woO 2007/035491 A1 |00 T 0000 0O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization Vd”Ij

International Bureau

(43) International Publication Date
29 March 2007 (29.03.2007)

) IO O R OO OO

(10) International Publication Number

WO 2007/035491 Al

(51) International Patent Classification:
GOG6F 21/24 (2006.01) GOG6F 17/50 (2006.01)
GOGF 9/44 (2006.01)

(21) International Application Number:
PCT/US2006/036047

(22) International Filing Date:
15 September 2006 (15.09.2006)

(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/227,462 15 September 2005 (15.09.2005) US

(71) Applicant (for all designated States except US): THE
MATHWORKS, INC. [US/US]; 3 Apple Hill Drive,
Natick, MA 01760 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): WENDLING, Bill
[US/US]; 1572 MASSACHUSETTS AVENUE, Apt. 4,
Cambridge, MA 02138 (US).

(74) Agents: CANNING, Kevin, J. et al.; LAHIVE & COCK-
FIELD, LLP, 28 State Street, Boston, MA 02109 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: A LOCKED ELEMENT FOR USE IN A GRAPHICAL MODELING ENVIRONMENT

310
Providing |
Block Diagram Model

A\ 4

Providing Locked | °2
Element

e l________, 330
| Simulation of
| Block Diagram Model !

|r Generate Code from
| Block Diagram Model :

(57) Abstract: A locked element and methodology are provided
for use in a block diagram model of a graphical modeling envi-
ronment. The locked element displays within the block diagram
model but access to the functionality of the locked element requires
authorization. Without authorization the locked element will not
function. Authorization may also be required to access the imple-
mentation details of the locked element. Without authorization the
implementation details of the locked element cannot be viewed or
modified. In certain implementations, any code generated from a
locked element without authorization is obfuscated.

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

A LOCKED ELEMENT FOR USE IN A GRAPHICAL MODELING
ENVIRONMENT

Related Application

This application claims the benefit of U.S. Patent Application Serial No. 11/227462,
filed September 15, 2005, the contents of which are hereby incorporated by reference.

Field of the Invention

The present invention relates to a graphical modeling environment for modeling a
static or dynamic system. More particularly, the present invention relates to providing a

locked element that requires authorization to access the functionality of the locked element.

Background of the Invention

Many organizations are embracing the paradigm of Model Based Development in
their prodﬁction processes. “Model Based Development” refers to the practice of specifying, 7
analyzing, and implementing systems using a common “model” consisting of a set of block
diagrams and associated objects. System implementation typically consists of automatically
generating code for portions of the model, particularly portions corresponding to the system’s

control algorithm or other functions implemented in software.

Graphical modeling environments are programs that enable a user to construct and
analyze a model of a process or system. Examples of graphical modeling formalisms include
time-based block diagrams, such as Simulink® from The MathWorks Inc., discrete event
diagrams and reactive state machine diagrams, such as those found within Stateflow® also
available from The MathWorks, Inc., data-flow diagrams, such as LabVIEW, available from
National Instruments Corporation, and software diagrams and other graphical programming
environments, such as Unified Modeling Language (UML) diagrams.

Some graphical modeling environments also enable simulation and analysis of
models. Simulating a dynamic system in a graphical modeling environment is typically a

two-step process. First, a user creates a graphical model, such as a block diagram, of the

1

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

system to be simulated. A graphical model may be created using a graphical user interface,
such as a graphical model editor. The graphical model depicts relationships between the
systems inputs, states, parameters and outputs. After creation of the graphical model, the
behavior of the dynamic system is simulated using the information entered into the graphical
model and information available in its environment such as files and variables in a general
purpose workspace. In this step, the graphical model is used to compute and trace the
temporal evolution of the outputs of the dynamic systems (“execute the graphical model”).
Furthermore, it may automatically produce either deployable software systems or
descriptions of hardware systems that mimic the behavior of either the entire model or

portions of the model (code generation).

Block diagrams are graphical entities having an “executable meaning” that are created
within graphical modeling environments for modeling static and dynamic systems, and
generally comprise one or more graphical objects. For example, a block diagram model of a
dynamic system is represented schematically as a collection of graphical objects, such as
nodes, that are interconnected by edges, generally depicted as lines, which represent relations

between the graphical objects that are connected to each of the edges.

