibition of MCF-7 cells by etoposide and with 1,24(OH)2D2.

MCF-7 cells were plated in 96-well plates in triplicate and allowed to grow 48 hours. The medium was removed and replaced with medium containing vehicle (Ethanol), 1,24(OH)2D2 in various concentrations, and etoposide in various concentrations. Cells were allowed to grow for an additional 6 days with media changed on day 3. Cell number was then determined by a colorimetric MTS assay and expressed as a % of change from control cells grown in vehicle only. FIG. 2 shows the percent inhibition of MCF-7 cells of etoposide alone or in combination with various concentrations of 1,24(OH)2D2. ID30 values (dose required to inhibit proliferation by 30%) were calculated to compare growth inhibitory effects of the compounds alone and in combination. Isobologram analysis was used to characterize the interaction between 1,24(OH)2D2 and etoposide as synergistic, additive, or antagonistic. The isobologram is shown in FIG. 3, and shows that etoposide in the concentration range of about 0 to 0.2 µM when combined with 1,24(OH)2D2 of various concentrations can provide an additive or mild synergistic effect. This effect can also be seen in FIG. 4. In FIG. 4 the addition columns show the amount of inhibition predicted if
the combination of etoposide and 1,24(OH)_2D_2 simply had an additive effect on each other. The growth inhibition chart of FIG. 4 shows that the combination of etoposide in concentrations of .1 μM, 1 μM, 10 μM and 100 μM with 0.1nM of 1,24(OH)_2D_2 produces additive to mild synergistic growth inhibition.

Example 11: Growth inhibition of MCF-7 cells by doxorubicin and with 1,24(OH)_2D_2.

MCF-7 cells were plated in 96-well plates in triplicate and allowed to grow 48 hours. The medium was removed and replaced with medium containing vehicle (Ethanol), 1,24(OH)_2D_2 in various concentrations, and doxorubicin in various concentrations. Cells were allowed to grow for an additional 6 days with media changed on day 3. Cell number was then determined by a colorimetric MTS assay and expressed as a % of change from control cells grown in vehicle only. FIG. 5 shows the percent inhibition of MCF-7 cells of doxorubicin alone or in combination with various concentrations of 1,24(OH)_2D_2. ID30 values (dose required to inhibit proliferation by 30%) were calculated to compare growth inhibitory effects of the compounds alone and in combination. Isobologram analysis was used to characterize the interaction between 1,24(OH)_2D_2 and doxorubicin as synergistic, additive, or antagonistic. The isobologram is shown in FIG. 6, and shows that doxorubicin in the concentration range of about 0 to 0.15 μM when combined with 1,24(OH)_2D_2 of various concentrations can provide a synergistic effect. This effect can also be seen in FIG.’s 7-10. FIG.’s 7-10 show that in certain concentrations, doxorubicin can have a synergistic effect when combined with 1,24(OH)_2D_2. In FIG.’s 7-10 the addition columns show the amount of inhibition predicted if the combination of doxorubicin and 1,24(OH)_2D_2 simply had an additive effect on each other. The growth inhibition chart of FIG. 7 shows that the combination of doxorubicin in concentrations of 0.01 μM, 0.1 μM, 1 μM, 10 μM and 100 μM with 0.01 nM of 1,24(OH)_2D_2 produces synergistic growth inhibition. The growth inhibition chart of FIG. 8 shows that the combination of doxorubicin in concentrations of 1 μM, 10 μM and 100 μM with 0.1 nM of 1,24(OH)_2D_2 produces synergistic growth inhibition. The growth inhibition chart of FIG. 9 shows that the combination of doxorubicin in concentrations of 0.001 μM, 0.01 μM, 0.1 μM, 1μM, 10 μM and 100 μM with 1 nM of 1,24(OH)_2D_2 produces synergistic growth inhibition. The growth inhibition chart of FIG. 10 shows that the combination of doxorubicin in concentrations of 0.01 μM, 0.01 μM, 1μM, 10 μM and 100 μM with 10 nM of 1,24(OH)_2D_2 produces synergistic growth inhibition.
Example 12: Growth inhibition of MCF-7 cells by tamoxifen and with 1,24(OH)\textsubscript{2}D\textsubscript{2}.

