(11) Nummer: AT 394 181 B

(12)

PATENTSCHRIFT

(21) Anmeldenummer: 2733/83

(51) Int.C1.⁵:

CO2F 1/00

(22) Anmeldetag: 27. 7.1983

(42) Beginn der Patentdauer: 15. 8.1991

(45) Ausgabetag: 10. 2.1992

(30) Priorität:

29. 7.1982 US 401434 beansprucht. 17. 6.1983 US 503685 beansprucht.

(56) Entgegenhaltungen:

US-PS3748285 (WILTSEY)

DE-OS2934863 (TETRA)

(73) Patentinhaber:

NALCO CHEMICAL COMPANY 60521 OAK BROOK (US).

(54) VERFAHREN ZUM VERBESSERN UND AUFRECHTERHALTEN DER LEISTUNG VON WASSERBEHANDLUNGSFESTSTOFFEN

(57) Beschrieben wird ein Verfahren zum Verbessern und Aufrechterhalten der Leistung von Wasserbehandlungsfeststoffen, wie Ionenaustauscherharze, Kohleadsorptionsfüllkörper, Kies- und Sandbettfilter, Ionenaustauschermembranen und Umkehrosmosemembranen, die mit organischen Substanzen, Mikroorganismen und deren Abfallprodukten, wie Schlamm und anderem Organismenwuchs verunreinigt sind bzw. die Neigung besitzen, damit verunreinigt zu werden, worin man die Wasserbehandlungsfeststoffe mit 10 bis 200 ppm eines nicht-ionischen oberflächenaktiven Mittels und eines Biodispergiermittels cyclisch, beispielsweise chargenweise bzw. von Zeit zu Zeit, behandelt.

 \Box

Die Erfindung bezieht sich auf das Behandeln und Schützen von Feststoffen für die Behandlung von verunreinigtem Wasser.

Wasserweichmacher und Entmineralisierungsmittel filtrieren teilchenförmiges Material aus Speisewasser. Diese Teilchen und die Harze selbst absorbieren ebenfalls natürliche vorkommende und synthetische organische Substanzen, wie Lignine, Tannine, Humate, Öle, Fett, wasserlösliche oder -dispergierbare Polymere u. dgl., die ausgezeichnete Nährstoffe für Bakterien oder selbst direkte Verunreinigungen sein können. Da sich die Bakterien vermehren, können sich bakterielle Schleimmikroorganismen und Abfallprodukte hievon ansammeln. Diese Faktoren können die Leistung einer Ionenaustauschereinheit durch kürzere Betriebszeiträume vor der Regenerierung, verminderte Harzkapazitäten und schlechtere Abwasserqualitäten drastisch beeinflussen. Weiterhin kann behandeltes Wasser mit einem Gehalt an Mikroorganismen und deren Abfallprodukten in Abhängigkeit von der Verwendung des Wassers Gesundheitsprobleme verursachen.

5

10

15

20

25

30

35

40

45

50

55

60

Es wurde gefunden, daß die kombinierte Verwendung eines nichtionischen oberflächenaktiven Mittels und eines Dispergiermittels, das imstande ist, biologisch aktives Material zu dispergieren (nachfolgend "Biodispergiermittel" genannt), Mikroorganismen und Abfallprodukte derselben sowie organische Verunreinigungen und Öl und Fettverunreinigungen von Ionenaustauscherharzen und anderen Wasserbehandlungsfeststoffen entfernen kann. Versuche zeigen, daß eine wesentliche Verbesserung der Wasserqualitäten und der Ionenaustauscherharzkapazitäten sowohl für die Weichmacher- als auch die entmineralisierenden Harze erhalten wird, wenn man die Harze mit einem wirksamen Anteil eines nicht-ionischen oberflächenaktiven Mittels und eines Biodispergiermittels reinigt, wie im nachstehenden beschrieben wird. Eine Kombination dieser nicht ionischen oberflächenaktiven Mittel und Biodispergiermittel kann auch dazu verwendet werden, die Wasserbehandlungsharze unter Betriebsspitzenbedingungen zu halten, indem die Harze auf kontinuierlicher und cyclischer Basis während des Rückwaschzyklus, der im Regenerierungsverfahren angewandt wird, behandelt werden. Das kombinierte Behandlungsmittel gewährleistet auch eine ständige Entfernung von organischen Anionen, die starke Basenanionenaustauscherharze stark verunreinigen.

Es wurde auch gefunden, daß diese Kombinationsprodukte aus oberflächenaktivem Mittel und Biodispergiermittel ebenfalls durch Zusatz von bestimmten Mikrobiociden verbessert werden können.

Wasserweichmacher- und entmineralisierende Ionenaustauscherharze können eine Reihe von unlöslichen Substanzen, die im Speisewasser vorhanden sind, welches durch diese Harze behandelt werden muß, entfernen. Diese unlöslichen Substanzen können unlösliche Eisensalze, anorganische Niederschläge, Schlick, halbkolloidale Lignine, Tannine, Humate, natürliche und synthetische Polymere u. dgl. plus Ölen oder Fett sein. Diese Ionenaustauscherharze und angesammelten Teilchen können auch lösliche organische Substanzen adsorbieren. Die meisten der organischen Substanzen, die an Harzen adsorbiert werden, beeinflussen letztlich die Harzkapazität und die Schwundrate einer Ionenaustauschereinheit zufolge verminderter Diffusionsraten von Ionen in und aus verunreinigten Harzkügelchen.

Weiterhin können die organischen Substanzen, die entweder durch das Harz adsorbiert oder aus dem Wasser filtriert wurden, ausgezeichnete Nährstoffe für Mikroorganismen darstellen. Da sich diese Mikroorganismen vermehren, tritt mikrobiologische Verunreinigung in den Ionenaustauschereinheiten auf. Harzkügelchen, die bereits mit organischen Substanzen überzogen sind, werden mit bakteriellem Schleim und anderen Mikroorganismus-Abfallprodukten überzogen, welche die Leistung der Ionenaustauschereinheiten weiter vermindern. Kürzere Laufzeiten vor der Regenerierung und schlechte Abwasserqualitäten werden üblicherweise festgestellt. Die Entfernung dieser verunreinigenden Mischungen durch anorganische Regeneriermittel allein oder mit Salz- oder kaustischen Lösungen ist nicht erfolgreich.

Da die organischen Verunreinigungen, Bakterien, Bakterienschleim und Abfallprodukte sich weiter ansammeln, wird in den Ionenaustauschereinheiten die Bildung von großen Klumpen festgestellt, die große Teile des Harzes umhüllen. Diese Klumpen vermindern die Wirksamkeit der Ionenaustauschereinheiten zufolge der Bettbeladung und Kanalbildung, welche einen frühen Ionenschwund bewirken können, noch weiter, d. h. können zu einem frühen Kapazitätsverlust dieser Harzeinheiten führen. Berichte über verminderte Betriebskapazitäten von bis zu 25 bis 50 % der ursprünglichen Kapazitäten hinab sind nicht ungewöhnlich.

Mikroorganismen sind in fast jedem Wasserbehandlungsharz zu finden und ihre Anwesenheit ist nicht auf irgendeinen spezifischen Harztyp beschränkt. Es handelt sich dabei um Wasserweichmacherharze sowie um Kationen- und Anionenaustauscherharze, die zum Entmineralisieren von Wasser verwendet werden. Bakterien werden auch in Hauswasserweichmachern, die bei chloriertem Wasser Anwendung finden, und bei Industrie- und kommerziellen Wasserweichmacher- und entmineralisierenden Harzen, die zum Behandeln entweder von Oberflächenwasser oder Brunnenwasser verwendet werden, gefunden. Sogar relativ rein aussehende Harzproben, die aus Feldproben erhalten wurden, zeigen variierende Bakterienanteile. Weiterhin ist der Wunsch des Vermeidens von übermäßigem Bakterienwachstum naheliegend, wenn man bedenkt, daß fiebererregende Toxine, d. h. bakterielle Abfallprodukte (Pyrogene), möglicherweise von diesen Einheiten in die behandelte Wasserzufuhr gelangen können.

Es gibt zwei Arten von Verunreinigungsproblemen. Die erste ist die Oberflächenverunreinigung der Kügelchen oder Teilchen, wobei die Verunreinigung an der Oberfläche des Ionenaustauschermaterials absorbiert wird und ein kontinuierliches Beschichten mit der Verunreinigung auftritt. Die zweite ist die Verunreinigung der Ionenteilchen, wobei Verunreinigungen in die Teilchen diffundieren und an eine interne Austauschstelle innerhalb

des Harzes gebunden werden. Im Hinblick auf die angeführten Probleme ist es für den Operateur von Ionenaustauschereinheiten erwünscht, die Verunreinigungen vom Harz zu entfernen. Ein zusätzlicher Ansporn, so zu handeln, sind selbstverständlich die zusätzlichen Kosten des Betriebes von verunreinigten Ionenaustauschereinheiten. Beispielsweise erfordert eine Einheit, die nur mehr 25 % ihrer ursprünglichen Betriebskapazität aufweist, viermal so viel chemische Regenerierungen, wodurch die chemischen und die Ausnützungskosten erhöht werden. Die Gesamtkosten für zusätzliche Arbeitskraft, Regenerierungschemikalien, Abfallentfernung und dgl. können extrem hoch sein, je nach dem Ausmaß der organischen Verunreinigung.

5

10

15

20

25

30

35

40

45

50

55

60

Wenn Ionenaustauschereinheiten in reinem Zustand gehalten werden könnten, um eine kontinuierlich optimale Leistung der Einheiten zu gewährleisten, wäre ein Hauptfortschritt auf diesem Gebiet erzielt.

Im folgenden wird zur Erläuterung des Standes der Technik eine Reihe von PS angegeben, in welchen versucht wurde, die in Frage stehenden Probleme zu lösen:

Die US-PS 3 442 798 beschreibt das Konzentrieren von organischen Brennstoffen in Abwasser auf einem Adsorptionsmittel mit kohlenstoffhaltiger Oberfläche, wie Ligninkohle, Knochenkohle, Pulverkoks, Pulverkohle, Aktivkohle, aktiviertem Kohlenstoff und dgl., und anschließendes Oxidieren einer wässerigen Dispersion des die adsorbierten Brennstoffe enthaltenden Adsorptionsmittels.

Die US-PS 3 444 078 beschreibt die Verwendung von granulärem aktivierten Kohlenstoff in einem Wasserreinigungsfilter, einer unterirdischen Kiesbettdränage und die Rückgewinnung von aktiviertem Kohlenstoff aus Wasser, das zum menschlichen Verbrauch behandelt worden ist.

Die US-PS 3 373 085 beschreibt die Rückgewinnung von Phenol aus Abwasser der Koksindustrie durch Absorption des Phenols im Abwasser auf verkokender Kohle.

Die US-PS 3 578 589 beschreibt die Entfernung von angesammelten Ablagerungen von Kesselstein, Schlamm, Schlick, Bodensatz und anderen Verunreinigungen aus Kühlwassersystemen durch Zusetzen eines nicht-ionischen oberflächenaktiven Mittels und eines Acryl- oder Methacrylsäurepolymers oder eines wasserlöslichen Salzes hievon in das durch die Kühlwassersysteme strömende Wasser.

Die US-PS 3 748 285 beschreibt die Behandlung von Ionenaustauscherharzen mit sulfonierten Detergentien zum Vorsehen von reinen Harzkügelchen.

Die US-PS 4 102 707 und die US-PS 4 045 244 beschreiben das Absondern und Dispergieren von mikrobiologischen Produkten auf Trägermaterialien in Kontakt mit wässerigen Systemen durch Zugabe eines chemischen Mittels mit wasserstoffbindenden Eigenschaften einschließlich wasserlöslichen Acrylamidpolymeren und Epoxiverbindungen zur wässerigen Phase.

Die US-PS 3 996 131 beschreibt das Verhindern von Verunreinigung von Umkehrosmose- und Ultrafiltermembranen durch Überziehen derselben mit einem Adsorptionsmittel mit oder ohne aktiven Kohlenstoff.

Die US-PS 4 260 504 beschreibt das Verhindern der Bildung von Ablagerungen auf Wänden von Wärmeaustauschern, worin Äthylenglykol/Wasser zirkuliert, indem etwa 0,3 bis 5 % Masse/Masse eines oberflächenaktiven Mittels, das das Produkt der Addition von Äthylenoxid und 1,2-Propylenoxid oder eines einwertigen Alkohols, Wasser, eines Diols oder eines Triols, wobei 60 bis 90 % der fixierten Oxide Oxyäthylengruppen sind, mit dem Äthylenglykol/Wasser gemischt werden.

Die vorliegende Erfindung bezieht sich nun auf ein neues Verfahren zum Verbessern und Aufrechterhalten der Leistung von Wasserbehandlungsfeststoffen, wie Ionenaustauscherharze, Kohleadsorptionsfüllkörper, Kies- und Sandbettfilter, Ionenaustauschermembranen und Umkehrosmosemembranen, die mit organischen Substanzen, Mikroorganismen und deren Abfallprodukten, wie Schlamm und anderem Organismenwuchs verunreinigt sind bzw. die Neigung besitzen, damit verunreinigt zu werden. Dieses neue Verfahren besteht darin, daß man die Wasserbehandlungsfeststoffe mit 10 bis 200 ppm eines nicht-ionischen oberflächenaktiven Mittels und eines Biodispergiermittels cyclisch, beispielsweise chargenweise bzw. von Zeit zu Zeit, behandelt. Jede der obigen Klassifizierungen der Wasserbehandlungsfeststoffe unterliegt der Verunreinigung mit organischen Substanzen, löslichem und unlöslichem Eisen, Mikroorganismen und deren Abfallprodukten und natürlichen organischen Substanzen, die von dem Wasser stammen, das zum Speisen der Wasserbehandlungsfeststoffe gemäß der Erfindung verwendet wird.

Das erfindungsgemäße Verfahren kann verbessert werden, indem ein Biozid zusammen mit dem nichtionischen oberflächenaktiven Mittel und dem Biodispergiermittel verwendet wird. Das zusammen mit dem oberflächenaktiven Mittel und dem Biodispergiermittel zu verwendende Biozid kann aus der Gruppe der Fettalkylquaternären Ammoniumsalze, der bromnitrilsubstituierten Biozide, der Isothiazolinbiozide und der anorganischen oxidierenden Biozide gewählt werden. Die Fettalkyl-quaternären Ammoniumsalze werden am besten durch Alkyldimethylbenzylammoniumchloridverbindungen veranschaulicht. Die bromnitrilsubstituierten Biozide werden am besten durch Dibromnitrilpropionamid veranschaulicht. Die Isothiazolinbiozide sind kommerzielle Biozide, die von Rohm & Haas Co. hergestellt und unter dem Markennamen Kathon 886 verkauft werden, das im Produktbulletin DIC-76-3, Mai 1977, von Rohm & Haas beschrieben ist. Die anorganischen oxidierenden Biozide werden am besten durch Materialien, wie Chlor, Brom, Hypochloritsalze oder Säuren hievon und unterbromige Salze oder Säuren hievon veranschaulicht. Die Verwendung dieser anorganischen oxidierenden Biozide besitzt auch den potentiellen Vorteil der Ausnützung der Oxidationskraft von Chemikalien, wie Chlor oder Natriumhypochlorit, beim Herabsetzen der Molmasse von hydrophoben Verbindungen, wie biologischen Abbauprodukten und biologischen Abfallprodukten durch Oxidationsmechanismen derart, daß diese Produkte in

Wasser hydrophiler oder dispergierbarer gemacht werden.

10

15

20

25

30

35

40

45

50

55

60

Das erfindungsgemäße Verfahren kann auf derartige Wasserbehandlungsfeststoffe angewandt werden, wie Ionenaustauscherharze, Kohlenstoffadsorptionsbeladungen, Kies- und Sandbettfilter, Ionenaustauschmembranen, Umkehrosmosemembranen und dgl. Jede der obigen Klassifizierungen der Wasserbehandlungsfeststoffe unterliegt der Verunreinigung mit organischen Substanzen, löslichem oder unlöslichem Eisen, Mikroorganismen und deren Abfallprodukten und natürlichen organischen Substanzen, die von dem Wasser stammen, das zum Speisen der Wasserbehandlungsfeststoffe gemäß der Erfindung verwendet wird.

Die bevorzugten Wasserbehandlungsfeststoffe, die am häufigsten der Verbesserung, Wiederherstellung und Aufrechterhaltung der Leistung unterzogen werden, sind Ionenaustauscherharze, die verwendet werden, um Ionenspecies aus verunreinigtem Speisewasser zu entfernen, bevor derartiges Wasser bei der Dampferzeugung und für andere Verwendungszwecke eingesetzt wird. Diese Ionenaustauscherharze können ausgewählt werden unter kationischen Harzen vom Geltyp, anionischen Harzen vom Geltyp, makroporösen kationischen Harzen und makroporösen anionischen Harzen. Diese Verfahren können zum Verbessern, Wiederherstellen und Aufrechterhalten der Leistung dieser Ionenaustauscherharze durch eines von zwei Verfahren oder eine Kombination dieser Verfahren verwendet werden.

