
(19) United States
US 2008.0097.622A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0097622 A1
Forney et al. (43) Pub. Date: Apr. 24, 2008

(54) EXTENSIBLE MANUFACTURING/PROCESS
CONTROL INFORMATION PORTAL
SERVER

(75) Inventors: Paul W. Forney, Laguna Hills, CA
(US); Rashesh Mody, San Clemente,
CA (US); Dave Tran, Las Flores, CA
(US); Pramod Thazichayil, Tustin, CA
(US); Vijay Anand, Irvine, CA (US);
Kimson Q. Nguyen, Costa Mesa, CA
(US)

Correspondence Address:
LEYDIG VOIT & MAYER, LTD
TWO PRUDENTIAL PLAZA, SUITE 4900
18O NORTH STETSON AVENUE
CHICAGO, IL 60601-6731 (US)

(73)

(21)

(22)

Assignee: Invensys Systems, Inc., Foxboro, MA

Appl. No.: 11/959,091

Filed: Dec. 18, 2007

Related U.S. Application Data

(63) Continuation of application No. 09/955,473, filed on
Sep. 17, 2001.

(60) Provisional application No. 60/232,733, filed on Sep.
15, 2000.

Publication Classification

(51) Int. Cl.
G05B IS/00 (2006.01)

(52) U.S. Cl. .. 700/1

(57) ABSTRACT

A manufacturing/process control system information access
provider architecture is disclosed. Manufacturing/process
control system data provider flexibility is achieved through
a user-configurable manufacturing/process control informa
tion portal server that comprises multiple selectable data
provides (Sources) and/or data types that a particular data
provider accommodates. A user configures the portal server
to deliver manufacturing/process control information asso
ciated with a controlled process environment, such as a food
processing plant floor or an oil refinery reactor, to the user
via a browser client over the Internet or a corporate intranet.
Furthermore, an extensible architecture is provided that
enables adding new components to the portal server. Such
extensions include new data sources and new data types/
handlers. The new architecture enables a user to select
particular ones of the available data handlers and then their
associated data sources thereby facilitating customizing the
configuration of the portal server to the particular needs/
interests of the user.

Clients --s 120

Porta Framework
--> 100

Deployment
Cong, Manage

Security m 151

Admin.
Data Handlers 130 -140

152 History OPC suiteLink XML Alarm custom 125

5. iii. 110

Graphics Real-Time
History Alarms Application Data

Legacy Data,
Reports, XL, Protean, Avantis
Wor Reports,

Business Data, inventory

US 2008/0097622 A1 Patent Application Publication Apr. 24, 2008 Sheet 1 of 12

US 2008/0097622 A1 Patent Application Publication Apr. 24, 2008 Sheet 2 of 12

0 || ||

‘eyeq Koefie-T

suue|Vý Kuo?SIH

Patent Application Publication Apr. 24, 2008 Sheet 3 of 12 US 2008/0097.622 A1

F.G. 3

154 ID
155 Type
156 Alias
157 Server
158 Database
159 Userd
160 Password
161 Description
162 Contact
163 Default Server

Alias Description

Server Name Default UserName PassWord
- - -

COrtact Naffe -

Patent Application Publication Apr. 24, 2008 Sheet 5 of 12

200
2O2
204
206
208

210
212
214
216
218
220
222
224
226
228
230

232
234

240
242
244
246
248
250

260
262
264
266
268
270
272

F.
Additem
Removetem
Start
Stop
RemoveAllItems

F
GetName
GetId
GetItemValueType
GetIntValue

; GetRealValue
GetString Value
IsValueReady
SetItem Listener
PokeStringValue
PokentValue
PokeFloatValue

ItemStatus
Item Data

Open
Close
Send
GetSessionID
SetPollState
GetPollState

F.G. 10
SessionCreated
SessionCreateFail
SessionClosed
Receive
SendFail
Send Succeed

SessionError

US 2008/0097622 A1

Patent Application Publication Apr. 24, 2008 Sheet 6 of 12

Clients
cCommand
cConnectio

300

302

304

306

308

30

312

Server Information Request
-m-m-e-

Create Session Request
m-o-o-o-o-me

Connect
->

Register
-o-o-o-o-e-

Advise

FIG. 12

US 2008/0097622 A1

Server Information Reply
-a-o-o-o-o-m-m-

Create Session Reply

ASP Page for

400
Framework
Web Service

Handler

Dispatcher
Class e

Session Item
Class

Data
Provider 425

Handler

Configuration 432

Web Service

Toolkit

Data Provider
Registry DB
420

DataSource
Configuration DB
430

Data
Provider

Web Service
Handler

Data Provider

437

435

Data Provider

Patent Application Publication Apr. 24, 2008 Sheet 7 of 12 US 2008/0097.622 A1

F.G. 13
450 D
452 : Name
454 Description
456 WSDL
458 Extended WSDL
460 Connection String

OAddress s http:lnanasutevoyageusenglandefaulisp.
?h Home Feedback Help O Log off

E:

c Administation
Application Manager
User Manager
license information Provider Name:
Customize Portal SProvider
Configure DataSources
MultiView Manager Correction timeout (seconds):
Data Provider Registration Description:

s Factorysuite Applications : This provider processes Sol command
Application Toolkit
customized Links
Reporting WS:

http:Wlocatsuitevouagerydpframeworks providerwod

Extended WSto

connection String Name Connection String
onnection String Providersoloedbdata sourcesdave-waksninitiat Catalog-Suite voyag

Cancel

Air W858 poweredy suavoyAGER

Patent Application Publication Apr. 24, 2008 Sheet 8 of 12 US 2008/0097.622 A1

Elits
D File Edit View Favorites Tools Help

a 3Search G. Favorites (3History at E3
Address tiplinancisview.yag elsengnideals

Administation
Application Manager
User Manager
License information
Customize Portal -
Configure DataSources
MultiView Manager
Data Provider Registration

is Factorysuite Applications
Browser Based Windows
Factory Alarns
Historical Data
MultiViews

R. Application Toolkit
(New Application

Edit Application
export Application
Uninstal Application

Customized Links
Microsoft
Wounderwafe

Reporting

avata
powered by SUITEVOYAGER E3: s:
assassistaseras E. s 3.35

Patent Application Publication Apr. 24, 2008 Sheet 9 of 12 US 2008/0097622 A1

F.G. 17
i CCollection u/ N CCommand
i get DataSrCWSDL) scSelect() '

K. get ConnectionlD() O ScClose()
: GetDataProviderList() le O Songtaileo IConnection Ricardo

te lose Oe (from CConnection) cupd : initialize() cupdate() Cornmand
cPrevrecord() (from CCommand)
cFirst()
cLast0

550 Browse)S
552 Connect)S
554 Close)S

Patent Application Publication Apr. 24, 2008 Sheet 10 of 12 US 2008/0097622 A1

F.G. 19

Z-500 Z-520
Client : CConnection ; : CCommand : wservicehandler : wwdbintf

Application interface i
CoCreate A. -

| 6007 st - 602 s : Initialize() \s > |
GetDataProviderlisg BrowseDS()
804 , 605-7 >

ConnectToDataSource0 ConnectDSc, . .)

sey is et >
CoCreate

608 / 1.
cSelect() >

610
get DataSrCWSDL):

ld 612
get ConnectionlD()

cSelect(, ,)

615-/

Patent Application Publication Apr. 24, 2008 Sheet 11 of 12 US 2008/0097.622 A1

F.G. 20

- r2 -624
Dispatcher Sessionltem

is 6.29 ww.ClosedataSrC() Initialize()
CCDataMarshaller wwGetDataSrcList() spConnect()
— wConnectToDataSrc.() pSelect() $UnMarshalMessage(); Sec.) $pClose()

cclose() pDisconnect()
-n s SendFault) pOpenRowSet()

WritedataToBuffer) -7 pDelete()
gas) - plnsert()