In one subset of block diagramming paradigms, the nodes are referred to as “blocks”
and drawn using some form of geometric object (e.g., circle, rectangle, etc.). The line
segments are often referred to as “signals”. Signals correspond to the time-varying quantities
represented by each line connection and are assumed to have values at each time instant when
connected to an enabled node. Each node may represent an elemental dynamic system, and
the relationshii)s between signals and state variables are defined by sets of equations
represented by the nodes. Inherent in the definition of the relationship between the signals
and the state variables is the notion of parameters, which are the coefficients of the equations.
These equations define a relationship between the input signals, output signals, state, and
time, so that each line represents the input and/or output of an associated elemental dynamic
system. A line emanating at one node and terminating at another signifies that in terms of
computational causality, the output of the first node is an input to the second node. Each
distinct input or output on a node is referred to as a port. The source node of a signal writes
to the signal at a given time instant when its system equations are solved. The destination
node of this signal reads from the signal when their system equations are being solved.

Those skilled in the art will recognize that the term “nodes” does not refer exclusively to

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

elemental dynamic systems but may also include other modeling elements that aid in

readability and modularity of block diagrams.

It is worth noting that block diagrams are not exclusively used for representing time-
based dynamic systems but also for other models of computation. For example, in
Stateflow®, flow charts are block diagrams used to capture behavior of reactive systems and
the flow of discrete state changes. Data flow models are block diagrams that describe a
graphical programming paradigm where the availability of data is used to initiate the
execution of blécks, where a block represents an operation and a line represents execution

dependency describing the direction of data flowing between blocks.

In some instances, a user may wish to prevent others from using an element or block
without authorization. As such a user may wish to lock access to the functionality of an
element such that the locked element may be displayed in the graphical modeling
environment but authorization is required in order to execute or simulate using the locked

element.

In some instances a user may wish to limit the amount of functionality. In such
instances authorization may be required to access the implementation details of a locked
element. For example, a user may wish to share an element or a block diagram model with a
third party. While the third party may need the element to function as part of a block diagram
model, the user may not wish the third party to have access to the implementation details of
the element. For example, the user may wish to provide a “black box™ block element that can
function as part of a block diagram model but does not provide the third party access to

underlying functionality or implementation details of the element.

Summary of the Invention

One embodiment of the present invention provides a locked element that displays
within a block diagram model but requires authorization to access the functionality of the

element.

In accordance with a first aspect, in a graphical modeling environment, a method is

provided. The method comprises providing a block diagram model; and providing a locked

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

element as part of the block diagram model; wherein the locked element displays within the
block diagram model but access to the functionality of the locked element requires
authorization. In some embodiments, authorization may be required to access the

implementation details of the element.

In accordance with another aspect, in a graphical modeling environment, a method is
provided for creating a locked element. The method comprises selecting an element to be

locked; and locking the element to prevent access to the functionality of the element.

In accordance with another aspect, in a gréphical modeling environment, a method is
provided for creating a locked block diagram model. The method comprises selecting a
block diagram model to be locked; and locking the block diagram model to prevent access to

the functionality diagram model.

In accordance with another aspect, a medium is provided for use with an
computational device holding instructions executable by the computational device for
performing a method. The method comprises providing a block diagram model; and
providing a locked element as part of the block diagram model; wherein the locked element
displays within the block diagram model but access to the functionality of the locked element

requires authorization.

In accordance with another aspect, a system is provided for generating and displaying
a graphical modeling application. The system comprises user-operable input means for
inputﬁng data to the graphical modeling application; a display device for displaying a -
graphical model; and a computational device including memory for storing computer
program instructions and data, and a processor for executing the stored computer program
instructions, the computer program instructions including instructions for providing a block
diagram model, and providing a locked element as part of the block diagram model; wherein
the locked element displays within the block diagram model but access to the functionality of

the locked element requires authorization.

In accordance with another aspect, a system is provided for generating and displaying

a graphical modeling application. The system comprises a distribution server for providing to

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

a client device, locked element representing locked underlying functionality; and a client

device in communication with the distribution server.

In accordance with another aspect, in a network having a server, executing a graphical
modeling environment, and a client device in communication with the server, a method
comprises the steps of providing, at ;che server, a block diagram model of a dynamic system
having a locked element; receiving, at the server from the client device, a request to for
access to the functionality of the locked element; and receiving, at the client device from the

server, a request for authorization.

Brief Description of the Figures

Figure 1A illustrates an environment suitable for practicing an illustrative

embodiment of the present invention.

Figure 1B is a flow chart illustrating the steps involved in simulating and generating

code from a dynamic system using the environment shown in F igure 1A.

Figure 2A is an example of a block diagram of a dynamic system in a graphical

modeling environment.

