Title: Fetal Heart Monitoring

Abstract: Fetal heart rate monitoring using ultrasound by means of a transducer in contact with the maternal abdomen. The transducer (11) is driven by a transmit amplifier (12), a receive amplifier (13) amplifies the echoes detected by the transducer. While the receive gate is open, demodulator (14) multiplies the received signal by the local oscillator signal. The sum of the frequencies is removed by low-pass filter (15), while the difference of the frequencies is the Doppler frequency of the received signal which passes through the filter to be digitised by ADC (16), the Rx gate opening a fixed delay after the end of the transmit pulse. A number of range bins are chosen and two ADC readings are made for each bin in intervals during the Rx gate-open interval. One or two of the Doppler audio signals, aperiodic or periodic, will contain the signal from the fetal heart. When a periodic signal is found, its rate is tested to see if it lies within or outside the typical range of a fetal heart.
Fetal Heart Monitoring

The present invention relates to a method of monitoring heart rate, in particular the heart rate of a fetus. Ultrasound is used to monitor the fetal heart by means of a transducer in contact with the maternal abdomen. Echoes from the fetal heart are processed so that heart sounds can be heard, and analysed to determine fetal heart rate.

Doppler ultrasound fetal heart rate monitors insonate the fetal heart and surrounding tissue with high frequency sound. Echoes from internal tissues undergo Doppler shift proportional to the relative velocity of reflecting surface and transducer. The received ultrasound is demodulated to convert the Doppler signal to the audible range; it gives reassurance when the fetal heart can be heard in this way. Filters are used to reject signals from stationary and slowly moving tissue, and a processing algorithm is used to determine the time of occurrence of each heart beat and therefore the heart rate.

Such monitors suffer from conflicting requirements. For ease of use and versatility, the beam should be as wide as possible and penetrate to a great depth. However, for robust FHR detection, the sensitive region of the beam needs to be limited to a small volume around the fetal heart, rejecting echoes from other organs and moving tissue. Particularly problematic sources of unwanted echoes include fetal limbs, maternal blood vessels, the digestive tract, and in the case of multiple pregnancies, a sibling of the target fetus.

Furthermore, when the transducer moves slightly in relation to the mother's abdomen, typically when the mother changes position, large Doppler reflections are received from every point within the ultrasound beam. Such movement artefact is normally many times larger than the fetal signal and disrupts or confounds the extraction of fetal heart rate.

Some monitors use pulsed Doppler ultrasound which improves the signal-to-noise ratio (SNR) by gating the ultrasound receiver such that it only accepts signals within a certain range of times after the ultrasound pulse is transmitted. The opening and closing
times of the gates are chosen to correspond to a desired transit
time for the ultrasound and thus determine a maximum and minimum
operating range for the ultrasound beam. Echoes from near tissues
arrive too early to be detected while distant echoes arrive too
late. Timing of the receive gate may be fixed or may vary under
control of an algorithm in order to collect echoes from the
locality of the fetal heart while rejecting unwanted echoes from
other ranges.

Some systems offer a choice of ultrasound frequency. This is
useful because attenuation of ultrasound in tissue is proportional
to frequency, the sound from a lower frequency transducer
penetrating to a greater depth than a higher frequency. Therefore,
the user will select a low frequency when they require greatest
range (for example with an overweight mother) but will select a
higher frequency to avoid picking up unwanted echoes from deep
organs or tissue in a slimmer mother.

Systems having fixed, wide receive gates may have difficulty
extracting an accurate fetal heart rate when the signal contains a
mixture of echoes from maternal blood vessels and fetal heart.
This is especially problematic when the beam is not well-aimed at
the fetal heart and the fetal signal is smaller or similar in
amplitude to the maternal signal.

Systems with adaptive receive gate timing are able to narrow
down the receive gate and track the fetal heart (at least in one
dimension - the distance from the transducer) which gives them a
better SNR than systems having a fixed, wide receive gate. This
strength can also be a weakness however. By locking on to a signal
source and ignoring signals from other depths, it is possible for
the system to erroneously lock on the wrong signal; most commonly
this would be a maternal blood vessel. For example, in a prior art
system as shown in Figure 1, the transducer (2) is incorrectly
positioned on the maternal abdomen (1) such that the beam (3) does
not insonate the fetal heart (6). The maternal descending aorta
(4) is within the beam (3) and the system detects maternal heart
rate because it is the only periodic signal available to it.
Believing it has a valid fetal signal, the system narrows down its receive gate until the sensitive volume is limited to the region (5). Even when the transducer is subsequently moved to the correct position as shown in Figure 2, the system does not detect the fetal heart (6) although it is now in the beam (3) because the heart is not inside the sensitive region (5). This erroneous state could persist indefinitely.

