
(19) United States
US 2002O15697OA1

(12) Patent Application Publication (10) Pub. No.: US 2002/0156970 A1
STEWART (43) Pub. Date: Oct. 24, 2002

(54) HARDWARE ACCELERATION OF BOOT-UP (52) U.S. C. . 711/113; 711/133; 711/144;
UTILIZING ANON-VOLATILE DISK CACHE 713/2

(76) Inventor: DAVID C. STEWART, BEAVERTON,
OR (US)

Correspondence Address:
SCHWEGMAN, LUNDBERG, WOESSNER &
KLUTH, PA.
P.O. BOX 2938
MINNEAPOLIS, MN 55402 (US)

(*) Notice: This is a publication of a continued pros
ecution application (CPA) filed under 37
CFR 1.53(d).

(21) Appl. No.: 09/417,000

(22) Filed: Oct. 13, 1999

Publication Classification

(51) Int. Cl. G06F 9/24; G06F 12/00

26 50 22

FILTER DISK
OS DRIVER CONTROLLER

(57) ABSTRACT

A computer System includes a nonvolatile memory posi
tioned between a disk controller and a disk drive Storing a
boot program, in a computer System. Upon an initial boot
Sequence, the boot program is loaded into a cache in the
nonvolatile memory. Subsequent boot Sequences retrieve the
boot program from the cache. Cache validity is maintained
by monitoring cache misses, and/or by monitoring writes to
the disk Such that a write to a Sector held in the cache results

in the cache line for that Sector being invalidated until Such
time as the cache is updated. A filter driver is provided to
monitor writes to the disk and determine if a cache line is
invalidated.

24

BOOT DISK

CACHE
CONTROLLER

re-emerher

CACHE MAP-N-52
14

RAM
MEMORY

Patent Application Publication Oct. 24, 2002 Sheet 1 of 5 US 2002/0156970 A1

o S st

:

N

&

S

s

Patent Application Publication Oct. 24, 2002 Sheet 2 of 5 US 2002/0156970 A1

MARK CACHE LINES NVALID

32

LOAD CACHE FROM SECTORS READ DURING
BOOT SEQUENCE

FIG. 2

FIG. 3

S CACHE
DATA VALID?

34

USE DATA IN
CACHE FOR BOOT

USE BOOT
PROGRAM ON DISK

Patent Application Publication Oct. 24, 2002 Sheet 3 of 5 US 2002/0156970 A1

a J DATA WRITTEN
TO BOOT SECTOR

p

3 7 YES

MARK CACHE
LINES INVALID

8 3

REPLACE INVALID DATA
WITH CURRENT DATA

4-O

DETECT CACHE MISSES

41

AGE CACHE TO
NVALIDATE LINES OF

CACHE

FIG. 5

Patent Application Publication Oct. 24, 2002 Sheet 4 of 5 US 2002/0156970 A1

N

&
i

(/)
O

S

Patent Application Publication Oct. 24, 2002 Sheet 5 of 5 US 2002/0156970 A1

- DISK SECTOR
CHANGED

p

61 YES

NVALIDATE
CACHE LINE

CORRECT INVALID
LINE DURING NEXT
BOOT SEQUENCE

REFRESH CACHE
DURING WRITE
OPERATION TO

SECTOR

FIG. 7

US 2002/0156970 A1

HARDWARE ACCELERATION OF BOOT-UP
UTILIZING ANON-VOLATILE DISK CACHE

TECHNICAL FIELD OF THE INVENTION

0001. The present invention pertains generally to com
puters, and more particularly to method and apparatus for
Speeding the boot-up process in computers.

BACKGROUND OF THE INVENTION

0002 Booting up a computer, and in particular an IBM
compatible personal computer (PC), often takes longer than
desired. For example, it is not atypical for a PC using the
Windows(R 98 operating system to require one minute or
more to boot up. This delay can be untenable when the PC
needs to be activated on an expedited basis. For instance, if
the user needs a phone number quickly, it can be more
expeditious to look the number up in a telephone directory
as opposed to a PC if the PC requires booting. Thus, unless
PC's can be booted more quickly than as is currently the
case, their use in applications that require fast initialization
is limited. Thus, there is a need for a PC with a shorter boot
up time than is currently available.

SUMMARY OF THE INVENTION

0003. The present invention provides method and appa
ratus for Speeding the boot-up of a computer. According to
one embodiment of the invention, a boot program Stored on
a boot disk is cached in a nonvolatile memory, and retrieved
by the System from the cache during the boot sequence
instead of from the boot disk, thereby increasing the Speed
of access to the boot program. This and various other
embodiments of the invention are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

0004 FIG. 1 illustrates a first embodiment of the appa
ratus of the invention.

0005 FIGS. 2-5 illustrate various alternate embodiments
of the method of using the cache according to the present
invention.

0006 FIG. 6 illustrates an alternate embodiment of the
apparatus of the invention.
0007 FIG. 7 illustrates yet another embodiment of the
method of the invention.

