008/003019 A2 |00 0 00O O I

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 January 2008 (03.01.2008)

R

(10) International Publication Number

WO 2008/003019 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2007/072317

(22) International Filing Date: 28 June 2007 (28.06.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/427,349 29 June 2006 (29.06.2006) US

(71) Applicant (for all designated States except US): QUAL-
COMM Incorporated [US/US]; Attn: International
Ip Administration, 5775 Morehouse Drive, San Diego,
California 92121 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): RYCHLIK, Bohuslav
[US/US]; 1017 Sweet Spot Circle, Morrisville, North Car-
olina 27560 (US).

(74) Agent: BACHAND, Richard, A.; 5775 Morehouse Drive,
San Diego, California 92121 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,

CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, F1, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii))

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: METHODS AND APPARATUS FOR PROACTIVE BRANCH TARGET ADDRESS CACHE MANAGEMENT

FETCH ADDRESS
122~
BTAC 215,
912 2 s
- BRANCH T_—Zl‘) \ J |
PREDICTOR Taken Path 44, 2234
17(1 Taken Path ;128
Taken Path , [*
205 BHT Taken Path |,
T S 07 : }n stages
211
= Taken Path |
Y
o3 | 112
| _——
ACTUAL BRANCH

RESOLUTION

o (57) Abstract: A multiple stage branch prediction system including a branch target address cache (BTAC) and a branch predictor
circuit is disclosed. The BTAC is configured to store a BTAC entry. The branch predictor circuit is configured to store state infor-
mation. The branch predictor circuit utilizes the state information to predict the direction of a branch instruction and to manage the
BTAC entry based on the stored state information in response to actual resolution of the branch instruction.

WO 2008/003019 A2 {000 0000000 0 0 0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2008/003019 PCT/US2007/072317

METHODS AND APPARATUS FOR PROACTIVE BRANCH
TARGET ADDRESS CACHE MANAGEMENT

BACKGROUND
Field of the Invention

[0001] The present invention relates generally to the field of processors and in
particular to a method of improving branch prediction by proactively managing the
contents of a branch target address cache.

Background

[0002] Microprocessors perform computational tasks in a wide variety of applications.
Improved processor performance is almost always desirable, to allow for faster
operation and/or increased functionality through software changes. In many embedded
applications, such as portable electronic devices, conserving power is also a goal in
processor design and implementation.

[0003] Many modern processors employ a pipelined architecture, where sequential
instructions, each having multiple execution steps, are overlapped in execution. For
improved performance, the instructions should flow continuously through the pipeline.
Any situation that causes instructions to stall in the pipeline can detrimentally influence
performance. If instructions are flushed from the pipeline and subsequently re-fetched,
both performance and power consumption suffer.

[0004] Most programs include conditional branch instructions, the actual branching
behavior of which is not known until the instruction is evaluated deep in the pipeline.
To avoid the stall that would result from waiting for actual evaluation of the branch
instruction, modern processors may employ some form of branch prediction, whereby
the branching behavior of conditional branch instructions is predicted early in the

pipeline. Based on the predicted branch evaluation, the processor speculatively fetches

WO 2008/003019 PCT/US2007/072317

(prefetches) and executes instructions from a predicted address — either the branch target
address (if the branch is predicted to be taken) or the next sequential address after the
branch instruction (if the branch is predicted not to be taken). Whether a conditional
branch instruction is to be taken or not to be taken is referred to as determining the
direction of the branch. Determining the direction of the branch may be made at
prediction time and at actual branch resolution time. When the actual branch behavior
is determined, if the branch was mispredicted, the speculatively fetched instructions
must be flushed from the pipeline, and new instructions fetched from the correct next
address. Prefeteching instructions in response to an erroneous branch prediction can
adversely impact processor performance and power consumption. Consequently,
improving the accuracy of branch prediction is an important processor design goal.
[0005] One known form of branch prediction includes partitioning branch prediction
into two predictors: an initial branch target address cache (BTAC) and a branch history
table (BHT). The BTAC, also known as a branch target buffer (BTB), is indexed by an
instruction fetch address and contains the next fetched address, also referred to as the
branch target, corresponding to the instruction fetch address. Entries are added to a
conventional BTAC after a branch instruction has passed through the processor pipeline
and its branch has been taken. If the conventional BTAC is full, entries are
conventionally removed from the BTAC using standard cache replacement algorithms
(such as round robin or least-recently used) when the next entry is being added.

