REMOVABLE HOSE COVER SYSTEM

Applicants: Paul Iskyan, Manhasset, NY (US);
Dana Michael Campbell, Lake Elsinore, CA (US)

Inventors: Paul Iskyan, Manhasset, NY (US);
Dana Michael Campbell, Lake Elsinore, CA (US)

Filed: Aug. 15, 2014

Publication Classification

A cleaning system has a suction source intaking air through an extractor hose with an opposite end at an intake vacuum head configured to remove material from a surface to be cleaned, so that the suction source draws air and the material in through it and through the hose. A hose cover around the extractor hose comprises an elongate piece of material with first and second lengthwise edges that each has a side of a zipper. The zipper sides co-act so as to releasably secure the edges together with the cover surrounding the extraction hose. The cover is of insulating material that protects a user from contact with the hose when hot and also prevents the hose from damaging nearby objects. Multiple hose covers can be connected in sequence by male and female connecting ends to cover a lengthy hose.
FIG. 1
REMOVABLE HOSE COVER SYSTEM

FIELD OF THE INVENTION

[0001] This invention relates to the field of protective covers for hoses of cleaning and extraction equipment, and especially to removable sleeves for covering one or more hoses running from a central unit to a cleaning structure that accesses a surface or object to be cleaned and extracts material from the area through the hose.

BACKGROUND OF THE INVENTION

[0002] Cleaning systems of the prior art commonly have a central unit or other device, e.g., a canister, that supplies cleaning fluid or gas, e.g., steam, which is frequently boiling-hot fluid or steam, via a supply hose to some sort of applicator or cleaning head that sprays or distributes the fluid or steam onto surfaces to be cleaned. The central unit also has a portion that operates like a vacuum cleaner and extracts the liquid, steam and any dirt that has been mixed therewith at the applicator head through an extraction hose connected with it back to the central unit. In the central unit, the dirt or other material from the cleaned surface is separated from the air drawn in, and usually also separated from the cleaning fluid returned through the extraction hose.

[0003] These cleaning systems are used in a wide variety of situations, ranging from routine cleaning of residential or office buildings to disaster recovery, vent and dust cleaning, hard-surface floor cleaning, tank cleaning, sewer cleaning, etc. The central units may be portable, or may be larger movable units on wheels or mounted in a vehicle, or possibly stationary units. A portable unit has the advantage of being movable inside a building being cleaned, while a larger system, e.g., a vehicle-mounted unit, cannot be brought into a building to be cleaned, but has other advantages, including higher power and greater storage capacity for cleaning fluid or dirt picked up.

[0004] Especially with less movable systems, a larger extractor hose is needed to run from the vehicle to the location of the cleaning, where the cleaning head is located. A hose of this type may need to run long distances, e.g., from 20 feet to hundreds of feet, and often taking a winding route, such as through the rooms of the interior of a building. The extractor hose on a larger, vehicle-based system is generally much larger in diameter than standard vacuum hoses and usually made of hard corrugated plastic, with corrugations defined by circumferential ridges and grooves, to allow it to sustain the vacuum with the larger diameter. This type of hose is more rigid than smaller residential vacuum hoses, and, because of its greater rigidity, movement of the end of the hose causes movement over the entire length of the hose. During that type of movement, the corrugations of the hose can catch on or abrade objects such as furniture, floors, woodwork, walls, etc., that it contacts, resulting in damage that can be significant. Furthermore, the amount of relative vacuum formed in the extraction hose is quite high, with hundreds of psi suction being applied, and this amount of vacuum suction may cause forces in the hose that make it move, potentially damaging nearby objects.

[0005] When the system employs a hot fluid supply hose, the additional hose carrying high-temperature fluid runs in parallel with the extractor hose. The second hose may cause damage due to physical contact, and that is potentially compounded by the high temperature of the hose, which can itself cause heat damage. In addition, the hot hose is more difficult to handle because the user needs to be protected from exposure to hot parts, especially metallic connectors or other metallic parts exposed to the heated liquid or steam.

SUMMARY OF THE INVENTION

[0006] It is accordingly an object of the present invention to provide a protective covering for a hose of a cleaning system that avoids the problems encountered in the prior art.