Weiterhin sieht die vorliegende Erfindung ein verbessertes Verfahren zum Rückwaschen bzw. Regenerieren von Ionenaustauscherharzen vor, welches darin besteht, daß die Rückwaschvorgänge in Anwesenheit eines Revitalisierungsmittels durchgeführt werden, das im Rückwaschzyklus wahrend der ersten 50 % des Rückwaschvorganges vorhanden ist. Die vorliegende Erfindung umfaßt eine Rückwaschbehandlung innerhalb der Zone des Harzbetriebes und, wenn gewünscht, getrennt hievon, d. h. die Rückwaschbehandlung kann während des normalen Harzbetriebs beendet oder in getrennten Vorgängen beendet werden, wenn die Harze nicht unmittelbar in einen Arbeitsmodus zurückgebracht werden.

Das Verfahren, welches die Leistung von Ionenaustauscherharzen und anderen Wasserbehandlungsfeststoffen verbessert, wiederherstellt und aufrechterhält, kann zunächst ein Verfahren sein, durch welches eine Kombination eines nicht-ionischen oberflächenaktiven Mittels mit einem Biodispergiermittel dem Harz, das mit organischen Substanzen, Mikroorganismen und deren Abfallprodukten verunreinigt worden ist, in einem chargenweisen Reinigungsverfahren zugesetzt wird. Dieses chargenweise Verfahren umfaßt die Zugabe von etwa 50 bis etwa 2500 TpM (bezogen auf zwei Bettvolumina) der aktiven Formulierung zu diesem verunreinigten Harzbett, vorzugsweise bei erhöhten Temperaturen und während Zeiträumen von mindestens 24 h. Diese Konzentrationen basieren auf einem zweifachen Volumen des zu behandelnden Harzbettes oder Ionenaustauscherharzbettes. Ein bevorzugter Bereich beträgt 200 bis etwa 1000 TpM der aktiven Bestandteile und die bevorzugte Behandlung erfolgt bei Temperaturen zwischen 37 und 82,5 °C während Zeiträumen von etwa 20 bis 24 h, wobei für Mischund Kontaktzwecke Besprühen mit Luft oder rasche Wasserzirkulation angewandt wird.

Wenn dieses chargenweise System zur Behandlung von Wasserbehandlungsfeststoffen verwendet wird, um schlecht riechende Verunreinigungen zu entfernen, kann es zusammen und gleichzeitig mit einem Fettquaternären Aminbiozid, wie einem Alkyldimethylbenzylammoniumsalz, zugesetzt werden. Dieses quaternäre Aminbiozid wird zusammen mit dem oberflächenaktiven Mittel und dem Dispergiermittel verwendet und kann in einem Anteil von 1 bis 50 %-Masse der kombinierten Formulierung oberflächenaktives Mittel/Dispergiermittel vorhanden sein. Das Biozid wird vorzugsweise in einem Anteil von 10 bis 30 %-Masse, bezogen auf die Masse der Gesamtmischung der drei Bestandteile Biozid/oberflächenaktives Mittel/Biodispergiermittel verwendet. Das oben beschriebene Biozid Kathon 886 kann auch als wirksames Biozid zusammen mit der Formulierung oberflächenaktives Mittel/Dispergiermittel verwendet werden.

Wie oben erläutert, ist die Zugabe eines oxidierenden Biozids zu der Behandlungsmischung oft hilfreich beim Herabsetzen der Molmasse von hydrophoben Verunreinigungen und Mikroorganismusabfallprodukten. Die oxidierende Wirkung dieser Biozide kann dazu neigen, hydrophobe Verunreinigungen hydrophil zu machen und zu ihrer Lösung oder Suspension beizutragen. Diese Wirkung tendiert dazu, diese Materialien während eines Waschund Spülzyklus leichter entfernbar zu machen.

Bevor die Harze in ihren Dienst zurückgestellt werden, wird das Harzbett gründlich mit Wasser gewaschen, um die letzten Spuren an Revitalisierungsmittel zu entfernen, welches durch die Kombination von oberflächenaktivem Mittel, Biodispergiermittel und gegebenenfalls Biozid gebildet wird. Dieser Vorgang wird gewöhnlich während des Restes des Rückwaschzyklus und während der Regenerierungsfolgen beendet.

Das zweite Verfahren, welches das bevorzugte Verfahren darstellt, ist eine kontinuierliche cyclische Behandlung unter Verwendung der oben beschriebenen Chemikalien und auf die im nachstehenden beschriebene Weise. Jedes Ionenaustauscherharz durchläuft einen typischen Zyklus. Zuerst wird das neue frische Harz in das Harzbett gegeben, befeuchtet und mit Regenerierungschemikalien regeneriert. Diese Chemikalien werden vom Bett mit Waschwässern abgespült und das Ionenaustauscherbett dann in Betrieb genommen, um unerwünschte Ionenspecies von Speisewasser zu entfernen, das einer Behandlung vor seiner Verwendung zur Dampferzeugung oder einer anderen Verwendung bedarf. Nach einem bestimmten Zeitraum verlieren diese Ionenaustauscherharze ihre Fähigkeit, die erforderlichen Quantitäten an verunreinigenden Ionenspecies zu entfernen. Zu diesem Zeitpunkt werden die Harze rückgewaschen durch durch das Harzbett nach oben fließendes Wasser zum Expandieren des Bettvolumens um etwa 50 Vol.%, um vom Bett jegliche dispergierten verunreinigenden und unlöslichen Species, die eine leichtere Dichte besitzen als die Harzkügelchen selbst, zu enfernen. Dieser

Rückwaschzyklus wird gewöhnlich bei einer Wasserströmungsgeschwindigkeit nach oben von etwa 3,8 l/min/28,3 dm³ im Harzbett enthaltenem Harz erzielt.

Nach diesem Rückwaschzyklus werden die Harzbetten setzen gelassen und Regenerierungschemikalien werden zugesetzt, durch das Harzbett gespült und anschließend vom Bett abgespült, bevor das Bett zurück in den Betrieb gebracht wird.

Das bevorzugte Verfahren gemäß der Erfindung ist die Zugabe der oben beschriebenen und im nachstehenden noch detaillierter beschriebenen Reinigungschemikalien zum Rückwaschzyklus vor Zugabe der Regenerierungschemikalien. Das bevorzugte Verfahren besteht in der Zugabe dieser Behandlungschemikalien zumindest zu den ersten 10 %, aber nicht mehr als den ersten 50 %, der Volumina, die zum Rückwaschen der Harze verwendet werden. Dieser Vorgang wird als der "präventive Aufrechterhaltungsmodus" dieses Verfahrens bezeichnet. Vorzugsweise werden diese Behandlungschemikalien und Reinigungslösungen während der ersten 25 bis 40 % dieses Rückwasch-Spül-Zyklus zugesetzt. In der Praxis bedeutet dies das Einmessen eines relativ konstant bemessenen Stroms der Behandlungschemikalien in die Rückwaschwässer während der ersten 10 bis 50 % der zum Rückwaschen des Harzes mit einer relativ konstanten Rückwaschströmungsgeschwindigkeit zugestandenen Zeit unter Verwendung des nicht-ionischen oberflächenaktiven Mittels und des Biodispergiermittels und gegebenenfalls der Biozide. Während der letzten 50 bis 90 % des Rückwaschens wird keine Chemikalienzufuhr mehr aufrechterhalten und der Rest der Rückwaschwässer wird dazu verwendet, die Behandlungschemikalien und verunreinigenden Rückstände aus dem System auszuspülen.

Nachdem die Behandlungschemikalien zugesetzt und aus dem Harzbett ausgespült sind, werden die so behandelten Harze dann anschließend unter Anwendung von Standardregenerierungschemikalien und -methoden regeneriert.

Bei der Behandlung der Harze gemäß diesem präventiven Aufrechterhaltungsmodus kann die Verwendung von Chemikalien hinsichtlich der oberwähnten Chargenkonzentrationen vermindert werden. Die Kombinationsprodukte einschließlich nicht-ionischen oberflächenaktiven Mitteln und Biodispergiermitteln, gegebenenfalls mit oder ohne Zusatz der oberwähnten Biozide, können dem Rückwaschzyklus mit einer Konzentration von etwa 10 bis zu etwa 200 TpM aktivem Bestandteil, bezogen auf das Rückwaschwasservolumen, zugesetzt werden. Wenn dieser Konzentrationsbereich in jedem und jedem folgenden Rückwaschzyklus beibehalten wird, werden die Vorteile dieser Erfindung erzielt. Die weitere Zugabe von etwa 5 bis etwa 200 TpM der oberwähnten Biozide, vorzugsweise von etwa 10 bis etwa 100 TpM eines oder mehrerer dieser Biozidmaterialien, kann die Wirksamkeit der Behandlung mit oberflächenaktivem Mittel/Biodispergiermittel in vielen Fällen verbessern.

Die erfindungsgemäß eingesetzten nicht-ionischen oberflächenaktiven Mittel besitzen vorzugsweise einen HLB-Wert von 6 bis 14. HLB bedeutet hydrophiles-lipophiles Gleichgewicht und ist in der Veröffentlichung der McCutcheon's Publications on Detergents and Emulsifiers, North American Edition and International Edition, 1974 Annuals, veröffentlicht von McCutcheon's Division, Allured Publishing Corporation, 45 N. Broad St., Ridgewood, New Jersey, U.S.A., beschrieben. Diese nicht-ionischen oberflächenaktiven Mittel werden vorzugsweise aus der Gruppe der nicht-ionischen Äthylenoxidaddukte von alkylierten Phenolen, der nicht-ionischen Äthylenoxidaddukte von Fettalkylalkoholen, der nicht-ionischen Sorbitanester und der nicht-ionischen Alkylarylpolyäthylenglykoläther gewählt. Das bevorzugte nicht-ionische oberflächenaktive Mittel ist ein Äthylenoxidaddukt von alkylierten Phenolen mit einem HLB-Wert zwischen 6 und 14. Das bevorzugteste nichtionische oberflächenaktive Mittel ist ein äthoxyliertes Nonylphenol mit einem Gehalt von etwa 9 Molen Äthylenoxid.

Die erfindungsgemäß eingesetzten Biodispergiermittel werden vorzugsweise aus der Gruppe der Äthylenoxidkondensate mit Propylenoxidaddukten an Propylenglykol mit einem HLB-Wert von 4 bis 10 und einer Molmasse von 1000 bis 5000, der nicht-ionischen polyäthoxylierten geradkettigen Alkohole, der tris-cyanoäthylierten Kokosdiamine, der Polyoxyäthylensorbitanester/Säuren, der nicht-ionischen N,N-Dimethylstearamide, der nichtionischen Aminpolyglykolkondensate und der nicht-ionischen äthoxylierten Alkohole gewählt. Tabelle I zeigt die Arten von Chemikalien, welche biodispergierende Eigenschaften demonstriert haben.

50 (Es folgt Tabelle I)

55

5

10

15

20

25

30

35

40

45

Tabelle I

5 <u>Bewertung von Verbindungen auf Biodispergierbarkeit</u> 10 TpM mit 1 h Berührung - Daten mit Biometer gesammelt

10	Dispergiermittel - chemische Art	% Änderung der Biomasse
10	nicht-ionisches (Polyol) Kondensat von Äthylen- oxid mit hydrophoben Basen (Propylenoxid mit Propylenglykol)	66,4
15	nicht-ionischer polyäthoxylierter geradkettiger Alkohol	58,5
	tris-Cyanoäthylkokosdiamin	47,3
20	Polyoxyäthylensorbitanester von Fett- und Harz- säuren und Alkylarylsulfonat-Mischung (nicht-ionisch)	45,8
25	kationische Äthylenoxidkondensationsprodukte von Duomeen T*	35,8
23	nicht-ionisches N,N-Dimethylstearamid	34,7
	Monoamin (kationisch) (Kokosmononitril)	31,3
30	Polyacrylat mit niederer Molmasse (1000-10000)	31,1
	nicht-ionisches Aminpolyglykolkondensat	30,0
25	kationisches Kokosdiamin	25,6
35	nicht-ionischer äthoxylierter Alkohol	21,2
40	* Duomeen T = N-Talgtrimethylendiamin	

Die prozentuelle Änderung der Biomasse in Tabelle I wurde gemessen, indem eine Schleimmasse, die vorher gezüchtet und auf eine Oberfläche aufgebracht wurde, klarem rückzirkulierenden Wasser bei 38 °C ausgesetzt wurde. Das Wasser enthielt 10 TpM jedes der angegebenen Biodispergiermittel und wurde bei dieser Temperatur 1 h zirkulieren gelassen. Am Ende dieses Zeitraumes erfolgte eine Biomassenuntersuchung des Wassers, das in einem üblichen Becken gesammelt worden war, unter Verwendung eines DuPont 760-Lumineszenz-Biometers, das in der Veröffentlichung DuPont 760 Luminescence Biometer, veröffentlicht im Dezember 1970 und in der US-PS 3 359 973 beschrieben ist.

45

50

55

60

Diese Tabelle zeigt den Prozentsatz an zusammengeballter Biomasse, dispergiert durch Behandlung mit 10 TpM des angegebenen Dispergiermittels. Obwohl andere Dispergiermittel getestet wurden, die weniger als 20 % Wirksamkeit besaßen, sind diese Daten nicht gezeigt, da jedes Dispergiermittel, das bei diesen Versuchen eine geringere Wirksamkeit als 20 % aufweist, als nicht im Sinne dieser Erfindung adäquat wirkend anzusehen ist.

Das Verhältnis von oberflächenaktivem Mittel zu Dispergiermittel in der Behandlungsmischung kann von etwa 0,1:10 bis etwa 10:1, vorzugsweise von etwa 1:2 bis 2:1, variieren. Ein Masseverhältnis von 1:1 hat sich als besonders wirksam erwiesen.

Wenn ein quaternäres Aminbiozid zusammen mit dem oberflächenaktiven Mittel und Dispergiermittel verwendet wird, kann es in einem Anteil von 1 bis 50 %-Masse, vorzugsweise 10 bis 30 %-Masse, bezogen auf die Masse der Gesamtmischung, vorhanden sein. Diese kationischen Biozide werden vorzugsweise nicht verwendet, wenn kationische Austauscherharze gereinigt werden.

Die erfindungsgemäß verwendeten Biozide werden aus der Gruppe der Fettalkyl-quaternären Salz-Biozide, der

nicht-ionischen bromnitrilsubstituierten Propionamidbiozide, der Isothiazolinbiozide und der oxidationsfähigen Biozide gewählt. Die Fettalkyl-quaternären Salz-Biozide werden vorzugsweise durch ein Alkyldimethylbenzyl-ammoniumchlorid-quaternäres Ammoniumsalz-Biozid veranschaulicht. Das nicht-ionische Biozid kann vorzugsweise Dibrom-nitrilpropionamid sein, obwohl dieses Material unter basischen pH-Bedingungen nicht stabil ist, so daß seine effektive Verwendung auf neutrale oder mild saure Bedingungen beschränkt ist. Die Isothiazoline werden am besten als Kathon 886 beschrieben, das von der Fa. Rohm & Haas Co. hergestellt wird. Diese Biozide sind in dem vorher erwähnten Produktbulletin beschrieben.

Die oxidationsfähigen Biozide sind Materialien, wie Chlor, Brom, unterchlorige Säure, unterbromige Säure und Alkalimetallsalze von unterchloriger und unterbromiger Säure. Alkalimetallsalze bedeuten hier jene Salze, die Natrium-, Kalium-, Ammonium- und Rubidiumkationen enthalten.

Im vorstehenden wurden das chargenweise Verfahren und das kontinuierliche cyclische präventive Aufrechterhaltungsverfahren und weiters die erfindungsgemäß verwendbaren nicht-ionischen oberflächenaktiven Mittel und Biodispergiermittel; und weiterhin die bevorzugten Biozide, die in Kombination mit den nicht-ionischen oberflächenaktiven Mitteln und Dispergiermitteln verwendet werden können, beschrieben. Die Anwendung dieser Chemikalien in den Verfahren zum Verbessern, Wiederherstellen und Aufrechterhalten der Leistung von Wasserbehandlungsfeststoffen, die mit organischen Substanzen, Mikroorganismen und Abfallprodukten hievon verunreinigt sind, kann am besten an Hand eines Beispiels beschrieben werden.