[0006] BTACsS, in general, are often embodied as a highly-associative cache design and
accessed early in the fetch pipeline. If the fetch address matches a BTAC entry (a
BTAC hit), the corresponding next fetch address or target address is fetched in the next
cycle. This match and subsequent fetching of the target address is referred to as an

implicit taken branch prediction. If there is no match (a BTAC miss), the next

WO 2008/003019 PCT/US2007/072317

sequentially incremented address is fetched in the next cycle. This no match situation is
also referred to an implicit not-taken prediction.

[0007] BTACsS, in general, are utilized in conjunction with a more accurate individual
branch direction predictor such as the branch history table (BHT) also known as a
pattern history table (PHT). Conventional BHTs are accessed later in the pipeline than
a conventional BTAC. As such, additional information may be potentially present in
order to make a better prediction. A conventional BHT may contain a set of saturating
predicted direction counters to produce a more accurate taken/not-taken decision for
individual branch instructions. For example, each saturating predicted direction counter
may comprise a 2-bit counter that assumes one of four states, each assigned a weighted
prediction value, such as:

[0008] 11 — Strongly predicted taken

[0009] 10 — Weakly predicted taken

[0010] O1 — Weakly predicted not taken

[0011] 00 — Strongly predicted not taken

[0012] BHTs, in general, are conventionally indexed by bits stored in a branch history
register (BHR). The output of a conventional BHT is a taken or not taken decision
which results in either fetching the target address of the branch instruction or the next
sequential address in the next cycle. The BHT is commonly updated with branch
outcome information as it becomes known.

[0013] Utilizing a conventional BHT, a processor may override an earlier implicit
prediction made by a BTAC. For example, a BTAC may hit (implicitly predicting a
taken branch), but the BHT may override the BTAC implicit prediction with a not taken

prediction. Conversely, following a BTAC miss, the BHT may override the BTAC miss

WO 2008/003019 PCT/US2007/072317

with a taken prediction provided the target address is now known at this point in the
processor pipeline.

[0014] Overriding BTAC predictions by a BHT results in wasted cycles resulting from
flushing the processor pipeline. Overriding BTAC predictions by a BHT can happen
repeatedly when a similar branch instruction is subsequently processed by the pipeline.
For example, if the BTAC implicitly predicts taken by a match being found in the
BTAC, instructions from the target address (taken branch) begin to be fetched in to the
processor pipeline. If the BHT subsequently overrides the BTAC prediction by
deciding that the branch should not be taken, all the instructions after the fetching of the
target address have to be flushed from the pipeline. In this conventional branch
prediction technique, this cycle potentially repeats itself for the same branch instruction
subsequently fetched. This problem of repeating branch prediction conflicts on
subsequent fetching of the same conditional branch instruction is referred to herein as
the multiple flush cycle problem. In a conventional approach, the multiple flush cycle
problem may continue to exist for a conditional branch instruction until the BTAC is
updated. Therefore, it is recognized that apparatus and methods are needed to
proactively manage the BTAC and reduce the probability of the occurrence of the

multiple flush cycle problem.

SUMMARY

[0015] According to one or more embodiments, a branch target address cache (BTAC)
and a branch predictor circuit are disclosed. The BTAC is configured to store a BTAC
entry. The branch predictor circuit is configured to store state information. The branch
predictor circuit utilizes the state information to predict the direction of a branch

instruction and to manage the BTAC entry based on the stored state information in

WO 2008/003019 PCT/US2007/072317

response to actual resolution of the branch instruction. By managing the BTAC entry
based on state information used to predict the direction of a branch instruction, the
likelihood of mispredictions and conflicts between BTAC lookup and a branch predictor
circuit are advantageously reduced.