[0007] According to an aspect of the invention, a cleaning system comprises a unit having a suction source intaking air. An extractor hose has a first end connected to the suction source and a second opposite end. An intake vacuum head is configured to remove material from a surface to be cleaned. The vacuum head is connected with the second end of the extractor hose so that the suction source draws air and the material in through it, through the hose and to the suction source. A hose cover surrounds the extractor hose, and it comprises an elongate piece extending lengthwise of the extractor hose over a length. It has first and second complementary edges extending lengthwise thereof. The edges each have a respective zipper side of a zipper extending lengthwise of the elongate piece. The zipper sides co-act so as to releasably secure the edges together with the elongate piece of material surrounding the extraction hose over the length. The elongate piece of material is of insulating material that completely surrounds the hose over the length and protects a user from contact with the hose.

[0008] According to another aspect of the invention, a supply hose extends generally alongside the extractor hose between a fluid supply source and a dispensing outlet structure adjacent the intake structure. The fluid supply source supplies a liquid or vapor to the supply hose so as to flow through the supply hose and out through the dispensing outlet structure. The hose cover also surrounds the supply hose over the cover length.

[0009] The liquid or vapor supplied from the fluid supply source may be hot liquid e.g., cleaning fluid, neutralizing fluid, water, or other types of solutions, with a temperature of 120 degrees F. or higher. This hot fluid or steam is projected, potentially at pressure, out the dispensing outlet structure where it contacts surfaces of objects to be cleaned, carrying away with it dirt or other material from the objects, and the intake structure is located so as to draw in the resulting liquid or steam with the dirt or other material.

[0010] According to another aspect of the invention, a cover configured to be placed around a portion of an extraction hose of a cleaning system comprises a rectangular piece of insulating material having a first inner side of heat resistant material capable of experiencing temperatures in excess of 200 degrees without damage, and an opposite side of different material having greater abrasion resistance than the material of the inner side. The rectangular piece has two longitudinal ends and longitudinal edges extending therebetween, each of the edges having secured thereto a longitudinally extending row of zipper teeth configured to mesh with each other when closed by a slide supported on one of the rows so that the rectangular piece becomes a tubular cover. The rectangular piece has a longitudinally extending flap of insulating material extending laterally past the zipper teeth on one of said edges so that the flap overlies the zipper when the zipper is closed. A complementary pair of coacting releasable securement structures are on the rectangular piece. One of the pair of securement structures is on an outward surface of one of the
ends of the rectangular piece, and the other of the pair of securement structures is on an inward surface of the opposite end of the rectangular piece, such that the cover provides a female attachment structure at one end and a male attachment structure at the other end configured to attach the cover in longitudinal series to other similarly configured covers.

[0011] According to still another aspect of the invention, a cleaning system hose structure comprises an extraction hose having a diameter of 2 inches or greater and configured to be attached to a suction source for drawing air through it, and a cleaning fluid supply hose extending alongside the extraction hose and carrying heated fluid from a fluid source. A cover system surrounds the hoses over at least part of an overall length thereof. The cover system comprises a plurality of substantially identical cover segments, each of which comprises a respective rectangular piece of insulating material having an inward side of heat-resistant material capable of experiencing temperatures in excess of 200 degrees substantially without damage, and an outward side of different material having greater abrasion resistance than the heat-resistant material. The outside abrasion-resistant material is also preferably resistant to chemicals and colorfast so that its color does not bleed or transfer onto objects if the material is wet by extremely hot water, possibly combined with chemicals or detergents. The rectangular piece has two longitudinal ends and longitudinal edges extending therebetween, each of the edges having secured thereto a longitudinally extending row of zipper teeth configured to mesh with each other when closed by a slide supported on one of the rows, so that the rectangular piece becomes a tubular cover around the extraction hose and the fluid supply hose over a portion of the length thereof. The rectangular piece has a flap of insulating material extending laterally past the zipper teeth on one of said edges so that the flap overlies the zipper when the zipper is closed. A complementary pair of coacting releasable securement structures are secured on the rectangular piece, one of said pair of securement structures being on an outward surface of one of the ends of the rectangular piece, and the other of said pair of securement structures being on an inward surface of the opposite end of the rectangular piece. A first of the cover segments is secured in longitudinal sequence with a second of the cover segments by the end of the first cover segment having the associated securement structure on the outward surface thereof secured in a tubular shaped structure formed by the end of the second cover segment having the securement structure on the inward side thereof. The securement structures coact to secure the end of the first cover segment in the end of the second cover segment with the first and second cover segments in longitudinal series around the hoses.