MCF-7 cells were plated in 96-well plates in triplicate and allowed to grow 48 hours. The medium was removed and replaced with medium containing vehicle (Ethanol), 1,24(OH)\textsubscript{2}D\textsubscript{2} in various concentrations, and tamoxifen in various concentrations. Cells were allowed to grow for an additional 6 days with media changed on day 3. Cell number was then determined by a colorimetric MTS assay and expressed as a % of change from control cells grown in vehicle only. FIG. 11 shows the percent inhibition of MCF-7 cells of tamoxifen alone or in combination with various concentrations of 1,24(OH)\textsubscript{2}D\textsubscript{2}. ID\textsubscript{30} values (dose required to inhibit proliferation by 30%) were calculated to compare growth inhibitory effects of the compounds alone and in combination. Isobologram analysis was used to characterize the interaction between 1,24(OH)\textsubscript{2}D\textsubscript{2} and tamoxifen as synergistic, additive, or antagonistic. The isobologram is shown in FIG. 12. In FIG. 13-14 the addition columns show the amount of inhibition predicted if the combination of tamoxifen and 1,24(OH)\textsubscript{2}D\textsubscript{2} simply had an additive effect on each other. The growth inhibition chart of FIG. 13 shows that the combination of tamoxifen in concentrations of 10 \(\mu\)M and 100 \(\mu\)M with 0.01 nM of 1,24(OH)\textsubscript{2}D\textsubscript{2} produces additive to mild synergistic growth inhibition. The growth inhibition chart of FIG. 14 shows that the combination of tamoxifen in concentrations of 10 \(\mu\)M and 100 \(\mu\)M with 0.1 nM of 1,24(OH)\textsubscript{2}D\textsubscript{2} produces additive to mild synergistic growth inhibition.

Example 13: Growth inhibition of MCF-7 cells by chlorambucil and with 1,24(OH)\textsubscript{2}D\textsubscript{2}.

MCF-7 cells were plated in 96-well plates in triplicate and allowed to grow 48 hours. The medium was removed and replaced with medium containing vehicle (Ethanol), 1,24(OH)\textsubscript{2}D\textsubscript{2} in various concentrations, and chlorambucil in various concentrations. Cells were allowed to grow for an additional 6 days with media changed on day 3. Cell number was then determined by a colorimetric MTS assay and expressed as a % of change from control cells grown in vehicle only. FIG. 15 shows the percent inhibition of MCF-7 cells of chlorambucil alone or in combination with various concentrations of 1,24(OH)\textsubscript{2}D\textsubscript{2}. ID\textsubscript{30} values (dose required to inhibit proliferation by 30%) were calculated to compare growth inhibitory effects of the compounds alone and in combination. Isobologram analysis was used to characterize the interaction between 1,24(OH)\textsubscript{2}D\textsubscript{2} and chlorambucil as synergistic,
additive, or antagonistic. The isobologram is shown in FIG. 16. FIG. 17 shows that in
certain concentrations, chlorambucil can have an additive effect when combined with
1,24(OH)₂D₂. In FIG. 17 the addition columns show the amount of inhibition predicted if
the combination of chlorambucil and 1,24(OH)₂D₂ simply had an additive effect on each
other. The growth inhibition chart of FIG. 17 shows that the combination of chlorambucil
in various concentrations produces antagonistic to mild additive growth inhibition.

