实用新型名称
恒力弹簧支吊架可调载荷装置

摘要
恒力弹簧支吊架可调载荷装置，涉及一种机械装置，特别涉及一种用于调节恒力弹簧支吊架的载荷调节装置。包括手柄、蜗轮、蜗杆、底座、六角套筒、支撑装置，蜗轮连接在底座上，蜗杆与蜗轮啮合，蜗杆与蜗轮的轴线相互垂直，手柄与蜗杆连接，蜗轮的输出端穿过底板固定连接一六角套筒，支撑装置连接在所述底座上，支撑装置布置在底座的下方。本装置能大范围调整载荷，能满足现行标准系列恒力弹簧支吊架的载荷调节。
1. 恒力弹簧支吊架可调载荷装置，其特征在于包括手柄、蜗轮、蜗杆、底座、六角套筒、支撑装置，所述蜗轮连接在所述底座上，所述蜗杆与蜗轮啮合，所述蜗杆与蜗轮的轴线相互垂直，所述手柄与蜗杆连接，所述蜗杆的输出端穿过底座固定连接一六角套筒，所述支撑装置连接在所述底座上，所述支撑装置布置在所述底座的下方。

2. 根据权利要求1所述的恒力弹簧支吊架可调载荷装置，其特征在于所述的支撑装置包括滑块、夹板，所述夹板固定连接在所述滑块的下部，所述滑块的上端可滑动式连接在所述底座上。

3. 根据权利要求1所述的恒力弹簧支吊架可调载荷装置，其特征在于在所述滑块的侧面与底座之间设置挡块。
恒力弹簧支吊架可调截荷装置

技术领域
][0001] 本实用新型涉及一种机械装置，特别涉及一种用于调节恒力弹簧支吊架的载荷调节装置。

背景技术
][0002] 目前已知的恒力弹簧支吊架在施工现场需要进一步调整截荷，但由于弹簧的预紧力很大，对受到巨大压力的拉杆螺母很难进行操作调整。专利zl96201028.6 中记载有借助偏心轮的装置实现载荷调整，但由于偏心轮结构的特点，其偏心比较小，使得可调载荷范围狭小，且不能实现通用化。

发明内容
][0003] 本实用新型提供一种恒力弹簧支吊架可调截荷装置，目的在于解决现有恒力弹簧支架载荷装置调节范围狭窄的缺点。
][0004] 本实用新型包括手柄，蜗轮，蜗杆，底座，六角套筒，支撑装置，所述蜗轮连接在所述底座上，所述蜗杆与蜗轮啮合，所述蜗杆与蜗轮的轴线相互垂直。所述手柄与蜗杆连接，所述蜗杆的输出端穿过底座固定连接一六角套筒，所述支撑装置连接在所述底座上，所述支撑装置设置在所述底座的下方。
][0005] 本实用新型使用时，直接连接于恒力弹簧支吊架上端，通过六角套筒套置于碟簧拉杆顶端的六角螺母上，本装置设置一组具有较大传动比的蜗轮蜗杆传动机构，通过手柄驱动蜗杆，同时蜗杆带动蜗轮转动，蜗轮带动六角套筒转动，六角套筒再通过转动碟簧拉杆顶端的螺母，螺母的松开或拧紧可以调节碟簧的松紧，这样即达到了范围调整载荷范围的目的。本装置可以满足现行标准系列恒力弹簧支吊架的载荷调节；支撑装置的下端通过螺母固定连接于恒力弹簧支吊架的碟簧拉杆上，其用于支撑本调整截荷装置。
][0006] 本实用新型所述的支撑装置包括滑块、夹板，所述夹板固定连接在所述滑块的下部，所述滑块的上端可滑动式连接在所述底座上；支撑装置的可滑动式可以方便固定于不同规格的标准系列的需要。
][0007] 本实用新型在所述滑块的侧面与底座之间设置挡块，式块是为了方便滑块的准确定位。

附图说明
][0008] 图1为本实用新型的一种结构示意图。
][0009] 图2为图1的A-A向视图。
具体实施方式

【0011】如图1所示，本恒力弹簧轴吊架可调载荷装置，包括手柄1，蜗轮3，蜗杆2，底座4，六角套筒5，支撑装置6，蜗轮3连接在底座4上，蜗杆2与蜗轮3啮合，蜗杆2与蜗轮3的轴线相互垂直，手柄1与蜗杆2连接，蜗轮3的输出端穿过底座4固定连接一六角套筒5，支撑装置6连接在底座4上，支撑装置6布置在底座4的下方，在滑块7的侧面与底座4之间设置挡块。

【0012】如图2所示，本可调载荷装置的支撑装置6，包括滑块7，夹板8，夹板8固定连接在滑块7的下部，滑块7的上端可滑动式连接在底座4上。

【0013】如图1所示，恒力弹簧轴吊架，包括机架16，在机架16内设置接头块15，在接头块15的上顶点固定连接竖直布置的碟簧拉杆13，在碟簧拉杆13上套装碟形弹簧组12，在机架16的上端面的四个角上分别设置碟簧导杆11，在机架16的上方设置压板10，压板10的四个角固定连接在四个碟簧导杆11上，碟簧拉杆13的上端穿过压板10，碟簧拉杆13的顶端连接拉杆螺母9。
图 1
图 2