[0012] The hose cover is preferably hand and machine washable.

[0013] Other objects and advantages of the invention will become apparent from the specification herein, and the scope of the invention will be set out in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] FIG. 1 is an illustration a mobile vehicle based cleaning system employing the present invention.

[0015] FIG. 2 is a schematic diagram of the operation of a cleaning system employing the present invention.

[0016] FIG. 3 is a detail view of the hose connections in the cleaning system.

[0017] FIG. 4 is an inside view of a hose cover segment according to the invention.

[0018] FIG. 5 is an outside view of the hose cover segment of FIG. 4.

[0019] FIG. 6 is a view of the male/female connection between two sequential hose cover segments just prior to their assembly.

[0020] FIG. 7 is a perspective view of the two hose cover segments of FIG. 6 after connection.

[0021] FIG. 8 is a partially cut away view showing two hose cover segments according to the invention surrounding an extraction hose and a cleaning fluid supply hose.

[0022] FIG. 9 is a plan view of the inside of an alternate embodiment of hose cover segment.

[0023] FIG. 10 is a plan view of the hose cover segment of FIG. 9.

[0024] FIG. 11 is a plan view of the inside of another alternate embodiment of hose cover segment.

[0025] FIG. 12 is a plan view of the outside of the hose cover segment of FIG. 11.

[0026] FIG. 13 is an illustration of a portable or mobile cleaning unit employing the hose cover of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0027] Referring to FIG. 1, larger cleaning systems are often configured to be moved from place to place by transportation, such as vehicle 3. When a system is so deployed, frequently the vehicle will remain parked in a place distant from the building to be cleaned, and this requires the use of an extended hose system generally indicated at 5. The hose system 5 leads to an user operated wand or tool structure generally indicated at 7, which is provided with a cleaning head 9 through which cleaning fluid may be deployed to wet and cleanse the surface or object to be cleaned, and from which the fluid and dirt removed from the surface, and other dry materials in the area, such as dust, dirt, pollen, soot, etc., are extracted by vacuum which draws these materials through the hose system 5 to the central unit in the vehicle 3.

[0028] The connection of hose system 5 to the end structure head 7 may be a single extraction hose, similar to a residential vacuum but much more robust, intaking dirt from the head 9, or it may also be a combination of such an extraction hose with a hose that supplies gas or fluid, e.g., water mixed with detergent, and particularly at a high temperature, through the cleaning end structure 7 to loosen dirt on a surface or object being cleaned.

[0029] According to the invention, the hose 5 includes a set of outer hose cover segments 11 that surround the one or two constituent hoses over the length thereof, protecting the hose from external damage, and also preventing the hose system 5 from damaging the furniture, floors, woodwork, walls, etc., or other objects as the hose 5 extends through the building, or wherever it is being employed.

[0030] Alternatively, the central unit may be a humanly-portable or movable system that does not reside in a vehicle, but can be moved by a user. Such a system, such as the system shown in FIG. 13, usually has a single central housing or canister body 203 that supplies and extracts fluid through a hose system 205 connected with cleaning head structure 209. The canister 203 is usually supported on wheels so that the user can move it easily. Nonetheless, the hose system 205 can extend through a building or other location to the cleaning head 209, and a hose cover 245 made up of several hose cover segments 211 secured sequentially around the hose system 205 is advantageously employed covering the hose system.
FIG. 2 shows schematically a cleaning system that is either a vehicle-based system or a smaller portable system and employs the hose cover system according to the invention. The central cleaning unit 13 is usually located in one place, such as in a vehicle or in a more stationary position or installation, although the central cleaning unit may also be in the movable part of a portable unit, such as a large canister that can be moved around on wheels.

Central cleaning unit 13 includes a cleaning fluid supply system 15 that has a fluid supply reservoir 17 connected to a heating system 19 that receives the fluid, heats it and dispenses it through the fluid outlet 21. Fluid outlet 21 connects with a hose structure 23 that extends the length of hose system 5 to a user operated cleaning apparatus end structure indicated at 7. The unit end structure 7 may include a handle 25 with various controls (not shown) and a final usually rigid tube connecting the hose 27 with some configuration of cleaning head 9. The configuration of the head 9 can vary greatly depending on the application. The specific design of the head is not especially pertinent, in that a variety of different configurations may be used with any given hose system 5. However, particularly preferred are those cleaning heads that allow for connection to a hose supplying cleaning fluid that is sprayed by the head, and that have an industrial strength vacuum connection that effectively collects the dirt and also any excess cleaning fluid from the location.