Example 14: Growth inhibition of MCF-7 cells by busulfan and 1,24(OH)₂D₂.
MCF-7 cells were plated in 96-well plates in triplicate and allowed to grow 48
hours. The medium was removed and replaced with medium containing vehicle (Ethanol),
1,24(OH)₂D₂ in various concentrations, and busulfan in various concentrations. Cells were
allowed to grow for an additional 6 days with media changed on day 3. Cell number was
then determined by a colorimetric MTS assay and expressed as a % of change from control
cells grown in vehicle only. FIG. 18 shows the percent inhibition of MCF-7 cells of
busulfan alone or in combination with various concentrations of 1,24(OH)₂D₂. ID₃₀ values
(dose required to inhibit proliferation by 30%) were calculated to compare growth inhibitory
effects of the compounds alone and in combination. Isobologram analysis was used to
characterize the interaction between 1,24(OH)₂D₂ and busulfan as synergistic, additive, or
antagonistic. The isobologram is shown in FIG. 19. In FIG. 20 the addition columns show
the amount of inhibition predicted if the combination of busulfan and 1,24(OH)₂D₂ simply
had an additive effect on each other. The growth inhibition chart of FIG. 20 shows that the
combination of busulfan in concentrations of 100 µM with 0.1 nM of 1,24(OH)₂D₂ produces
mild synergistic growth inhibition.

Example 15: Combination Index (CI) values for chemotherapeutic drugs and 1,24(OH)₂D₂
combinations in MCF-7 cells.
As shown in FIG. 21, 1,24(OH)₂D₂ was dosed in combination with individual
anticancer agents at several different molar ratios. The degree of interaction between two
drugs was calculated using the combination index, according to the isobologram equation:

\[CI = \frac{d_1}{D_1} + \frac{d_2}{D_2} \]

In this equation, \(d_1 \) and \(d_2 \) represent the doses of drug 1 and drug 2 that, when given
in combination, produce a specific response, and D_1 and D_2 represent the doses of drug 1 and drug 2 when given individually, produce the same effect. Drug interactions determined by the Combination Index were classified according to the following criteria:

<table>
<thead>
<tr>
<th>Combination Index (CI)</th>
<th>Drug Interaction Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.1</td>
<td>Very Strong Synergism</td>
</tr>
<tr>
<td>0.1 – 0.3</td>
<td>Strong Synergism</td>
</tr>
<tr>
<td>0.3 – 0.7</td>
<td>Synergism</td>
</tr>
<tr>
<td>0.7 – 0.85</td>
<td>Moderate Synergism</td>
</tr>
<tr>
<td>0.85 – 0.90</td>
<td>Slight Synergism</td>
</tr>
<tr>
<td>0.90 – 1.10</td>
<td>Additive</td>
</tr>
<tr>
<td>1.10 – 1.20</td>
<td>Slight Antagonism</td>
</tr>
<tr>
<td>1.20 – 1.45</td>
<td>Moderate Antagonism</td>
</tr>
<tr>
<td>1.45 – 3.3</td>
<td>Antagonism</td>
</tr>
<tr>
<td>3.3 – 10</td>
<td>Strong Antagonism</td>
</tr>
<tr>
<td>> 10</td>
<td>Very Strong Antagonism</td>
</tr>
</tbody>
</table>

Multiple trials were run to determine a p value for the combination index for the drug combinations. Degree of interaction is defined as significant at $p < 0.075$.

While the present invention has now been described and exemplified with some specificity, those skilled in the art will appreciate the various modifications, including variations, additions, and omissions, that may be made in what has been described. Accordingly, it is intended that these modifications also be encompassed by the present invention and that the scope of the present invention be limited solely by the broadest interpretation lawfully accorded the appended claims.

All patents, publications and references cited herein are hereby fully incorporated by reference. In case of conflict between the present disclosure and incorporated patents, publications and references, the present disclosure should control.
CLAIMS

1. A method of synergistically inhibiting the growth of human breast cancer cells, comprising contacting the cells with a first composition which comprises 1α,24-dihydroxyvitamin D₂ and a second composition which comprises an agent selected from the group consisting of doxorubicin, cisplatin and paclitaxel or combinations thereof.