[0016] One embodiment relates to a multiple stage branch prediction system. The
multiple stage branch prediction system includes a BTAC and a branch predictor circuit.
The BTAC is configured to store a BTAC entry. The branch predictor circuit is
configured to store state information. The branch predictor circuit utilizes the state
information to predict the direction of a branch instruction and manages the BTAC
entry based on the stored state information in response to actual resolution of the branch
Instruction.

[0017] Another embodiment relates to a method of managing a branch target access
cache (BTAC). A branch direction of a conditional branch instruction which has been
actually resolved is received. State information of a branch predictor circuit is
evaluated in response to the received branch direction. An entry in the BTAC
associated with the conditional branch instruction is managed according to the state
information of the branch predictor circuit.

[0018] Another embodiment relates to a method for lowering the probability of a
multiple flush cycle of a pipeline. In this method, a first direction for a conditional
branch instruction is implicitly predicted. Also, a second direction for the conditional
branch instruction is predicted based on state information. A BTAC entry associated
with the conditional branch instruction is managed utilizing state information.

[0019] It is understood that other embodiments of the present invention will become
readily apparent to those skilled in the art from the following detailed description,

wherein various embodiments of the invention are shown and described by way of

WO 2008/003019 PCT/US2007/072317

illustration. As will be realized, the invention is capable of other and different
embodiments and its several details are capable of modification in various other
respects, all without departing from the present invention. Accordingly, the drawings

and detailed description are to be regarded as illustrative in nature and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS
[0020] FIG. 1 is a functional block diagram of a processor.

[0021] FIG. 2 is a functional block diagram of the branch predictor system of FIG. 1.
[0022] FIG. 3 is a functional block diagram of a first exemplary embodiment of a
BTAC management signal circuit.

[0023] FIG. 4 is a functional block diagram of a second exemplary embodiment of a
BTAC management signal circuit.

[0024] FIG. 5 is a flow chart illustrating a method of managing a BTAC.

[0025] FIG. 6 is a flow chart illustrating a method for lowering the probability of the
multiple flush cycle of a pipeline.

DETAILED DESCRIPTION
[0026] FIG. 1 depicts a functional block diagram of a processor 100. The processor 100

executes instructions in an instruction execution pipeline 112 according to control logic
114. In some embodiments, the pipeline 112 may be a superscalar design, with multiple
parallel pipelines. The pipeline 112 includes various registers or latches 116A-D,
organized in pipe stages, and one or more execution units such as arithmetic logic unit
(ALU) 118. A General Purpose Register (GPR) file 120 provides registers comprising
the top of the memory hierarchy.

[0027] Data is accessed from a data cache (D-cache) 140, with memory address
translation and permissions managed by a main Translation Lookaside Buffer (TLB)

142. In various embodiments, the ITLB 124 may comprise a copy of part of the TLB

WO 2008/003019 PCT/US2007/072317

142. Alternatively, the ITLB 124 and TLB 142 may be integrated. Similarly, in various
embodiments of the processor 100, the I-cache 122 and D-cache 140 may be integrated,
or unified. Misses in the I-cache 122 and/or the D-cache 140 cause an access to main
(off-chip) memory 144, under the control of a memory interface 146.

[0028] The processor 100 may include an Input/Output (I/O) interface 148, controlling
access to various peripheral devices 150. Those of skill in the art will recognize that
numerous variations of the processor 100 are possible. For example, the processor 100
may include a second-level (L2) cache for either or both the I and D caches 122, 140.

In addition, one or more of the functional blocks depicted in the processor 100 may be
omitted from a particular embodiment.

[0029] Processor 100 includes a multiple stage branch prediction system 143. The
multiple stage branch prediction system 143 includes a BTAC 141 (the first stage) and a
branch predictor circuit 126 (the second stage). The BTAC 141 is configured to store
one or more entries where each entry contains a branch target address corresponding to
a fetch address. Instruction prefetch unit 128 fetches instructions from an instruction
cache (I-cache or I$) 122, with memory address translation and permissions managed
by an Instruction-side Translation Lookaside Buffer (ITLB) 124. The multiple stage
branch prediction system 143 determines whether a fetch address hits in the BTAC 141,
predicts the direction of a branch instruction by utilizing stored prediction patterns in
the branch predictor circuit 126, and updates the BTAC 141 based on the state of the
stored prediction patterns in the branch predictor circuit 126. The multiple stage branch
prediction system 143 as well as the operation of the instruction prefetch unit 128 and
pipeline 112 will be described in more detail in connection with the discussion of FIG.