The hose 23 carries fluid to the end structure 7, and an internal conduit in it (not shown) connects with the hose 23 and carries the pressurized hot fluid to the final connector tubes 31, which transmit the cleaning fluid to the head 9, which sprays the fluid onto the surface to be cleaned, generally indicated at 33.

Central cleaning unit 13 also includes a vacuum suction extraction system 35, which includes a suction intake 37 connected with an intake tube 39 connected with an elongated, flexible, usually corrugated, hose 41, or intake 37 may be connected directly with hose 41. Hose 41 extends from intake 37 or tube 39 to the cleaning head end structure 7. The hose 41 connects to the end structure 7 by a vacuum-tight connection to a rigid tube or conduit connecting the hose 41 to the head 9, so that suction in the hose 41 causes air to be sucked in through the head 9, collecting dirt and liquid on the surface, and any other material in the vicinity, through the tubular part 27 of the end unit 7, and into the hose 41.

The vacuum extraction system may also include a waste processing unit 43 that receives the material drawn in by the suction intake 37 and treats in one of a variety of ways, e.g., by filtering the waste from the fluid and restoring the fluid in some sort of treated way to the fluid supply reservoir 17, or by simply withdrawing the air from the air that is drawn in from the suction intake by filtering out all the liquid and particulate material in the waste stream, as is well known in the art.

Hoses 23 and 41 extend from the central unit 13 a length of from 20 to 200 or more feet. For the protection of the hose as well as objects in this area and users of the device, a hose cover system 45 surrounds and encloses the hose 23 supplying the heated cleaning fluid or gas to the head 9 and the hose 41 extracting dirt and excess cleaning fluid from the head 9. Hose cover system 45 is comprised of one or more cover segments 11 connected in sequence to cover the hoses 23 and 41 essentially from the connection to the suction intake to the user-accessible cleaning head end structure 7.

As best seen in FIG. 3, the intake hose 41 and the fluid supply hose 23 may be in longitudinally connected segments, such as, e.g., fluid supply hose segments 51 and 53 or extractor hose segments 55 and 57. The hose 23 itself is generally formed of a thick rubber material. The hose 41 and its elements are generally formed of a fairly rigid plastic material having a series of corrugations 67 therein. The segments are connected by appropriate structures, for example, the male and female connectors 59 and 61, usually metallic or brass, between the fluid supply hose segments 51 and 53, and also the male/female extractor hose connections 63 and 65 that clip one inside the other so as to sealingly join the hose segments 55 and 57 in sequence. These are pressure tight connections that can sustain pressures of several atmospheres.

The connectors serve to link lengths of the hoses 23 and 41 to each other, but similar connections link the hoses 23 and 41 to the relevant parts of the central unit 13 and the user tool structure 7. For example, the suction intake 37 may have a female connection like connection 65 that receives the male connector end 63 of the first hose segment at the central unit 13 in the extraction hose 41 so hose 41 plugs directly into it. Similarly, the heating system 19 may have a female connection such as female connector 61 that receives the male connection end 59 of the hose 23 inserted directly into the heating system 19 so to receive the heating into the hose.

Similarly, the user wand or tool end structure 7 also may have therein an appropriate coupling structure connected with the final segments of the fluid supply hose 23 and the extraction hose 41. For instance, the connecting end of tool 7 may have male connectors like portions 59 and 63 that fit into the female connectors 65 and 61 at the ends of the hoses 41 and 23 respectively.

FIGS. 4 and 5 show the inside and outside view of a single hose cover segment 11, shown here unzipped without the hoses 23 or 41 present. The body of the hose cover element 11 is a rectangular piece of fabric material. The material on the inside of the cover 11 that faces the heated hoses 23 and 41 is a polyester blended fabric material that is heat resistant up to about 450 to 490 degrees F., and at those high temperatures it does not burn, but melts. This material that which allows cover 11 to be in contact with the potentially boiling hot water that may be supplied through the hose 23 and also the fairly hot water that returns through the extractor hose 41 after contact with the surface to be cleaned.