Figure 2B is an example of a Stateflow® state chart in a graphical modeling

environment.

Figure 2C is an example of MATLAB® embedded block for use in a graphical

modeling environment.

Figure 3 is a flow chart illustrating the steps performed in an exemplary embodiment

of the method of the present invention.

Figure 4 is an example of a block diagram having a locked block.

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

Figure 5 is an example of an output generated when an Application Programming

Interface (API) is used on a locked block without authorization.
Figure 6 is an example of obfuscated code generated from a locked block.

Figure 7 is an example of a graphical interface requesting authorization for access to

the locked block.
Figure 8 is an example of an underlying subsystem of an unlocked block.

Figure 9 is an example of an output generated when an Application Programming

Interface (API) is used on an unlocked block

Figure 10 is an example of a Graphical User Interface (GUI) that can be used to

modify the parameters of an unlocked block.
Figure 11 is an example of non-obfuscated code generated from an unlocked block.
Figure 12 is an exemplary flow diagram of a method of creating a locked block.
Figure 13A is an example of a graphical interface used to create a locked block.

Figure 13B is an example of graphical interface used for specifying the authorization
for a locked block.

Figure 14 illustrates an exemplary client-server environment suitable for practicing an

illustrative embodiment of the present invention

Detailed Description of an Illustrative Embodiment

An illustrative embodiment of the present invention relates to a locked element that
displays within a block diagram model but requires authorization to access the functionality
of the element. The present invention will be described relative to illustrative embodiments.

Those skilled in the art will appreciate that the present invention may be implemented in a

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

number of different applications and embodiments and is not specifically limited in its

application to the particular embodiments depicted herein.

Figure 1A depicts an environment suitable for practicing an illustrative embodiment
of the present invention. An electronic device 2 includes memory 4, on which software
according to one embodiment of the present invention is stored, a processor (CPU) 7 for
executing software stored in the memory, and other programs for controlling system
hardware. Typically, the interaction of a human user 10 with the electronic device 2 occurs
through an input/output (I/O) device 8, such as a user interface. The I/O device 8 may include
a display device 8a (such as a monitor) and an; input device (such as a mouse 8b and a

keyboard 8c and other suitable conventional I/O peripherals).

For example, the memory 4 holds a diagramming application 6 capable of creating
and simulating computational versions of system diagrams, such as time-based block
diagrams, state diagrams, signal diagrams, flow chart diagrams, sequence diagrams, UML
diagrams, dataflow diagrams, circuit diagrams, ladder logic diagrams, kinematic element
diagrams, or other models, which may be displayed to a user 10 via the display device 8a. In
the illustrative embodiment, the diagramming application 6 comprises a block diagram
environment, such as Simulink® or another suitable graphical modeling environment. As
used herein, the terms “block diagram environment” and “graphical modeling environment”
refer to a graphical application where a system is graphically modeled. Examples of suitable
diagramming applications include, but are not limited to, MATLAB® with Simulink®, from
The MathWorks, Inc., LabVIEW, DasyLab and DiaDem from National Instruments 7
Corporation, VEE from Agilent, Sof WIRE from Measurement Cbmputing, VisSim from
Visual Solutions, SystemVIEW from Elanix, WiT from Coreco, Vision Program Manager
from PPT Vision, Khoros from Khoral Research, Halcon from MV Tec Software, and
numerous others. The memory 4 may comprise any suitable installation medium, e. g.,aCD-
ROM, DVD, floppy disks, or tape device; a computer system memory or random access
memory such as DRAM, SRAM, EDO RAM, Rambus RAM, etc.; or a non-volatile memory
such as a magnetic media, e.g., a hard drive, or optical storage. The memory may comprise

other types of memory as well, or combinations thereof.

In an alternative embodiment, the electronic device 2 is also interfaced with a

network, such as the Internet. Those skilled in the art will recognize that the diagrams used

10

15

20:

25

30

WO 2007/035491 PCT/US2006/036047

by the diagramming application 6 may be stored either locally on the electronic device 2 or at
aremote location 9 interfaced with the electronic device over a network. Similarly, the

diagramming application 6 may be stored on a networked server or a remote peer.