Experimentelle Untersuchungen

20

25

30

5

10

15

1. Der Effekt vorliegender Erfindung auf die Leistung von verunreinigten Kationenaustauscherharzen

Der Effekt der vorliegenden Erfindung auf die Arbeitskapazitäten und den Schwund von Kationenaustauscherharzen, die mit verschiedenartigen organischen Substanzen, Bakterien und bakteriellen Abfallprodukten verunreinigt waren, wurde in diesen Versuchen beobachtet. Zwei Harze wiesen sehr große Anteile einer klebrigen, gelatinösen Masse auf, die die Teilchen überzogen und in Form von grünlich-grauen Flocken waren, und ein Harze enthielt einen geringeren Anteil an Verunreinigung. Die ersten beiden Harze hatten einen fauligen Geruch, während das dritte nur einen schwachen, aber doch unangenehmen Geruch aufwies. Die zum Reinigen dieser Harze verwendeten Materialien waren ein oberflächenaktives Mittel, nämlich äthoxyliertes Nonylphenol (9 Mol) und ein Biodispergiermittel, nämlich Polyoxypropylenpolyoxyäthylenkondensat (Trübungspunkt 32 °C); und ein quaternäres Amin, nämlich Alkyldimethylbenzylammoniumchlorid. Zum Teil kann das quaternäre Amin als ein oberflächenaktiver Löslichmacher wirken.

Um die Wirksamkeit des Entfernens von organischen Materialien, Bakterien und bakteriellen Abfallprodukten von Harzen durch das erfindungsgemäße Verfahren zu bestimmen, waren die gewählten Quantitäten an Chemikalien und Reaktionszeiten höher, als sie tatsächlich erforderlich waren.

35

Versuch Nr. 1: Starkes saures Kationenharz

Dieses Harz enthielt erhebliche Anteile an großen und mittelgroßen grünlich-grauen Flocken und die Kügelchen waren ziemlich gleichmäßig mit einer gelatinösen Masse überzogen, die sich bei Berührung schleimig anfühlte.

40

45

Versuchsbedingungen:

Ein 300 ml-Anteil des Harzes wurde langsam einem 2,54 cm Lucite-Rohr zugegeben, wobei zwischen den Zusätzen jedes Probenteiles minimal Wasser zugegeben wurde. Dies gewährleistete, daß die schleimartigen Flocken gleichmäßig durch die Harzsäule gemischt wurden. Die Gesamtbetthöhe betrug etwa 57 cm. Das Harz wurde dann 4 Tage lang unbeaufsichtigt stehen gelassen. Nach diesem Zeitraum wurde das Harz durch Rückwaschen gehoben. Eine feste zylindrisch geformte Masse bewegte sich wie ein Kolben nach oben und nur etwa 30 bis 40 % der Gesamtharzkügelchen schieden sich von dieser festen Masse ab. Nach 15 min wurde der Versuch, das Harz rückzuwaschen, abgebrochen. Das durch das Rückwaschen entfernte Wasser machte 800 ml aus. Dieses Wasser zeigte eine Gesamtbakterienzahl von 10^6 bis $10^7/\text{ml}$, bestimmt mit "Orion Easicult Dip Sticks".

50

Versuchswasser:

Es wurde ein Versuchswasser mit einer Gesamthärte von 0,51 g/l hergestellt, indem 62,6 g CaCl₂ (wasserfrei), 70,2 g MgSO₄.7H₂O und 28,35 g NaHCO₃ zu 189 l D.I. Wasser zugesetzt wurden. Das Endwasser enthielt dann 526 TpM Gesamthärte bei einem Verhältnis von 2/3 Kalzium und 1/3 Magnesium plus 150 TpM NaHCO₃.

Dieses Versuchswasser wurde durch die Einheit mit einer Strömungsgeschwindigkeit von 80 ml/min oder dem Äquivalent von 2 gpm pro 28,3 dm³ Harz geleitet, bis ein Härteschwund von 0,017 g pro 1 erzielt war.

60

Versuch 1-A, nur rückgewaschenes Wasser:

Das Harz wurde dann mit dem Äquivalent von 0,096 g NaCl/cm³ (6 lb/cu.ft) oder 270 ml einer 10 %igen Salzlösung pro 300 ml Harz regeneriert. Das Harz wurde dann mit einem Bettvolumen D.I. Wasser mit einer Strömungsgeschwindigkeit entsprechend der Regenerierungsmittelströmung gespült. Zu diesem Zeitpunkt wurde das harte Wasser mit 80 ml/min durchgeleitet.

Die Härteschwund- und Druckabfalldaten sind in Fig. 1 gezeigt. Der mittlere Druckabfall durch die Harzeinheit betrug 0,31 bar.

Versuch 1-B, mit Luft besprühtes und rückgewaschenes Harz:

Das Wasser oberhalb des im Test 1-A verwendeten Harzes wurde auf Bettniveau entfernt und etwa 3 min mit komprimierter Luft mit einer Strömungsgeschwindigkeit besprüht, daß knapp die 57,15 cm Harz innerhalb des 140 cm langen Rohres zurückgehalten wurden. Dann wurde das Harz mit D.I. Wasser mit einer Strömungsgeschwindigkeit rückgewaschen, um eine "normale" Expansion des Harzes von 50 % zu erzielen, bis die Abflüsse frei von jeglichen Rückständen waren. Dies erforderte etwa 35 min Rückwaschen. Während dieser Zeit wurde ein erheblicher Anteil eines flockigen, braun- und grüngefärbten Materials ausgespült. Die Teilchen hatten eine Größe von etwa 0,5 bis 2 mm. Der rückgewaschene Anteil betrug etwa 50 ml. Die Teilchen fühlten sich recht klebrig an. Eine mikroskopische Prüfung zeigte in erster Linie transluzente Teilchen.

Das Versuchswasser wurde dann durch die Einheit wie in Versuch 1-A geleitet.

Die Ergebnisse sind in Fig. 1 gezeigt. Der mittlere Druckabfall über der Einheit betrug etwa 0,1 bar.

<u>Versuch 1-C, mit einem oberflächenaktiven Mittel, einem Biodispergiermittel und einem Biozid behandeltes</u> <u>Harz:</u>

Das in den Versuchen 1-A und 1-B verwendete Harz wurde 10 min lang rückgewaschen, dann wurde 11 einer Mischung von 1000 mg äthoxyliertem Nonylphenol (9 Mol), 1000 mg Polyoxypropylenpolyoxyäthylenkondensat (Trübungspunkt 32 °C) und 500 mg Alkyldimethylbenzylammoniumchlorid (als 50 %ige Lösung des quaternären Amins) langsam bei einer Temperatur von 43 bis 55 °C 1 h durch das Harz geleitet. Die Lösung wurde wieder erhitzt und wieder 1 h lang durchgeleitet. Der letzte Teil der Lösung wurde während eines Zeitraumes von 48 h in der Harzeinheit gelassen. Danach wurde das Harz mit D.I. Wasser 45 min lang rückgewaschen, d. h. bis die Rückwaschabflüsse klar waren. Die Rückstände, die während dieser Zeit entfernt wurden, besaßen eine sehr kleine Teilchengröße und waren leicht genug, um etwa 2 h zu benötigen, um sich im Sammelbehälter zu setzen. Eine mikroskopische Prüfung dieser Teilchen, die eine hellbraune Farbe besaßen, zeigte transluzente gelatinöse Teilchen von verschiedenen Formen und Dicken. Dann wurde das Harz regeneriert und gespült, wie in den Versuchen 1-A und 1-B beschrieben. Die Kapazitäts- und Schwundeigenschaften des behandelten Harzes wurden unter identischen Bedingungen bestimmt, die für das rückgewaschene oder mit Luft besprühte und rückgewaschene Harz verwendet worden waren. Ein Druckabfall konnte durch den verwendeten Druckmesser nicht festgestellt werden.

Die Ergebnisse hinsichtlich Schwund und Kapazität sind in Fig. 1 gezeigt.

Wie aus den Kurven der Fig. 1 ersichtlich ist, wurde durch die Behandlung mit dem oberflächenaktiven Mittel, dem Biodispergiermittel und dem Biozid eine signifikante Verbesserung der Kapazität und des Härteschwundes erzielt. Beim Rückwaschen des Harzes zeigte sich, daß es locker und ohne jegliche Klumpen war. Die Kügelchen trennten sich ausgezeichnet. Die Rückwaschabflüsse zeigten einen mäßigen Anteil (etwa 3 ml) an kleinen, braun-gefärbten Flocken, die sehr leicht herauskamen. Einige Flocken (1 ml) blieben zusammen mit etwas Fasern, die ursprünglich mit dieser Probe gekommen waren, am Oberteil des Harzes.

Die überstehende Flüssigkeit dieser Probe zeigte Null Bakterien beim Testen mit "Orion Easicult Dip Sticks".

Versuch Nr. 2: Wasserweichmachendes Harz

Dieses Harz war mit ungewöhnlich großen Anteilen an lockeren, Flocken von großer Größe verunreinigt und die Harzkügelchen waren mit einem gelatinös aussehenden Überzug überzogen, der sich bei Berührung schleimig anfühlte. Der Überzug besaß eine grünlich-graue Farbe.

Versuchsbedingungen:

Ein 300 ml-Anteil dieses Harzes plus lockeren Verunreinigungen wurde in ein 2,54 cm Rohr mit einem Minimum an Wasser zwischen dem Zusatz jedes Harzteiles zugegeben. Dies gewährleistete, daß die schleimartigen Flocken gleichmäßig mit dem Harz gemischt wurden. Das Harz wurde 4 Tage in der Einheit gelassen. Nach diesem Zeitpunkt wurde der Versuch gemacht, das Harz rückzuwaschen. Es bewegte sich im Rohr als einziges Stück nach oben und würde sich durch abwechselndes Ab- und Aufdrehen des Wasserstromes nicht lockern bzw. lösen.

60

10

15

20

25

30

35

40

45

50

Versuch 2-A, mit Luft besprüht und rückgewaschen

5

20

25

30

50

Das Wasser wurde auf Bettniveau entfernt und das Bett etwa 5 min mit Luft besprüht, wobei das dünne Kunststoffrohr, das zum Einführen der Luft verwendet wurde, wiederholt auf- und abbewegt wurde. Das Harz wurde dann etwa 45 min lang rückgewaschen, bis die Abflüsse klar waren. Die ersten 500 ml des Rückwaschwassers zeigten eine Gesamtbakterienzahl von 10⁷, gemessen nach der "Orion Easicult Dip Stick"-Testmethode. Der Gesamtanteil an rückgewaschenen Feststoffen betrug annähernd 35 ml. Dieses Material setzte sich auf etwa 25 ml in zwei Wochen. Das Harzvolumen wurde um etwa 5 ml auf insgesamt 325 ml reduziert. Eine mikroskopische Prüfung der durch das Rückwaschen entfernten grünlich-grauen Flocken zeigte transluzente, gelatinöse Teilchen von ungleichmäßiger Form und Größe. Das Harz wurde mit 298 ml 10 % NaCl oder 0,09 g

NaCl/cm³ Harz (6 lb/cu.ft) regeneriert. Das Harz wurde dann gespült und Versuchswasser wurde, wie im Experiment des Versuches 1 beschrieben, durchgeleitet.

Die Kapazität und die Schwünde sind in Fig. 2 gezeigt. Der mittlere Druckabfall in der Einheit betrug 0,03 bar.

15 <u>Versuch 2-B, mit einem oberflächenaktiven Mittel, einem Biodispergiermittel und einem Biozid behandeltes</u> <u>Harz</u>

Das in Versuch 2-A verwendete Harz wurde mit 500 ml einer Lösung mit einem Gehalt von 500 mg äthoxyliertem Nonylphenol (9 Mol ÄO), 500 mg Polyoxypropylenpolyoxyäthylenkondensat (Trübungspunkt 32 °C) und 250 mg Alkyldimethylbenzylammoniumchlorid (als 50 %ige Lösung des quaternären Amins) bei einer Temperatur von 43 bis etwa 55 °C 3 h behandelt, indem die Lösung wiederholt wieder erhitzt und durch das Harz hindurch nach unten strömen gelassen wurde. Ein Bettvolumen dieser Lösung wurde über Nacht in der Einheit gelassen. Dann wurde das Harz 45 min bis zu 50 % Expansion rückgewaschen, bis die Abflüsse klar waren. Es wurden etwa 20 bis 25 ml einer hellbraunen Substanz in Form von feinen Flocken entfernt. Die Flocken besaßen einen Durchmesser von weniger als 1 mm.

Die überstehende Flüssigkeit des Harzes zeigte Null Bakterien, als sie mit der "Orion Easicult Dip Stick"-Methode getestet wurde.

Dann wurde das Harz wie in Versuch 2-A regeneriert. Das verwendete Regenerierungsmittel wurde gesammelt und zeigte eine hellgelbe bis braune Farbe. Es wurde auch ein Schäumen der Regenerierungsmittelabflüsse festgestellt. Dann wurde das Harz mit 330 ml D.I. Wasser mit der Regenerierungsmittelströmungsgeschwindigkeit gespült und dann mit Versuchswasser rasch gespült. Das Versuchswasser wurde dann unter identischen Bedingungen, wie sie in Versuch 2-A verwendet wurden, durch das Harz gespült (mit 2 gpm/ft³).

Die Kapazitäts- und Schwunddaten sind in Fig. 2 gezeigt.

Ein Druckabfall konnte mit dem verwendeten Druckmesser nicht gemessen werden.

Ein Schäumen der Abflüsse wurde festgestellt, bis 10 1/2 Bettvolumina, d. h. 3,5 1 Testwasser, durch das Harz durchgeleitet waren. Zu diesem Zeitpunkt wurde auch kein Geruch irgendeiner Art festgestellt. Am Ende der Versuche wurde das Harz durch alternierendes Heben und Setzen des Harzes rückgewaschen. Das Harz zeigte noch immer etwas Klumpen, obwohl in viel geringerem Ausmaß als ursprünglich. Doch zeigte dieser Versuch, daß, obwohl eine signifikante Reinigung erzielt wurde, nicht alle Verunreinigungen entfernt waren. Dieses Harz war offensichtlich so schwer verunreinigt, daß ein drastischeres Reinigen oder wiederholtes Reinigen notwendig ist. Eine mikroskopische Prüfung zeigte erhebliche Unterschiede im Aussehen des Harzes, d. h. die Reinigung hatte einen Großteil der ursprünglichen Verunreinigungen entfernt. Dies wird auch durch die Verbesserung der Kapazität und des Härteschwundes des Harzes gezeigt, wie in Fig. 2 gezeigt.

Versuch Nr. 3, wasserweichmachendes Harz:

Dieses Harz war nur schwach mit lockeren hellbraunen Flocken und einem gewissen Überzug der Kügelchen verunreinigt.

Versuchsbedingungen:

250 ml Harz plus geringe Anteile an flockulierenden Verunreinigungen wurden in ein 2,54 cm-Rohr gegeben, was zu einer Betthöhe von etwa 52 cm führte. Dieses Harz wurde 4 Tage in der Einheit gelassen. Dann wurde das Harz durch ein kurzes Rückwaschen gehoben. Mehrere kleine Klumpen wurden festgestellt, die nicht aufbrachen, als das Harz langsam durch das Wasser zum Rohrboden sank.

Versuch Nr. 3-A, mit Luft besprüht und rückgewaschen:

Das Wasser wurde auf Bettniveau entfernt und das Harz 5 min mit Luft besprüht, indem gleichzeitig die dünne Luft das Rohr hinauf und im Harzbett hinab bewegt wurde. Das Harz wurde dann 35 min rückgewaschen, d. h. bis die Abflüsse klar waren. Der Anteil eines flockigen Materials mit sehr kleiner Teilchengröße betrug etwa 7 ml, als er frisch gesammelt wurde. Dieser Anteil setzte sich nach einer Woche auf 4 bis 5 ml. Die ersten 500 ml des Rückwaschwassers zeigten eine Gesamtbakterienzahl von 10⁵ bis 10⁶, gemessen nach der Orion Easicult Dip Stick-Methode.

Das Harz wurde mit 225 ml 10 %iger NaCl-Lösung oder 0,09 g NaCl/cm³ Harz regeneriert. Das Harz wurde dann gespült und mit Versuchswasser unter identischen Bedingungen, wie sie in allen vorhergehenden Versuchen verwendet wurden, erschöpft.

Die Kapazität und erzielten Schwünde sind in Fig. 3 gezeigt.