The present invention aims to make improvements.

Accordingly, the present invention provides fetal heart monitoring system using ultrasound having a single receive circuit with a single, fixed, wide receive gate with the output being digitised repeatedly by an analogue-to-digital converter (ADC) during the gate-open interval with each digital value assigned to one of several range bins.

Preferably, each range bin is arranged to accept a single ADC sample.

More preferably, two or more ADC samples are assigned to each bin, the samples within each bin processed using standard noise reduction techniques to produce a single signal within each bin.

Advantageously, a different gain is applied to each range bin in order to simulate the attenuation characteristic of a higher frequency transducer. This allows the user to select the effective penetration profile of the ultrasound beam without having to bear the cost of additional transducers. This ability is not limited to mimicking probes of other frequencies, it is possible to produce any arbitrary attenuation profile.

Alternatively, the sensitivity individually in the range bins is adjusted by adjusting the threshold required for a signal to be detected or by applying different weightings to each range bin. This has the advantages of not degrading the signal by attenuating it, and being computationally more efficient.

Preferably, the range bins are recombined in pairs, trios, or groups of any number to recreate the composite signal corresponding to the depth range of those bins.
Preferably, the range bins are recombined after applying an individual attenuation factor to each bin to simulate the use of a higher ultrasound frequency or create an arbitrary attenuation profile.

In a preferred embodiment, the amplitudes of the signals in all the range bins are compared to detect any sudden rise in amplitude across all the range bins showing the presence of artefact caused by transducer movement.

Preferably, the amplitude of the artefact is detected as a numerical value rather than a simple on/off indication. Such numerical value can be used as the controlling variable in an automatic gain circuit (AGC) implemented either in hardware or in software. This has the advantage of reducing the sensitivity of the circuits or algorithms during artefact causing less disruption to the heart rate detection process. Without such ACG, artefact signals are one or two orders of magnitude larger than typical fetal signals and can confuse the rate detection process by overloading filters or circuits and altering thresholds which require some time to recover. With ACG, the artefact is either attenuated or removed entirely and the recovery time is shortened.

Preferably, the the volume of the Doppler signal is modulated during artifact. Artefact is typically much louder than fetal sounds and can be disturbing to hear, and can cause clipping and distortion in the audio amplifier. By reducing the volume during artefact, the audio output is maintained at a comfortable level and has a more pleasant tone.

Preferred embodiments of the invention will now be described with reference to the following Figures, of which:

Figure 1 shows a prior art fetal heart monitoring system;

Figure 2 shows the monitoring system in Figure 1 with the receive gate in the wrong position;
Figure 3 shows a fetal monitoring system according to the invention;

Figure 4 shows a preferred embodiment of the invention; and

Figure 5 shows the opening and closing of the receive gates according to the embodiment in Figure 4.

Referring to Figure 3, the present invention uses multigating where the beam is zoned into four sensitive regions, although more or fewer is possible. The zones (7, 8, 9, 10) are shown non-overlapping for clarity, but by selection of the appropriate open and close times for each gate and taking into account the duration of the transmit pulse, the regions could be made to overlap to any desired extent, or indeed to have gaps between them.

In this example, one received signal is split into four components, each from a different depth. As with adaptive range-gating, each signal benefits from reduced noise level because it originates from a smaller volume. Gates 1 & 3 (7 & 9) contain only aperiodic noise. Gates 2 & 4 (8 & 10) contain periodic signals from which can be deduced fetal and maternal heart rates. Standard heart rate algorithms are able to extract both rates simultaneously and without confusion since the signals have already been separated spatially. Further processing is required to determine which signal is from the fetus; this can be decided on several criteria such as depth and signal amplitude.