The diagramming application 6 of an illustrétive embodiment of the invention
includes a number of generic components. Although the discussion contained herein focuses
on Simulink®, from The MathWorks, Inc. of, Natick MA, those skilled in the art will
recognize that the invention is applicable to other software applications. The generic
components of the illustrative diagramming program 6 include a block diagram editor 6a for
graphically specifying models of dynamic systéms. The block diagram editor 6a allows users
to perform such actions as construct, edit, display, annotate, save, and print out a graphical
model, such as a block diagram, that visually and pictorially represents a dynamic system.
The illustrative diagramming application 6 also includes graphical entities 6b, such as signal
lines and buses that represent how data is communicated between functional and non-
functional units, and blocks 6¢. As noted above, blocks are the fundamental mathematical
elements of a classic block diagram model. A block diagram execution engine 6d, also
implemented in the application, is used to process a graphical model to produce simulation
results or to convert the graphical model to executable code. For a block diagram graphical
model, the execution engine 6d translates a block diagram to executable entities following the
layout of the block diagram as provided by the user. The. executable entities are compiled -
and executed on a computational device, such as a computer, to implement the functionality
specified by the model. Typically, the code generation preserves a model hierarchy in a call
graph of the generated code. For instance, each subsystem of a rﬁodel in a block diagram
environment can map to a user specified finction in the generated code. Real-Time
Workshop from The MathWorks, Inc. of Natick, Massachusetts is an example of a suitable

execution engine 6d for generating code.

In the illustrative embodiment, the diagramming program 6 is implemented as a
companion program to a technical computing program, such as MATLAB®), also available
from The MathWorks, Inc.

Figure 1B is a flow chart diagramming the steps involved in simulating and
generating code from a dynamic system according to an illustrative embodiment of the

invention. In step 12, a user creates a block diagram model representing a dynamic system.

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

Once a block diagram model, or other graphical model, has been constructed using the editor
6a in step 12, the execution engine 6d simulates the model by solving equations defined by
the model to trace the system outputs as a function of time, in steps 14-18. The solution of
the model, which may be referred to as model execution, is carried out over a user-specified
time span for a set of user-specified inputs. After creating the block diagram model in step |
12, the execution engine 6d compiles the block diagram in step 14. Then, in step 16, the
execution engine links the block diagram in to produce an “in-memory executable” version of
the model. Then, the execution engine uses the “in-memory executable” version of the model
to generate code and/or simulate a block diagram model by executing the model in step 18 or
20.

The block diagram editor 6a is the user interface component that allows a user to
create and modify a block diagram model representing a dynamic system, in step 12. The -
blocks in the electronic block diagram may model the behavior of specialized mechanical,
circuit or software components, such as motors, servo-valves, power plants, blocks, tires,
modems, receivers, and other dynamic components. The block diagram editor 6a also allows
a user to create and store data relating to graphical entities 6b. In Simulink®, a textual
interface with a set of commands allows interaction with the graphical editor. Using this
textual interface, users may write special scripts that perform automatic editing operations on
the block diagram. A user generally interacts with a set of windows that act as canvases for
the model. There is generally more than one window for a model because models may be

partitioned into multiple hierarchical levels through the use of subsystems.

A suite of user interface tools within the block diagram editor 6a allows users to draft

a block diagram model on the corresponding windows. For exdample, in Simulink® the user

interface tools include a block palette, a wiring line connection tool, an annotation tool, a

formatting tool, an attribute editing tool, a save/load tool and a publishing tool. The block
palette is a library of all the pre-defined blocks available to the user for building the block
diagram. Individual users may be able to customize this palette to: (a) reorganize blocks in
some custom format, (b) delete blocks they do not use, and (c) add custom blocks they have
designed. The palette allows blocks to be dragged through some human-machine interface
(such as a mouse or keyboard) from the palette onto the window (i.e., model canvas). The

graphical version of the block that is rendered on the canvas is called the icon for the block.

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

There may be different embodiments for the block palette including a tree-based browser

view of all of the blocks.

A block diagram model of a dynamic system, created during step 12, is generally
represented schematically as a collection of interconnected graphical objects, such as blocks,
ports and lines, which represenf signals. Figure 2A illustrates an example of a block diagram
200 created using the diagramming application 6. Each block in the block diagram 200
represents an elemental dynamic system. Each signal, denoted by lines connecting the
blocks, represents the input and/or output of an elemental dynamic system. The illustrative
block diagram 200 includes a subsystem block 210, a source block 220 and a destination
block 230. A line emanating at one block and terminating at another signifies that the output
of the first block is an input to the second block. Ports, such as input port 212 and output port
214 of the subsystem block 210, refer to a distinct inputs or outputs on a block. Signals

correspond to the time-varying quantities represented by each line connection and are

-assumed to have values at each time instant when their connected blocks are enabled. The

source block 220 for a signal 221 writes to the signal at a given time instant when its system
equations are solved. As shown, the signal 221 from the source block passes to the
subsystem 210. The signal 211 output from the subsystem 210 passes to the destination
block 230. The destination block 230 for a signal 211 reads from the signal 211 when the
system equation is being solved. As shown, the signal 211 represents the output of the
subsystem 210. One skilled in the art will recognize that the block diagram 200 is merely
illustrative of a typical application and is not intended to limit the present invention in any

way.