5 Es trat nicht ausreichend Druckabfall auf, um ihn mit dem verwendeten Druckmesser zu messen.

<u>Versuch 3-B, mit einem oberflächenaktiven Mittel, einem Biodispergiermittel und einem quaternären Amin</u> behandelte Harze

Das Harz, das in Versuch 3-A verwendet worden war, wurde mit 500 ml einer Lösung enthaltend 500 mg äthoxyliertes Nonylphenol (9 Mol), 500 mg Polyoxypropylenpolyoxyäthylenkondensat (Trübungspunkt 32 °C) und 250 mg Alkyldimethylbenzylammoniumchlorid (als 50 %ige Lösung des quaternären Amins) bei einer Temperatur von 43 bis 55 °C 3 h behandelt, indem die Lösung wiederholt wieder erhitzt und durch das Harz hindurch nach unten strömen gelassen wurde. Wie in Versuch 2-C wurde ein Bettvolumen der Lösung über Nacht in der Einheit gelassen. Das Harz wurde dann rückgewaschen, bis das Rückwaschwasser klar war, was etwa 45 min erforderte. Der Gesamtanteil an entferntem, braungefärbtem, flockigem, flaumigem Material betrug etwa 3 ml. Eine mikroskopische Untersuchung zeigte transluzente gelatinöse Teilchen von kleiner Teilchengröße und mit verschiedenen Formen und Dicken. Die überstehende Harzflüssigkeit war frei von Bakterien, gemessen nach der Orion Easicult Dip Stick-Methode. Dann wurde das Harz unter Bedingungen, die mit den Bedingungen der vorhergehenden Versuche identisch waren, regeneriert, gespült und erschöpft. Das verbrauchte Regenerierungsmittel zeigte eine hellgelbe Farbe.

Die Kapazität und der erzielte Schwund sind in Fig. 3 gezeigt.

Das Schäumen der Abflüsse hörte bei etwa 2,5 I durchgegangenem Versuchswasser oder dem Äquivalent von 11 Bettvolumina auf.

Die Kapazität des Harzes, das nur mit Luft besprüht und rückgewaschen war, war der verfügbaren Kapazität dieser besonderen Harzprobe nahe, d. h. etwa 23,0 1 Versuchswasser wurden durch die 225 ml Harz weichgemacht. Die chemische Behandlung mit dem oberflächenaktiven Mittel, dem Biodispergiermittel und dem quaternären Amin trug daher wenig zur Verbesserung der Kapazität bei (etwa 1 l Versuchswasser wurde zusätzlich behandelt). Die Verbesserung der Wasserqualität war jedoch signifikant, nämlich durchschnittlich eine Verminderung von 6 TpM Gesamthärteschwund erzielt mit dem Harz wie erhalten zu 4 TpM mit dem chemisch behandelten Harz, wie aus Fig. 3 ersichtlich. Die mit diesem Harz erhaltenen Ergebnisse sind von besonderem Interesse, wenn man berücksichtigt, daß dieses Harz ziemlich neu war (10 Monate alt) und nur einen relativ geringen Anteil an Bakterien und verschiedenartigen organischen Rückständen aufwies, die das Harz überzogen und in der überstehenden Flüssigkeit in Form von freien Substanzen vorlagen.

Versuch Nr. 4:

Bei diesem Versuch wurde ein kommerzielles Entmineralisierungssystem mit bisher raschen Verlusten an Betriebskapazität gemäß vorliegender Erfindung behandelt. Die Abnahme der Kapazität erforderte einen häufigen Harzersatz, was hohe Betriebskosten verursachte. Das Kationenharz mußte alle drei Jahre ersetzt werden; das schwache Harz alle 11 Monate; und das starke Basenharz alle 18 Monate. Die verminderte Harzlebenszeit war der raschen Verunreingung mit natürlichen organischen Substanzen, Bakterien, Algen und synthetischen Polymeren zuzuschreiben. Der nachteilige Effekt der Oberflächenverunreinigungen auf die Kationen- und schwachen Basenharzeinheiten war besonders augenscheinlich.

Der Zweck des Versuchs lag darin, zu bestimmen, ob eine Kombination eines Biodispergiermittels und eines nicht-ionischen oberflächenaktiven Mittels ausreichend Verunreinigungen entfernen kann, um eine verwendungsfähige Kapazität des Systems wiederherzustellen. Bei diesem Versuch wurden NaOCl als ein Oxidationsmittel, ein Löslichmacher und ein anorganisches oxidationsfähiges Biozid zugesetzt.

Bei dem Versuch wurde Wasser von einer Lagune, die natürliches oberflächlich abfließendes Wasser sammelt, zu einer Wasserbehandlungsanlage gepumpt, wo 1 bis 5 TpM eines synthetischen polymeren Koagulierungsmittels zugesetzt wurden. Das Wasser wurde zu einer Filtrationseinheit geleitet, um teilchenförmiges Material zu entfernen, und dann durch das Entmineralisiersystem geführt, das aus vier Entmineralisiergerätesätzen bestand, wobei jeder Satz 11320 dm³ Kationenharz, 6367,5 dm³ schwaches Basenharz und 4245 dm³ starkes Basenharz enthält. Der Harzersatz von zwei der vier Gerätesätze erfolgte auf Grund von verminderten Kapazitäten. Diese beiden Gerätesätze wurden gemäß vorliegender Erfindung auf folgende Weise behandelt:

55

10

15

20

25

30

35

40

45

50

Reinigung der Entmineralisiergeratesätze 1 und 2

Jede Einheit der beiden Entmineralisiergerätesätze wurde getrennt behandelt.

1. Kationeneinheit von Gerätesatz Nr. 1 (11300 dm³)

5

Dosierung: 1) 2500 TpM einer Mischung eines oberflächenaktiven Mittels und eines Biodispergiermittels. Das oberflächenaktive Mittel war ein nicht-ionisches flüssiges Nonylphenoxypolyäthoxyäthanol mit einem HLB-Wert von 13,3. Das Biodispergiermittel war ein flüssiges nichtionisches Blockcopolymer von Propylenoxid und Äthylenoxid mit einem HLB-Wert von 7,0.

2) 250 TpM Cl₂, als Bleichmittel zugesetzt, oder 9,5 1 18 % NaOCl pro Einheit.

10

Die Einheit wurde über die Rückwaschleitung 4 h lang jede Stunde mit Luft gereinigt und dann über Nacht stehen gelassen. Es trat kein Schäumen auf, möglicherweise wegen des ungewöhnlich großen Anteils an teilchenförmigem Material, das während des Reinigens gelockert wurde. Am nächsten Morgen wurde die Einheit mit 1136 l/min 2 h rückgewaschen. Zu diesem Zeitpunkt war das Abwasser klar. Es wurde nach 30 min kein weiteres Schäumen mehr beobachtet. Kleines teilchenförmiges Material kam noch in großen Quantitäten heraus. Der Oberflächenüberzug der Harzteilchen nahm Alcian Blue-Farbstoff in einem Ausmaß auf, daß etwa 1/4 der meisten Teilchen mit gefärbten Substanzen überzogen waren. Dies zeigte die Anwesenheit von Polysacchariden, d. h. biologischen Abfallprodukten, an.

20

15

2. Schwache Baseneinheit von Gerätesatz Nr. 1: (6367,5 dm³)

Dosierung: 1) 2500 TpM der oben beschriebenen Mischung, 2 Bettvolumina oder 15 l pro Einheit 2) 250 TpM Cl₂, als Bleichmittel zugesetzt, oder 5,3 l 18 %iges NaOCl pro Einheit.

25

30

Wiederum wurde 4 h lang jede Stunde die Einheit mit Luft gereinigt. Es trat mäßiges Schäumen auf und das Reinigen mit Luft wurde abgebrochen, als der Schaum den Oberteil der Einheit erreicht hatte. Die Einheit wurde über Nacht stehen gelassen und dann 1 3/4 h rückgewaschen, bis keine Teilchen oder Schäumen im Abfluß mehr festgestellt wurden. Das Rückwaschwasser klärte sich wesentlich rascher als die Kationeneinheit, d. h. es wurden weniger Teilchen entfernt.

3. Starke Baseneinheit von Gerätesatz Nr. 1: (4245 dm³)

35

Dosierung: Gleiche Lösungsstärke. Der zugesetzte Gesamtanteil betrug 9,5 1 der oben beschriebenen Mischung und 3,6 1 18 %iges NaOCl.

Diese Einheit enthielt fast keine gelockerten Teilchen und schäumte während des Reinigens mit Luft und während des Rückwaschens. Die Zugabe eines chemischen Entschäumers zum Abwasser war sehr wirksam beim Verhindern von Schäumen in den Abwasserleitungen.

40

45

50

60

4. Alle Harzeinheiten von Gerätesatz Nr. 2:

Die für Gerätesatz Nr. 1 beschriebenen Bedingungen wurden beim Behandeln von Gerätesatz Nr. 2 verwendet; es wurde auch der gleiche Anteil an Chemikalien verwendet.

Die Reaktionszeit für den Reiniger betrug jedoch 4 h. Die Kationeneinheit war stärker verschmutzt als jene von Gerätesatz Nr. 1. So war ein Rückwaschspülen von 2 1/2 h im Vergleich mit 2 h für die Kationeneinheit des Gerätesatzes Nr. 1 erforderlich.

Beispiel 1:

Präventive Aufrechterhaltungsbehandlung des Entmineralisiergerätesatzes Nr. 1

Eine präventive Aufrechterhaltungsdosierung von 20 TpM der Mischung von oberflächenaktivem Mittel und Dispergiermittel, die in den obigen Versuchen verwendet worden war, wurde dem Rückwaschwasser während etwa der ersten 10 min jedes Rückwaschens der Kationen-, schwachen Basen- und starken Baseneinheit zugeführt. Das Produkt schien von den Einheiten während des übrigen Rückwaschens abgespült zu werden, d. h. 20 min zusätzlich, plus der normalen Regenerierung und des Spülens mit Regenerierungsmittel. Das "End"-Spülwasser, das während der letzten 2 min des Spülens genommen wurde, zeigte eine Oberflächenspannung gleich dem Rohwasserzufluß.

Nach mehreren Rückwaschzyklen unter Verwendung dieses präventiven Aufrechterhaltungsprogramms brachte die Reinigungsbehandlung die Gerätesätze wieder auf ihren maximal möglichen Betriebszustand. Die Länge des Laufes von Gerätesatz Nr. 1 wurde von 1 835 925 1 auf 4 050 390 1 erhöht und für Gerätesatz Nr. 2 wurde eine Zunahme von 3 293 308 1 auf 3 974 682 1 erzielt. Eine Harzanalyse zeigte, daß nur 81 % der ursprünglichen

Kapazität zurückblieben, d. h. die gesamte verfügbare Kapazität dieses verwendeten Harzes wurde wiederhergestellt.

Die gesammelten Daten nach 5 Monaten Betrieb ergaben, daß die präventive Aufrechterhaltungsbehandlung von Gerätesatz Nr. 1 die Herabsetzung der Lauflängen nur um etwa 12 bis 15 % verringerten, während Gerätesatz Nr. 2 eine rasche Abnahme von 45 % der Lauflängen, d. h. der relativen Anteile an behandeltem Wasser, zeigte.

Dieser Versuch illustriert, daß das präventive Aufrechterhaltungsprogramm am wirksamsten ist. Der Entmineralisiergerätesatz Nr. 1 wurde zuerst gereinigt und dann mit einer Mischung im Masseverhältnis 1:1 von oberflächenaktivem Mittel und Biodispergiermittel plus Chlor behandelt. Dann wurde kontinuierlich und cyclisch mit der gleichen Mischung an nicht-ionischem oberflächenaktiven Mittel und Biodispergiermittel behandelt, um optimale Betriebskapazitäten und ausgezeichnete niedrigere Schwundcharakteristika vorzusehen, die typisch für reinigende Entmineralisierharze sind. Im Gegensatz dazu zeigte der Entmineralisiergerätesatz Nr. 2, der wirksam chargenweise gereinigt, aber nicht weiter mit einem cyclischen Präventiv- und Aufrechterhaltungsprogramm behandelt wurde, eine Abnahme seiner Betriebscharakteristika.

Der Erfolg des Entfernens der Oberflächenverunreinigungen war wahrscheinlich zum Teil der Kombination von oberflächenaktivem Mittel, Dispergiermittel und Chlor als einem oxidationsfähigen Biozid zuzuschreiben. Es wird auch angenommen, daß Chlor mit jeder verunreinigenden Polymerkette an Zweigstellen in Wechselwirkung treten kann, was ein Brechen der Kette bewirkt und zu einer niedrigeren Molmasse und der Bildung eines wasserlöslicheren Polymerrückstandes führt. Die durch die Verwendung der Bleiche vorgesehene Alkalinität kann auch vorteilhaft beim Überführen des Polymers in seine wasserlöslichere Natriumsalzform sein.

20

25

30

35

40

45

50

55

60

5

10

15

Beispiel 2:

Verbesserung der Leistung eines verunreinigten starken Basenanionenaustauscherharzes

Die folgenden Versuche wurden durchgeführt, um zu untersuchen, ob es möglich ist, die Leistungscharakteristika von verunreinigten Anionenharzen durch die Verwendung eines oberflächenaktiven Mittels und eines Biodispergiermittels als Additiv zu der laufend verwendeten Reinigungslösung, d. h. einer Mischung von Salz und kaustischem Material, zu verbessern. Letztlich hofft man, einen ausreichenden Beweis für die Verwendbarkeit derartiger Komponenten, zur Aufrechterhaltung von Anionenharzen unter Spitzenbetriebsbedingungen beizutragen, zu schaffen, d. h. die Anhäufung von organischen Materialien zu verhindern anstatt das Harz verunreinigt werden zu lassen und zu warten, bis die Betriebskosten einer Einheit so hoch sind und die produzierte Wasserqualität so schlecht ist, daß der Direktor der Anlage mit ersten Betriebsproblemen konfrontiert ist.

Das gewählte Harz war eine Verbraucherprobe, die vor kurzem erhalten worden war. Der Verbraucher hatte sowohl eine schlechte Wasserqualität als auch einen hohen pH-Wert mit diesem Harz erzielt. Diese Probe enthielt einen mäßigen Anteil an braungefärbten flockigen Teilchen von variierenden Formen und Größen und das Harz selbst war mit mäßigen Anteilen einer schleimigen Substanz überzogen. Die Probe hatte einen fauligen Geruch, der für neue Anionenaustauscherharze nicht charakteristisch ist. Das die Harzteilchen umgebende Wasser hatte eine Gesamtbakterienzahl von etwa 10^7 , gemessen mittels der Orion Easicult-Methode, was zeigt, daß die Harztumgebung mikrobiologisch verschmutzt bzw. verunreinigt war.

Die Probe zeigte nur 79 % ihrer ursprünglichen Gesamtkapazität und 67 % ihrer ursprünglichen salzspaltenden Kapazität. Sie enthielt 10 % zerbrochene Kügelchen, war mit 12 g Fe und 26 g Si pro 28,3 dm³ Harz verunreinigt und auch mit großen Anteilen dunkel gefärbten organischen Substanzen verschmutzt.

A. Kapazitäts- und Schwundversuche vor der chemischen Behandlung

Zwei 40 ml-Proben dieses Harzes wurden in eine 50 ml-Bürette eingebracht und mit Wasser mit einem Gehalt an 585 TpM Salzsäure, berechnet als CaCO₃ auf einen Schwund von 50 mmhos (Mikromhos) erschöpft. Dann wurde das Harz mit 0,08 g NaOH/cm³ regeneriert, gespült und mit dem Versuchswasser von 585 TpM Gesamtsalzsäure als CaCO₃ erschöpft.

Eine Probe (Säule A) zeigte einen Abfluß mit einer Leitfähigkeit von 10 bis 21 Mikromhos. Die andere Probe (Säule B) ergab ein Wasser mit einer Leitfähigkeit von etwa 25 bis 30 mmhos, aber am Ende des Zyklus wurde festgestellt, daß diese Probe etwas mehr Bruchstücke enthielt als die erste Probe.

B. Kapazitäts- und Schwundversuche nach chemischer Behandlung

Säule A wurde der gewöhnlich empfohlenen Behandlung mit 0,16 g NaCl und 0,016 g NaOH pro cm³ Harz, als 10 %ige Lösung während 3 h bei 60 °C angewendet, unterworfen. Der tatsächlich verwendete Anteil betrug 60 ml Lösung pro 40 ml Harz.

Die Säule B wurde mit einer Mischung von 60 ml der obigen Lösung, verdünnt auf insgesamt 110 ml mit einer wässerigen Lösung von 50 mg äthoxyliertem Nonylphenol (9 Mol), 50 mg Polyoxypropylenpolyoxyäthylenkondensat, Trübungspunkt 32 °C, und 25 mg Alkyldimethylbenzylammoniumchlorid, einem quaternären Aminbiozid, behandelt. Die Behandlungszeit betrug 3 h bei einer Temperatur von 60 °C.

