一种基于磁电阻技术检测磁性图形表面磁场的磁头

本发明公开了一种基于磁电阻技术检测磁性图形表面磁场的磁头，包括支架和设置于支架上的PCB板，还包括水平磁致结构，其用于产生一个平行于磁头表面的磁场。和基于磁电阻MR元件的磁头检测部件，其用于检测磁性图形表面磁场的垂直分量的分布情况。本发明可以有效检测软磁或者硬磁性材料所组成的磁性图形。通过水平磁致结构把软磁性材料在面内磁化，在磁性图形表面产生特定的漏磁场。使用基于MR元件的惠斯通电桥式结构连接有效检测这种特定漏磁场的垂直分量，从而有效检测软磁材料或者硬磁材料组成的磁性图形的特征。
1. 一种基于磁电阻技术检测磁性图形表面磁场的磁头，包括支架和设置于支架上的
PCB 板，其特征在于，还包括水平励磁结构，其用于产生一个平行于磁头表面的磁场
和基于磁电阻 MR 元件的磁场检测部件，其用于检测磁性图形表面磁场的垂直分量的
分布情况；

所述水平励磁结构为前后两块水平磁化的永磁体沿着磁化方向放置在所述磁场检测
部件的前后位置；

或所述水平励磁结构为前后两块垂直磁化的永磁体沿着磁化方向的垂直方向反向放
置在所述磁场检测部件的前后的对称位置；

或所述水平励磁结构为一块水平磁化的永磁体放置在所述磁场检测部件的前端 / 后
端，另一块软磁材料块体放置在所述磁场检测部件的后端 / 前端位置。

2. 如权利要求 1 所述的一种基于磁电阻技术检测磁性图形表面磁场的磁头，其特征在
于，所述磁场检测部件为由多个磁电阻 MR 元件组成的惠斯通桥式结构。

3. 如权利要求 2 所述的一种基于磁电阻技术检测磁性图形表面磁场的磁头，其特征在
于，所述惠斯通桥式结构为惠斯通全桥结构或惠斯通半桥结构。

4. 如权利要求 3 所述的一种基于磁电阻技术检测磁性图形表面磁场的磁头，其特征在
于，所述惠斯通桥式结构为惠斯通全桥结构时，其中的两个磁电阻 MR 元件靠近磁头
的表面，另外两个磁电阻 MR 元件远离磁头的表面；所述惠斯通桥式结构为惠斯通半桥
结构时，其中的一个磁电阻 MR 元件靠近磁头的表面，另外一个磁电阻 MR 元件远离磁头
的表面。

5. 如权利要求 4 所述的一种基于磁电阻技术检测磁性图形表面磁场的磁头，其特征在
于，所述磁电阻 MR 元件的敏感方向一致垂直于磁头的表面。

6. 如权利要求 5 所述的一种基于磁电阻技术检测磁性图形表面磁场的磁头，其特征在
于，所述磁电阻 MR 元件至少为各向异性磁电阻 AMR 元件或巨磁阻 GMR 元件或隧穿磁
电阻 TMR 元件中的一种。
说明书

一种基于磁电阻技术检测磁性图形表面磁场的磁头

技术领域

【0001】 本发明涉及一种基于磁电阻技术检测磁性图形表面磁场的磁头。

背景技术

【0002】 针对磁性防伪领域，现有市场上主要使用音频磁头技术、磁阻磁头技术和巨磁电阻效应技术；在票据防伪领域，主要为音频磁头技术。

【0003】 音频磁头技术：该技术使用铁磁合金等软磁材料，制作成具有一定缝隙的环状结构，环状结构上缠绕线圈，当该环状结构的气隙快速通过磁性图形的表面时，基于法拉第电磁感应定律，线圈内部产生感应电流。通过检测感应电流的变化得到磁性图形表面磁场的变化。该技术的主要缺点在于：1. 适应于检测硬磁材料的表面漏磁场，当检测软磁材料时需要加入外部激励磁场，但是该外部激励磁场很大程度上影响了该磁头的灵敏度；2. 制作多路磁头的情况下，每一路磁头的灵敏度的一致性非常难以保证，降低了产品的成品率，增加了产品的生产成本；3. 该磁头具有很小的抗外界磁场干扰的能力，就要求在复杂的工作环境下对各种干扰源进行必要的屏蔽处理，一方面增加了后续应用产品的成本，另一方面也增加了后续应用产品的设计难度；4. 信号的输出幅值和磁头相对于被检测磁性图形的相对速度相关，对于信号的定量分析增加了难度；5. 在一些磁场的确存在，但是空间上的差异不大的情况下，磁头的实际输出很小，可能产生磁性信号的漏检。