The material particularly preferred for the inside surface material is 8.5 ounce 50/50 polyester cotton knit fabric with, its knit face facing the hose being covered and the soft nap pile backsie facing outward. The polyester blended fabric material is layered by being quilted to layers of polyester batting between the outside and inside surfaces of the cover 11. The quilted material adds padding to the cover 11, which provides added protection to objects from the hose, and has a thickness of additional layers of fabric or insulator that prevent heat from passing to any great degree through the cover 11 and makes the hose exterior with the cover 11 amenable to be handled by a user without gloves despite the heat of the hoses 23 and 41. The polyester batting is 3 to 4 ounce polyester batting.

The central piece of material 71 is essentially rectangular and of a length that may range from 5 feet to 30 feet or more, depending on the application. The central piece 71 has a closed edge 73 sewn around its periphery, which includes two longitudinally extending edge portions 75 and
77 extending over its length. Each edge 75 and 77 has affixed thereto by sewing or other means a respective co-acting row of zipper teeth or half 79 or 81 of a zipper that extends over a substantial part the entire length of the cover segment 11. The zipper used may be metal or temperature resistant plastic, and is of a typical configuration, having a pull tab slide generally indicated at 83 on one of the teeth rows or halves 79 of the zipper. The pull tab slide 83 is of a configuration that it can be separated from the other zipper end part or lower stop 85 completely, similar to the bottom of a jacket, so that the two zipper halves 79 and 81 can be separated from each other, allowing removal of the cover 11 from the hoses. The zipper in the preferred embodiment is a no. 5 coil zipper with a separated bottom and a reversible head, meaning that the head or pull portion can be flipped from the outer side to the inward side of the zipper.

The width of the material from zipper portion 79 to zipper portion 81 is sufficient to allow the cover 11 to extend around the extraction hose 41 and the fluid hose 23 together. The extraction hose typically has an outer diameter of approximately 2.5 inches, and the outer diameter of the fluid supply hose 23 is usually approximately 0.5 inches. The width of the material is preferably from 8 to 12 inches.

The cover segment 11 further has a flap 87 of elongated rectangular shape secured to the edge of the rectangular body 71 of the cover segment 11 by stitching, and has its own edge 89 sewn therearound. The flap 87 has secured thereon a number of spaced co-acting halves of loop patches 91 of a hook-loop connection material structure, such as Velcro®. These patches are configured to align with and releasably attach with the complimentary hook patches 93 on the opposite outer side of the cover segment 11, so that when the zipper halves 79 and 81 are zipped up, the flap 87 is secured overlying the zipper. The flap 87 is formed of the same insulating heat-resistant material as that of the body 71 of the hose cover segment 11, to provide protection if the zipper is heated by the hoses.

Referring to FIG. 5, the outer surface 80 of the hose cover segment 11 in both the rectangular body 71 and on the tab 87 is of a fabric that has an abrasion resistant and reduced friction surface that will prevent scuffing or damage to objects that the hose 5 may brush up against during operation, as well as avoiding being torn or damaged itself. As mentioned previously, the outer material is resistant to chemicals and also is colorfast, even when wet with chemicals, hot water or detergents. This outer fabric is preferably 600 Denier polyester; also suitable for this is Cordura® fabric. Other fabrics of a similar resistant and durable quality may also be employed. The outer fabric and inner fabric are secured to each other through the intermediate polyester batting by a single set of quilted stitches shown in FIGS. 4 and 5. These quilted stitches are in a diamond pattern where the diamond shapes are 2 to 3 inches in length.

The connection between adjacent hose cover segments is accomplished by a male/female connection at their ends. This is provided by a pair of co-acting pads of hook-loop material or Velcro®. Loop portion pad 95 is secured to the inside of one end 94 of the cover segment 11 and hook portion pad 97 is secured by adhesive, stitching or both to the outer surface of opposing end 98 of cover structure 11.