Beide Säulen wurde ohne Wärme über Nacht mit genug von jeder Behandlungslösung um die Harzkügelchen

stehen gelassen. Die Harzproben wurden dann mit 0,2n HCl und anschließend mit Wasser gespült, regeneriert, gespült und erschöpft, wie unter A. Die angesammelten Behandlungsabflüsse waren beide tief dunkelrot-braun. Die erzielte Wasserqualität war aber ziemlich unterschiedlich. Das mit dem oberflächenaktiven Mittel, dem Biodispergiermittel und dem Biozid in Mischung mit Salz und kaustischem Material behandelte Harz ergab Wasser mit einer Leitfähigkeit von etwa 5 bis 10 mmhos weniger als die mit dem oberflächenaktiven Mittel etc. behandelte Säule und lieferte eine Wasserqualität von etwa 6 mmhos während etwa 2/3 des Versuches, während das ohne diese Additive behandelte Harz zu einer Wasserqualität von etwa 15 bis 20 mmhos über fast den gesamten Versuch führte, wobei etwa 5 % des Laufes die Wasserqualität von 8 mmhos ergaben.

Das erste 1/3 des mit beiden Harzen behandelten Wassers zeigte eine hellbraune Farbe, mehr Farbe wurde mit dem mit oberflächenaktiven Mitteln etc. behandelten Harz festgestellt. Dies scheint die Bewertung zu substantiieren, daß ein starkes Basenharz, das man organische Materialien ansammeln ließ, sehr wahrscheinlich niemals vollständig gereinigt wird, zufolge der geringen Mobilität von organischen Materialien mit hoher Molmasse. Mit anderen Worten, man kann von einem Harz, das diese Substanzen während eines langen Zeitraumes angesammelt hat, nicht erwarten, daß es in dem relativ kurzen Zeitraum, der zum Reinigen zur Verfügung steht, vollständig gereinigt wird. Die hier vermerkte positive Verbesserung liefert jedoch einen Beweis der Richtigkeit des Konzeptes der Verwendung von oberflächenaktiven Mitteln und Biodispergiermitteln, um dazu beizutragen, organische Materialien von Anionenharzen zu entfernen, die sonst schwer aus den Harzen zu verdrängen sind. Weiterhin zeigen diese Ergebnisse auch, daß die verwendeten Komponenten ausgezeichnet die Ansammlung von organischen Materialien auf Anionenaustauscherharzen verhindern.

20

25

30

10

15

Beispiel 3:

Produktherstellung

Insgesamt wurden vier Produkte hergestellt. Die Produkte umfaßten ein Biodispergiermittel (Polyoxy-propylenpolyoxyäthylenkondensat, hergestellt wie in der US-PS 2 674 619 beschrieben) und ein oberflächenaktives Mittel (äthoxyliertes Nonylphenol (9 Mol ÄO)) mit oder ohne quaternäres Amin (Alkyldimethylbenzyl-ammoniumchlorid)-Biozid.

Alle Produkte wurden als 50 %ige Lösungen in Wasser formuliert. Die einzelnen Bestandteile wurden bei 60 bis 65 °C ohne irgendwelche Schwierigkeiten gemischt. Bei niedrigeren Temperaturen ist das Mischen etwas schwieriger; die Viskositäten der Lösungen während des Mischens waren derart, daß erhebliche Zeiträume notwendig waren, um eine gleichmäßig gemischte Lösung zu erhalten. Die bevorzugte Reihenfolge des Mischens war: Wasser, oberflächenaktives Mittel gefolgt vom Dispergiermittel und schließlich das quaternäre Aminbiozid.

Produktbestandteile und Reihenfolge des Mischens

35

	Produkt	Wasser	oberflächen- aktives Mittel	Dispergier- mittel A	Dispergier- mittel B*	quaternäres Amin
40						_
	CX-29	50 <i>%</i>	20 %	20 %		10 %
	CX-30	50 <i>%</i>	25 %	25 %		
	CX-31	50 %	18,2 %		18,2 %	13,6 %
	CX-32	50 %	25 %		25 %	

45

* Dispergiermittel B ist vom gleichen Typ wie das Dispergiermittel A, ausgenommen, daß es einen Trübungspunkt (32 °C) hat, der um 8° höher ist als jener des Dispergiermittels A.

50

55

Alle hergestellten Produkte waren farblose, klare und etwas viskose Lösungen. Sie lösten sich leicht in Wasser bei jeder Konzentration und bei jeder Temperatur.

Diese CX-Produkte wurden Stabilitätsversuchen bei 49 °C, 24 °C, 0 °C und -18 °C unterworfen. Nach 2 Wochen wurde keine Veränderung festgestellt, ausgenommen daß die Produkte bei -18 °C froren. Beim Auftauen wurde eine vollständige Gefrier-Auftau-Wiederherstellung festgestellt.

Die folgenden oberflächenaktiven Mittel wurden erfolgreich im Verfahren verwendet:

Makon 10 ein nicht-ionisches, flüssiges Alkylphenoxypolyoxyäthylenäthanol Surfonic N-85 ein nicht-ionisches, flüssiges Nonylphenoxypolyäthoxyäthanol.

Beispiel 4:

Die Wirksamkeit des erfindungsgemäßen Programms der Kombination nicht-ionisches oberflächenaktives Mittel und Biodispergiermittel zum Aufrechterhalten der Kapazitäten von Ionenaustauscherharzen wurde in einer Anlage im Süden der U.S.A. getestet. Eine Kationen- und zwei Anionenentmineralisiereinheiten waren durch Wasser mit einem Gehalt an organischen Substanzen von natürlichen Quellen und auch möglicherweise von einer stromaufwärts gelegenen Abwasserbehandlungsanlage verschmutzt. Die kationischen Austauscherharze zeigten einen Oberflächenüberzug mit nichtdefinierten organischen, bakteriellen Schleimen und mit einem Nachweis an Mikroorganismen. Die anionischen Austauscherharze waren mit dunkelbraunen Substanzen, von denen man annimmt, daß es sich um Lignine und Tannine handelt, stark verschmutzt. Es wurden auch Substanzen von öliger oder fettiger Natur an den anionischen Austauscherharzen festgestellt, was ein Verklumpen der Harzteilchen bewirkt. Alle drei Einheiten wurden mit einer Kombination des bevorzugten nicht-ionischen oberflächenaktiven Mittels und Biodispergiermittels in Kombination mit Natriumhypochlorit, das sowohl als Oxidationsmittel als auch als Biozid verwendet wird, behandelt.

Wasser, das durch die Entmineralisiereinheiten hindurchgeht, besitzt während des Versuches eine Temperatur von etwa 29 °C bis etwa 35 °C. Das Wasser enthielt wesentliche Anteile an natürlichen organischen Materialien plus dem Abfluß der stromaufwärts gelegenen Abwasserbehandlungsanlage. Obwohl kein massiver analytischer Versuch unternommen wurde, jede der organischen Verunreinigungen zu identifizieren, könnte eine vernünftige Einschätzung dieser Verunreinigungen die Anwesenheit von Tanninen, Ligninen, Fettsäuren, mikrobiologischen Organismen und deren Abfallprodukten einschließen.

Die Kationenaustauschereinheit wurde mit Permutit QB beladen und beim Versuchen zeigte sie eine Gesamtaustauschkapazität gleich 1,55 Milliäquivalenten pro ml, was etwa 77 % der ursprünglichen Ionenaustauscherharzkapazität betrug. Die Anionenaustauschereinheit 1 wurde mit Dowex 11 beladen, die eine salzspaltende Kapazität gleich 0,44 Milliäquivalente pro ml oder etwa 34 % der ursprünglichen Kapazität aufwies; beim Testen hatte sie 0,45 Milliäquivalente pro ml schwache Basengruppen im Vergleich mit keinen schwachen Basengruppen, die auf neuem, frischem Harz feststellbar sind, und besaß eine Gesamtaustauschkapazität von 0,89 Milliäquivalente pro ml, was etwa 68 % der ursprünglichen Kapazität entspricht.

Die anionische Austauscherharzeinheit 2 wurde mit IRA-402 der Fa. Rohm & Haas beladen, welche beim Testen eine salzspaltende Kapazität von 0,38 Milliäquivalente pro ml zeigte, was etwa 29 % der ursprünglichen Kapazität entspricht. Die schwache Basenkapazität dieses Harzes betrug beim Testen 0,71 Milliäquivalente pro ml, obwohl keine schwache Basenkapazität auf frischem, neuem Harz feststellbar ist. Die Gesamtaustauschkapazität dieses Anioneneinheitsharzes betrug 1,09 Milliäquivalente pro ml, welche sich beim Testen als 84 % der ursprünglichen frischen neuen Harzkapazität herausstellte.

Die Behandlung der kationischen Austauscherharze mit Alcian Blue Dye zeigte die Anwesenheit von Polysacchariden, wie bakteriellen Schleimen, Holzzuckern und schleimbildenden Bakterien, an.

Wie oben angegeben, besaßen die anionischen Harze eine dunkle Farbe, bildeten kleine Klumpen und hatten einen weißen Überzug, der sich nur bei längerer Berührung mit heißem kaustischen Material löste. Wiederum wäre, obwohl keine Analysen vorgenommen wurden, diese heiße kaustische Lösung typisch für Silikatablagerungen, die gebildet werden können, wenn lösliche Silikate über ein saures Harz geleitet werden, beispielsweise ein Harz mit hohen Prozentsätzen an schwachen Basengruppen.

Jede der drei Einheiten wurde zuerst einer Chargenbehandlung mit einem Gehalt von 2500 TpM eines Kombinationsproduktes unterworfen, das seinerseits das bevorzugte nicht-ionische oberflächenaktive Mittel und das Biodispergiermittel, die erfindungsgemäß eingesetzt werden, enthielt. Weiterhin wurden 250 Tpm Chlor (als Natriumhypochlorit), bezogen auf 2 Bettvolumina Wasser, zugesetzt. Die Behandlung der Anionenharzeinheiten umfaßte auch die Zugabe von 100 TpM eines quaternären Aminbiozids.

Die Einheiten wurden geöffnet, das Wasser bis auf etwa 15 cm oberhalb des Harzes abgezogen und die oben angegebenen Chemikalien wurden zugegeben. Die Wassertemperaturen während der Zugabe dieser Chemikalien betrugen etwa 29 bis etwa 32 °C. Die Einheiten wurden sofort mit Luft besprüht und dann 4 h lang jede Stunde. Das Schäumen innerhalb der Einheiten war übermäßig und das Besprühen mit Luft wurde abgebrochen, als Schaum am Oberteil jeder der Harzbetteinheiten erschien.

Jede Einheit wurde dann bis zum Überfließen rückgewaschen, bis die Abflüsse frei von teilchenförmigem Material waren und wenig oder gar kein Schäumen mehr beobachtet wurde. Dies erforderte etwa 45 min für die Kationenharzbetteinheiten und etwa 75 min für jede der Anioneneinheiten. Alle drei Einheiten wurden dann auf übliche Weise regeneriert.

Mit der präventiven Aufrechterhaltungsbehandlung wurde sofort nach dem chargenweisen Reinigen der Kationeneinheit 1 und auch der Anioneneinheit 1 begonnen. Die Anioneneinheit 2 wurde ohne jegliche weitere Behandlung gelassen, um imstande zu sein, die Leistung dieser Einheit mit der Anioneneinheit 1 zu vergleichen, wodurch zwei identische Einheiten verglichen werden können und man die Wirkung der periodischen Aufrechterhaltungsbehandlung gegen die Leistung der Einheit, die nur einer chargenweisen Reinigungsbehandlung ausgesetzt wurde, beobachten kann.

Das präventive Aufrechterhaltungsprogramm bestand im Zuführen von 80 TpM einer 25 %igen wässerigen Lösung des kombinierten Produktes eines nicht-ionischen oberflächenaktiven Mittels mit einem Biodispergiermittel während der ersten 10 min jedes Rückwaschens gefolgt von einer 20 min dauernden Fortsetzung des

- 14 -

15

10

20

30

25

35

40

45

50

55

22

Rückwaschens mit Standardreinigungswasser und schließlich gefolgt von üblicher Regenerierung. Tabelle II gibt die Daten an, welche die mit diesen Versuchen erhaltenen Ergebnisse vergleicht.

5 <u>Tabelle II</u>

Betriebskapazitäten vor und nach der Behandlung

10 15	Tage	Kationeneinheit Nr. 1 gereinigt plus präventive Aufrechterhaltung	Anioneneinheit Nr. 2 nur gereinigt	Anioneneinheit Nr. 3 gereinigt plus prä- ventive Aufrecht- erhaltung
20	Tag 1	gereinigte Einheit plus Beginn mit der präventiven Auf- rechterhaltung	gereinigte Einheit keine weitere Be- handlung	•••
25	Tag 2	211 983 1 über dem Meßwert	140 060 l weniger als der Meßwert (Kie- selerdeschwund)	68 137 l weniger als der Meßwert (Kieselerdeschwund)
25	Tag 3			
30	Tag 4		158 987 1 weniger als der Meßwert	Reinigung plus Be- ginn der präventiven Aufrechterhaltung
	Tag 5	113 562 l über dem Meßwert		
35	Tag 6		Regenierung vor dem Schwund 113 562 l weniger als der Meßwert	75 708 1 am Messer verblieben (Kiesel- erdeschwund)
40	Tag 7	90 850 1 über dem Meßwert		68 137 1 am Messer verblieben (Kiesel- erdeschwund)

Eine sorgfältige Ansicht der Tabellendaten zeigt die Wirkungen des Reinigens und die Wirkungen des präventiven Aufrechterhaltungsprogramms. Man hat dem die Anlage bedienenden Personal aufgetragen, diese Einheiten bis zu ihrem echten Endpunkt zu beobachten, d. h. Kieselsäureschwünde für die Anioneneinheiten und eine Abnahme der freien Mineralazidität für die Kationeneinheit. Gewöhnlich betrieb diese Anlage ihre Entmineralisiereinheiten durch automatische Wassermesserabsperreinrichtungen. Wenn eine vorherbestimmte Literzahl Wasser durch die Einheiten hindurchgegangen war, wurden die Einheiten automatisch rückgewaschen, regeneriert und gespült, bevor sie dem Wasser ausgesetzt wurden, das diese Behandlung benötigte. Im Falle der Anioneneinheiten verliefen normale Läufe gut über den Schwund an Kieselerde hinaus. Die durchgeführten Versuche zeigten, daß die Anioneneinheiten keine Kapazität mehr verloren, aber das Reinigen gemäß dem erfindungsgemäßen chargenweisen System die Betriebskapazität nicht erhöhte. Dies ist nicht allzu überraschend, weil die Daten der ursprünglichen Harze zeigten, daß diese Harze sich auf einen derart extremen Wert verschlechtert hatten, daß eine Fortsetzung dieses Versuches fraglich war.

Jedoch zeigte das präventive Aufrechterhaltungsprogramm, daß das Ausmaß der Verschmutzung über die unter Anwendung des chargenweisen Reinigungsverfahrens erzielten Reduktionen hinaus reduziert war.

Die Ergebnisse dieser Bewertung zeigten auch, daß die Oberflächenüberzugsverschmutzung des Kationenharzes entfernt war und daß die Verarbeitungsmenge für dieses Harz von 908 500 l pro Lauf auf 1 022 061 l pro Lauf erhöht war. Eine nachfolgende Anwendung der präventiven Aufrechterhaltungsdosierung gemäß vorliegender

Erfindung trug dazu bei, diese ausgedehnte Verarbeitungsmengenzunahme aufrechtzuerhalten.

Die ionisch verschmutzten Anionenharze zeigten zuerst keine Änderung in der Verarbeitungsmenge. Jedoch zeigten sogar mit diesen relativen Kurzzeitversuchen diese ionisch verschmutzten Anionenharze keine weitere Abnahme ihrer Betriebskapazitäten und -charakteristika.

Das präventive Aufrechterhaltungsprogramm wurde während eines Zeitraumes von etwa 14 Monaten fortgesetzt. Während dieses Zeitraumes verbesserten sich die Lauflängen an den stark verschmutzten starken Basenanionenharzen enorm von annähernd 643 520 l auf 859 288 l und wurden während der letzten vier Monate dieses Zeitraumes von 14 Monaten auf diesem Wert gehalten. Die Wasserqualität des Gesamtentmineralisiergerätesatzes war ebenfalls enorm verbessert.

Ebenfalls bemerkenswert ist die Beobachtung, daß die chemische Kapazität, d. h. die salzspaltende Kapazität, nicht weiter abnahm, sondern sich eher bis zu einem gewissen Ausmaß erhöhte. Im wesentlichen zeigen die in Fig. 4 gezeigten Versuche, daß die Anwendung des präventiven Aufrechterhaltungsprogramms die Harzlebenszeit um mindestens 19 Monate erhöhte und erfolgreich das gereinigt hatte, was als ein irreversibel verschmutztes Anionenharzbett bezeichnet worden war. Interessant ist, daß die Gesamtaustauschkapazitäten der erfindungsgemäß behandelten Harze bei einem präventiven Aufrechterhaltungsprogramm während der Gesamtlänge dieses Versuches unverändert blieben. Dies zeigt, daß die Erfindung einen weiteren Abbau der Harze vollständig hemmt und verhindert und weitere Verluste der Austauschkapazitäten für diese Harztypen verhindert.