【0004】 磁阻磁头技术：该技术使用InSb等磁阻材料，使用两个磁阻电阻组成一个惠斯通半桥，两个磁阻在平面内具有空间上的位置差异，通过检测两个电阻上磁场的不同来检测磁性图形表面的磁场梯度。该技术存在的一些缺点：1. 该技术必需在元件的垂直方向上加上一个偏置磁场，磁阻元件才能工作，同时，由于需要垂直化软磁图形，所要求的磁场一般比较大，该磁场的产生需要很强磁性的铁磁铁产生以降低磁性的衰减，但是磁性衰减的必然性导致磁阻的灵敏度可能变化，也就是说随着时间的增加，磁头的灵敏度会发生变化。2. 磁阻元件的灵敏度比较低，一般在0.2 mV/V/Gs - 1 mV/V/G的范围，这就要求在测量弱磁场的情况下（钞票上的软磁性介质的磁场强度一般都比较低），后续信号处理电路的放大倍数很高。3. 磁阻元件的噪声较大，在检测弱磁场信号时，需要较为复杂的滤波放大技术，可以检测的磁场信号的频率受到一定限制。4. 由于是采用了半桥结构，在电源波动以及外部条件信号的抗干扰能力有限，就要求在复杂的工作环境下对各种干扰源进行必要的屏蔽处理，一方面增加了后续应用产品的成本，另一方面也增加了后续应用产品的设计难度。5. 在多路磁头的设计中，较难保证各路磁头的灵敏度的一致性，降低了产品的成品率，增加了产品的生产成本。6. 由于采用了梯度计的设计，只能识别磁场的垂直分量的空间梯度，不能直观测量磁场的分布，这些在一些磁场的确存在，但是空间上的差异不大的情况下，磁头的实际输出很小，可能产生磁性信号的漏检。

【0005】 巨磁阻效应(GMR)技术：该技术可以采用薄膜工艺制备，灵敏度方向在薄膜面内。基于该技术的磁头的实现主要有两种方式：一种是在基板上制备两个GMR电阻，这两个GMR电阻的灵敏度方向可以是一致的，也可以是反向的，把这两个GMR电阻连接成惠斯通半桥的
形式。两个GMR电阻放置的平面是和待检测的磁性图案所在平面平行的，同时，两个GMR电阻放置的相对位置可以是验证磁性图形行进的方向平行，也可以是和磁性图形行进的方向垂直。这两种方式都是检测磁性图形表面漏磁的面内分量在面内两个GMR电阻排列方向上的梯度值。该技术的优点是，由于采用了薄膜工艺，产品的生产一致性比较容易保证。该技术的缺点是：1. 由于采用了梯度检测的方式，不能直接测量磁场的实际分布，在一些磁场的确存在，但是空间上的差异不大的情况下，磁头的实际输出很小，可能产生磁性信息的漏检；2. 由于是采用了半桥结构，对于电源波动以及外部耦合信号的抗干扰能力有限，就要求在复杂的工作环境下对各种干扰源进行必要的屏蔽处理，一方面增加了后续应用产品的成本，另一方面也增加了后续应用产品的设计难度。

发明内容

【0006】本发明目的是针对现有技术存在的缺陷提供可以对磁场垂直分量的实际大小进行精确测量的基于磁电感技术检测软磁性图形的磁头，其为磁性图形表面漏磁的定量分析提供了可能性。

【0007】本发明为实现上述目的，采用如下技术方案：一种基于磁电阻技术检测磁性图形表面磁场的磁头，包括支架和设置于支架上的PCB板，还包括水平励磁结构，其用于产生一个平行于磁通表面的磁场；和基于磁电阻MR元件的磁场检测部件，其用于检测磁性图形表面 Microwave磁场的垂直分量的分布情况。

【0008】进一步的，所述水平励磁结构为前后两块水平磁化的永磁体沿着磁化方向放置在所述磁场检测部件的前端位置。

【0009】进一步的，所述水平励磁结构为前后两块垂直磁化的永磁体沿着磁化方向的垂直方向反向放置在所述磁场检测部件的前后的对称位置。

【0010】进一步的，所述水平励磁结构为一块水平磁化的永磁体放置在所述磁场检测部件的前端/后端，另一块软磁材料块体放置在所述磁场检测部件的后端/前端位置。

【0011】进一步的，所述磁场检测部件为由多个磁电阻MR元件组成的惠斯通桥式结构。

【0012】进一步的，所述惠斯通桥式结构为惠斯通全桥结构或惠斯通半桥结构。

【0013】进一步的，所述惠斯通桥式结构为惠斯通全桥结构时，其中的两个磁电阻MR元件靠近磁头的表面，另外两个磁电阻MR元件远离磁头的表面；所述惠斯通桥式结构为惠斯通半桥结构时，其中的一个磁电阻MR元件靠近磁头的表面，另外一个磁电阻MR元件远离磁头的表面。

【0014】进一步的，所述磁电阻MR元件的敏感方向一致垂直于磁头的表面。

【0015】进一步的，所述磁电阻MR元件至少为各向异性磁电阻AMR元件或巨磁阻GMR元件或隧穿磁电阻TMR元件中的一种。

【0016】本发明的有益效果：(1) 本发明用磁电感技术，具有极高的磁场灵敏度，使得后续信号处理电路相对简单。采用水平励磁方式，可以直接在检测的位置加上励磁磁场，由于磁性图案在宏观上为薄膜状，其磁性易磁化轴在水平方向，所需要的励磁磁场较小，因此产生该磁场所需要的永磁体可以为便宜的铁氧体材料，在有效降低生产成本的同时，增加了励磁磁场的热稳定性。