2.

WO 2008/003019 PCT/US2007/072317

[0030] FIG. 2 is a functional block diagram of the branch predictor system 143 of FIG.
1. The pipeline 112 and the instruction prefetch unit 128 each include one or more
processing stages. Branch predictor circuit 126 may include a branch history register
203, branch history table (BHT) 207 and branch table update and prediction logic circuit
205. Exemplary embodiments of the BTAC management portion of the branch table
update and prediction logic circuit 205 will be described in connection with FIGs. 3 and
4.

[0031] In operation, a fetch address is looked up in BTAC 141 over path 219 to
determine if it corresponds to a taken branch instruction, which has been previously
processed by the pipeline 112. The instruction prefetch unit 128 speculatively
prefetches instructions from the instruction cache 122 over path 221, beginning at the
branch target address returned from the BTAC 141 for branches implicitly predicted
“taken”, or beginning at the next sequential address for branches implicitly predicted
“not taken.” In either case, the prefetched instructions are loaded into instruction
prefetch unit 128 along path 223.

[0032] As the conditional branch instruction is processed by the stages of the instruction
prefetch unit 128 or pipeline 112, additional information about the conditional branch
instruction is determined such as information carried in predecode bits retrieved from
the I-cache 122 over path 223. The branch predictor circuit 126, utilizing stored
prediction patterns and this additional information, is invoked over path 121 in order to
predict with a higher level of confidence than the BTAC lookup the direction of the
conditional branch instruction.

[0033] The branch table update and prediction logic circuit 205 utilizes the branch
instruction address, the branch history register (BHR) 203 and the branch history table

(BHT) 207 to predict the direction of the conditional branch instruction. The BHR 203

WO 2008/003019 PCT/US2007/072317

acts as shift register for a conditional branch instruction. For example, if a conditional
branch instruction is actually taken, a “1” is shifted into BHR 203. If the conditional
branch instruction is actually not taken, a “0” is shifted into BHR 203, resulting on BHR
203 storing the historical branch direction for a particular branch instruction. In one
embodiment, BHR 203 includes a specific register for each branch instruction processed
by pipeline 112 over a period of time. In another embodiment, BHR 203 may have
global scope which contains historical branch direction for recently processed
conditional branch instructions. The BHT 207 may include two bit counters for a
particular branch instruction as described in the Background section above. It is
recognized that various known techniques for predicting branch direction may utilize
the BHR 203 and BHT 207. It is also recognized that these known predictive
techniques utilize various implementations of BHR 203 and BHT 207. It is also
recognized that this disclosure contemplates utilizing other predictive techniques which
implement alternatives to a BHR or a BHT.

[0034] Based on the BHR 203 and BHT 207, the branch direction predictor circuit 126,
in the example illustrated in FIG. 2, predicts a branch direction which conflicts with the
BTAC 141 implicit prediction. As a result, all of the instructions above “Taken Path,”,
the stage location of the conditional branch instruction, will be flushed from the
instruction prefetch unit 128. Without a conflict, the instruction prefetch unit 128
would continue to prefetch instructions which began from the branch target address.
[0035] As the conditional branch instruction progresses through the stages of pipeline
112, the conditional branch instruction reaches a stage where the condition is actually
resolved. If the actual resolution of the branch differs from the prediction of the branch
predictor circuit 126, all the instructions above the conditional branch instruction are

flushed from both pipeline 112 and instruction prefetch unit 128. At the actual branch

WO 2008/003019 PCT/US2007/072317
10

resolution stage of the pipeline, the actual direction of the conditional branch is sent to
the branch predictor circuit 126 over path 213.