2. The method of claim 1 wherein the agent is doxorubicin.

3. The method of claim 1 wherein the agent is cisplatin.

4. The method of claim 1 wherein the agent is paclitaxel.

5. The method of claim 1, wherein the first and second compositions are administered to a human cancer patient.

6. The method of claim 5 wherein the first and second compositions are co-administered.

7. The method of claim 5 wherein the first and second compositions are administered in a daily regimen.

8. The method of claim 5 wherein the first and second compositions are administered in an episodic regimen.

9. The method of claim 5 wherein the first composition is administered intravenously.

10. The method of claim 5 wherein the first composition is administered orally.

11. The method of claim 5 wherein the first composition is administered amount in an amount of 0.01 μg to 400 μg of 1α,24-dihydroxyvitamin D₂.

12. A pharmaceutical combination for the inhibition of human breast cancer cells which comprises a therapeutically effective dose of a synergistic combination of a first agent which is 1α,24-dihydroxyvitamin D₂ and a second agent is doxorubicin, cisplatin or paclitaxel.

13. A pharmaceutical combination comprising a first agent which is 1α,24-dihydroxyvitamin D₂ and a second agent which is doxorubicin, cisplatin or paclitaxel, wherein the first and second agents have synergistic properties for inhibiting growth of human breast cancer cells.

14. A method of additively inhibiting the growth of human breast cancer cells comprising contacting the cells with additively effective amounts of a first composition which comprises 1α,24-dihydroxyvitamin D₂ and a second composition which comprises an agent selected from the group consisting of busulfan, carboplatin, etoposide, 5-fluorouracil and tamoxifen or combinations thereof.
15. The method of claim 14 wherein the agent is busulfan.
16. The method of claim 14 wherein the agent is carboplatin.
17. The method of claim 14 wherein the agent is etoposide.
18. The method of claim 14 wherein the agent is 5-fluorouracil.
19. The method of claim 14 wherein the agent is tamoxifen.
20. The method of claim 14, wherein the first and second compositions are administered to a human cancer patient.
21. The method of claim 20 wherein the first and second compositions are co-administered.
22. The method of claim 20 wherein the first and second compositions are administered in a daily regimen.
23. The method of claim 20 wherein the first and second compositions are administered in a episodic regimen.
24. The method of claim 20 wherein the first composition is administered intravenously.
25. The method of claim 20 wherein the first composition is administered orally.
26. The method of claim 20 wherein the first composition is administered amount in an amount of 0.01 μg to 400 μg.
27. A pharmaceutical combination for the inhibition of human breast cancer cells which comprises a therapeutically effective dose of an additive combination of a first agent which is 1α,24-dihydroxyvitamin D2 and a second agent which is selected from the group consisting of busulfan, carboplatin, etoposide, 5-fluorouracil or tamoxifen.
28. A pharmaceutical combination comprising a first agent which is 1α,24-dihydroxyvitamin D2 and a second agent which is selected from the group consisting of busulfan, carboplatin, etoposide, 5-fluorouracil or tamoxifen, wherein the first and second agents have additive properties for inhibiting growth of human breast cancer cells.
Growth Inhibition of MCF-7 Cells by Etoposide + 1,24 (OH)₂ D₂

FIG. 2
Isobologram of Etoposide + 1,24(OH)\textsubscript{2}D\textsubscript{2} in MCF-7 cells

ID\textsubscript{30}

FIG. 3
Growth Inhibition of MCF-7 cells by Etoposide +0.1 nM 1,24 (OH)_2 D_2

FIG. 4
Growth Inhibition of MCF-7 cells by Doxorubicin + 1,24 (OH)₂ D₂

FIG. 5
Isobologram of Doxorubicin + 1,24 (OH)₂D₂ in MCF-7 cells ID₃₀

1,24 (OH)₂D₂ (nM)

µM Doxorubicin

Compounds Alone Combination

FIG. 6
Growth Inhibition of MCF-7 cells by Doxorubicin+0.01 nM 1,24 (OH)_{2} D_{2}

FIG. 7
Growth Inhibition of MCF-7 cells by Doxorubicin +0.1 nM 1,24 (OH)2 D2

Combination
Addition

FIG. 8
Growth Inhibition of MCF-7 cells by Doxorubicin + 1 nM 1,24(OH)2D2

FIG. 9
Growth Inhibition of MCF-7 cells by Doxorubicin + 10 nM 1,2,4 (OH)2 D2

FIG. 10
Growth Inhibition of MCF-7 cells by Tamoxifen + 1,24 (OH)2D2

Concentration (μM)