【0017】(2) 本发明可以有效检测软磁磁性材料所组成的磁性图形。通过水平励磁结构把
软磁性材料在面内磁化, 在磁性图形表面产生特定的漏磁场; 垂直方向检测用MR元件组成的惠斯通桥路结构, 该结构可以有效检测磁性图形的表面漏磁的垂直分量的大小, 可以真实反映磁性图形表面漏磁场的真实情况, 从而有效检测软磁材料组成的磁性图形的特征; 为磁性图形表面漏磁的定量分析提供了可能性。杜绝了在漏磁场的确切存在，但是磁场在面内的空间梯度较小的情况下，现有磁头可能漏检的情况。

【0018】 (3) 本发明采用惠斯通全桥结构，其中的四个磁电阻的灵敏度方向相同，因此具有非常好的抗外界电磁场干扰能力。

附图说明
【0019】 图1 本发明的第一种励磁结构的示意图；
【0020】 图2 本发明的第二种励磁结构的示意图；
【0021】 图3 本发明的第三种励磁结构的示意图；
【0022】 图4 本发明的惠斯通桥式结构示意图；
【0023】 图5 本发明中的惠斯通桥式结构三种桥路的连接示意图；
【0024】 图6 本发明的磁场的分布曲线图；
【0025】 图7 本发明的MR元件处于磁场中的分布曲线图。

具体实施方式
【0026】 图1至图3所示, 为一种基于磁电阻技术检测磁性图形表面磁场的磁头, 包括支架1和设置于支架上的PCB板5, 还包括水平励磁结构, 其用于产生一个平行于磁头表面的磁场; 该磁场可以磁化软磁材料构成的磁性图形, 该磁性图形被磁化后, 在其表面产生特定的漏磁场分布, 该磁场的数值随着距离磁性图形表面的距离的增加急剧降低; 和基于磁电阻MR元件的磁场检测部件, 其用于检测磁性图形表面漏磁场的垂直分量的分布情况。
【0027】 该励磁结构可以有很多种实现的方式；
【0028】 图1中, 所述励磁结构为前后两块水平磁化的永磁体20、21沿着磁化方向放置在所述磁场检测部件4的前、后位置。
【0029】 图2中, 所述励磁结构为前后两块垂直磁化的永磁体20、21沿着磁化方向的垂直方向反向放置在所述磁场检测部件4的前、后位置。
【0030】 图3中, 所述励磁结构为一块水平磁化的永磁体21放置在所述磁场检测部件4的前端及前端, 另一块软磁材料块体7放置在所述磁场检测部件4的前端及前端位置。除此之外, 还有很多种得到水平方向激励磁场的方法。
【0031】 图4所示, 磁场检测部件由多个磁电阻MR元件组成的惠斯通桥式结构, 其中的所述磁电阻MR元件的敏感方向一致垂直于磁头的表面。其中, 所述磁电阻MR元件至少为各向异性磁电阻AMR元件或巨磁阻MR元件或碳磁电阻TMR元件中的一种。所述惠斯通桥式结构为惠斯通全桥结构时, 其中的两个磁电阻MR元件靠近磁头的表面, 另外两个磁电阻MR元件远离磁头的表面; 所述惠斯通桥式结构为惠斯通半桥结构时, 其中的一个磁电阻MR元件靠近磁头的表面, 另外一个磁电阻MR元件远离磁头的表面。
【0032】 图5为具体的实施方式: 一个磁电阻R1/R2(半桥的情况)或者两个磁电阻R1和R2(全桥的情况)靠近磁头的表面; 另外的一个磁电阻R3/R4(半桥的情况)或者两个磁电阻R3
和R4(全桥的情况)远离磁头的表面。这些磁电阻MR元件按照惠斯通全桥或者惠斯通半桥的结构连接在一起（见图5中a、b、c三种桥路的连接方法）。由于靠近磁头表面的磁电阻感受到的磁场幅值远大于远离磁头表面的电阻感受到的磁场幅值，而且后者的磁场接近于零，因此该磁场检测部件可以检测磁性图形表面漏磁场的垂直分量的真实分布情况。


[0034] 图7所示，磁电阻MR元件在磁场中的两种分量的分布：图7a为线性磁电阻MR元件处于磁场中的分布情况；图7b为V型磁电阻MR元件处于磁场中的分布情况。

[0035] 以上所述仅为本发明的较佳实施例，并不用以限制本发明，凡在本发明的精神和原则之内，所作的任何修改、等同替换、改进等，均应包含在本发明的保护范围之内。
图5

(a) 和 (b) 为电路图，分别显示了不同组件连接关系。

图6

(a) 和 (b) 为磁场与电阻的图示，显示了磁场强度和电阻值的变化关系。

图7

显示了磁场强度 (B) 和磁场方向 (y) 的关系图，以及电流密度 (J) 和磁场 (B) 的关系图。