Figure 2B illustrates an example of a Stateflow® diagram 240 containing Stateflow®
blocks 250 and 260 created using the diagramming application 6. Each block in the block
diagram 240 represents a state. The lines between the blocks represent state transitions.
Ports, such as input pbrt 252 and output port 254 of the Stateflow® block 250, refer to
distinct inputs or outputs on a block. One skilled in the art will recognize that the block
diagram 240 is merely illustrative of a typical application and is not intended to limit the

present invention in any way.

10

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

Figure 2C illustrates an example of an Embedded MATLAB block 270 created using
the diagramming application 6. This block uses MATLAB code to describe its functionality.
It may be used as any other type of block as part of a block diagram model.

Once a block diagram model, or other graphical model, has been constructed using
the editor 6a in step 12, the execution engine 6d simulates the model by solving equations |
defined by the model to trace the system outputs as a function of time, in steps 14-18. The
solution of the model, which may be referred to as model execution, is carried out over a

user-specified time span for a set of user-specified inputs.

The compile stage in step 14 marks the start of model execution and involves
preparing data structures and evaluating parameters, configuring and propagating block
characteristics, determining block connectivity, and performing block reduction and block
insertion. The compile stage involves checking the integrity and validity of the block
interconnections in the block diagram. In this stage, the engine 6d also sorts the blocks in the
bloc;k diagram into hierarchical lists that are used when creating the block method execution
lists. The preparation of data structures and the evaluation of parameters create and initialize
basic data-structures needed in the compile stage. For each of the blocks, a method forces the
block to evaluate all of its parameters. This method is called for all blocks in the block

diagram. If there are any unresolved parameters, execution errors are thrown at this point.

The compilation step also determines actual block connectivity. Virtual blocks play
no semantic role in the execution of a block diagram. During compilation, the virtual blocks
and signals, such as virtual bus signals, iﬁ the block diagram are optimized away (rerhoved)
and the remaining non-virtual blocks are reconnected to each other appropriately. This
compiled version of the block diagram with actual block connections is used from this point

forward in the execution process.

In the link stage, in step 16, the execution engine 6d uses the result of the compilation
stage to allocate memory needed for the execution of the various components of the block |
diagram. The linking stage also produces block method execution lists, which are used by
the simulation, linearization, or trimming, of the block diagram. Included within the link
stage is the mitialization of the model, which consists of evaluating “setup” methods (e.g.

block start, initialize, enable, and constant output methods). The block method execution

11

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

lists are generated because the simulation and/or linearization of a model must execute block

methods by type (not by block) when they have a sample hit.

The compiled and linked version of the block diagram may be directly utilized to
execute the model over the desired time-span, in step 18. In step 20, the execution engine
may choose to translate the block diagram model (or portions of it) into either software
modules or hardware descriptions (broadly termed “code”). The code may be instructions in
a high-level software language such as C, C++, Ada, etc., hardware descriptions of the block
diagram portions in a language such as HDL, or custom code formats suitable for
interpretation in some third-party software. Alternatively, the code may be instructions
suitable for a hardware platform such as a microprocessor, microcontroller, or digital signal
processor, etc., a platform independent assembly that can be re-targeted to other
environments, or just-in-time code (instructtons) that corresponds to sections of the block

diagram for accelerated performance..

Figure 3 depicts a flowchart 300 of one exemplary embodiment of a method of the
present invention. Here the method involves providing a block diagram model 310 and
providing a locked element as part of the block diagram model 320. The locked element
displays within the block diagram model but access to the functionality of the locked element

" requires authorization. In some embodiments, simulation of the block diagram may then be

performed once access has been granted 330.

In certain embodiments code may be generated from the block diagram model 340.
In some such embodiments the code generated from the locked block without authorization
will be obfuscated. Code obfuscation in a graphical modeling environment is set forth in
U.S. Patent Application No. 11/038,608 entitled “Obfuscation of Automatically Generated
Code”, filed on 01/18/2005, the specification of which is hereby incorporated by reference.

With authorization the code may be generated normally.