Zusammenfassend zeigte somit dieser Vergleichsversuch, insbesondere der beiden Anioneneinheitsgerätesätze, daß die Entmineralisiergerätesätze während eines Zeitraumes von etwa 2 oder 3 Jahren in ihrer Kapazität allmählich abnahmen. Diese allmähliche Abnahme der Effizienz wurde einem Harzabbau plus übermäßigem Aufbau von natürlichen organischen Verschmutzungen und Mikroorganismen und deren Abbauprodukten zugeschrieben, die von natürlichen Gewässern sowie einer stromaufwärts in das diesen Entmineralisiergerätesätzen zugeführte Wasser entladenden Abwasserbehandlungsanlage stammen. Bei diesem Versuch wurden sowohl ein chargenweises Reinigen unter Anwendung der erfindungsgemäß eingesetzten Chemikalien als auch das präventive Aufrechterhaltungsprogramm unter Verwendung derselben Chemikalien, angewandt auf die anionischen und kationischen Einheiten, die die Entmineralisiergerätesätze bei dieser Anlage bilden, verglichen. Das chargenweise Reinigen oder das Säuberungsverfahren zeigten im wesentlichen keinen meßbaren Effekt, obwohl die Gesamtlauflängen eine graduelle Zunahme zeigten.

Nach der chargenweisen Behandlung wurde eine Speisepumpe an die Rückwaschwasserleitung der anionischen Einheit angeschlossen und die erfindungsgemäß verwendeten Chemikalien wurden dem Rückwaschwasser während des ersten 1/3 des insgesamt 30 min dauernden Rückwaschzyklus zugeführt, der vor jeder Regenerierung vorgenommen wird. Die Zufuhr an Chemikalien betrug 30 TpM, bezogen auf das Gesamtvolumen des behandelten Rückwaschwassers. Es war keine weitere chemische Behandlung oder Aktion an diesen Einheiten vorgesehen.

Zum Zeitpunkt, wo das präventive Aufrechterhaltungsprogramm eingeleitet wurde, betrug die Gesamtkapazität der Einheit, an die dieses Rückwaschsystem angeschlossen wurde, 567 812 l. Diese Lauflänge verbesserte sich langsam und allmählich während der nächsten 14 Monate auf eine Gesamtlauflänge von 859 288 l.

Es ist auch außerordentlich bemerkenswert, daß das Harz in diesem anionischen Gerätesatz nur 29 % seiner ursprünglichen salzspaltenden Kapazität und 84 % seiner ursprünglichen Gesamtkapazität besaß, als dieser Versuch begonnen wurde. Eine erneute Prüfung der Kapazitäten dieses Harzes etwa 13 Monate später zeigte, daß das Harz 32 % der ursprünglichen salzspaltenden Kapazität besaß, was eine Zunahme von etwa 10 % der chemisch verfügbaren Gesamtaustauschkapazität bedeutet. Dies zeigt, daß die fortgesetzte präventive Aufrechterhaltungsanwendung der erfindungsgemäß verwendeten Chemikalien den weiteren chemischen Abbau dieser anionischen Harze vermindert. Die in diesem Versuch verwendeten Chemikalien waren eine 1:1 Mischung eines äthoxylierten Nonylphenols mit 9 Mol Äthylenoxid und eines Biodispergiermittels, das durch Kondensieren von Äthylenoxid mit einem Propylenoxidaddukt auf Propylenglykol synthetisiert worden war, wobei ein Produkt mit einer Molmasse von etwa 1500 bis 5000 und einem HLB-Wert zwischen 4 und 10 erhalten wurde.

Beispiel 5:

10

15

20

25

30

35

40

45

Eine Ölraffinerie an der Golfküste wies 7 Entmineralisiergerätesätze auf, die bisher Ionenaustauschkapazität verloren hatten und lange Wasserspülungen und Regenierungen erforderten. Harzverschmutzung zufolge verschiedener Arten von natürlichen und synthetischen organischen Materialien sowie Mikroorganismus- und Mikroorganismusabfallproduktanhäufung wurden als Hauptgründe für diese bisher schlechte Leistung angesehen. Die kationischen und schwachen anionischen Basenharze der beiden Gerätesätze innerhalb dieses Entmineralisiersystems wurden mit den erfindungsgemäß verwendeten Chemikalien chargenweise gereinigt, worauf eine präventive Aufrechterhaltungsbehandlung lediglich an einem Gerätesatz folgte. Die chargenweise Reinigungsbehandlung verbesserte die Leistung dieser Gerätesätze in einem schwachen Ausmaß. Der Entmineralisiergerätesatz, der keiner weiteren präventiven Aufrechterhaltungsbehandlung unterworfen wurde, verblieb bei der schlechten Leistung. Der Entmineralisiergerätesatz, der der präventiven Aufrechterhaltungsbehandlung unter Verwendung der erfindungsgemäß eingesetzten Chemikalien unterworfen wurde, zeigte eine merkliche und ständige Verbesserung.

Die Versuche an dieser Raffinerie an der Golfküste erfolgten, um die an einem Entmineralisiergerätesatz 1

erhaltenen Ergebnisse mit jenen eines Entmineralisiergerätesatzes 2 zu vergleichen. Der Gerätesatz 1 wurde während der verlängerten Zeiträume dieses Versuches unter der Standardpraxis dieser Raffinerie gehalten.

Der Entmineralisiergerätesatz 2 wurde dem präventiven Aufrechterhaltungsprogramm unterworfen, was den Zusatz der erfindungsgemäß eingesetzten Chemikalien zu den ersten 10 %, aber nicht mehr als den ersten 50 % des Rückwaschzyklus erfordert, worauf eine Standardregenerierungs- und -spülmethode folgt. Die Chemikalien wurden bei jedem Rückwaschen während eines Zeitraumes von annähernd 9 Monaten zugesetzt. Beide Entmineralisiergerätesätze wurden zuerst rückgewaschen und gereinigt, wobei die oben beschriebenen chargenweisen Behandlungen unter Verwendung der erfindungsgemäß eingesetzten Chemikalien durchgeführt wurden. Vor dieser Reinigung hatte das Personal der Anlage die Harze im gesamten Entmineralisiersystem mit kaustischen und Regenerationschemikalien annähernd zwei bis drei Monate vor dem Beginn mit diesem Versuch gereinigt.

Die Ergebnisse des chargenweisen Reinigens, das ziemlich bald nach dem Gesamtreinigen der Harze an Ort und Stelle durch das Personal der Anlage erfolgte, zeigten, daß nur eine schwache Verbesserung der Harzkapazität bei Verwendung von Regenerationschemikalien und Wasser zusätzlich zur Wasserqualität festgestellt wurde. Die schwache Verbesserung wurde aber in dem Gerätesatz festgestellt, der erfindungsgemäß behandelt wurde.

Jedoch wurde im Gerätesatz, der der präventiven Aufrechterhaltungs-, Gewinnungs- und Wiederherstellungsbehandlung gemäß der Erfindung unterworfen worden war, langsam und konsistent die Leistung des Harzes, u. zw. sowohl des Kationenharzes als auch des Anionenharzes, in diesem Entmineralisiergerätesatz verbessert, bis das Harz nahezu die gesamte Anfangskapazität zum Behandeln von Wasser mit einem Gehalt an Anionenspecies wiedergewonnen hatte.

Diese Anlage blieb bis zum heutigen Zeitpunkt unter dem präventiven Aufrechterhaltungs-Wiederherstellungs-Programm. Die Ergebnisse zeigten fortgesetzt, daß die Harze, sowohl das kationische als auch das anionische, die in diesem Entmineralisiergerätesatz enthalten waren, die maximale Harzkapazität und die Salzkapazität beibehielten, und auch, daß während der letzten sieben Monate dieses besonderen Versuches kein weiterer Harzabbau aufgetreten war. Eine kontinuierliche Verbesserung der Lauflänge dieses Entmineralisiergerätesatzes wurde vom Personal dieser Raffinerie an der Golfküste aufgezeichnet. Die Tabellen III, IV, V und VI und die Fig. 5, 6, 7, 8, 9, 10, 11 und 12 zeigen die Ergebnisse, die beim Beobachten des Harzsystems während des präventiven Aufrechterhaltungsprogramms erhalten wurden, das angewandt wurde, um diese Wasserbehandlungsaustauscherharze wiederherzustellen, zu verbessern und ihre Leistung aufrechtzuerhalten.

30

10

15

20

25

(Es folgt Tabelle III)

35

40

45

50

55

abelle III

Ionenaustauscherharze in Entmineralisiergerätesätzen

		AI	394 101 D			
gebroche- organische ne Kügel- Verunreini- chen gung		NN ^f stark stark	NN ^f stark stark	NN ^f mäßig mäßig	NN ^f mäßig mäßig	NNf stark stark
gebrochene Kügelcher		3 0 5	2 8 2	3 2 2	10 2 5	6 th 10
% WRK ^e		53.0	54.7	52.9	52.2	52.2
urspr. KSK ^d		7.1	68		70 70 70	70
KSKq	(kg/28,3 dm ³)	20.0	25.1	25.5	16.2	16.2
urspr. SAK ^c			(42)			52
SAK^{C}	(mÄq/ml)	 77.0		 1.15		0.70
urspr. GAK ^b		89 76	82 : 89	89 87	96 	90 73
GAK ^b	(mÄq/ml)	1.69	1.59	1.69	1.88	1.71 0.99
Volumen	(dm ³)	10075 8660 9226	10075 8660 9226	10075 8660 9226	10075 8660 9226	10075 8660 9226
ersetzt	(vorher)	10/80 (7/76) 6/81 (11/78) (IR93) 11/78 (10/80) (11/78)	11/80 (8/76) 11/80 (5/78) 8/76	11/81 (6/74) 11/81 (6/78) 11/81 (6/78)	11/81 (1/79) 11/81 (1/79) 1/79 (1/64)	5/78 (12/79) 5/81 (5/78) 7/76
Тур	(R&H)	120+ 68 402	120+ 68 402	120+ 68 402	120 94 402	120 94 402
Harz-ein-		1 C 1 WB 1 SB	2 C 2 WB 2 SB	3 C 3 Wb 3 SB	4 C 4 WB 4 SB	5 C 5 WB 5 SB

Tabelle III (Fortsetzung)

Ionenaustauscherharze in Entmineralisiergerätesätzen

					ΑT	394	4 181	В
gebroche- organische ne Kügel- Verunreini- % WRK ^e chen gung		NZ NZ	mäßig	stark	JNZ	mäßig	stark	
gebroche- ne Kügel- chen		10	က	15	\ \	2 0	35	
% WRK ^e		52.1	;	!	52.0); ;	;	
urspr. KSK ^d		:	85	:		85	;	***************************************
KSKq	(kg/28,3 dm ³)	1	25.1	;		25.1	:	
urspr. SAK ^C			;	28		:	99	
SAK^{C}	(mÄq/ml)	1	;	0.70		:	1.00	
urspr. GAK ^b		77	;	83	7.2	: :	83	
GAK ^b	(mÄq/ml)	1.46	1 1	0.99	1 47	,	1.00	
Volumen	(dm ³)	10075	8660	9226	10075	8660	9226	
ersetzt	(vorher)	2/79	12/80	10/77	170	12/80	4/79	
Тур	(R&H)	ı	89			89		
Harz-ein-		21 C	21 WB	21 SB	2 %	22 WB	22 SB	

a. Analysen durch Ionenaustauschlaboratorium
b. GAK = Gesamtaustauschkapazität
c. SAK = Salzspaltende Kapazität

<sup>d. KSK = Kleine Säulenkapazität
e. WRK = Wasserretentionskapazität
f. NN = im Analysenbericht nicht spezifisch angegeben</sup>

Tabelle IV

5 <u>Leistung</u>

Entmineralisiergerätesatz Nr. 2 - Arbeitsdaten

10	Tag	End- SiO ₂	End- zustand	W.B zustand	Gesamt- regen.	Gesamtlauf
15	1 2	0,011 TpM 0,014 "	6 mmho 3 "	15 mmho 30 "	839 983 I 899 035 "	3 660 115 1 4 760 534 "
	2 3 4 5	0,014 " 0,011 " 0,011 "	6 " 4 " 4 "	45 " 40 " 20 "	883 137 " 861 938 " 891 464 "	4 262 033 " 4 063 261 "
20	6 7	0,011 " 0,011 "	4 " 4 "	15 " 10 "	928 183 " 915 691 "	3 820 995 " 3 409 142 " 3 266 810 "
	8 9 10	0,017 " 0,014 "	7 "	120 " 30 "	819 542 "	4 792 710 " 4 050 391 "
25	10 11 12	0,014 " 0,014 " 0,014 "	5 5 " 7 "	16 " 17 " 60 "	1 211 332 " 832 791 " 883 894 "	4 290 764 " 3 533 682 " 4 315 369 "
	13 14	0,014 " 0,017 "	6 " 3 "	45 " 28 "	767 303 " 981 557 "	4 210 135 " 3 577 971 "
30	15 16 17	0,014 " 0,011 " 0,014 "	4 " 6 " 4 "	19 " 28 " 30 "	813 484 " 811 971 " 825 220 "	3 537 846 " 3 525 733 " 3 611 661 "
	18 19	0,017 " 0,014 "	6 " 5 "	70 " 32 "	794 936 " 757 082 "	4 124 206 " 3 891 024 "
35	20 21 22	0,028 " 0,014 " 0,014 "	7 " 5 " 9 "	33 " 34 " 17 "	853 232 " 835 440 " 957 709 "	4 591 704 " 4 542 872 " 4 000 423 "
	23	0,020 "	1 "	41 "	964 144 "	4 737 443 "

40 <u>Tabelle V</u>

Leistung

45 Entmineralisiergerätesatz Nr. 2 - Arbeitsdaten

	Tag	End- SiO ₂	End- zustand	W. B zustand	Gesamt- regen.	Gesamtlauf
50						· · · · · · · · · · · · · · · · · · ·
	24	0,001 TpM	3 mmho	36 mmho	832 791 1	4 715 866 1
	25	0,017 "	3 "	25 "	846 797 "	5 028 541 "
	26	0,014 "	4 "	19 "	958 844 "	4 696 939 "
	27	0,014 "	9 "	90 "	801 750 "	4 731 765 "
55	28	0,014 "	6 "	6 "	885 408 "	4 846 841 "
	29	0,014 "	6 "	12 "	825 977 "	3 903 010 "
	30	0,017 "	4 "	28 "	855 503 "	-
	31	0,014 "	6 "	70 "	912 284 "	4 888 102 "
	32	0,014 "	5 "	80 "	921 369 "	5 969 973 "
60	33	0,017 "	4 "	100 "	987 992 "	5 678 118 "

Tabelle V (Fortsetzung)

Leistung

,		<u>Leistung</u>					
5	Entmine	eralisiergerätesatz Nr.	2 - Arbeitsdaten				
	Tag	End-	End-	W. B	Gesamt-		
		SiO_2	zustand	zustand	regen.	Gesamtlauf	
10							
	34	_	_	_	977 393 1	5 044 061 1	
	35	0,014 TpM	6 mmho	52 mmho	897 143 "	4 372 908 "	
	36	0,014 "	5 "	70 "	969 444 "	5 352 951 "	
15	37	-	-	-	889 571 "	-	
	38	0,014 "	5 "	22 "	1 014 112 "	4 358 145 "	
	39 40	0,011 "	7 " 4 "	20 "	1 135 624 "	3 976 575 "	
	40 41	0,017 " 0,017 "	4 4 "	22 " 18 "	944 460 " 922 505 "	4 478 899 " 4 153 732 "	
20	42	0,017	8"	20 "	964 523 "	3 800 174 "	
	43	0,014 "	8"	75 "	1 135 624 "	5 237 496 "	
	44	0,017 "	2 "	10 "	1 097 769 "	4 216 192 "	
	45	0,019 "	10 "	22 "	999 349 "	3 245 612 "	
05	46	0,011 "	3 "	20 "	1 014 490 "	5 166 708 "	
25							
				Tabelle VI			
				Leistung			
30		41.1					
	Entmine	ralisiergerätesatz Nr.	2 - Arbeitsdaten				
	Tag	End-	End-	W. B	Gesamt-		
22		SiO ₂	zustand	zustand	regen.	Gesamtlauf	
35							
	47	0,011 TpM	3 mmho	20 mmho	1 014 490 1	5 166 709 1	
	48	0,011 "	3 "	15 "	1 052 760 "	4 995 986 "	
	49	0,011 "	4 "	19 "	885 786 "	5 554 334 "	
40	50	0,013 "	6"	19 "	861 181 "	5 201 156 "	
	51 52	0,011 " 0,011 "	8 " 6 "	8 " 8 "	1 085 278 " 1 085 278 "	4 734 415 " 5 270 428 "	
	53	0,011 "	8 "	8 "	1 040 988 "	5 061 853 "	
	54	0,014 "	8"	21 "	1 022 061 "	5 263 842 "	
45	55	0,017 "	5 "	18 "	1 266 599 "	5 473 327 "	
	56	0,014 "	9 "	40 "	1 145 844 "	5 101 599 "	
	57	0,011 "	5 "	20 "	1 164 014 "	4 061 368 "	
	58 50	0,006 "	8 "	24 "	1 076 193 "	4 321 048 "	
50	59 60	0,011 " 0,017 "	8 " 6 "	26 " 35 "	1 078 085 " 1 139 409 "	4 169 631 " 4 347 167 "	
30	61	0,017	8 "	55 60 "	1 139 409 1 075 435 "	4 718 137 "	
	62	0,031 "	12 "	30 "	1 039 095 "	4 234 740 "	
	63	0,020 "	12 "	50 "	959 984 "	3 757 778 "	
	64	0,017 "	12 "	26 "	1 120 103 "	4 291 143 "	
55	65	0,011 "	5 "	25 "	1 083 763 "	3 841 814 "	
	66	0,014 "	5 "	30 "	1 118 967 "	6 367 820 "	
	67	0,020 "	8 "	12 "	1 616 371 "	6 135 395 "	
	68 69	0,017 " 0,009 "	20 "	8 " 15 "	989 128 " 1 034 174 "	3 767 620 " 3 867 177 "	
60	US	0,009		13	1 034 174	3 80/ 1//	

Beispiel 6:

5

10

15

20

25

30

35

40

55

60

Schließlich wurde in einer chemischen Anlage in einem Staat der U.S.A. im Mittelwesten ein Versuch durchgeführt. Diese Anlage betrieb zwei Wasserweichmacher für ihr Niederdruckboilersystem, wobei Standardionenaustauschtechnologie Anwendung fand. Die Lauflängen dieser Anlage betrugen lediglich annähernd 193 056 l, obwohl die Harzkapazität mehr als 80 % der Anfangskapazität, aber weniger als 90 % der Anfangskapazität betrug.