GetBuffer() pNextRecordSet()
GetBufferLength() pUpdate()
SetBE) pPreviousRecordSet()
Siro Eisters, cDeleteo plastRecordSeto

| clnsert()
scNextRecord() cUpdate()
cPrevrecord()

9cFirst()
scLast()

FIG 21
630 pConnect
632 pSelect
634 popenRowSet
636 pClose i
638 pDelete
640 pInsert
642 pNextRecordSet
644 pUpdate
646 pPreviousRecordSet :
648 pFirstRecordSet.
650 pLastRecordSet f
652 pDisconnect

Patent Application Publication Apr. 24, 2008 Sheet 12 of 12 US 2008/0097.622 A1

FG. 22

CConnection Manager

NewConnection()
FindConnection()
DeleteConnection()

SQLProvider CConnectior

initialize()
pSelect()
pConnect()
pClose()

spbelete()
pinsert()
pUpdate()
pPrevrecord()
pDisconnect()
pFirst()
plast()

- co-é- Connection Queue,

QueryQueue

R

US 2008/0097.622 A1

EXTENSIBLE MANUFACTURING/PROCESS
CONTROL INFORMATION PORTAL SERVER

CROSS REFERENCE TO RELATED
APPLICATION

0001. This application claims priority of Formey et al.
U.S. provisional application Ser. No. 60/232,733, filed on
Sep. 15, 2000, entitled “Extensible Manufacturing Portal
Server, the contents of which are expressly incorporated
herein by reference in their entirety including the contents
and teachings of any references contained therein.

FIELD OF THE INVENTION

0002 The present invention generally relates to the field
of computerized manufacturing/process control networks.
More particularly, the present invention relates to systems
for providing access by Supervisory level applications and
users to manufacturing/process control information. The
present invention concerns the provision of such information
from multiple, potentially differing Sources having differing
data types.

BACKGROUND OF THE INVENTION

0003. Significant advances in industrial process control
technology have vastly improved all aspects of factory and
plant operation. Before the introduction of today's modern
industrial process control systems, industrial processes were
operated/controlled by humans and rudimentary mechanical
controls. As a consequence, the complexity and degree of
control over a process was limited by the speed with which
one or more people could ascertain a present status of
various process state variables, compare the current status to
a desired operating level, calculate a corrective action (if
needed), and implement a change to a control point to affect
a change to a state variable.
0004 Improvements to process control technology have
enabled vastly larger and more complex industrial processes
to be controlled via programmed control processors. Control
processors execute control programs that read process status
variables and execute control algorithms based upon the
status variable data and desired set point information to
render output values for the control points in industrial
processes. Such control processors and programs Support a
Substantially self-running industrial process (once set points
are established).
0005. Notwithstanding the ability of industrial processes
to operate under the control of programmed process con
trollers at previously established set points without inter
vention, Supervisory control and monitoring of control pro
cessors and their associated processes is desirable. Such
oversight is provided by both humans and higher-level
control programs at an application/human interface layer of
a multilevel process control network. Such oversight is
generally desired to verify proper execution of the controlled
process under the lower-level process controllers and to
configure the set points of the controlled process.
0006 Various data input/output servers, including for
example data access servers, facilitate placing process con
trol data (both reading and writing) within reach of a variety
of higher-level monitor/control client applications. During
the course of operation, process controllers generate status

Apr. 24, 2008

and control information concerning associated processes.
The controllers process status and control information is
stored within process control databases and/or distributed to
a number of locations within the process control network.
Other process information is generated/stored within field
devices (e.g., intelligent transmitters) having digital data
communication capabilities. The process information is
retrieved from the process control databases and field
devices by data access servers for further processing/use by
the process control system. For example, the data access
servers provide the retrieved information to a variety of
client applications providing high-level control and moni
toring (both human and computerized) services.

0007. In systems containing data input/output servers, the
high-level control and monitoring applications rely upon the
proper operation of the servers to provide the data upon
which Such applications rely for decision making. The
information includes real-time process variable values,
alarms, etc. Data input/output servers are implemented in a
number of forms. In some systems, a single data access
server operates upon a single node on a computer network
from which higher-level supervisory control is imple
mented. In other systems, multiple data access servers are
located upon a local area network, and the multiple data
access servers are accessed by Supervisory-level applica
tions running on other nodes on a local control network. In
yet other systems, access to process control information/
resources is achieved via temporary sessions established via
a wide area network link. One particular example is data
access provided via an Internet/intranet portal server.

0008. A portal site is an Internet/intranet site that pro
vides access to a variety of information from potentially
many sources. Portal sites, referred to as vertical portals, are
Sometimes designed to provide access to a particular type of
information. Portal servers handle user traffic at portal sites
and provide user access over the Internet/intranet to the
variety of data sources exposed by the portal site. Users
generally access the portal site via remote computers execut
ing general browser Software Such as the well known
MICROSOFT INTERNET EXPLORER. Through the
browsers the users access the data sources exposed by the
portal site/server.

0009 Portal servers provide a wide variety of services.
One example of such a service is “content accessibility” that
facilitates connectivity to information sources and content
providers. Content includes: online documents, libraries,
databases, and government information. Such content can be
located over a wide geographic area, but is connected via a
network structure (e.g., the Internet). Another example of a
portal service is a search engine that enables users to locate
particular information within a vast amount of available
COntent.

0010) A portal server often maintains an index to enhance
performance of searches. Another portal service is visual
ization of available services (e.g., displaying various fea
tures available to users). A second aspect of visualization is
displaying documents and information retrieved at the
request of a user. Yet another portal server function is
providing access to users from many parts of the world via
the World Wide Web. Such access includes both domestic
and foreign users. A last example of a portal function is
Support for personalization. A portal is used by many dif

US 2008/0097.622 A1

ferent people for many purposes. Portal servers store user
profile information to enhance user experiences.
0011. An advantage of a portal server approach to access
ing process control information/resources is the ability of
users to gain access from virtually any location in the world.
Such access enables specialists (both human and pro
grammed) to obtain access to and provide Supervisory
services without having to be physically present on the
manufacturing/industrial plant. Such accessibility can save
an enterprise considerable time and costs and avoid travel
delays. Wide area network access of the type supported by
a portal server also enables centralized, coordinated and
highly integrated control of an enterprise spread over a
relatively wide geographic area. Notwithstanding the sig
nificant benefits of providing Web access to a process
control network, significant challenges are faced with regard
to connecting such systems to the manufacturing/process
control systems with which they communicate, and there is
a substantial cost in time and effort to link the various
resources to manufacturing/process control information por
tal servers.

0012 Yet another obstacle in the deployment and main
tenance of manufacturing/process control information portal
servers is the presence of a wide variety of information
types. Installing a new portal server when a new data
transmission protocol or format is needed can greatly disrupt
operation of the manufacturing/process control system for
which it provides its services.
0013 Typical portal sites/servers are designed to provide
virtually the same resources to a very large audience. In a
process control environment, information sources and types
are tailored to many different and significantly smaller
groups of individuals. The various information types require
different handlers. Even within an enterprise, persons having
differing roles will have an interest in viewing data of
differing types from differing sources.

SUMMARY OF THE INVENTION

0014. The present invention offers a flexible manufactur
ing/process control information provider architecture. This
flexibility is achieved through a user-configurable manufac
turing/process control information portal server that com
prises multiple selectable data types (handlers) and data
Sources that a particular selected data handler accommo
dates. A user configures the portal server to deliver manu
facturing/process control information associated with a con
trolled process environment Such as a food processing plant
floor or an oil refinery reactor to the user via a browser client
over the Internet or a corporate intranet.
0.015 Furthermore, an extensible architecture is provided
that enables adding new components to the portal server.
Such extensions include new data sources, new data types,
and new generic data handlers. The new architecture enables
a user to select particular ones of the available data handlers
and then their associated data sources thereby facilitating
customizing the configuration of the portal server to the
particular needs of the user.