An example of a block diagram model 400 as provided in the method of Figure 3
(step 310) can be seen in Figure 4. This exemplary block diagram model 400 includes an
input node 410, an output node 420, and the locked element, here a locked block 430
provided in the method of Figure 3 (step 320). The input node 410 provides the locked block
430 with an input signal 415. Until authorization is provided the lock block 430 will not |

12

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

operate in the model. Once access is granted, the block 430 may then perform some process

on the received input and provides an output signal 425 to the output port 420.

In another embodiment, authorization may be required to access the implementation details
of the locked block 430. Thus a block may be unlocked so as to function within the diagram

model 400 system but access to the implementation details of the block are still locked.

When used in a block diagram model, the locked block may function as a “black
box.” Like any other element, the locked block represents some underlying functionality.
Based on this underlying functionality, the locked block can receive an input signal 415 and

provide an output signal 425. The locked block differs from other element in that access to

_ its functionality requires authorization.

Without authorization, the functionality of a locked element such as locked block 430
may not be accessed. Likewise, application program interfaces (API’s) such the “get param”
API of MATLAB will not fimction without authorization. Figure 5 depicts an example of an
interface window 500 showing what happens when the “get_param’ API is on the locked
block 430 of F igufe 4. Furthermore, any code generated from the locked block 430 without
authorization may be obfuscated to prevent attempts to determine the implementation details
of the block from the code. An example of such obfuscated code 600 generated from the
locked block 430 can be seen if Figure 6.

In another embodiment, authorization may be required to access the implementation
details of a locked element or block. For example, the basic functionality of the element mayr
be unlocked so that the element operates in a block diagram model, but to view or edit the
implementation details that provide the functionality, authorization is required. Using such
an implementation, a locked element may be provided to a third party user without having to
provide the implementation details of the locked element which may be proprietary. The
third party user may use the locked element in a block diagram model, perform simulations,
generate code, and even execute the generated code, but cannot access the implementation

details of the locked element without authorization. ‘

One method of determining if an element is locked is to check how the data for the

element is stored on a physical medium. If the data for the element is stored on a restricted

13

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

access device that requires a user to login before accessing it, then the ele;ment could be
designated as locked. Another method, for when the data for the element is on a non-
restricted device, is to provide a series of bytes at the beginning of the data file for the
element indicating that the element is an encoded element that a graphical environment (such
as Simulink) has access to. A password or'phiase internal to the graphical environment could

then be required to access the functionality of the element.

In one exemplary embodiment, authorization for the locked element is provided by a
password or authorization code. Thus in the example wherein a third party user is working
with the block diagram model of Figure 4, when the third party user éttempts to access the
functionality of the locked block 430, the third party is prompted to provide a password to
gain access to the functionality. An example of window 700 providing such a prompt can be
seen in Figure 7. Here the window 700 prompts the third party user for a password 7107 and
provides a field for the user to enter the password‘720. " In this example the third party user
may then choose to submit a password by clicking the “OK” button 730 or cancel the
authorization using the “Cancel” button 740. If the third party does not provide the correct
password or chooses to cancel the authorization, the user may still continue to view the
locked block 430 without access to its functionality. - Although, in this embodimént access to
the functionality of a locked element is obtained using a graphical user interface, it should be
understood that access may be obtained in other ways. For example, a textual interface or
Application Program interface (API) may be used to gain access to the functionality of a

locked element.

It should also be understood that authorization is Anot limited to the use of passwords.
Other authorization methods may also be used. For example, in some embodiments, a
hardware dongle or key physically attached to the third party user’s system may be required.
Such a dongle or key could be attached to the serial, parallel, USB, IEEE 1394 (Firewire,
iLink) port, or the like of the system and be checked for before access to the functionality is
provided. In other embodiments, biometrics signatures such as fingerprints may be required
for authorization. Other possible authorization techniques will be apparent to one skilled in

the art given the benefit of this disclosure.

Returning now to the example wherein the third party user has been prompted for a

password, if the correct password is provided, the third party user is then authorized to access

14

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

the functionality of fhe now unlocked block. In this example, the previously locked block
430 of Figure 4 represents a subsystem shown in Figure 8 which is now accessible to the

third party user.

The subsystem 800 of Figure 8 is a block diagram model that determines the average
for an array. An array is received at the input 810 and is passed to a block 820 that adds the
elements of the array and a block 830 that determines the number of elements in the array.
The outputs of these blocks are then passed to a block 840 that divides the sum of the
elements by the number of elements of the array. The resulting average is then passed to the

output 850.