[0036] The branch table update and prediction logic circuit 205 is configured to utilize
the actual branch direction in addition to the branch instruction address, the state of an
entry in the BHT 207 and, optionally, the contents of the BHR 203 to update the
contents of the BHT 207. Additionally, the branch table update and prediction logic
circuit 205 is configured to manage an entry in BTAC 141 depending on the actual
branch direction and the state of the BHT 207, or any other state in the branch direction
predictor, advantageously allowing the entry in BTAC 141 to be responsive to the
branch predictor circuit 126 and any branch prediction technique implement by other
branch predictor circuits storing state information utilized for branch prediction.

[0037] FIG. 3 is a functional block diagram of a first exemplary embodiment of a
BTAC management circuit 300. The BTAC management circuit 300 may be a suitable
circuit included in the branch table update and prediction logic circuit 205 to manage
the BTAC 141 after the BHT 207 has been updated. The input to the BTAC
management circuit 300 is the most significant bit, after being updated as a result of
actual resolution, of a two bit counter value corresponding to the conditional branch
instruction. The output signal 305 of the BTAC management circuit 300 is the inverted
signal of the input. The BTAC 141 interprets the output signal 305 to determine
whether to manage an entry corresponding to the conditional branch instruction as
described below.

[0038] For example, if the updated two bit counter corresponding to the conditional
branch instruction has value of 00 (strongly predicted not taken), the entry for this
conditional branch instruction in BTAC 141 will be managed according to various

alternatives described below. Similarly, if the updated two bit counter has value of 01

WO 2008/003019 PCT/US2007/072317
11

(weakly predicted not taken), the entry for this conditional branch instruction in BTAC
141 will be managed. If the updated two bit counter either has the value 10 (weakly
predicted taken) or value 11 (strongly predicted taken), the entry in BTAC 141 will not
be modified.

[0039] FIG. 4 is a functional block diagram of a second exemplary embodiment of a
BTAC management signal circuit 400. The BTAC management circuit 400 may be a
suitable circuit for a portion of the BTAC management portion of the branch table
update and prediction logic circuit 205 to manage the BTAC 141 before the BHT 207
has been updated. The BTAC management circuit 400 is a logic circuit including AND
gates 405A-405B and an OR gate 415 utilized to generate a management signal 425 to
manage an entry corresponding to a conditional branch instruction which was actually
resolved. The BTAC management circuit 400 operates in response to the actual
direction of the branch and the current state of the BHT 207 before update resulting
from the actual direction. The BTAC management circuit 400 has inputs A" (the actual
branch direction inverted), B” (the most significant bit of the two-bit counter inverted),
and C’ (the least significant bit of the two-bit counter inverted). In this embodiment, the
BTAC 141 would interpret the output signal 425 to manage an entry corresponding to
the conditional branch instruction as described below. Although BTAC management
circuits 300 and 400 have been described as being dependent on the implementation of
BHT 207, they may also depend on a chosen implementation of a BHR. Furthermore, it
is recognized that this disclosure contemplates other BTAC management circuits which
are driven by various implementation of a BHT or implemented with various branch
predictive implementations. Moreover, BTAC management circuits as shown in FIGs.
3 and 4 may be integrated with or separate from the branch table update and prediction

logic circuit 205.

WO 2008/003019 PCT/US2007/072317
12

[0040] The type of management of the entry may include various alternatives. The
types of management include removing the BTAC immediately, marking the BTAC
entry for removal on the next added branch instruction, pinning or maintaining the
BTAC entry for an extended period of time, and the like. It is recognized that
management of the BTAC entries not associated with conditional branch instruction as
an alternative to management of the BTAC entry associated with conditional branch
instruction is contemplated by the present disclosure.

[0041] BTAC 141 employs a least recently used replacement policy where the entries
are organized in an order which indicate the replacement order of entries in the BTAC
141. A known pseudo least recently used circuit may be suitable to maintain the
replacement order of entries. As such, the output signal of the BTAC management
circuit 300 may result in modifying the position of the entry corresponding to the
conditional branch instruction in the BTAC 141. For example, the entry may be
bumped up in the replacement order or bumped down in the replacement order.
Alternatively, the entry may be maintained by adjusting the position in the BTAC 141
to indicate it is the most recently used in order to prolong its life in BTAC 141.