DETAILED DESCRIPTION OF THE
INVENTION

0008. In the following detailed description of the inven
tion reference is made to the accompanying drawings which
form a part hereof, and in which is shown, by way of
illustration, Specific embodiments in which the invention
may be practiced. In the drawings, like numerals describe
Substantially similar components throughout the Several
views. These embodiments are described in Sufficient detail
to enable those skilled in the art to practice the invention.
Other embodiments may be utilized and structural, logical,
and electrical changes may be made without departing from
the Scope of the present invention.
0009 Referring now to FIG. 1, there is shown a first
embodiment of the invention. A computer system 10
includes a Central Processing Unit (CPU) 12, a boot disk 14

Oct. 24, 2002

Storing a boot program 16 used by the computer System 10
to boot, and a nonvolatile random acceSS memory 18 used as
a disk cache. Memory 18 receives all or a portion of the boot
program 16 from the boot disk 14 and stores it for access by
the CPU 12 so that the computer system 10 can boot in
whole or in part from the disk cache in memory 18. A data
bus 20 couples the CPU 12 to a controller 22 that controls
the boot disk 14, and a cache controller 24 is coupled
between the bus 20 and the boot disk 14, and wherein the
memory 18 is coupled to the cache controller 22. In one
example embodiment, the computer System 10 may com
prise an IBM-compatible computer with a Pentium class
microprocessor and an IDE controller for controller 22, or an
Apple Macintosh computer with a Motorola microprocessor.
The invention, however, is not limited in this respect, and
other types of computer Systems and processors can be used.
Nonvolatile memory 18 may be a FLASH memory, or any
Suitable form of nonvolatile memory, and, preferably in at
least Some embodiments of the invention, random access
memory.

0010. In operation, the computer system 10 operates
under the control of an operating System 26, which includes
as a portion thereof boot program 16. Boot program 16 has
a boot-time disk footprint of a ascertainable size. The
memory 18 is sized to be Substantially as large as the
boot-time disk footprint, So that the boot program 16 can be
cached in the memory 18. However, the memory 18 could
be Smaller than the footprint, and Store only a portion of the
entire boot program 16. Alternatively, memory 18 could
exceed the Size of program 16. All or a portion of boot
program 16 can therefore be stored in memory 18, from
where it can be more quickly retrieved, as opposed to being
retrieved from the boot disk 14, during boot-up of the system
10. If only a portion of the boot program 16 is stored in
memory 18, that portion may be retrieved therefrom, with
the remaining portion retrieved from the boot disk 14.

0011. According to another example embodiment, the
boot program cache in memory 18 is formed of lines, the
boot program 16 is Stored in linear Sectors on the boot disk
14, and the lines of the cache are mapped to the linear Sectors
of the boot disk 14 read in a boot Sequence upon boot up of
system 10. Referring to FIGS. 2-5, there is shown an
example method for using the boot program cache. Initially,
the cache lines are marked invalid (30). The cache is loaded
with data from sectors of disk 14 read during an initial boot
sequence (32). As shown in FIG. 3, during boots of the
System 10 Subsequent to the initial boot Sequence, data in the
cache is used (34) instead of the corresponding Sector data
from the boot disk, if the sector data in the cache is valid
(33). Otherwise, the boot program or the disk is used (35).
According to another example variant of this embodiment
shown in FIG. 4, if data is written to a sector read during the
initial boot Sequence (36), the cache lines corresponding to
the sector are marked invalid (37). The invalid cache line can
be subsequently replaced with new data from the boot disk
and the cache line marked valid (38). According to yet
another example embodiment of the method of the present
invention, illustrated in FIG. 5, cache coherency is main
tained by detecting cache misses (40), and if a miss is
detected, aging the cache, to invalidate lines from the cache
(41). According to one approach, the cache is aged in a
first-in first-out (FIFO) manner.

US 2002/0156970 A1

0012. According to yet another embodiment of the inven
tion diagrammatically illustrated in FIG. 6, a filter driver 50
is positioned between the operating System 26 and the disk
controller 22, and the filter driver 50 has access to all
input-output (I/O) requests to the boot disk 14, and to a
cache map 52 in cache controller 24. Filter driver 50 can
detect writes to the disk 14 which are in the same Sector as
a sector in the cache. In one embodiment, filter driver 50 can
monitor all I/O operations without Significantly slowing
performance of the System.
0013. According to a method of operation using the
embodiment of FIG. 6, illustrated in FIG. 7, if a disk sector
cached in the cache is changed (60), as detected by filter
driver 50, the corresponding cache line is invalidated (61).
The invalidated line can be refreshed with the correct
contents during the next boot Sequence (62). In one embodi
ment, the cache is not updated by the filter driver so that
performance is not degraded. However, according to another
embodiment, the cache is refreshed during the write opera
tion to the corresponding Sector in the disk drive (64) using
a cache write-back queue.
0.014 Thus, as described above, there is provided method
and apparatus for Speeding the boot-up of a computer. The
invention is applicable to all manner of computer Systems,
including appliance-like, Sealed case Systems, where the
loadable files and configuration are Seldom changed.