% Inhibition

FIG. 11
Isobologram of Tamoxifen + 1,24(OH)₂D₂ in MCF-7 Cells

ID30

FIG. 12

1,24(OH)₂D₂ (nM)

Tamoxifen (nM)

Compounds

Alone

Combination
Growth Inhibition of MCF-7 cells by Tamoxifen +0.01 nM 1,24 (OH)2 D2

Combination
Addition

Tamoxifen (μM)

F1G. 13
Growth Inhibition of MCF-7 cells by Chlorambucil + 1,24 (OH)2 D2

FIG. 15

Concentration (µM)

% Inhibition

0.00 20.00 40.00 60.00 80.00 100.00
Isobologram of Chlorambucil + 1,24(OH)₂D₂ in MCF-7 Cells
ID30

FIG. 16
Growth Inhibition of MCF-7 cells by Chlorambucil + 0.1 nM 1,24 (OH)2 D2

Chlorambucil (μM)

FIG. 17
Growth Inhibition of MCF-7 cells by Busulfan + 1,24 (OH)_2 D_2

FIG. 18
Growth Inhibition of MCF-7 cells by Busulfan + 0.1 nM 1,24 (OH)₂ D₂

% Inhibition

Busulfan (μM)

FIG. 20
Combination Index (CI) values for chemotherapeutic drugs and 1,24(OH)2D2 combinations in MCF-7 cells.