[0042] Alternatively, in another embodiment, BTAC 141 may employ a modified round
robin policy. In a conventional round robin policy, a register points to an entry to be
replaced the next time a conditional branch is added and sequentially steps to the next
sequential entry after the entry is replaced, cycling through the entries in a fair manner.
However, in the modified round robin policy, a pointer is employed to point to the entry
corresponding to the conditional branch instruction which was actually resolved. For
example, the entry corresponding to the conditional branch instruction may be marked
for removal by adjusting the pointer to now point to this entry. In so doing, this entry is

replaced the next time a conditional branch instruction and its corresponding target

WO 2008/003019 3 PCT/US2007/072317
address are added to BTAC 141. Consequently, the next entry to be removed would be
the entry recently determined to be removed. Although the replacement policies
employed by BTAC 141 provided herein are exemplary, the inventive techniques are
also applicable to other replacement policies typically used in BTACs.

[0043] FIG. 5 is a flow chart 500 illustrating a method of managing a BTAC. At block
510, a branch direction of a conditional branch instruction which has been actually
resolved is received. For example, path 213 of FIG. 2 illustrates branch predictor circuit
126 as receiving the branch direction from pipeline 112. At block 520, the state of a
branch predictor circuit is evaluated in response to receiving the actual branch direction.
At block 530, an entry in a BTAC associated with the conditional branch instruction is
managed according to the state of the branch predictor circuit.

[0044] Blocks 530A-530D are alternative exemplary embodiments of various types of
management of an entry in the BTAC as shown in block 530. These exemplary
embodiments may be employed singularly or in combination. At block 530A, the entry
in the BTAC to be managed is removed, advantageously removing the last conditional
branch instruction to be predicted “not taken” from the BTAC. At block 530B, the
entry in the BTAC to be managed is maintained in the BTAC for an extended period of
time, advantageously prolonging the life of the last conditional branch instruction to be
predicted “taken” in the BTAC.

[0045] Block 530C shows the entry in the BTAC to be managed having its position in a
replacement order adjusted for a BTAC employing a least recently used replacement
policy. In one embodiment, the entry in the BTAC has its position in the replacement
order modified in a manner to have the entry less likely to be replaced on the next
BTAC entry to be added, advantageously prolonging the life of the last conditional

branch instruction to be predicted “taken” in the BTAC. In another embodiment, the

WO 2008/003019 PCT/US2007/072317
14

entry in the BTAC has its position in the replacement order modified in a manner to
have the entry more likely to be replaced on the next BTAC entry to be added.

[0046] Block 530 D shows a next replacement register being adjusted for a BTAC
employing a modified round robin replacement policy. In one embodiment, the
contents of the next replacement register are modified to point to the entry to be
managed in the BTAC. Thus, when the next conditional branch instruction is to be
added to the BTAC, the pointed to entry is replaced with the added entry,
advantageously removing the last conditional branch instruction to be predicted “not
taken” from the BTAC. In another embodiment, the contents of the next replacement
register are modified to point to the next entry in the BTAC after the entry to be
managed. In this way, when the next conditional branch instruction is to be added to the
BTAC, the next entry in the BTAC after the entry to be managed is replaced with the
added entry, advantageously prolonging the life of the managed entry in the BTAC. It
is recognized that other management techniques for managing a BTAC may be utilized
by the present disclosure.

[0047] FIG. 6 is a flow chart illustrating a method 600 of lowering the probability of the
multiple flush cycle of a pipeline. At block 610, a first direction for a conditional
branch instruction is implicitly predicted. For example, if there is a hit in a BTAC for
the conditional branch instruction, the corresponding branch target address in the BTAC
is then prefetched. Thus, the branch direction is implicitly predicted “taken.” At block
620, a second direction for the conditional branch instruction is subsequently predicted
based on state information such as state information stored in branch prediction circuit
126. Continuing with the previous example, a branch predictor circuit predicts that the
conditional branch instruction should be “not taken,” thus, conflicting with the implicit

prediction of the BTAC. At block 630, the BTAC entry associated with the conditional

WO 2008/003019 15 PCT/US2007/072317
branch instruction is managed utilizing state information stored, for example, in branch
prediction circuit 126. Different types of BTAC management are described above in
connection with the discussion of FIG. 5. Alternatively, at block 630, the BTAC entry
associated with the conditional branch instruction is managed due to the conflict
between the branch predictor circuit and the BTAC lookup independent of any state
stored in the branch predictor circuit.