The present invention also incorporates a simplification to the arrangement described above. The cost of replicating the input analogue circuits for each range gate is not insignificant and mitigates against using a large number of gates. However, the same effect can be achieved by using a single receive circuit with a single, fixed, wide receive gate with the output being digitised repeatedly by an analogue-to-digital converter (ADC) during the gate-open interval. Each digital value is assigned to one of several range bins.
In the simplest case, each range bin would accept a single ADC sample. However, SNR can be further improved by assigning two or more ADC samples to each bin. The samples within each bin are processed using a standard noise reduction technique such as filtering, averaging, etc. to produce a single signal within each bin.

In a preferred embodiment of the invention, as shown in Figure 4, the transducer (11) is driven by transmit amplifier (12) with a tone burst of IMHz carrier from the local oscillator (18). The pulse duration is 64µs and the repetition rate is 3kHz. Receive amplifier (13) amplifies the echoes detected by the transducer. The receive amplifier may be blanked during the transmit pulse, but this is not necessary, provided the receive amplifier recovers sufficiently quickly once the pulse is over.

While the receive gate is open, demodulator (14) multiplies the received signal by the local oscillator signal. The output is the sum and difference frequencies. The sum, which is approximately 2MHz, is removed by low-pass filter (15), while the difference is the Doppler frequency of the received signal which passes through the filter to be digitised by ADC (16).

Timing of the ADC conversions is important. Figure 5 shows the Rx gate opening a fixed delay after the end of the transmit pulse. This time determines the closest signal source that can be detected. Similarly, the closing of the Rx gate determines the most distant signal source that can be detected. Within the Rx gate, a series of A to D conversions is made, timed by the convert command signal. In a specific example of the invention, the number of range bins is 6 and two ADC readings are needed for each bin. Twelve ADC readings are made at 16µs intervals during the Rx gate-open interval. To reduce noise, the two readings in each bin are averaged. In the example, this operation is carried out by a hardware adder circuit, although it could equally well have been done in software.
Because the transmit pulse is equal in duration to two range bins, the sensitive regions of adjacent bins overlap. A single point source will therefore always appear in two adjacent bins. Although this is not an essential part of the invention, in this example, it is now possible to further improve SNR ratio by combining together the signals in adjacent pairs of bins, producing a total of five combined signals from six bins. Specifically, the first combined signal is derived by combining bins 1 & 2, the second combined signal is derived from bins 2 & 3, etc. In the example, this operation is carried out in software, although it could equally well have been done in hardware.

At this point in the system, there are 5 Doppler audio signals of which one or possibly two will contain the signal from the fetal heart. The others will contain unwanted signals that may be aperiodic or periodic. Each signal is processed in the same way, using methods that are typical in ultrasound heart rate detectors: signals are band-pass filtered, rectified and enveloped. An algorithm seeks periodic activity in the enveloped signal using typical standard techniques such as peak-detection, auto-correlation, matched-filtering, etc. When a periodic signal is found, its rate is tested and rejected if it lies outside the typical range of a fetal heart (30 to 250 beats per minute). For each acceptable rate that is found a quality factor is calculated in a way that is typical of ultrasound heart rate monitors, based on criteria including amplitude, steadiness of rate, duration of rate, background noise level, or presence of artefact etc. Decision logic compares the outputs of each rate detector and presents to the user the best rate according to the quality factor.

Unwanted artefact on signals is removed before the heart rate detection process as follows. Each of the 6 range bin signals is full-wave rectified and low-pass filtered with a time constant of a few ms. This produces a measure of the quasi-instantaneous amplitude of each signal, which is sampled at a rate of 75Hz. A further low-pass filter with a time constant of several seconds calculates the longer-term average amplitude of the signal in each
range bin. The ratio of quasi-instantaneous amplitude to long-term amplitude is a measure of the changeability of the signal. For a typical fetal heart signal the value of changeability is in the range 2 to 4. Random white noise has a changeability of approximately one. Signals that change rapidly in amplitude have higher values of changeability. In the artefact detector, the product of 6 changeability values is calculated. With a fetal heart in two adjacent bins and noise in the other four, the normal value of the product is below 16. However, when the transducer is moved, all range bins see a sudden increase in amplitude and the changeability product increases markedly; values of many hundreds, or more often many thousands are seen. This is therefore a very sensitive test for artefact. An artefact flag is set when the changeability product exceeds a suitable threshold, somewhere in the range 16 to 1000 being appropriate.