Dieser Versuch sollte demonstrieren, daß das präventive Aufrechterhaltungsprogramm selbst imstande war, die Leistung dieser Wasserbehandlungsfeststoffe und Ionenaustauscherharze, die mit Eisen, organischen Substanzen, Mikroorganismen und Mikroorganismusabfallprodukten verunreinigt waren, wiederherzustellen, zu verbessern und aufrechtzuerhalten.

Während dieses Anlagenversuches wurden die Betriebsvorgänge in keiner Weise geändert. Es wurde kein chargenweises Reinigen dieses Harzes beendet, sondern einfach ein präventives Aufrechterhaltungsprogramm initiiert, welches die cyclische Behandlung der Ionenaustauscherharze innerhalb der Wasserenthärtereinheiten in dieser Anlage mit einem wirksamen Anteil des nicht-ionischen oberflächenaktiven Mittels und Biodispergiermittels, die erfindungsgemäß Anwendung finden, umfaßt. Diese Behandlung wurde durch die Zugabe des oben beschriebenen nicht-ionischen oberflächenaktiven Mittels und Biodispergiermittels in Verbindung mit einem quaternären Ammoniumbiozid verbessert.

Das gewählte nicht-ionische oberflächenaktive Mittel war wiederum das Äthylenoxidaddukt eines alkylierten Phenols, das einen HLB-Wert von annähernd 13 bis 14 besaß. Das Biodispergiermittel, das zum Vervollständigen dieser Versuche verwendet wurde, bestand aus einem Äthylenoxidkondensat mit Propylenoxidaddukten auf Propylenglykol. Dieses Biodispergiermittel hatte eine Molmasse von 1500 bis 3000 und einen HLB-Wert von 7 bis 8.

Die Harzbetten wurden durch Zusetzen von etwa 20 TpM nichtionischem oberflächenaktiven Mittel und Biodispergiermittel im Masseverhältnis von 1:1 zu den innerhalb dieser Wasserenthärtereinheit enthaltenen anionischen Harzen behandelt. Die Zugabe erfolgte während des ersten 1/3 des Rückwaschzyklus, wonach das Bett während der nächsten beiden 2/3 des Rückwaschzyklus gespült und anschließend Standardregenerigungsmethoden unterworfen wurde. Die kationischen Harzbetten wurden unter Verwendung von 20 TpM der obigen Formulierung und zusätzlich eines wirksamen Anteils einer quaternären Ammoniumsalz-Biozidverbindung rückgewaschen. Wiederum wurde die Reinigungslösung, die das nicht-ionische oberflächenaktive Mittel und das Biodispergiermittel zusammen mit dem Biozid enthielt, während des ersten 1/3 des Rückwaschzyklus zugegeben, worauf mit Reinigungschemikalien während der letzten beiden 2/3 des Rückwaschzyklus gespült und schließlich mit Standardregenerierungschemikalien und unter Verwendung von Standardspülmethoden behandelt wurde.

Die Ergebnisse zeigten, daß die die Gesamtlauflängen von anfangs 193 056 l innerhalb eines Zeitraumes von 2 Wochen auf etwa 261 193 l stiegen. Nach dem ersten Monat hatten sich die Lauflängen auf etwa 261 193 l stabilisiert und wurden auf eine konstante Lauflänge von 238 481 l verkürzt, um dieses System für die Bequemlichkeit des Bedienungspersonals dieser chemischen Anlage auf automatische Kontrolle zu bringen. Diese Anlage wurde mit dieser 238 481 l-Lauflänge erfolgreich und kontinuierlich betrieben ohne irgendein Anzeichen von Verlust von Harzkapazität oder ionenspaltender Kapazität während eines Zeitraumes von etwa 6 Monaten.

Dieser letzte Versuch zeigt die erfolgreiche Verwendung des präventiven Aufrechterhaltungsprogramms allein ohne die Notwendigkeit eines vorhergehenden chargenweisen Reinigungsvorganges. Ein derartiges Programm verhütet das Stillegen des Entmineralisiergerätesatzes, wodurch eine Stehzeit bei der Erzeugung von Dampf und eine Stehzeit beim Betrieb von chemischen Behandlungsanlagen verhindert wird.

Beispiel 7:

Man könnte erwarten, daß, wenn ein System mit neu beschicktem, frischem Ionenaustauscherharz in Betrieb gesetzt wird und dieses System auf die oben beschriebene Weise mit dem präventiven Aufrechterhaltungsprogramm unter Verwendung der Chemikalien gemäß der vorliegenden Erfindung behandelt wird, dieses System bei optimaler Harzkapazität, optimaler salzspaltender Kapazität und optimalen Lauflängen in 1 während eines stark verbesserten Zeitraumes gehalten werden könnte. Ein derartiges System, das mit den erfindungsgemäß erzielbaren Vorteilen arbeitet, würde dem Betriebspersonal erhebliche Einsparungen bezüglich Wasserverbrauch, Verbrauch an Regenerierungschemikalien, Betriebsstehzeit, Harzersatzkosten und Arbeitskosten bringen.

Beispiel 8:

Eine Hauswasserenthärtereinheit war stark mit angesammelten Resten, organischen Verunreinigungen, mikrobiologischem Wachstum und deren Abfallprodukten verunreinigt. Die Hauswasserenthärtereinheit hatte vor der Regenerierung keinen Rückwaschzyklus, sondern gelangte vom Betrieb direkt zur Regenerierung, dann zu einem Spülzyklus und schließlich wieder zurück in den Betrieb.

Die Formulierung von Beispiel 1 wurde direkt zu der konz. NaCl-Salzlösung zugesetzt, die zum Regenerieren dieser Wasserenthärtereinheit verwendet wurde. Die Konzentrationen betrugen etwa 2000 TpM und auf die übliche Regenerierung mit Kochsalzlösung einschließlich der chemischen Formulierung von Beispiel 1 folgte der übliche Spülzyklus, der überschüssige Kochsalzlösung und jegliche Restchemikalien entfernte. Reichliche Quantitäten an angesammelten organischen, anorganischen und biologischen Rückständen wurden aus dem Harz entfernt, das in

diesem Hauswasserenthärter verwendet wurde. Die kontinuierliche Behandlung während jedes Regenerierungs- und Spülzyklus unter Verwendung von 10 bis 200 TpM Formulierungen einschließlich eines nicht-ionischen oberflächenaktiven Mittels, eines nicht-ionischen Biodispergiermittels und eines Fett-quaternären Aminsalz-Biozids hielt das Harz in dieser Einheit nahezu bei der ursprünglichen Wirksamkeit.

5

Beispiel 9:

Es wurde gefunden, daß die Formulierungen von Beispiel 8 in der zum Regenerieren der Hauswasserenthärtereinheiten verwendeten konz. Kochsalzlösung nur gering löslich sind. Um den Harzbettkontakt mit den erfindungsgemäßen Formulierungen zu verbessern, wurden verschiedene Kopplungsmittel verwendet. Diese Mittel waren Materialien mit hohen HLB-Werten von etwa 12 bis etwa 30. Insbesondere schien der Zusatz von bis zu gleichen Anteilen der folgenden Verbindungen die Löslichkeit der Formulierung von Beispiel 1 zu verbessern:

Kopplungsmittel:

15

30

35

40

45

50

55

10

- 1. Rohm & Haas Triton DF-20, ein modifizierter äthoxylierter Alkohol.
- 2. Rohm & Haas Triton X-114, ein Octylphenoxypolyäthoxyäthanol,
- 3. Westvaco Diacid 1550, eine dimere Säure.

Die Zugabe der erfindungsgemäßen Formulierungen, gekoppelt mit Kopplungsmitteln ähnlich, wie sie oben angegeben sind, läßt erwarten, daß sie in einem Verfahren zum Verbessern und Aufrechterhalten der Leistung von Wasserbehandlungsfeststoffen funktionieren, welche mit organischen Substanzen, mikrobiologischem Wachstum und deren Abfallprodukten verschmutzt sind bzw. dazu tendieren. Das Verfahren soll das cylische Zugeben dieser Formulierungen mit oder ohne Kopplungsmittel, wie sie oben beschrieben sind, zu jedem Regenerierungszyklus oder Rückwaschzyklus, wenn getrennt, gefolgt von einem Spülzyklus, der die Regenerierungschemikalien sowie die erfindungsgemäßen Formulierungen einschließlich Kopplungsmittel, wenn deren Verwendung als notwendig angesehen wird, um die völlige Löslichkeit oder Dispergierbarkeit in den Regenerierungsmittel-Kochsalzlösungen zu vervollständigen, umfassen.

Zusammenfassend kann somit gesagt werden, daß die Behandlung von verunreinigten Harzen mit oberflächenaktiven Mitteln und Biodispergiermitteln die Leistungscharakteristika von Harzen wesentlich verbessert. Beim
Vergleich mit Behandlungen, die laufend in der Industrie angewandt werden, sind die Unterschiede bei der
Wiederherstellung der Ionenaustauscherharzleistungen recht erheblich. Weiterhin vermindert die neue Behandlung
das Bakterienwachstum am Harz deutlich und reduziert die Wahrscheinlichkeit des Entladens großer Bakterienanteile in die behandelte Wasserzufuhr. Das physikalische Zusammenbrechen der Harze wird herabgesetzt, wenn
Teilchen und bakterielle Abfallprodukte sich nicht länger ansammeln und einen übermäßigen Druckabfall über der
Einheit verursachen.

Die übliche Arbeitsweise einer Ionenaustauschereinheit ist es, die Einheit arbeiten zu lassen, bis sie verunreinigt ist und die Betriebsschwierigkeiten zu groß geworden sind, um die Einheit weiter zu verwenden. Wenn die Harzreinigung nicht die gewünschten Ergebnisse zeigt, wird das Harz ersetzt. Dies ist eine laufend akzeptierte Praxis, da der Benützer der Ionenaustauschereinheiten keine andere Wahl hat.

Die vorliegende Erfindung sieht vor:

(1) Mittel zum Verhindern des Ansammelns von organischen und mikrobiologischen Verunreinigungen durch Behandeln frisch beladener Harze vor oder während jedes Rückwasch- und Regenerierungszyklus mit dem erfindungsgemäß eingesetzten nicht-ionischen oberflächenaktiven Mittel und Biodispergiermittel;

(2) Mittel zum Verbessern und Aufrechterhalten der Leistung dieser Harze unter Anwendung der oben beschriebenen cyclischen Behandlungen; und

(3) Wiedergewinnen verlorener Harzkapazität, die durch Verunreinigung dieser Harze mit organischen Materialien, Mikroorganismen und deren Abfallprodukten verursacht wurde.

Die Vorteile derartiger Behandlungsprogramme sind:

(1) die Harze können in gutem Betriebszustand gehalten und mit verhältnismäßig geringen Regenerierungsmittel- und Betriebskosten betrieben werden und

(2) das Aufbauen von Verunreinigungen innerhalb einer Harzeinheit wird auf einem Minimum gehalten, was das Ausmaß des Brechens der Harzkügelchen herabsetzt. Aus diesen Gründen können die Kosteneinsparungen, die erfindungsgemäß erzielbar sind, erheblich sein. Auch liefert das Harzbett nicht länger übermäßige Nährstoffmengen für Bakterien und das behandelte Wasser ist mit Bakterien weniger verunreinigt, was ein wichtiger Faktor in Fällen ist, wo das behandelte Wasser in der Nahrungsmittel-und Getränkeindustrie, als Trinkwasser oder für pharmazeutische Zwecke verwendet wird.

Die Verwendung von Aktivkohle und anderen Adsorptionsmitteln für die Vorbehandlung von Ionenaustauscherharzen ist anerkannte Praxis. Diese werden zum Entfernen von Chlor, organischen Materialien, Eisen und verschiedenen Teilchen aus dem Wasser vor einer Ionenaustauscherbehandlung verwendet. Es wurde gefunden, daß die Anwendung der vorliegenden Erfindung die Nützlichkeit dieser Adsorptionsmittel während eines längeren Zeitraumes ausdehnt und das Bakterienwachstum beschränkt.

Die Anwendbarkeit der Mittel und des Verfahrens der vorliegenden Erfindung ist nicht auf Ionenaustauscherharze oder Adsorptionsmittel beschränkt. Andere Produkte, die organische Materialien, Bakterien und bakterielle Abfallprodukte ansammeln, wie beispielsweise Umkehrosmose-, Ultrafiltrations- oder Dialysemembranen können durch die vorliegende Erfindung gereinigt und aufrechterhalten werden.

10

5

PATENTANSPRÜCHE

15

- Verfahren zum Verbessern und Aufrechterhalten der Leistung von Wasserbehandlungsfeststoffen, wie Ionenaustauscherharze, Kohleadsorptionsfüllkörper, Kies- und Sandbettfilter, Ionenaustauschermembranen und Umkehrosmosemembranen, die mit organischen Substanzen, Mikroorganismen und deren Abfallprodukten, wie Schlamm und anderem Organismenwuchs verunreinigt sind bzw. die Neigung besitzen, damit verunreinigt zu werden, dadurch gekennzeichnet, daß man die Wasserbehandlungsfeststoffe mit 10 bis 200 ppm eines nichtionischen oberflächenaktiven Mittels und eines Biodispergiermittels cyclisch, beispielsweise chargenweise bzw.
 von Zeit zu Zeit, behandelt.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man zusammen mit dem nicht-ionischen oberflächenaktiven Mittel und dem Biodispergiermittel ein Biozid verwendet.
- 3. Verfahren nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, daß man als Biozid ein Fettalkyl-quaternäres Ammoniumsalz, ein bromnitril-substituiertes Biozid, ein Isothiazolin oder ein anorganisches oxidierendes Biozid einsetzt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Ionenaustauscherharz ein kationisches
 Harz vom Geltyp, ein anionisches Harz vom Geltyp, ein makroporöses kationisches Harz oder ein makroporöses anionisches Harz einsetzt.
 - 5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man ein nichtionisches oberflächenaktives Mittel mit einem HLB-Wert von 6 bis 14 einsetzt.