[0048] The wvarious illustrative logical blocks, modules, circuits, elements, and/or
components described in connection with the embodiments disclosed herein may be
implemented or performed with a general purpose processor, a digital signal processor
(DSP), an application specific integrated circuit (ASIC), a field programmable gate
array (FPGA) or other programmable logic component, discrete gate or transistor logic,
discrete hardware components, or any combination thereof designed to perform the
functions described herein. A general-purpose processor may be a microprocessor, but
in the alternative, the processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be implemented as a
combination of computing components, ¢.g., a combination of a DSP and a
microprocessor, a plurality of microprocessors, one or more microprocessors in
conjunction with a DSP core, or any other such configuration.

[0049] The methods or algorithms described in connection with the embodiments
disclosed herein may be embodied directly in hardware, in a software module executed
by a processor, or in a combination of the two. A software module may reside in RAM
memory, flash memory, ROM memory, EPROM memory, EEPROM memory,
registers, hard disk, a removable disk, a CD-ROM, or any other form of storage medium

known in the art. A storage medium may be coupled to the processor such that the

WO 2008/003019 16 PCT/US2007/072317
processor can read information from, and write information to, the storage medium. In
the alternative, the storage medium may be integral to the processor.

[0050] While the invention is disclosed in the context of embodiments, it will be
recognized that a wide variety of implementations may be employed by persons of
ordinary skill in the art consistent with the above discussion and the claims which

follow below.

WO 2008/003019 PCT/US2007/072317

17
CLAIMS
WHAT IS CLAIMED IS:
1. A multiple stage branch prediction system comprising:

a branch target address cache configured (BTAC) to store a BTAC entry; and

a branch predictor circuit configured to store state information, the branch
predictor circuit configured to utilize the state information predicting the direction of a
branch instruction, the branch predictor circuit configured to manage the BTAC entry
based on the state information in response to actual resolution of the branch instruction.

2. The system of claim 1 wherein the branch predictor circuit is configured
to remove the BTAC entry from the BTAC.

3. The system of claim 1 wherein the branch predictor circuit is configured
to maintain the BTAC entry in the BTAC for an extended period of time.

4. The system of claim 1 wherein the BTAC is configured to maintain
stored one or more entries in a replacement order and wherein the branch predictor
circuit is configured to modify the position of the BTAC entry in the replacement order.

5. The system of claim 4 wherein the branch predictor circuit is configured
to modify the position of the BTAC entry higher in the replacement order than its
current position to increase the likelihood of replacement of the BTAC entry.

6. The system of claim 1 further comprising:

a replacement pointer, wherein the BTAC employs a modified round robin
replacement policy and wherein the branch predictor circuit is configured to modify the
replacement pointer to point to the BTAC entry.

7. The system of claim 1 disposed in a processor.

8. A method of managing a branch target access cache (BTAC) comprising:

WO 2008/003019 PCT/US2007/072317
18

receiving a branch direction of a conditional branch instruction which has been
actually resolved,;

evaluating state information of a branch predictor circuit in response to the
received branch direction; and

managing an entry in the BTAC associated with the conditional branch
instruction according to the state information of the branch predictor circuit.

9. The method of claim 8 wherein managing the entry in the BTAC
comprises:

removing the entry from the BTAC.

10. The method of claim 8 wherein managing the entry in the BTAC
comprises:

maintaining the BTAC entry in the BTAC for an extended period of time.

11. The method of claim 8 further comprising;:

maintaining entries stored in the BTAC in a replacement order, wherein
managing the entry in the BTAC comprises modifying the position of the BTAC entry
in the replacement order.

12. The method of claim 11 wherein modifying the position of the BTAC
entry comprises modifying a replacement pointer to point to the BTAC entry.