BRIEF DESCRIPTION OF THE DRAWINGS

0016. The appended claims set forth the features of the
present invention with particularity.

Apr. 24, 2008

0017. The invention, together with its objects and advan
tages, may be best understood from the following detailed
description taken in conjunction with the accompanying
drawings of which:

0018 FIG. 1 is a schematic drawing depicting an exem
plary process control environment for the present invention
wherein a manufacturing/process control network includes a
portal server that provides a variety of portal services to
browser clients;

0019 FIG. 2 is a schematic drawing of the general
components making up an exemplary manufacturing/pro
cess control portal server system;

0020 FIG. 3 is a block diagram listing fields that are
included in provider table records within a configuration
database;

0021 FIG. 4 is a screen shot of an exemplary graphical
user interface (GUI) used for defining a new data source
(provider) to be stored as a new table entry in a configuration
database;

0022 FIG. 5 is a schematic drawing of the details of an
exemplary runtime database (RDB);

0023 FIG. 6 is a block diagram listing the methods of an
exemplary IRunTimeDB interface exposed by an RDB for
use by a data exchange (DE);

0024 FIG. 7 is a block diagram listing methods of an
exemplary IOItem interface exposed by an RDB for use by
a DE:

0025 FIG. 8 is a block diagram listing methods of an
exemplary IOItemListener interface exposed by a DE for
use by an RDB;

0026 FIG. 9 is a block diagram listing methods of an
exemplary IOutpost interface exposed by an HTTP Client
Interface (HCI) for use by an RDB:

0027 FIG. 10 is a block diagram listing methods of an
exemplary IOutpostSessionListener interface exposed by an
RDB for use by an HCI;

0028 FIG. 11 is a dataflow diagram that depicts a
sequence of calls and actions between a client (portal server
HCI) and a plant server over an established HTTP connec
tion;

0029 FIG. 12 is a schematic drawing of an exemplary
embodiment of a portal server framework;

0030 FIG. 13 is a block diagram of an XML schema
listing data Sources and their associated handlers within a
data provider registry;

0031 FIGS. 14 and 15 are screen shots of an exemplary
GUI for registering a data provider;

0032 FIG. 16 is a block diagram listing methods of an
exemplary connection object;

0033 FIG. 17 is a block diagram listing method of an
exemplary command object;

0034 FIG. 18 is a block diagram listing methods sup
ported by a framework Web service handler;

US 2008/0097.622 A1

0035 FIG. 19 is a sequence diagram depicting an exem
plary set of steps executed between clients and a framework
Web service handler during the course of a user session;
0.036 FIG. 20 is a block diagram depicting exemplary
relationships among three object classes within a framework
Web service handler;
0037 FIG. 21 is a block diagram listing exemplary
methods implemented within a data provider handler; and
0038 FIG. 22 is a block diagram showing an exemplary
SQL provider handler class structure and the relationships
among the classes in a COM component.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

0.039 The present invention concerns an extensible
manufacturing/process control information portal server that
enables users to visualize plant floor information coming
from a variety of systems and databases (e.g., Wonderware's
InTouch systems, InTouch/Alarm Suite alarm databases, I/O
servers, and Industrial SQL) over the Internet or an intranet
via a browser (e.g., IE 5). The extensible manufacturing/
process control portal server supports interactive HTML
pages in XML, applying an XSL transformation, and
dynamically rendering VML on a client machine (as well as
providing animation updates from live process data
Sources). The portal server allows users to generate ad hoc
queries of a real-time process control SQL database to
produce trends and reports viewable with a browser client
Such as MICROSOFT'S INTERNET EXPLORER. In addi
tion, the portal server supports Internet enabled ActiveX
controls and a SQL server report tool. The manufacturing/
process control portal server Supports bi-directional com
munications between browser-clients and a data provider
associated with an observed manufacturing/process control
system.

0040. An exemplary manufacturing/process control
information portal server described herein below provides a
user configurable data handler and data Source designation
interface. First, a user designates a type of information
(associated with a particular data handler). Second, the user
designates a source of information of the selected informa
tion type. For example, a user can select an "alarm data
type/handler. Thereafter, the user selects a portion of the
plant (i.e., an information Source) for which data is Supplied.
Thereafter, the portal server is configured, through the
instantiation of appropriate objects, to deliver the configured
data to the requesting browser client. The user can be either
human or a machine Submitting appropriate commands to
the portal server configuration facilities.
0041 An exemplary manufacturing/process control
information portal server incorporating the present invention
provides an extensible portal server architecture enabling
developer/users to extend the capabilities of the system. A
first form of such extension comprises the ability of a user
to re-configure the portal server to provide information from
a designated resource. A second form of extending the portal
server's capabilities is adding new data handlers to Support
new forms/formats of data that are used to provide infor
mation from connected Sources.

0042. The extensible manufacturing/process control por
tal server of the present invention provides a highly flexible

Apr. 24, 2008

infrastructure for aggregating plant floor information (for
client applications) and disseminating data back to, for
example, a manufacturing plant floor. The access is provided
to client-users via the Internet and intranets. The extensible
architecture and technology allow users to add new data
sources to the main portal server. The extensible architecture
also facilitates adding new data handlers.

0043. In general, the extensible architecture is facilitated
by a set of generic interface definitions that facilitate the
creation of Source-specific and handler-specific object com
ponents. Each of the added components (handlers and
Sources) is carried out by an object class (or Subclass)
defined according to the set of generic interface definitions.
In an embodiment of the invention, server developers are
aided by a toolkit which simplifies the process for develop
ing new handlers and Sources that are added to the extensible
portal servers. The toolkits also ensure that the added
components comply with requirements of the generic inter
face definitions.

0044 Turning to FIG. 1, an exemplary portal server
arrangement is schematically depicted. A portal server 10
provides portal services to a manufacturing/process control
environment. That environment consists of a database server
20 and a data access server 30. The data access server 30 in
turn connects to process control equipment 40. The portal
server 10 provides its services to browser clients at locally
connected workstations 50 and, via the Internet 60 or a
proprietary network, at remote workstations 70. The con
nected workstations 50 and remote workstations 70 connect
to the resources of the portal server 10 via browser clients
such as, for example, MICROSOFT's INTERNET
EXPLORER. The above network is merely a simple
example of an application of the present invention. Those
skilled in the art will readily appreciate the broad spectrum
of network topologies and environments in which a manu
facturing/process control information portal server embody
ing the present invention can operate.

0045 Turning to FIG. 2, components of a first exemplary
extensible portal server architecture are illustratively
depicted. The portal server 100 is interposed between
Sources of manufacturing and process control information of
various information types 110 and a set of browser clients
120. Such clients 120 can be thin clients running little or no
application-specific Software. The clients 120, executing
browsers and generic browser Support Software, rely upon
the processing capabilities of the portal server to provide the
manufacturing and process control information in a browser
ready format. The browser clients 120 generate the corre
sponding display information and transmit user selections
back to the portal server 100. The portal server 100 also
provides a configuration interface depicted herein below
with reference to FIG. 4 that enables a user to add a new data
source to a set of data sources from which the portal server
100 obtains data on behalf of the browser clients 120. Such
configuration information is stored within a configuration
database 150 in an manner such as the exemplary record
depicted herein below with reference to FIG. 3.

0046) The information sources (typically servers—but
not depicted in the Figure) of various types 110 supply
information to the portal server 100 in a variety of formats.
As indicated in FIG. 2, such types include history (archived
process control information), alarms, graphics applications

US 2008/0097.622 A1

(e.g., trend graphs), real-time manufacturing/process control
system data Supporting remote monitoring of a system, and
business information (generally stored within databases).
The portal server includes a data access subsystem 125 that
is responsible for retrieving and sending data (in real-time)
between the portal server 100's browser client interface
framework and an enterprise’s sources of information (e.g.,
plant floor process control status and control information).
The data access sub-system 125 (see FIG. 3) comprises an
extensible set of data handlers 130 that process the infor
mation rendered by the information sources 110 in special
ized formats. The data handlers include, for example, history
and alarm handlers. Other data handlers are associated with
particular client data exchange protocol formats such as
OPC, SuiteLink, and DDE. Another identified handler pro
cesses XML. A custom block 140 is intended to depict the
extensibility of the set of data handlers 130 which supports
the addition of new (custom) configurations of data handlers
after initial installation. This is facilitated by an open archi
tecture and a generic interface definition between the data
handlers and a portal framework-client interface that renders
web pages to the requesting clients based upon correspond
ing information provided by particular data sources via
corresponding ones of the data handlers 130.