40

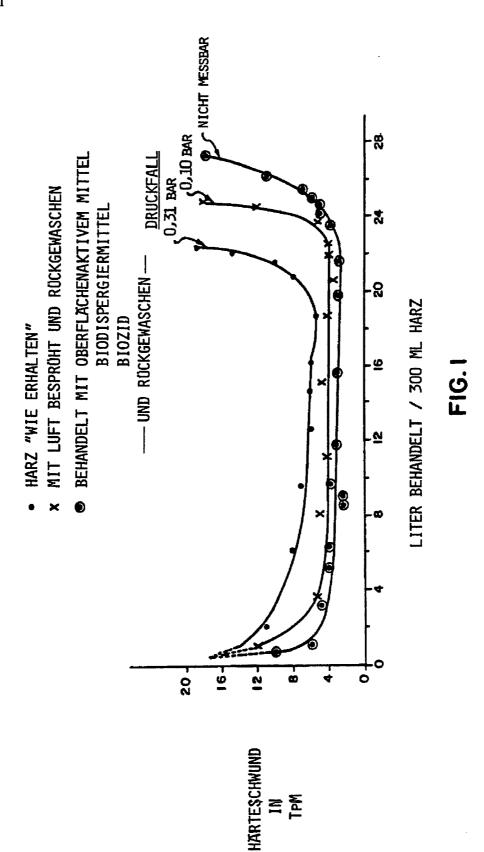
45

50

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man ein Biodispergiermittel aus der Gruppe der Äthylenoxidkondensate mit Propylenoxidaddukten an Propylenglykol mit einem HLB-Wert von 4 bis 10 und einer Molmasse von 1500 bis 5000, der nicht-ionischen polyäthoxylierten geradkettigen Alkohole, der tris-cyanoäthylierten Kokosdiamine, der Polyoxyäthylensorbitanester/säuren, nicht-ionischem N,N-Dimethylstearamid und der nicht-ionischen Aminpolyglykolkondensate einsetzt.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Wasserbehandlungsfeststoffe Ionenaustauscherharze sind, die zum Entfernen von Ionen aus wässerigen Systemen verwendet werden und wobei die Ionenaustauscherharze einem Rückwasch- bzw. Regenerierungszyklus unterworfen werden, dadurch gekennzeichnet, daß bis zu den ersten 50 % der während jedes Rückwaschzyklus verwendeten Rückwaschwässer diese mit dem nicht-ionischen oberflächenaktiven Mittel und dem Biodispergiermittel behandelt werden.

8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß man die Wasserbehandlungsfeststoffe oder Ionenaustauscherharze mit dem nicht-ionischen oberflächenaktiven Mittel und dem Biodispergiermittel während mindestens 24 h bei einer Temperatur von 37 bis 82 °C behandelt.

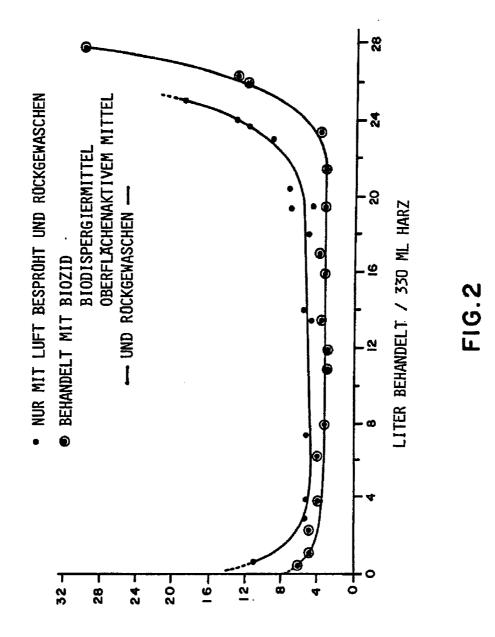

60

Hiezu 12 Blatt Zeichnungen

10. 2.1992

Int. Cl.⁵: C02F 1/00, 1/28 1/42, 1/44

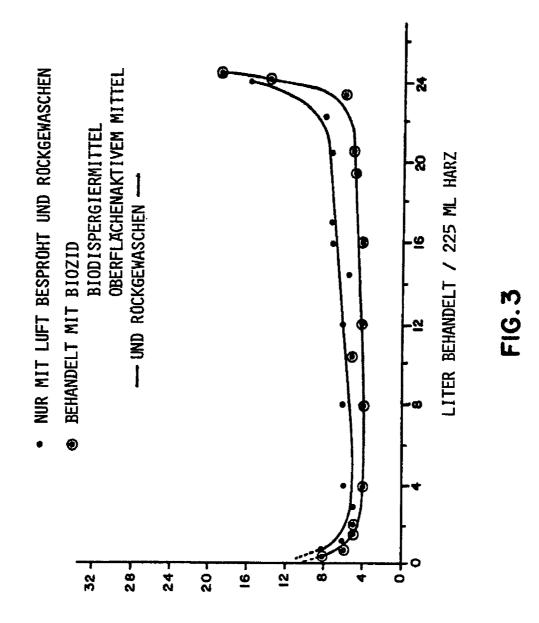
Blatt 1



NE T

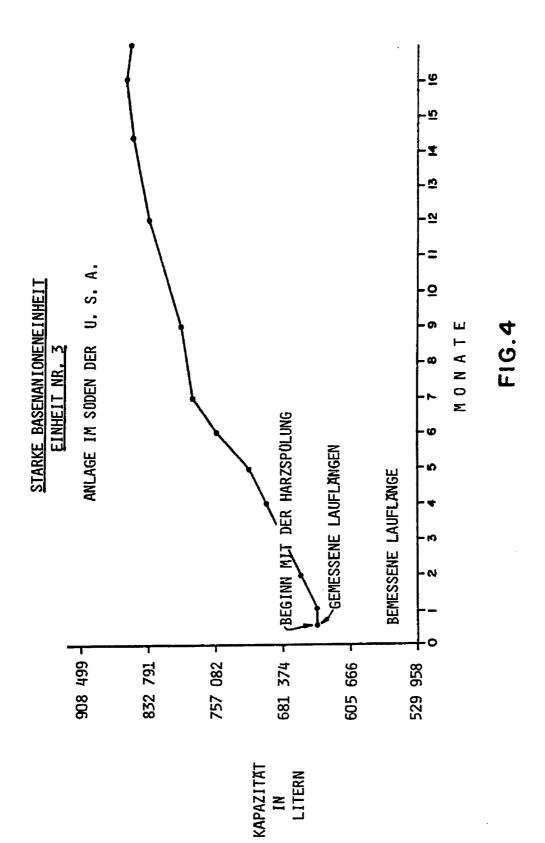
10. 2.1992

Int. C1.5: C02F 1/00, 1/28 1/42, 1/44


Blatt 2

HARTESCHWUND IN TPM

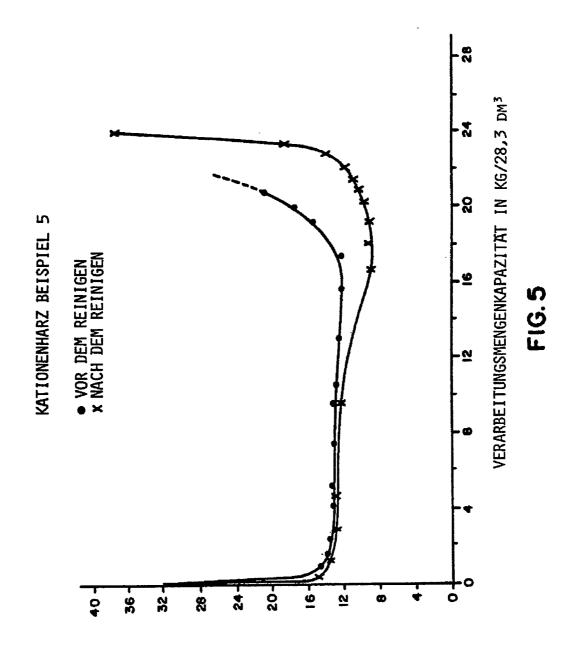
10.2.1992


Int. Cl.⁵: C02F 1/00, 1/28 1/42, 1/44

HÄRTESCHWUND IN TPM

10.2.1992

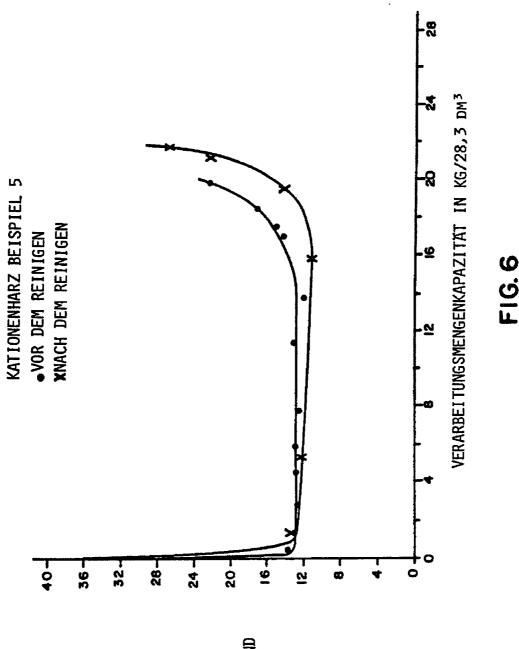
Int. Cl.⁵: C02F 1/00, 1/28 1/42, 1/44


ÖSTERREICHISCHES PATENTAMT

Patentschrift Nr. AT 394 181 B

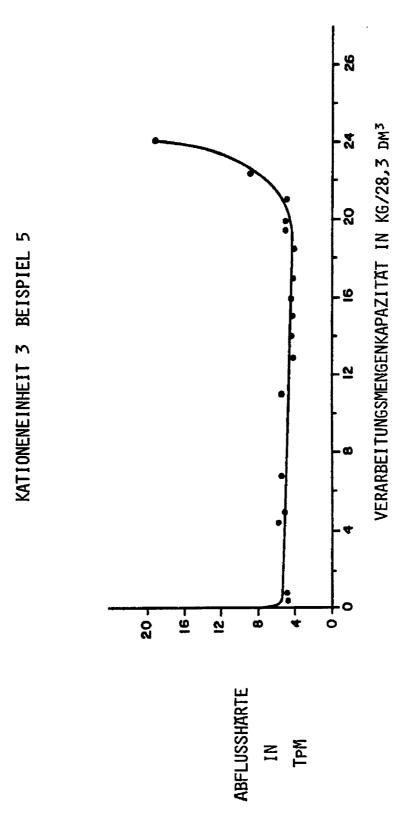
Ausgegeben

10.2.1992


Int. Cl.⁵: C02F 1/00, 1/28 1/42, 1/44

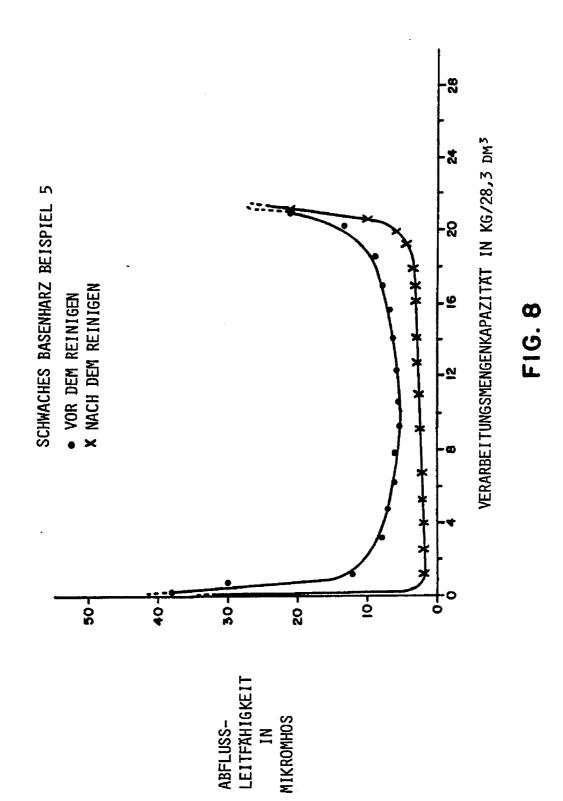
ABFLUSS-HARTESCHWUND IN TPM

10.2.1992

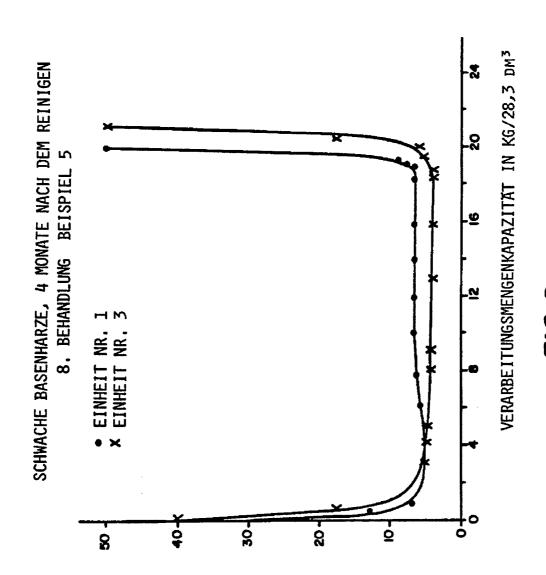

Int. Cl.5: C02F 1/00, 1/28 1/42, 1/44

ABLUSS-HARTESCHWUND IN TPM

10. 2.1992

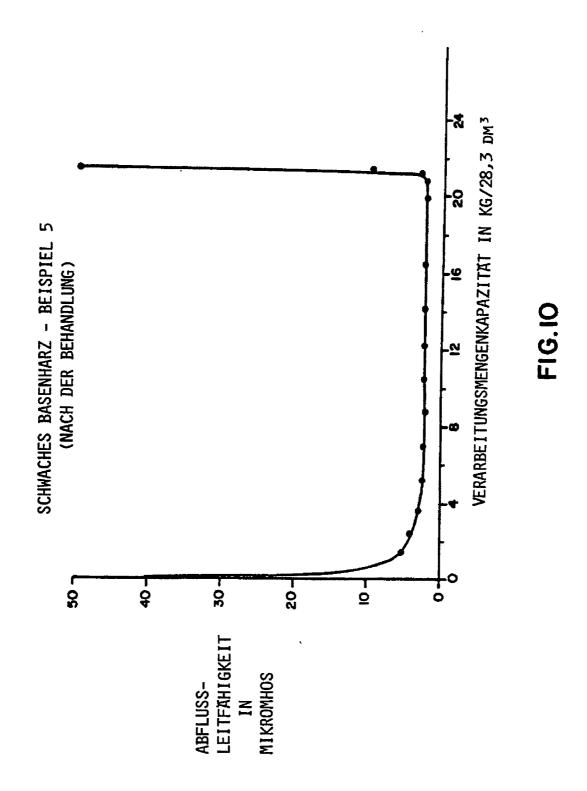

Int. Cl.⁵: C02F 1/00, 1/28 1/42, 1/44

F16.7


10.2.1992

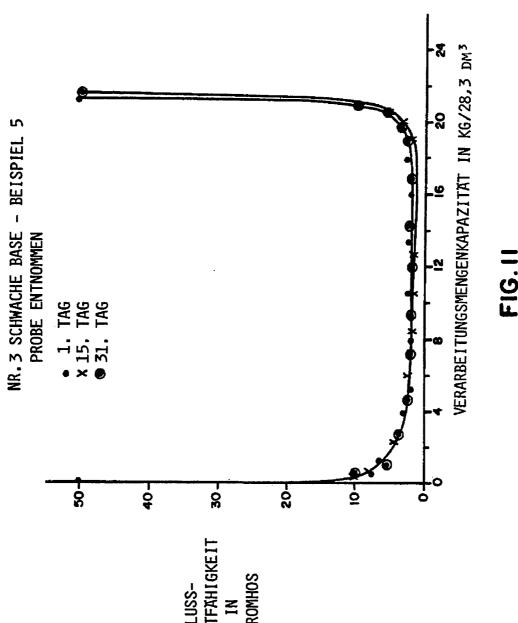
Int. Cl.5: C02F 1/00, 1/28 1/42, 1/44

10.2.1992


Int. Cl.⁵: C02F 1/00, 1/28 1/42, 1/44

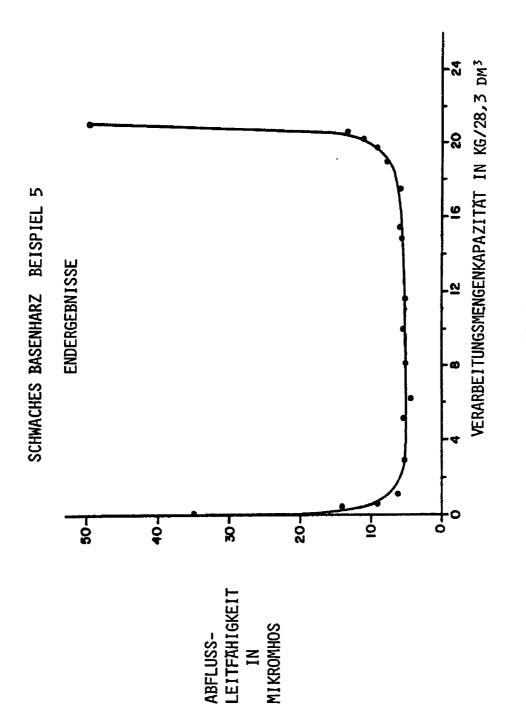
NBFLUSS-IARTE IN TPM

10.2.1992


Int. Cl.⁵: C02F 1/00, 1/28 1/42, 1/44

10. 2.1992

Blatt 11


Int. Cl.⁵: C02F 1/00, 1/28 1/42, 1/44

10.2.1992

Blatt 12

Int. Cl.⁵: C02F 1/00, 1/28 1/42, 1/44