<table>
<thead>
<tr>
<th>Drug</th>
<th>Drug Concentration</th>
<th>1,24(OH)2D2 Concentration</th>
<th>Drug / 1,24(OH)2D2 Molar Ratio</th>
<th>Combination Index (Mean ± S.E.M.)</th>
<th>p value</th>
<th>Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Busulfan</td>
<td>30.1 μM</td>
<td>0.1 nM</td>
<td>3.0 x 10^5</td>
<td>0.97 ± 0.12</td>
<td>0.817</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>23.2 μM</td>
<td>1.0 nM</td>
<td>2.3 x 10^6</td>
<td>0.88 ± 0.14</td>
<td>0.506</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>17.6 μM</td>
<td>10 nM</td>
<td>1.8 x 10^7</td>
<td>1.35 ± 0.47</td>
<td>0.559</td>
<td>Additive</td>
</tr>
<tr>
<td>Carboplatin</td>
<td>1.9 μg/ml</td>
<td>0.1 nM</td>
<td>5.0 x 10^4</td>
<td>1.03 ± 0.06</td>
<td>0.643</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>1.8 μg/ml</td>
<td>1.0 nM</td>
<td>4.7 x 10^5</td>
<td>1.03 ± 0.27</td>
<td>0.916</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>1.4 μg/ml</td>
<td>10 nM</td>
<td>3.9 x 10^6</td>
<td>1.05 ± 0.14</td>
<td>0.749</td>
<td>Additive</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>1.5 μg/ml</td>
<td>0.01 nM</td>
<td>5.1 x 10^7</td>
<td>0.68 ± 0.09</td>
<td>0.071</td>
<td>Synergistic</td>
</tr>
<tr>
<td></td>
<td>1.4 μg/ml</td>
<td>0.1 nM</td>
<td>4.5 x 10^8</td>
<td>0.62 ± 0.11</td>
<td>0.052</td>
<td>Synergistic</td>
</tr>
<tr>
<td></td>
<td>1.5 μg/ml</td>
<td>1.0 nM</td>
<td>5.1 x 10^9</td>
<td>0.69 ± 0.01</td>
<td>0.002</td>
<td>Synergistic</td>
</tr>
<tr>
<td>Chlorambucil</td>
<td>7.4 μM</td>
<td>0.1 nM</td>
<td>7.4 x 10^9</td>
<td>3.18 ± 0.24</td>
<td>0.040</td>
<td>Antagonistic</td>
</tr>
<tr>
<td></td>
<td>6.3 μM</td>
<td>1.0 nM</td>
<td>6.3 x 10^9</td>
<td>2.75 ± 0.12</td>
<td>0.043</td>
<td>Antagonistic</td>
</tr>
<tr>
<td></td>
<td>3.8 μM</td>
<td>10 nM</td>
<td>3.8 x 10^9</td>
<td>2.47 ± 0.08</td>
<td>0.032</td>
<td>Antagonistic</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>5.6 ng/ml</td>
<td>0.01 nM</td>
<td>9.7 x 10^9</td>
<td>0.48 ± 0.13</td>
<td>0.057</td>
<td>Synergistic</td>
</tr>
<tr>
<td></td>
<td>7.2 ng/ml</td>
<td>0.1 nM</td>
<td>1.2 x 10^10</td>
<td>0.64 ± 0.09</td>
<td>0.058</td>
<td>Synergistic</td>
</tr>
<tr>
<td></td>
<td>5.6 ng/ml</td>
<td>1.0 nM</td>
<td>9.6 x 10^9</td>
<td>0.51 ± 0.02</td>
<td>0.001</td>
<td>Synergistic</td>
</tr>
<tr>
<td></td>
<td>1.9 ng/ml</td>
<td>10 nM</td>
<td>3.2 x 10^10</td>
<td>0.41 ± 0.04</td>
<td>0.005</td>
<td>Synergistic</td>
</tr>
<tr>
<td>Etoposide</td>
<td>0.45 μM</td>
<td>0.1 nM</td>
<td>4.5 x 10^5</td>
<td>1.66 ± 0.41</td>
<td>0.251</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>0.35 μM</td>
<td>1.0 nM</td>
<td>3.5 x 10^6</td>
<td>1.31 ± 0.48</td>
<td>0.583</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>0.09 μM</td>
<td>10 nM</td>
<td>8.8 x 10^6</td>
<td>0.70 ± 0.21</td>
<td>0.284</td>
<td>Additive</td>
</tr>
<tr>
<td>5-Fluorouracil</td>
<td>0.99 μM</td>
<td>0.1 nM</td>
<td>9.9 x 10^7</td>
<td>1.73 ± 0.25</td>
<td>0.100</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>0.98 μM</td>
<td>1.0 nM</td>
<td>9.8 x 10^8</td>
<td>1.89 ± 0.56</td>
<td>0.252</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>0.39 μM</td>
<td>10 nM</td>
<td>3.9 x 10^9</td>
<td>1.28 ± 0.10</td>
<td>0.140</td>
<td>Additive</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>2.9 μM</td>
<td>0.01 nM</td>
<td>2.9 x 10^8</td>
<td>1.48 ± 0.20</td>
<td>0.141</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>2.2 μM</td>
<td>0.1 nM</td>
<td>2.2 x 10^8</td>
<td>1.07 ± 0.36</td>
<td>0.866</td>
<td>Additive</td>
</tr>
<tr>
<td></td>
<td>3.3 μM</td>
<td>1.0 nM</td>
<td>3.2 x 10^9</td>
<td>1.92 ± 0.81</td>
<td>0.373</td>
<td>Additive</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>0.79 μM</td>
<td>0.01 nM</td>
<td>7.9 x 10^7</td>
<td>0.53</td>
<td></td>
<td>Synergistic</td>
</tr>
<tr>
<td></td>
<td>1.0 μM</td>
<td>0.1 nM</td>
<td>1.0 x 10^8</td>
<td>0.68</td>
<td></td>
<td>Synergistic</td>
</tr>
<tr>
<td></td>
<td>2.0 μM</td>
<td>1.0 nM</td>
<td>2.0 x 10^9</td>
<td>1.43</td>
<td></td>
<td>Mod. Antagonistic</td>
</tr>
</tbody>
</table>

*Paclitaxel Experiment was only performed once, therefore there is no S.D. or P values for CI.

FIG. 21