0047. The portal server 100 includes a number of sub
systems. Configuration of the portal server, including user
configuration described herein, is Supported by a configu
ration database 150. The configuration database includes a
data providers table that stores connection information link
ing data providers (external data sources) to the portal server
100 that in turn connects to a requesting client. The data
providers table is accessed by a “Data Source Configura
tion' web page presented to users of the portal server 100
(see FIGS. 3 and 4). In an enhanced embodiment of the
invention a second configuration interface enables users to
add new data handlers (for handling new data types) to the
portal server system. When a new data handler is added to
the portal server 100, a set of registration information (see
FIG. 13 discussed herein below) is stored within a data
handlers registry that is separate and distinct from the
data providers table maintained within the configuration
database 150.

0.048. In some cases client browsers need plug-in com
ponents to view portal information. For example, if process
graphics contain ActiveX components, then the ActiveX
components need to be downloaded. This task is accom
plished by a deployment manager 151. The deployment
manager 151 combines all files that must be downloaded,
registers the components on client machines, and initializes
them.

0049. A security administration sub-system 152 facili
tates limiting access to particular resources. The security
system 152 enforces access rights with regard to particular
resources accessed by identified users. Other potential sub
systems include multi-language Support and multi-user con
current user license management.
0050 Having described an exemplary manufacturing/
process control portal server system, attention is now
directed to the extensible/configurable aspects of the portal
server system. As mentioned previously herein above, the
portal server is extensible in that a user can configure a new
data provider (source of data) to add to an available set of

Apr. 24, 2008

sources listed in the configuration database 150. Turning
now to FIG. 3, a set of fields is identified that is included in
provider table records within the configuration database 150.
An ID field 154 stores a unique value identifying the record
within the table of provider records. The value stored in the
ID field 154 is system-generated at the time the record is
created. A type field 155 describes the type of data handler
(e.g., Alarm. History, Statistics, Real-Time Data) with which
this data source is associated. Thus, when a user selects a
particular information type (e.g., alarms), all data providers
that provide this data type are retrieved and listed for the
user's selection.

0051. An alias field 156 stores an alias name for this data
handler. For Internet connection and security, it is advisable
to hide original names through the use of alias names. A
server field 157 holds a name of a server that is acting as the
data provider. ADB field 158 holds the database name for
the data provider. A User field 159 and password field 160
hold the system username and password for the data pro
vider (if needed to access the server). The appropriate data
handler uses the name and password to login on to a
database server. Passwords are encrypted before they are
stored. A description field 161 holds the information regard
ing a data handler description. A contact field 162 holds
information regarding a system administrator description for
this provider. Finally, a default server field 163 stores a
default server identity. If a user has configured many data
providers, the user picks a particular server as a default
server for user queries.
0052 Having described exemplary fields for a data pro
vider record, attention is directed to FIG. 4 wherein an
exemplary graphical user interface (GUI) is provided for a
user to define a new data source (provider) to be stored as a
new table entry in the configuration database 150. The
graphical user interface includes a set of tabs 166 labeled
Alarm, InSQL, Admin, and Create New. The Alarm and
InSQL tabs correspond to particular data handlers that are
presently installed on the extensible portal server. When a
user selects either of the two data handler tabs, a user
interface is generated that includes all data sources that
provide the selected data type. The Admin tab provides
access to a variety of administration data including user
activity on the portal server.

0053 Finally, the Create New tab corresponds to the data
source extensibility feature of a portal server embodying the
present invention. When a user selects the Create New tab,
the user interface provides the template depicted in FIG. 4,
and the user enters data corresponding to the various fields
of the data provider record depicted in FIG.3 and explained
herein above. After completing the data source/provider
“form', the user selects the “submit” button to cause the
incorporation of the defined data source into the extensible
list of data providers. In an enhanced embodiment of the
present invention, the extensibility of the portal server 100
includes adding new data handlers (discussed further herein
below).
0054 Turning to FIG. 5, the data access subsystem 125

is depicted in further detail. FIG. 5 depicts the flow of
information, via a set of logically connected objects, from a
data exchange 182 to an RDB internal class object and then
to an HCI component 170 connected to a plant floor server
178 for a client session. The data access subsystem 125

US 2008/0097.622 A1

includes two COM components. A first COM component,
HCI (HTTP Client Interface) 170, sets up an HTTP connec
tion for sending and receiving raw data between the portal
server and a plant floor web server 178. The HCI 170
implements an Ioutpost interface 172 for receiving requests
from a CrdbSession object 174. The CrdbSession object 174
implements an IoutpostSessionListener interface 176.
0055. The HCI 170 is a lowest-layer component on the
data access subsystem 125 that is responsible for establish
ing connection to the server 178. The HCI 170 uses the http
Internet API to open a connection with the server 178, then
utilizes a post request to communicate with the fsoutpSt.dll,
an ASAPI extension component, on the server 178. The
fsoutpst.dll then routes the request to rdbhandler, a service
component on the server 178. The HCI 170 internally
creates a thread to send a heartbeat to the server 178 every
200 ms to keep the connection alive and to check for any
data available for sending from the server 178.
0056. A second COM component of the data access
subsystem 125, a runtime database (RDB) 180, marshals and
unmarshals data (allowing it to be passed to an intended
destination) and interacts with a data exchange 182. The data
exchange 182 performs the task of passing data between
connected client browser sessions and the RDB 180 via a
designated item tag established in the runtime database
component.

0057 When a user completes designating a source of
data, the data exchange (DE) component 182 first creates an
instance of CruntimeDB 184 through the IRuntimeDB inter
face 186. Then the DE component 182 calls an AddItem
method on CruntimeDB 184 to tell the RDB 180 to add a tag
to the data access subsystem for a new item. The Additem
method returns an IOItem interface 190 that allows the DE
component 182 to write data back to the web server 178 via
the RDB 180. In order for the DE 182 to receive data on the
tag, it must call the setItemListener method through the
IOItem interface 190 to hand the RDB 180 an IOItemIlis
tener interface 192 of the DE 182.

0.058 When the DE 182 adds a tag to the data access
subsystem 125, the RDB 180 creates and queues the mes
sages internally and does not send them to the web server
178 until a Run method is called through the IRuntimeDB
interface 186 to start a data-writing thread. Each instance of
the CrdbSession 174 has an interface pointer and a connec
tion point that allows it to send and receive to/from the HCI
170.

0059 Connections between the DE 182 and a selected
data source are associated with sessions. Thus, when the data
exchange 182 calls the AddItem method on CruntimeDB
184 to add a tag item, the RDB 180 internally creates the
CRdbSession class object base 174 on the Web server
address, userID, and password. The CrdbSession object 174
then creates a CIOConnection class object base 185 on
NodeName, App Name, Topic, and Connection Type. Then
the CIOConnection object 185 creates a CIOItem object
base 187 on a tag name. With this design, the CrdbSession
object 174 maps to a client session on the server, the
CIOConnection object 185 maps to a node and application,
and the CIOItem object 187 maps to a tag on the application.
Each session on the server can have multiple connections to
different nodes or applications, and each application can
have many tag items.