13. A method for lowering the probability of a multiple flush cycle of a
pipeline, comprising:

implicitly predicting a first direction for a conditional branch instruction;

predicting a second direction for the conditional branch instruction based on

state information;

WO 2008/003019 PCT/US2007/072317
19

managing a branch target address cache (BTAC) entry associated with the
conditional branch instruction in response to a conflict between the first direction and
the second direction.

14. The method of claim 13 utilizing state information to manage the BTAC
comprises:

removing the BTAC entry from the BTAC.

15. The method of claim 13 utilizing state information to manage the BTAC
comprises:

maintaining the BTAC entry in the BTAC for an extended period of time.

16. The method of claim 13 further comprising;:

maintaining one or more entries stored in the BTAC in a replacement order,
wherein utilizing state information to manage the BTAC comprises modifying the
position of the BTAC entry in the replacement order.

17. The method of claim 16 wherein modifying the position of the BTAC

entry comprises modifying a replacement pointer to point to the BTAC entry.

PCT/US2007/072317

WO 2008/003019

1/4

PROCESSOR
124 122
ITLB 1$ |
\
128 wwm vwo
BP — INSTRUCTION
PREFETCH 142
—~t UNIT «— 4
........................ « 112 | TLB
PIPELINE
IN L16A 140
114 Hﬂ:% <> D§
CONTROL
P
120 G: H 146
Y G6PR el 8 C
116C MEMORY I/F
148 10 H:%
I/F

- 100

FIG. 1

~ 150

~ 150

h

MEMORY

- 144

WO 2008/003019 PCT/US2007/072317
2/4
202 141 FETCH ADDRESS
BTAC 215 122
9 s . 5
BHR BRANCH E2 19 ™~
PREDICTOR Takon Path 4o, 723
1%1 Taken Path 5., 128
Taken Path ,., [
205 BHT Taken Path |,
T \207 }n stages
211
= pt Taken Path ,
213 | 112
I
ACTUAL BRANCH
RESOLUTION
FIG. 2
Al]
400 B — 405A
B’] 425
MsB 3% Management C'— _ 405B p
Counter Signal —
Value O\ ,
305 AT
C -~ | 405C
FIG. 3 —

FIG. 4

WO 2008/003019

500

~530A

RECEIVING A BRANCH
DIRECTION OF A
CONDITIONAL BRANCH
INSTRUCTION WHICH HAS
BEEN ACTUALLY RESOLVED.

- 510

'

EVALUATING THE STATE OF
A BRANCH PREDICTOR
CIRCUIT IN RESPONSE TO
THE RECEIVED BRANCH
DIRECTION.

~ 520

MANAGING AN ENTRY
ASSOCIATED WITH THE
CONDITIONAL BRANCH

INSTRUCTION IN A BTAC
ACCORDING TO THE STATE
OF THE BRANCH PREDICTOR
CIRCUIT.

- 530

~530B ™,

~530C ™

=
-
......
..

PCT/US2007/072317

.
e
.....
.
e
-

REMOVING
THE BTAC
ENTRY.

PINNING THE
BTAC ENTRY.

ADJUSTING
HIERARCHICAL
POSITION OF
THE BTAC
ENTRY.

FIG. 5

POINTING A
NEXT
REPLACEMENT
REGISTER TO
THE BTAC
ENTRY FOR
REMOVAL
WHEN THE
NEXT
CONDITIONAL
BRANCH
INSTRUCTION
IS ADDED.

WO 2008/003019 PCT/US2007/072317

4/4

600 IMPLICITLY PREDICTING A

FIRST DIRECTION FOR A |~ 610

CONDITIONAL BRANCH

INSTRUCTION FROM A

CORRESPONDING BTAC
ENTRY.

* ~ 620

SUBSEQUENTLY PREDICTING A SECOND
DIRECTION FOR THE CONDITIONAL BRANCH
INSTRUCTION CAUSING A CONFLICT WITH
THE IMPLICIT PREDICTION.

* ~ 630

MANAGE THE BTAC ENTRY ACCORDING TO
THE METHOD DESCRIBED IN FIG. 5.

FIG. 6

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