The connection of the hose cover element 11 to the hose 41 and 23 is secured by the zipper 77 and 79 being closed, but in addition it is helpful to have the two hoses 41 and 23 held together to prevent undue movement therebetween. To secure the hoses 23 and 41 together, at periodic points along the length of the body 71 of the hose cover element 11, a pair of lashing laces or straps 99 are stitched or otherwise secured to the inside of the hose cover segment 11. When the hose cover 11 is placed on the hoses, the lashing straps 99 are tied around both the hoses 23 and 41 to secure them together. The lashing tie downs 99 are preferably a polyester knott cord, but may be of another heat-resistant material.

The assembly of the hose elements 11 in series is illustrated in FIGS. 6 and 7.

FIG. 6 shows a first hose cover element 101 in serial alignment with hose cover element 103. The hose cover elements 101 and 103 are aligned longitudinally so that the end 98 of hose cover segment 101 is adjacent the end 94 of hose cover element 103. The loop patch 95 of hose cover segment 103 is placed over the hook patch portion 97 of hose cover element 101, attaching the two segments removably together. When so applied, the two hose cover segments 101 and 103 form a single longitudinally extending structure generally indicated at 107 in FIG. 7 with two hook loop connectors attached at an overlapping portion generally indicated at 109.

After the combined structure shown in FIG. 7 is formed by sequentially connecting the ends 94 and 98 of the set of hose cover segments 11 that will be used, two or more of the hose cover elements 11 are secured around the hoses 23 and 41, as shown in FIG. 8. The hose 41 and hose 23 are tied together by the lashing structures 99 (FIG. 4), and then the zipper halves 79 and 81 of each of the segments 101 and 103 are mated and zipped closed, resulting in the structure illustrated in FIG. 8, where the closed zipper 111 holds the cover 11 of each of the segments 11 closed around the hoses over that portion of the length of the hose 41 and/or 23 that the cover segment 11 is to surround. Flaps 89 are pressed down over the closed zipper 111 and Velcro® tabs 93 and 91 coact to keep this flap in place, protecting against the possibility of the heated hoses 23 and 41 potentially creating a hot zipper that should be guarded against as well. In this assembled condition, the connection between segments 101 and 103 indicated at 109 becomes a male/female connection in which the end 98 of cover segment 101 is held inside the female end 94 of the hose cover segment 103.

The other end of the cover segment 101 is a female connection structure, and the other end of cover segment 102 is a male structure, so a larger number of segments 11 identical or similar to segments 101 and 103 may be assembled in the same way as segments 101 and 103. In the assembled environment, the hose 41 and hose 23 are preferably encased in the hose cover 11 over all of, or a substantial portion of, the entire length thereof from the central unit to the handheld cleaning end structure 7.

The multi-segment cover allows for ease of handling of a manageable length of each cover segment. The same set covers can be used with hoses of any length, by using only as many as are necessary to produce the proper length cover. Also, damaged segments of the cover may be readily removed and replaced. There are possible weight savings, as well.

FIGS. 9 and 10 show an alternate embodiment of a hose cover segment. Similar to the previous embodiment, the hose cover segment generally indicated at 121 has a rectangular central body of insulating material 123 inwardly disposed, and an abrasion resistant exterior material 125. On the interior, the cover segment 121 is provided with a series of
spaced tie or lashing devices 127 for securing the hoses 23 and 41 together, and also has elongated edges to which are attached the two edges of a zipper 129 and 131, which operate similarly to the zipper in the previous embodiment. A flap of insulating material 133 is provided that with Velcro® or coacting loop structures 135 that secure the flap 133 over the zipper 129, 131 when closed by coacting connection with Velcro® hook patches 137.

[0054] In addition, the embodiment of FIGS. 9 and 10 has an end cuff structure 141 and 143 at its ends. The end structures 141 and 143 work as respectively male and female parts of a lengthwise serial connection system that allows a series of these hose cover segments 121 to be connected together, similar to the previous embodiment seen in FIGS. 6, 7 and 8.

[0055] Each cuff 141 has a band 145 of Velcro® hook material secured thereto which allows placement of the next segment 121 of the hose cover system at any rotative angle, i.e., so that the zippers do not necessarily align rotatively about a centerline of the hose 41. This rotation is also possible in the previous embodiment. The opposing end 143 is provided with a smaller patch 147 of Velcro® hook material that contacts with a portion of the strip 145 of the next hose cover segment in the series if present. The hook connections 145 and 147 secure the segments 121 against longitudinal separation.