Apr. 24, 2008

0060 Having described the general connection architec
ture, the following describes data flow from a plant floor
data source web server 178 to the data exchange 182. The
HCI component 170 includes an internal thread that peri
odically sends out a heartbeat to the server to keep the
connection alive and to determine whether any data is
available. When the HCI 170 receives data from the server
178 it passes the data to the RDB 180 component through
the IoutpostSessionListener 176 interface (connection point)
of the CrdbSession object 174. The RDB 180 passes this
data to its internal class object CliRdbUnMarshallListener
191 to unmarshal the data. Once the data is unmarshalled, it
is passed to the (proper) CIOConnection object 185 and then
to the CIOItem object 187. The CIOItem object 187 then
calls the DE 182 via the IOItemIlistener interface 192 to
provide the new tag value to the DE 182.
0061. With regard to data flow from the DE 182 to the
plant floor, the DE 182 calls a method in the IOItem
interface 190 to write the data back to the server 178. The
data travels through an internal class to be marshaled and
then to CrdbSession 174. The CrdbSession sends the data
value to the HCI 170 via the Ioutpost interface 172.
0062 Having described the general architecture of the
connection framework within the data access component
125 of a portal server embodying the present invention,
attention is directed to FIGS. 6, 7, 8,9, and 10 that identify
each of the methods incorporated into the above-mentioned
interfaces associated with the data access component 125.
0063) The IruntimeDB interface 186 comprises the fol
lowing methods described herein below with reference to
FIG. 6. A call to AddItem 200 will add another data item to
the session causing the RDB 180 to track this item from a
particular data source associated with the session.
0064 HRESULT AddItem (in BSTR bstrOutpost, in
BSTRbstrNode, in BSTR bstrapp, in BSTRbstrTopic,
in BSTR bstrConnType, in BSTRbstrItem, out, retval
IDispatch **ppIOItem)
Parameters

0065
0.066)
0067
0068
0069
0070)
0071)
0072)
0073)
0074 The RemoveItem 202 method is called to remove
an item from a session. HRESULT Remove tem(in BSTR
bstrOutpost, in BSTRbstrNode, in BSTR bstrapp, in
BSTR bstrTopic, in BSTR bstrConnType, in BSTR
bstrItem)
0075 Parameters
0076 BstrOutpost destination server address

BstrOutpost destination server address
bstrUserName user name for authentication

bstrpassword password for authentication
bstrNode—nodename

bStr App—Application name
bStrTopic Topic name
bStrConnType-Connection type
bStrtem—Item name

pplOItem—Pointer to IOItem interface

0077 bstruserName user name for authentication

US 2008/0097.622 A1

0078
0079
0080)
0081)
0082
0083)
0084)
data.

HRESULT Start()
0085. The Stop 206 method is called to stop processing
data.

HRESULT Stop.()

0086) The RemoveAll Items 208 method is called to
remove all items associated with the session.

HRESULT RemoveAll Items()
0087 Turning now to FIG. 7 a set of methods associated
with the IOItem interface 190 are summarized by reference
to their parameters. First, a getName 210 method retrieves
the item name.

0088 HRESULT getName(out BSTR *bstrName)
0089. Return Value:
0090)
0091)
0092)
0093)
0094)
0.095 The remaining methods are largely self-explained
by their method names and associated parameter definitions.
GetItemValueType 214:
0096 HRESULT getitemValueType(out int *piValue)
0097. Return Value:
0098 PiValue item value type
GetIntValue 216:

0099 HRESULT getIntValue(out int'pValue)
0100 Return Value:

bstrpassword password for authentication
bstrNode—node name

bStr App—Application name
bStrTopic Topic name
bStrConnType-Connection type
bStrtem—Item name

The Start 204 method is called to start processing

BstrName—Item name

A getID 212 method is called to get an item ID.
HRESULT getId(out int *pId)
Return Value:

pId—Item ID

0101 pValue Item integer value
GetRealValue 218:

0102 HRESULT getRealValue(out float *pfvalue)
0103) Return Value:
0104 pfValue Item float value
GetString Value 220:
0105 HRESULT getString Value(out BSTR *.pbstr
Value)
0106 Return Value:
0107 pbstrValue Item string value

Apr. 24, 2008

IsValueReady 222:
0108 HRESULT is ValueReady(out BOOL *pbValue)
0109) Return Value:
0110 pbValue TRUE (data ready), FALSE(data not
ready)
SetItemListener 224:

0111 HRESULT
*new ItemListener)
0112 Return Value:

setItemListener(in IDispatch

0113 new ItemListener—Pointer to the listener interface
PokeString Value 226:
0114 HRESULT
*newValue)
0115 Return Value:

PokeString Value(in BSTR

0.116) NewValue—string value to poke
PokeIntValue 228:

0117 HRESULT PokelntValue(in int newValue)
0118 Return Value:
0119 newValue Integer value to poke
PokeFloatValue 230:

0120 HRESULT PokeFloatValue(in float newValue)
0121 Return Value:
0122)
0123. With reference to FIG. 8, the IOItemListener Inter
face 192 includes an ItemStatus 232 method call that returns
a status of an indicated item.

0.124 HRESULT itemStatus(in intItemId, in intItem
Status):
0125)
0126)
O127)
0128. An item Data 234 method is a call for an identified
data item.

0129 HRESULT item Data(in int ItemIdin VARI
ANT *pvarData):

0.130)
0131 pvarData—different type of data
0132). With reference to FIG. 9, the HCI component
interface Ioutpost 172 for the RDB 180 includes the follow
ing methods.
Open 240:

0.133 HRESULT Open(in int Scheme in BSTR
bstrusername in BSTRbstrPassword, in BSTR bstrOut
post, in BSTR bstrPortin BSTR bstrhandler, in int
iPollstate out SCODE *pError)
Close 242:

0.134 HRESULT Close(out SCODE *pError)

newValue float value to poke

Parameters:

ItemId Specify a specific item idii
ItemStatus—giving status of item

ItemId Specify a specific item id

US 2008/0097.622 A1

0135) Return Value:
0136 pError—(S OK successful)
Send 244:

0137 HRESULT Send(Lin VARLANT *pvarBuff, in
int iSize, in int iRequestID, in int iSenderlD.out
SCODE *pError)
0138)
0139)
0140
0141)
0142)
0143 Return Value:
0144 pError—(S OK successful)
GetSessionID 246:

0145 HRESULT GetSessionID(out int *piID, out
SCODE *pError)
0146) Return Value:
0147 pilD return the session ID
0148 pError—(S OK successful)
SetPollState 248:

0149 HRESULT SetPollState(in int
SCODE *pError)

0150 Parameters:
0151)
0152 Return Value:
0153 pError (S OK successful)
GetPollState 250:

0154 HRESULT GetPollState(Iout int *piState out
SCODE *pError)

O155)
0156)
O157)
0158 Turning to FIG. 10, the following methods are
implemented in the IoutpostSessionListener Interface 176 of
the CrdbSession object 174.
SessionCreated 260:

0159 HRESULT sessionCreated(in int sessionID)
0160 Parameters:
0161)
SessionCreateFail 262:

0162 HRESULT sessionCreateFail(in interrorCode)
0163 Parameters:
0164. ErrorCode
SessionClosed 264:

0165 HRESULT sessionClosed (in int sessionID)

Parameters:

pvarBuff pointer to data
iSize-length of data
iRequestD—a unique request ID

iSenderID—a unique sender ID

iState out

iState

Return Value:

piState

pError (S OK successful)

sessionID—created session ID

Apr. 24, 2008

0166 Parameters:
0167)
Receive 266:

0168 HRESULT receive (in int sessionID. in VARI
ANT *bufferin int bufferSize in int requestID in int
senderD)
0169
0170)
0171
0172
0173 requestiD request ID
0.174 senderID sender ID
SendFail 268:

0175 HRESULT sendFail (in int sessionIDin intrea
son, in int requestID, in int sender|D)
0176)
0177)
0178)
0179 requestiD request ID

0180 senderID sender ID
SendSucceed 270:

0181 HRESULT sendSucceed (in int sessionIDin int
requestID, in int senderD)
0182
0183)
0.184 requestID request ID

0185 senderID sender ID
SessionError 272:

0186 HRESULT sessionError (in int errorCodein
BSTR errorMessage)

sessionID—ID of the closed session

Parameters:

sessionID—session ID

buffer pointer to data
buffersize length of data

Parameters:

sessionID—ID of failed session

reason—reason for failing

Parameters:

sessionID—ID of Succeed session

0187. Having described the creation of connections and
interfaces between the DE 182 and a corresponding data
source, attention is now directed to FIG. 11 that depicts a
sequence of calls and actions between a client (portal server
HCI 170) and a plant server 178 over an established http
connection. Such a connection is created for data transmitted
between the HCI 170 and web server 178 and is maintained
for each windowset that displays on the client browsers.
During stage 300, the HCI 170 transmits a server informa
tion request that gets the size of each packet the server can
handle and the version of the protocol. The server informa
tion request follows the general format depicted below.