Although in the present example the locked element represented a block diagram
model subsystem, it should be understood that the implementation details of a locked element
are not limited to a block diagram model subsystem or referenced model. In some
embodiments, the locked element may represent a Stateflow model such as seen in Figure 2B.
In other embodiments the locked element may represent an Embedded MATLAB® system
wherein the functionality of the block is described using MATLAB® code as shown in

‘Figure 2C. These and any number of other implementations of element may be locked under

the present invention. In certain embodiments it may be advantageous to combine such
different implementations together providing a nesting of systems. For exa:rhple a locked -
element may represent a block diagram model subsystem comprising locked element
representing both additional block diagram models and embedded systems wherein the
functionality is described in code. In such a system each locked element may require is own
separate éuthorization to gain access to its implementation details or access could be obtained

globally.

Once an element is unlocked its functionality becomes accessible. The
implementation details may also become accessible. For example, if the implementation
details become available, an API, such as “get_param” may now operate on the element, such
as block 430 of Figure 4, as shown in the example window 900 of Figure 9. In some
embodiments access is limited to the ability to view the implementation details. In other
embodiments access includes the ability to edit or otherwise modify the implementation
details of the element. In such embodiments a graphical user interface (GUI) or

programmatic interface may be used to interact with the implementation details of the

15

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

element. For example, if the element represents a block diagram model subsystem, blocks or
other elements may be added or removed from the system. If, for example, the functionality
of the element is defined by code, the code may be edited to modify the functionality of the
element. Likewise, any number of parameters for an element, including but not limited to,

input size, output size, input typé, output type, delay, gain, and ranges, can be modified.

An example of a graphical user interface 1000 for editing the parameters of an
element such as a block can be seen in Figure 10. In this example the interface 1000 provides
instructions for adding or subtracting inputs 1010 as well as the ability to specify data signal

types 1020, change the shape of the block icon 1030, and set sample time for the block 1040.

In certain embodiments, wherein code generated from a locked element is obfuscated,
unlocking the element allows the code generated from the element to be non-obfuscated. An
example of non-obfuscated code 1100 can be seen in Figure 11. In this example the non-

obfuscated code 1100 is the code generated from the now unlocked block 430 of Figure 4.

In certain embodiments, it may be beneficial to have different levels of authorization

- for a locked element. For example, the locked element may have a first authorization for

enabling the execution or simulation of the element, a second authorization for viewing the
implementation details, a third authorization for editing or modifying the implementation
details of the element, and a forth authorization for generating non-obfuscated code.
Likewise, different types of authorizations can be implemented for different levels. In
embodiments having multiple or nested locked element, different levels and types of
authorization can be used for each element. In other embodiments, a single authorization
may give access to the implementation details of a number of locked elements. Other
variations, combinations, and implementations will be apparent to one skilled in the art given

the benefit of this disclosure.

Figure 12 depicts a ﬂowchaft 1200 of one exemplary embédiment of a method of the
present invention for creating a locked element. Here the method involves selecting an
element such as a block or block diagram model to be locked 1210 and locking the block or
block diagram model 1220. In embodiments wherein a block diagram model is being locked,
the method may further include creating a block representing the locked block diagram model
1230.

16

10

15

V20

25

30

WO 2007/035491 PCT/US2006/036047

In some embodiments the selection and locking of an element such as a block or
block diagram model may be accomplished using a graphical user interface (GUI). For
example, a user may select the block or block diagram model using an interface such as a
mouse and then use a menu to lock the block or block diagram model. An example of this
can be seen in Figure 13A. Here a block diagram model 1300 is selected and then locked
using a pull down menu 1310. In another embodiment, an element or block diagram model
may be locked using an Application Program Interface (API). Other possible variations and

implementations will be apparent to one skilled in the art given the benefit of this disclosure.

As part of the locking process the user may indicate what authorization is to be
required to unlock the locked element. For example, after the user has chosen to lock a
selected block or block diagram model, the user may be prompted to specify the desired
authorization to unlock the block. In some embodiments this may be done using a GUI, for
example the user may be provided with a window allowing the user to select the desired
authorization. An example of such a window 1320 can be seen in Figure 13B. Here, the
window 1320 prompts the user to specify a password that will unlock the locked block 1330

and provides a field for the user to enter the desired password 1340.

One possible locking technique is encryption. Here, to lock an element such as a
block or block diagram the user specifies that the element is to be written to a persistent file,
such as an MDL file in an encrypted format. Once written in this format, the implementation
details of the element can only be read either by the environment that created the element or
an environment that has the authorization to unlock the element. Suitable encryption

methods include, but are not limited to, PGP, DES3, Blowfish, or the like.