In the claims:
1. A computer System comprising a CPU, a boot disk

Storing a boot program used by the computer System to boot,
and a nonvolatile memory disk cache receiving all or a
portion of the boot program from the boot disk and Storing
it for access by the CPU so that the computer system can
boot in whole or in part from the disk cache.

2. A System according to claim 1 further including a data
bus coupled to the CPU and a cache controller coupled
between the bus and the boot disk, and wherein the disk
cache is coupled to the cache controller.

3. A System according to claim 1 wherein the computer
System operates under the control of an operating System,
and wherein the operating System has a boot-time disk
footprint Size and the cache is sized Substantially as large as
the size of the footprint.

4. A System according to claim 1 further including an IDE
bus for controlling the boot disk.

5. A System according to claim 4 wherein the cache has
lines, and wherein the lines of the cache are mapped to linear
SectorS read in a boot Sequence.

6. A System according to claim 5 wherein the cache lines
are initially marked invalid.

7. A System according to claim 6 wherein the cache is
loaded with data from Sectors read during an initial boot
Sequence.

8. A System according to claim 6 wherein during boots of
the System Subsequent to the initial boot Sequence Sector
data in the cache is used instead of the corresponding Sector
data from the boot disk if the sector data in the cache is valid.

9. A system according to claim 8 wherein if data is written
to a Sector read during the initial boot Sequence, the cache
lines corresponding to the Sector is marked invalid.

10. A system according to claim 9 wherein the invalid
cache line is replaced with new data from the boot disk and
the cache line marked valid.

Oct. 24, 2002

11. A System according to claim 8, wherein cache coher
ency is maintained by detecting cache misses, and if a miss
is detected, the cache is aged, to invalidate lines from the
cache.

12. A System according to claim 11 wherein the cache is
aged in a first-in first-out (FIFO) manner.

13. A System according to claim 8 further including a filter
driver between the operating System and the disk controller,
and wherein the filter driver has access to all input-output
(I/O) requests to the boot disk, and wherein the filter driver
has access to a cache map and can detect writes to the disk
which are in the Same Sector as a Sector in the cache.

14. A system according to claim 13 further wherein if such
a Sector is changed, the corresponding cache line is invali
dated, and refreshed with the correct contents during the
next boot Sequence.

15. A System according to claim 13 wherein the cache is
not updated by the filter driver.

16. A System according to claim 13 wherein the cache is
refreshed during the write operation to the corresponding
Sector in the disk drive.

17. A method comprising Storing a boot program used by
a computer System in a nonvolatile memory disk cache
which receives all or a portion of the boot program from a
System boot disk, the boot program Stored in the cache for
access by the CPU so that the computer system can boot in
whole or in part from the disk cache.

18. A method according to claim 17 further wherein a data
bus couples the CPU to a cache controller coupled between
the bus and the boot disk, and wherein the disk cache is
coupled to the cache controller.

19. A method according to claim 17 wherein the computer
System operates under the control of an operating System,
and wherein the operating System has a boot-time disk
footprint Size and the cache is sized Substantially as large as
the size of the footprint.

20. A method according to claim 17 further wherein an
IDE bus is used to control the boot disk.

21. A method according to claim 20 wherein the cache is
organized in lines, and wherein the lines of the cache are
mapped to linear SectorS read in a boot Sequence.

22. A method according to claim 21 wherein the cache
lines are initially marked invalid.

23. A method according to claim 22 wherein the cache is
loaded with data from Sectors read during an initial boot
Sequence.

24. A method according to claim 22 wherein during boots
of the System Subsequent to the initial boot Sequence Sector
data in the cache is used instead of the corresponding Sector
data from the boot disk if the sector data in the cache is valid.

25. A method according to claim 24 wherein if data is
written to a Sector read during the initial boot Sequence, the
cache lines corresponding to the Sector is marked invalid.

26. A method according to claim 25 wherein the invalid
cache line is replaced with new data from the boot disk and
the cache line marked valid.

27. A method according to claim 24, wherein cache
coherency is maintained by detecting cache misses, and if a
miss is detected, the cache is aged, to invalidate lines from
the cache.

28. A method according to claim 27 wherein the cache is
aged in a first-in first-out (FIFO) manner.

29. A method according to claim 24 further wherein a
filter driver is positioned between the operating System and

US 2002/0156970 A1

the disk controller, and wherein the filter driver has acceSS
to all input-output (I/O) requests to the boot disk, and
wherein the filter driver has access to a cache map and can
detect writes to the disk which are in the same Sector as a
Sector in the cache.

30. A method according to claim 29 further wherein if
Such a Sector is changed, the corresponding cache line is

Oct. 24, 2002

invalidated, and refreshed with the correct contents during
the next boot Sequence.

31. A method according to claim 29 wherein the cache is
not updated by the filter driver.

32. A method according to claim 29 wherein the cache is
refreshed during the write operation to the corresponding
Sector in the disk drive.

k k k k k