ServerInfoRequest:

TYPE HEADER+ SERVER REQUEST
TYPE HEADER
{

DWORD Length;
DWORD Type: (SERVER REQ =1)

US 2008/0097.622 A1

-continued

ServerInfoRequest:

DWORD RequestID; (O)
DWORD SendderID; (O)
DWORD ErrorCode:
DWORD Reserved 4:

SERVER REQUEST
{

char clientInfo128: (“OutpostConnobject “)

0188 In response, at step 302 the server 178 issues a
server information response. The server 178's response
follows the following format.

Server Info Reply:

TYPE HEADER SERVER RPLY
TYPE HEADER

DWORD Length;
DWORD Type: (SERVER REPLY=1)
DWORD RequestID; (O)
DWORD SendderlD; (O)
DWORD ErrorCode:
DWORD Reserved 4:

SERVER RPLY

DWORD MaxRequestSize:
DWORD MaxReply.Size:
DWORD Protocol Version;

0189 Thereafter, at step 304 the client HCI 170 issues a
create session request to the server 178 that follows the
following format.

CreateSessionRequest:

TYPE HEADER + CREATE SESSION REQUEST
TYPE HEADER

{
DWORD Length;
DWORD Type: (CREATE SESSION=2)
DWORD RequestID; (O)
DWORD SendderID; (O)
DWORD ErrorCode:
DWORD Reserved 4:

CREATE SESSION REQUEST
{

char DstHandlerName 128: (“WWRdbHandler)
DWORD Protocol Version: (1)

0190. In response, at step 306 the server 178 issues the
following reply.

CreateSessionReply:

TYPE HEADER-CREATE SESSION REPLY
TYPE HEADER

Apr. 24, 2008

-continued

CreateSessionReply:

{
DWORD Length;
DWORD Type: (CREATE SESSION RPLY-3)
DWORD RequestID; (O)
DWORD SendderID; (O)
DWORD ErrorCode:
DWORD Reserved 4:

CREATE SESSION REPLY
{
DWORD HandlerId;
DWORD SessionId;

0191). At step 308 the client HCI 170 issues a connect
request to the server 178 generally as follows.

WW HEADER INFO + WW CONNECT INFO
WW HEADER INFO
{

DWORD type; (WW CONNECT INFO TYPE=1)
DWORD len;

WW CONNECT INFO
{

DWORD ConnType:
DWORD ConnId;

Char Node 128: I client actually sends 128 bytes to server
regardless of the actual data size
Char App 128:
Char Topic 128:

0.192 Next, during step 310 the client HCI 170 registers
with the server 178. Registration establishes particular data
items for which the client HCI 170 wishes to receive updated
values.

WW HEADER INFO + WW REGISTER INFO
WW HEADER INFO
{

DWORD type; (WW REGISTER INFO TYPE=3)
DWORD len;

WW REGISTER INFO
{

DWORD ConnId;
char ItemI64:
DWORD ItemId;

}:

0193 Thereafter, at step 312 the client HCI 170 issues
periodic requests to the server 178 for updates with regard
to particular registered items. An example of Such a request
follows.

WW HEADER INFO + WW ADVISE INFO
WW HEADER INFO

US 2008/0097.622 A1

-continued

DWORD type; (WW ADVISE INFO TYPE=5)
DWORD len;

WW ADVISE INFO
{

DWORD ConnId;
DWORD ItemId;

WW HEADER INFO + WW REQUEST INFO
WW HEADER INFO
{

DWORD type; (WW REQUEST INFO TYPE=7)
DWORD len;

WW REQUEST INFO
{

DWORD ConnId;
DWORD ItemId;

}:
WW HEADER INFO + WW POKE INFO
WW HEADER INFO
{

DWORD type; (WW POKE INFO TYPE=8)
DWORD len;

WW POKE INFO
{

DWORD ConnId;
DWORD ItemId;
WORD PokeId;
WORD PointType:
PTVALUE PointValue:

}

0194 It is noted that the above call sequences are merely
exemplary. As those skilled in the art will readily appreciate,
there are many ways in which to carry out the setup and
update request sequence. Furthermore, the present example
represents a pull Strategy. However, in an alternative
embodiment, the server 178 pushes changed data to a client
HCI 170.

0.195. In a base system embodying the present invention,
users select from an extensible set of data sources, but are
confined to choose from a current set of data types. How
ever, in an enhanced version of the present invention, a
standardized data input interface incorporated into a toolkit
(providing a development template) enables third party data
providers to develop customized data handlers for new/
proprietary data types. These customized data handlers
render standardized data to the data exchange component
182. In this extensible embodiment of the present invention
wherein the concept of an open architecture is broadened to
include adding new data handlers, the data handlers are
stored on the portal server system and are registered within
a list of available handlers selectable by users. Thus, the
portal server 100's functionality is extendable in this case to
handle new data formats that were not incorporated within
an initial release of the portal server 100 system.

0196) Turning now to FIG. 12, in a particular exemplary
embodiment of the invention, a new portal server framework
is provided in the form of a framework web service handler
400 that exposes a set of methods allowing client applica
tions 410 to get a list of available data sources and/or data
types from a data provider registry 420 that stores a set of
entries corresponding to both external/third-party data pro
vider Web service handlers 425 (created from a development

Apr. 24, 2008

toolkit) and internally developed data provider Web service
handlers 427. Each of the data provider web service handlers
(425 and 427) in turn connects to data sources that are
associated with that data type. When a new handler or source
is added by means of a configuration interface similar to the
one depicted in FIG. 4, a new entry is added to the data
provider registry 420 corresponding to the new provider.
0197) It is noted that multiple web service handlers can
exist that implement a same data type. Thus, the selection of
a particular web service handler is driven by the data source
configured by the user in a manner Such as the one previ
ously disclosed in FIG. 4 and discussed herein above.
However, in view of the potentially large number of data
handlers Supported by the present architecture, a new inter
face arrangement, Such as a drop-down list of handlers, may
be desired to avoid the presence of too many tabs (as shown
in FIG. 4). A data source configuration database 430 supplies
a set of ASP pages 432 facilitating selection of a particular
data source/handler. Thereafter the clients 410 connect to a
particular data provider, via the framework web service
handler and retrieve a set of methods that are supported by
the selected provider. Third parties implement their own data
provider handlers as web services and register with the
framework web service handler 400 to enable the clients 410
to access the third-party data provider. The framework web
service handler 400 enforces a common set of interfaces that
each data provider web service handler (e.g., 425 and 427)
implements to plug data providers of a particular type into
the framework Web service handler 400.

0198 All client applications 410 communicate with data
sources/providers (e.g., data providers 435 and 437) through
the framework web service handler 400 on a set of standard
interfaces (methods) which in turn are conveyed over a
standard communication protocol. The well-known SOAP
(simple object access protocol) standard is an exemplary
choice for a standard communication protocol between
client 410 and the framework web service handler 400.
SOAP may also be used for the framework web service
handler 406 to data provider Web service handler commu
nications. To leverage SOAP technology, available
MICROSOFT COM components are used to parse SOAP
messages. On the server side an ISAPI dll is implemented on
the framework web service handler 400 to handle all the
SOAP requests from the clients 410, to process and dispatch
requests to the data provider web services. The session item
and dispatcher classes implemented within the framework
web service handler 400, and the connection and command
classes of clients 410, are discussed further herein below.