False positive artefact detections can be triggered by noise spikes on the data. These are removed by a morphological filter (circular, 100ms, bottom filter) such that only sustained artefact is detected.

The gain of the enveloped Doppler signals input to the rate detection process is reduced according to the height of the artefact signal above the threshold. In this way, Doppler signals that are free from artefact are unchanged but those that trigger the artefact detector are reduced proportionately. Even a relatively weak artefact indication of several hundred is sufficient to reduce the artefact signal to below the noise floor of the system, fully protecting the rate detectors from the disturbance. In practice, a short delay occurs in the detection of artefact due to finite filter time constants and the onset of the artefact is not blanked. However, the system puts the Doppler envelope signals through a short delay chosen such that the gain reduction is perfectly aligned with the artefact.

Similarly, the audio signal is controlled by the artefact detector. Audio volume is normally set at maximum when the artefact signal is below the threshold. However, as the artefact
signal increases above the threshold, gain is reduced in proportion to the height of the artefact above threshold. Unlike rate detection however, it sounds unnatural to completely silence the audio during artefact and so a minimum volume level is applied so that artefact can still be heard without being objectionably loud. Again, the artefact is detected slightly after onset due to processing delays. Compensation is applied here too; as the audio path of the system is digital, a natural delay occurs where the audio is buffered and output to a codec. The volume adjustment is fed forward directly to the codec, making up the time lost in processing so that the volume change is perfectly aligned with the artefact sound.
CLAIMS

1. A fetal heart monitoring system using ultrasound having a single receive circuit with a single, fixed, wide receive gate with the output being digitised repeatedly by an analogue-to-digital converter (ADC) during the gate-open interval with each digital value assigned to one of several range bins.

2. A fetal heart monitoring system as claimed in claim 1 wherein each range bin is arranged to accept a single ADC sample.

3. A fetal heart monitoring system as claimed in claim 2 wherein two or more ADC samples are assigned to each bin, the samples within each bin processed to produce a single signal within each bin.

4. A fetal heart monitoring system as claimed in claims 1, 2 or 3 wherein a different gain is applied to each range bin.

5. A fetal heart monitoring system as claimed in any one of the preceding claims wherein the sensitivity individually in the range bins is adjusted by adjusting the threshold required for a signal to be detected or by applying different weightings to each range bin.

6. A fetal heart monitoring system as claimed in any one of the preceding claims wherein the range bins are recombined in pairs, trios, or groups of any number to recreate the composite signal corresponding to the depth range of those bins.

7. A fetal heart monitoring system as claimed in claim 6 wherein the range bins are recombined after applying an individual attenuation factor to each bin to simulate the use of a higher ultrasound frequency or create an arbitrary attenuation profile.
8. A fetal heart monitoring system as claimed in any one of the preceding claims wherein the amplitudes of the signals in all the range bins are compared to detect any sudden rise in amplitude across all the range bins showing the presence of artefact caused by transducer movement.

9. A fetal heart monitoring system as claimed claim 8 wherein the amplitude of the artefact is detected as a numerical value rather than a simple on/off indication.

10. A fetal heart monitoring system as claimed in claims 8 or 9 wherein the volume of the Doppler signal is modulated during artifact.
Figure 4
Figure 5
A. CLASSIFICATION OF SUBJECT MATTER
INV. A61B8/02
According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
A61B GOI/S

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 657 137 A1 (OXFORD MEDICAL LTD [GB])</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>14 June 1995 (1995-06-14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 31 - column 5, line 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 4,5</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>GB 2 220 487 A (NAT RES DEV [GB])</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10 January 1990 (1990-01-10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 8, line 13 - page 16, line 21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pages 1-3, 6</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 4 573 479 A (TUCCILLO MARK J [US])</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4 May 1986 (1986-05-04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C

See patent family annex

X

Date of the actual completion of the international search
17 November 2009

Date of mailing of the international search report
25/11/2009

Name and mailing address of the ISA/
European Patent Office, P B 5818 Patentlaan 2
NL-2280 HV AGE
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3016

Authorized officer
Artiki s, T
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>US 4573479 A</td>
<td>04-03-1986</td>
<td>CA 1268822 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1888012 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5088134 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61013934 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0204192 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1683290 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3031056 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 61272035 A</td>
</tr>
</tbody>
</table>