[0056] FIGS. 11 and 12 show a further alternate embodiment of a section of hose cover. Hose cover segment 151 is a rectangular piece 153 of heat resistant material as in the previous embodiments. Two coacting halves 155 and 157 of a zipper are attached to longitudinal edges of the rectangular piece 153. The ends of the segment 151 have cuffs 159 of the same material as piece 153. The outer surfaces of both end cuffs 159 have a strip 160 of hook-securing material or Velcro®, and there is a plurality of spaced outward facing Velcro loop strips 161 secured to the outer surface 153 of segment 151. Lashing laces or straps 164 are secured to the inside of the cover 151 to be tied around the hoses. Strips 163 of hook connector material are connected with and extend from the cuffs 159, and strips 165 extend from one of the longitudinal edges of the piece 153. When zipped closed around a hose or hoses, the strips 163 are wrapped around the cuffs and securingly attach to the hook strips 160.

[0057] This configuration of cover segment allows for connection of the segments 151 in sequence as well. When one cover segment 151 is zipped closed, the cuff of another cover segment 151 is wrapped around the cuff 159. The strap 163 of the inside cuff is then wrapped around and secured to the hook strip 160 of the outer cuff 159.

[0058] It will be understood that the hose cover of the invention may be used with a two-hose system as illustrated, or a single hose system, which has only an extraction hose. Moreover, the terms herein should be read as terms of description rather than terms of limitation, as those of skill in the art having this disclosure before them will be able to make modifications and adjustments therein without departing from the spirit of the invention.

What is claimed is:

1. A cleaning system comprising:
 a) a suction source configured to draw air and the material in through the hose and to the suction source;
 b) a hose cover surrounding the extractor hose, said hose cover comprising
 an elongate piece extending lengthwise of the extractor hose over a length, and having first and second complementary edges extending lengthwise thereof, said edges each having a respective zipper side of a zipper extending lengthwise of the elongate piece; and
 said zipper sides co-acting so as to releasably secure the edges together with the elongate piece of material surrounding the extraction hose over said length; and
 said elongate piece of material being of insulating material that completely surrounds the hose over the length and that protects a user from contact with the hose.

2. The cleaning system according to claim 1, wherein the system further comprises
 a) a fluid supply source supplying a liquid or vapor configured to clean a surface;
 b) a supply hose connected with the fluid supply source and extending generally alongside the extractor hose, said supply hose receiving the fluid or vapor from the fluid supply source and carrying the fluid or vapor to a dispensing outlet structure in or adjacent to the intake structure;
 and
 wherein the hose cover surrounds the supply hose and the extraction hose together over the length thereof.

3. The cleaning system according to claim 2, wherein the system further comprises a securement structure attached to an inside portion of the hose cover facing the hoses, said securing structure securing the extractor hose and the supply hose together.

4. The cleaning system of claim 1, wherein the hose cover surrounds the extraction hose over a first lengthwise portion thereof, and the system further comprises
 a) a second hose cover comprising a second elongate piece of thermally insulating material covering a second lengthwise portion of the extractor hose, said second hose cover having first and second edges extending lengthwise of the extraction hose and each having a respective side of a second zipper that releasably secures the edges together with the second elongate piece of material surrounding the extraction hose in the second lengthwise portion thereof; and
 wherein the hose covers have connecting structures securing the hose covers to each other in longitudinal sequence to each other along the extraction hose.

5. The cleaning system of claim 4, wherein the connecting structures each has a respective part of a releasable connection structure on each of the hose covers, said releasable connection structure co-acting so as to releasably connect the hose covers to each other.

6. The cleaning system of claim 5, wherein the connecting structures of the hose covers are male and female connectors, wherein the male connector is secured inside the female connector so as to resist forces that tend to draw the hose covers apart lengthwise of the extraction hose.

7. The system of claim 1, wherein the hose cover further comprises a longitudinally extending flap of thermally insulating material that overlies and covers the zipper when the hose cover is secured around said extraction hose.

8. The cleaning system of claim 2, wherein the fluid is heated.
9. The cleaning system of claim 1, wherein the outer surface of the hose cover is an abrasion resistant material different from the material of an inner surface facing said extraction hose.

10. The cover of claim 9, wherein the outer surface of the hose cover is of colorfast material that may be exposed to hot water or cleaning agents without releasing any coloring substance or dye, and is machine washable.