0199. In an alternative embodiment of the invention
discussed hereinabove with reference to FIG. 12, data
sources and their associated handlers are identified within
the data provider registry 420 according to an XML schema
summarized in FIG. 13. An ID field 450 stores a unique
number for each data provider/handler. This is a system
generated number that is assigned when the data provider/
handler record is created and stored within the data provider
registry 420. A name field 452 holds the name of the data
provider and is designated during configuration by the
submitter of the new data provider record (e.g., SQL Pro
vider, Alarm Provider). A description field 454 holds the
description of the data provider and is also designated by the
author of the data provider record. A WSDL field 456 holds
a value designating a location of the Web Service Definition

US 2008/0097.622 A1

Language file that describes the interface/methods for the
data handler associated with this particular data source. An
Extended WSDL field 458 holds supporting information for
the WSDL referenced in the WSDL field 456. A connection
string field 460 holds particular information to facilitate
making a connection to the data handler through which the
identified data provider furnishes information. The connec
tion string field 460 holds, for example, initial parameters,
username, password, etc.

0200 Having described exemplary fields for a data pro
vider record, attention is directed to FIGS. 14 and 15
wherein exemplary GUI displays are provided for a data
provider to register with the framework web service handler
400. When a data provider is implemented (potentially by a
third party), steps are taken to expose the data provider to the
clients 410 via the framework web service handler 400. This
is accomplished through registration of the data provider
with the framework web service handler 400. Basically, the
framework web service handler 400 provides a page Sup
porting registration to populate the fields of the schema
summarized in FIG. 13. By way of example, the “new
provider” enters the name of the data provider, a description
identifying the type of provider, a URL to the provider Web
Service Description Language, connection string, etc. Turn
ing to FIG. 15, one of the primary differences between the
enhanced system registration process and the one set forth
above with reference to FIGS. 3 and 4 is the ability of a
provider to designate a new data type handler during the data
provider registration. This is accomplished by selecting the
“My Provider” option on the opening data registration GUI
display set forth in FIG. 15. Once registered with the
framework web service handler 400 (the portal server), the
data provider information is furnished to clients 410 when
the clients invoke a Browse)S method which retrieves and
displays data sources.

0201 Turning to FIGS. 16 and 17, a set of method calls
are incorporated into a connection object 500 and command
object 520. In an embodiment of the invention, the browser
clients 410 provide COM wrappers that abstract the appli
cations from SOAP implementation. The wrappers expose
simple interfaces allowing client applications 410 to com
municate with the framework web service handler 400 and
data providers via the data provider web service handlers.
The connection object 500 and command object 520 are
such wrappers. The method calls identified for each are
discussed further herein below with reference to the browser
client interface supported by the framework web service
handler 400.

0202 Turning now to FIG. 18, a set of methods are
identified that are supported by the framework web service
handler 400. AbrowselDS method 550 is called by the clients
410 requesting enumeration of the data sources presently
supported by the framework web service handler 400. A list
is returned containing a set of available provider informa
tion. The set of provider information includes the content of
the provider records described herein above with reference
to FIG. 13. A connectDS method 552 is called by the clients
410 and returns a URL for a file (wwdbintfwsdl) that
describes all methods of the command object 520 that the
data provider supports. A close DS method 554 is called by
the clients 410 to close a connection between a calling client
and the framework handler 400.

Apr. 24, 2008

0203 Turning to FIG. 19, a sequence diagram depicts an
exemplary set of steps executed between the clients 410 and
the framework web service handler 400 during the course of
a user session. At Step 600 the client application issues a
“CoCreate” request to instantiate the connection object 500.
Thereafter, at step 602 the client application issues an
initialize command to initialize the connection object 500. In
particular, the client object creates and initializes the
MICROSOFT SOAP object to handle SOAP requests. At
step 604 the client issues a GetDataProviderList command
to the connection object 500. The connection object during
step 605 invokes the browselDS method 550 on the wwser
vicehandler interface of the framework web service handler
400. The framework handler 400 returns for display on the
client applications user interface a list of available data
providers.

0204 After a user has selected a particular one of the
available data providers, during step 606 the client applica
tion issues a ConnectToDataSource command to the con
nection object 500. Next, during step 607 the connection
object 500 issues a connect request to the ww.servicehandler
interface. The connection request includes parameters iden
tifying the data source to which the client application wishes
to establish a connection.

0205 After establishing a connection, the client applica
tion issues a CoCreate command during step 608 to instan
tiate the command object 520. Thereafter, at step 610 the
client application issues a cSelect call to the command
object 520 to retrieve a record set from the previously
selected data provider (source). In the exemplary embodi
ment the recipient of the request is a SQL provider.
0206. At step 612, the command object 520 invokes the
get DataSrc WSDL method on the connection object 500 to
obtain the language definitions for communicating with the
selected data source. Thereafter, at step 614 the command
object 520 invokes the get ConnectionID method on the
connection object (which in turn calls ConnectDS) to obtain
the connection ID used to fill an ID parameter when making
calls to the framework web service handler 400. Thereafter,
during step 615 the command object 520 issues requests on
behalf of the client application on an established connection
to the selected data provider.
0207. After completing a session, at step 616 the client
application issues a CloseGonnection command to the con
nection object 500. The above sequence of steps is intended
to provide an exemplary use of the methods supported by the
connection object 500 and command object 520. Those
skilled in the art will readily appreciate that both the
Supported methods and the sequence of steps disclosed in
FIGS. 16, 17, 18, and 19 are exemplary and that a variety of
alternatives are contemplated in other embodiments of an
extensible manufacturing/process control portal server sys
tem incorporating the present invention.
0208 Having described a client application-side connec
tion architecture in accordance with an alternative version of
a manufacturing/process control portal server embodying
the present invention, attention is now directed to the
data-provider interface of the portal server architecture.
Turning to FIG. 20, a set of interfaces are identified with
associated methods supported by the interfaces. The frame
work web service handler 400, in an embodiment of the
present invention, is an ISAPI dynamically linked library

US 2008/0097.622 A1

that intercepts and processes all requests from the client 410.
For each request intercepted by a ccDataMarshaller class
620, a dispatcher class 622 and a session Item class 624
implemented by the framework handler 400 process and
then dispatch the request to a particular data provider
handler.

0209 FIG. 20 depicts an exemplary relationship between
these three object classes within the framework web service
handler 400. The framework web service handler 400
includes a pool of worker threads to handle requests from
clients. The CCDataMarshaller class 620 takes a message
from a client and uses a well-known MICROSOFT SOAP
READER component to parse the message and call the
appropriate method in the Dispatcher class 622. Each con
nection to a data source will have a SessionItem class 624 to
process and handle calls to a particular data provider. The
SessionItem class 624 in turn calls an interface to the
designated data provider.
0210 FIG. 21 identifies a set of methods implemented
within a data provider handler implementing the present
invention. This interface definition represents an exemplary
set of methods that are implemented upon data provider
handlers to communicate with the framework web service
handler 400 and respond to client requests passed by the
framework web service handler 400 to the provider handlers.
A data provider handler exposes the pSelect method 632
only if it is able to handle SQL statements. Otherwise the
data provider handler exposes the pGpenRowSet method
634 which works with a single table at a time. The remaining
methods are generally needed to implement any type of
handler. The interface method specifications are provided
herein below.

PConnect 630 is the first call the framework initiates to
establish a connection with the provider.
pConnect(in BSTR UserID, in BSTR Password, in
BSTR

ConfigParmxml, out, retval int ConnID)
0211 Parameters:
0212. UserID User ID that provider needed for authen
tication

0213 Password Password needed for authentication
0214 ConfigParmxml Connection string. Provider will
provide a mechanism to obtain from user
0215 ConnID. This ID will be used for all subsequent
calls pertaining to this connection
Pselect 632 is called by the framework 400 to retrieve a
record set. A provider should only expose this method if
Supports SQL commands.
pSelect(in int ConnID, in BSTR Statement, in int
MaxRecord, out, retval BSTR *xmlRowSet)
0216) Parameters:
0217 ConnID Specify which connection to perform
this operation

0218 Statement SQL statement
0219 MaxRecord—0: framework only wants the
Schema back; -1: wants to get all rows; >0: wants
certain number of records

Apr. 24, 2008

0220 XmlFowSet returned set of records in xml
format

pOpenRowSet 634 is called by the framework to retrieve
a record set. A provider exposes this method if it
Supports working with a single table.

pOpenRowSet(in int ConnID, in BSTR XmlCondition,
in int MaxRecord, outretval BSTR *.xmlRowSet)

0221) Parameters:
0222 ConnID—specify which connection
0223 xmlCondition—condition
return data in Xml format

specifies how to

0224 MaxRecord—0: framework only wants the
Schema back; -1: wants to get all rows; >0: wants
certain number of record

0225 XmlFowSet returned set of records in xml
format

PClose 636 closes a current row set.

pClose(in int ConnD)
PDelete 638 deletes a record in a current record set.

pDelete(in int ConnID, in BSTR XmlCondition)
0226 Parameters:
0227 ConnID Specify which connection
0228 XmlCondition Specify how to delete a record
in current record set. Data in Xml format.

PInsert 640 inserts a record into a currently open record
Set.

pInsert(in int ConnD, in BSTR XmlCondition)
0229 Parameters:
0230 ConnID Specify which connection
0231 XmlCondition Specify how to update a record
in Xml format

PNextRecordSet 642 retrieves a next set of records.

pNextRecordSet(in int ConnID, in int MaxRecord,
outretval BSTR *.xmlRowSet)

0232 Parameters:
0233 ConnID Specify which connection
0234 MaxRecord maximum number of records
framework will accept

0235 XmlFowSet returned set of records in xml
format

PUpdate 644 updates a record in a currently open record
Set.

pUpdate(in int ConnID, in BSTR XmlCondition)
0236 Parameters:
0237 ConnID Specify which connection
0238 XmlCondition Specify how to update a record
in Xml format.

PPreviousRecordSet 646 retrieves a previous record set.

US 2008/0097.622 A1

pPreviousRecordSet(in int ConnID, in int MaxRecord,
out, retval BSTR *.xmlRowSet)

0239) Parameters:
0240 ConnID Specify which connection
0241 MaxRecord maximum number of records
framework will accept.

0242 XmlFowSet returned set of records in xml
format

PFirstRecordSet 648 retrieves the first record set.

pFirstRecordSet(in int ConnID, in int MaxRecord,
out, retval BSTR *.xmlRowSetl)

0243 Parameters:
0244 ConnID Specify which connection
0245) MaxRecord maximum number of records
framework will accept

0246 XmlFowSet returned set of records in xml
format

PLaStRecordSet 650 retrieves the last record set.

plastRecordSet(in int ConnID, in int MaxRecord,
out, retval BSTR *.xmlRowSetl)

0247 Parameters:
0248 ConnD-Specify which connection
0249 MaxRecord maximum number of records
framework will accept

0250) XmlFowSet returned set of records in xml
format

PDisconnect 652 releases a connection.

0251 pisconnect(in int ConnID)
0252) In the above set of exemplary interface methods, it

is noted that the pSelect, pNextRecordSet, pCOpenRowSet,
pFirstRecordSet, pastRecordSet, and pPreviousRecordSet
methods are expected to return a rowset in XML format. The
following represents an exemplary XML schema for return
ing XML rowset data.

<xml Xmlins:s="ww-dataprovider-schema
Xmlins:dt="ww-datatype-definition
xmlins:rs="urn:Schemas-wonderware-com:rowset
xmlins:Z="#RowsetSchemas

<s:Schema id="RowsetSchemas
<s:ElementType name="row content="eltOnly's

<s:AttributeType name="AppD rs:number="1">
<s:datatype dt:type="int dt:maxLength="4">

<?s:AttributeTypes
<s:AttributeType name="Titlers:number="2">

<s:datatype dt:type-“string dt:maxLength="40 is
<?s:AttributeTypes

</s: ElementTypes
<is:Schemas
<rs:data>

<z:row App|D="1 Title="Charting/>
<z:row App|D='''2' Title=“Reporting is
<z:row App|D="3". Title=''Data Grid"/>

</rs:data>
</xml>

12
Apr. 24, 2008

0253) The returned XML has two sections. The top
section is a schema describing how the data is to be returned.
Each attribute element represents a column and describes the
column name and number. The sub-element describes the
data type and the maximum length of the field. The bottom
section is the actual data in the format defined by the
schema. The row element has attributes specifying the name
of the column, column number, data type, and the maximum
length of the data field. Schema only need be returned in the
pSelect or pCOpenRowSet call. Subsequent calls such as
pNextRecordSet only need to return the data. When there is
no more data to return, the provider returns the following
Xml message.

0254 Turning now to FIG. 22, an exemplary SQL pro
vider handler class structure is illustratively depicted. In an
embodiment of the present invention a SQL Provider han
dler uses ADO to access a database. The SQL provider
handler supports the pSelect and most of the above identified
provider interface methods. However the SQL provider does
not support the pGpenRowSet method. The SQL provider
handler has an ASP page as its service handler that calls into
a COM component. FIG.22 depicts the relationship between
classes in the COM component.
0255 Illustrative embodiments of the present invention
and certain variations thereof have been provided in the
Figures and accompanying written description. The present
invention is not intended to be limited to these embodiments.
Rather the present invention is intended to cover the dis
closed embodiments as well as others falling within the
scope and spirit of the invention to the fullest extent per
mitted in view of this disclosure and the inventions defined
by the claims appended herein below.

1-11. (canceled)
12. An industrial control system, comprising:
a plurality of components cooperating to provide indus

trial process control, the components including a pro
cess control component; and

a networked server including an interface that facilitates
bi-directional communications between clients and at
least one web service associated with at least one of the
plurality of components.

13. The system of claim 12, wherein the at least one web
service is associated with a data provider for one of the
plurality of components.

14. The system of claim 12, wherein the interface is an
open standards Web Services Description Language
(WSDL) that describes how to interact with the web service
in order to provide clients access to at least one of the
plurality of components of the industrial control system.

15. The system of claim 14, wherein the WSDL describes
an XML format for control system requests and responses.

16. The system of claim 12, further comprising a Simple
Object Access Protocol (SOAP) to communicate with the
interface, at least one of the plurality of components, and the
web service.

US 2008/0097.622 A1

17. The system of claim 12, further comprising a discov
ery component to facilitate locating data sources associated
with the plurality of components.

18. The system of claim 12, wherein the web service is
operated from the networked server.

19. The system of claim 12, wherein the networked server
is a portal server.

20. A method for providing access to information, in a
variety of forms, relating to the operation of an industrial
controller environment, the method comprising the steps of

configuring a web service for providing access to at least
one component in an industrial control process;

defining an interface for communicating with the web
service;

employing an XML-based protocol for communicating
with the interface; and

Apr. 24, 2008

interacting with the at least one component across a
network to manage the industrial control process via
the interface and the XML-based protocol.

21. The method of claim 20, further comprising config
uring the interface via a Web Service Description Language
(WSDL) and employing Simple Object Access Protocol
(SOAP) as the XML-based protocol.

22. The method of claim 20, wherein the web service is
associated with a portal server.

23. The method of claim 20, wherein the web service is
associated with a data handler for providing data access to
the at least one component in the industrial control process.

24. The method of claim 23, wherein the data access is
bidirectional.