11. A cover configured to be placed around a portion of an extraction hose of a cleaning system, said cover comprising:
- a rectangular piece of insulating material having a first inner side of heat resistant material capable of experiencing temperatures in excess of 200 degrees without damage, and an opposite side of different material having greater abrasion resistance than the material of the inner side;
- said rectangular piece having two longitudinal ends and longitudinal edges extending therebetween, each of the edges having secured thereto a longitudinally extending row of zipper teeth configured to mesh with each other when closed by a slide supported on one of said rows so that the rectangular piece becomes a tubular cover;
- the rectangular piece having a longitudinally extending flap of insulating material extending laterally past the zipper teeth on one of said edges so that the flap overlies the zipper when the zipper is closed;
- a complementary pair of coating releasable securement structures on the rectangular piece, one of said pair of securement structures being on an outward surface of one of the ends of the rectangular piece, and the other of said pair of securement structures being on an inward surface of the opposite end of the rectangular piece, such that the cover provides a female attachment structure at one end and a male attachment structure at the other end configured to attach the cover in longitudinal series to other similarly configured covers.

12. The cover of claim 11, wherein the pair of complementary securement structures comprises a strip or pad of hook securement material and a strip or pad of loop securement material.

13. The cover of claim 11, wherein the heat resistant material is stitched with polyester batting in a generally quilted structure.

14. The cover of claim 11, wherein the flap has releasable securement structures that hold the flap in place over the zipper.

15. The cover of claim 11, wherein the rectangular piece is at least 6 inches wide between the longitudinal edges thereof.

16. The cover of claim 11, wherein the zipper slide engages with both rows of teeth to close the zipper, and the zipper slide completely releases one of the rows of teeth when completely opened so that the rows of teeth can be moved away from each other completely.

17. The cover of claim 11, wherein the cover has therein a plurality of longitudinally spaced lashing structures on the inner side thereof, said lashing structures being configured to tie the cover to one or more hoses extending thereby.

18. A cleaning system hose structure comprising:
- an extraction hose having a diameter of 2 inches or greater and configured to be attached to a suction source for drawing air through said extraction hose;
- a cleaning fluid supply hose extending alongside the extraction hose and carrying heated fluid from a fluid source;
- a cover system surrounding the hoses over at least part of an overall length thereof, said cover system comprising a plurality of substantially identical cover segments, each of the cover segments comprising:
 - a respective rectangular piece of insulating material having an inward side of heat-resistant material capable of experiencing temperatures in excess of 200 degrees substantially without damage, and an outward side of different material having greater abrasion resistance than the heat-resistant material;
 - said rectangular piece having two longitudinal ends and longitudinal edges extending therebetween, each of the edges having secured thereto a longitudinally extending row of zipper teeth configured to mesh with each other when closed by a slide supported on one of said rows so that the rectangular piece becomes a tubular cover around the extraction hose and the fluid supply hose over a portion of the length thereof;
 - the rectangular piece having a flap of insulating material extending laterally past the zipper teeth on one of said edges so that the flap overlies the zipper when the zipper is closed;
 - a complementary pair of coating releasable securement structures are secured on the rectangular piece, one of said pair of securement structures being on an outward surface of one of the ends of the rectangular piece, and the other of said pair of securement structures being on an inward surface of the opposite end of the rectangular piece;
 - wherein a first of the cover segments is secured in longitudinal sequence with a second of the cover segments by the end of the first cover segment having the associated securement structure on the outward surface thereof being secured in a tubular shaped structure formed by the end of the second cover segment having the securement structure on the inward side thereof, wherein the securement structures coact to secure the end of the first cover segment in the end of the second cover segment with the first and second cover segments in longitudinal series around the hoses.

19. The cleaning system hose structure of claim 18, wherein a third of the cover segments is secured in longitudinal sequence with the second cover segment with the other end of the second cover segment having the associated securement structure on the outward surface thereof being secured in a tubular shaped structure formed by the end of the third cover segment having the securement structure on the inward side thereof, wherein said securement structures coact to secure the end of the second cover segment in the end of the third cover segment, with the first, second and third cover segments in longitudinal series around the hoses.

20. The cleaning system of claim 1, wherein the unit is supported on motorized vehicle providing for movement of the system.

21. The cleaning system of claim 1, wherein the unit is supported in a portable housing that can be moved by a user.