It should be understood that the methodology for locking an element is not limited to
encryption. Other methodologies may be employed depending on the level of protection
required. In some embodiments different methodologies and levels of protection may be

used together to lock different elements, block diagram models, and levels of authorization.

The examples to this point have focused primarily on the system where the graphical
modeling environment was on a local computational device, in one embodiment an electronic

device. The graphical modeling environment may of course also be implemented on a

A1’7';

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

network 1400, as illustrated in Figure 14, having a server 1410 and a client device 1420.

Other devices, such as a storage device 1430, may also be connected to the network.

In one such embodiment a system for generating and displaying a graphical modeling
application, comprises a distribution server for providing to a client device, a locked element
requiring authorization to access the implementation details of the element; and a client
device in communication with the distribution server. Here the distribution server provides a
client device, such as an electronic device discussed above, with a locked element. The client
may then use the locked element in a block diagram model but would require authorization to
access the functionality of the locked element. Without authorization, the client cannot run a-

simulation of the block diagram model featuring the locked element.

In another embodiment, a user may interact with a graphical modeling interface on the
server through the client device. In one example of such a system a server and client device
are provided. The server is capable of executing a graphical modeling environment. The
client device is in communication with the server over a network. A block diagram model of
a dynamic system having a locked element is provided at the server. A request for access to
the functionality of the locked element is received at the server from the client. In response
to request for access from the server, the server requests authorization from the client. If the
client provides the server with the proper authorization then the server grants the client access

to the functionality of the locked element.

It will be understood by one skilled in the art that these network embodiments are
exemplary and that the functionality may be divided up in any number of ways over a

network.

The present invention has been described relative to illustrative embodiments. Since
certain changes may be made in the above constructions without departing from the scope of
the invention, it is intended that all matter contained in the above description or shown in the

accompanying drawings be interpreted as illustrative and not in a limiting sense.

It is also to be understood that the following claims are to cover all generic and
specific features of the invention described herein, and all statements of the scope of the

invention which, as a matter of language, might be said to fall therebetween.

18

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

What is claimed is:

1. In a graphical modeling environment, a method comprising:
providing a block diagram model; and
providing a locked element as part of the block diagram model,
wherein the locked element displays within the block diagram model but access to the

functionality of the locked element requires authorization.

2. The method of claim 1 further comprising requiring authorization to access the

implementation details of the locked element.
3. The method of claim 1, further comprising generating code from the block diagram model.

4. The method of claim 3, wherein code generated from the locked element without the

“authorization is obfuscated.

5. The method of claim 1 wherein the locked element comprises a block.
6. The method of claim 1 wherein the locked element represents a subsystem.

7. The method of claim 6 wherein authorization grants access to the underlying subsystem

that the locked element represents.

8. The method of claim 7 wherein authorization allows the underlying subsystem to be
modified.

9. The method of claim 1 wherein the locked element represents another model. -

10. The method of claim 9 wherein authorization grants access to the underlying model that

the locked element represents.

11. The method of claim 10 wherein authorization allows the underlying model to be
modified. ‘

19

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

12. The method of claim 1 wherein, authorization allows the use of an application program

interface (API) on the element.

13. The method of claim 1 wherein, authorization allows interaction with the element in

programmatic interfaces.

14. The method of claim 1 wherein, authorization allows the implementation details of the

element to be modified.

15. The method of claim 1 wherein the locked element is locked using an encryption method.
16. The method of claim 15 wherein the encryption method comprises PGP.

17. The method of claim 15 wherein the encryption method comprises DES3.

18. The method of claim 1, further comprising execution of the block diagram model having

a locked element.

19. In a graphical modeling environment, a method for creating a locked element, the
method comprising:
selecting an element to be locked; and

locking the element to prevent access to the functionality of the element.

20. The method of claim 19, wherein locking the element éomprises selecting an

authorization code to allow access to the implementation details of the element.
21. The method of claim 19, wherein locking the element comprises encrypting the element.

22. The method of claim 19, wherein locking the element is performed by an application

program interface (API).

23. In a graphical modeling environment, a method of creating a locked block diagram
model, the method comprising:

selecting a block diagram model to be locked; and

20

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

locking the block diagram model to prevent access to the functionality of the block

diagram model.

24, The method of claim 23, further comprising creatmg a block representing the locked

block diagram model.

25. The method of claim 23, wherein locking the block diagram model comprises selecting

an authorization code to allow access to the functionality of the block diagram model.

26. The method of claim 23, wherein lécking the block diagram model comprises encrypting

the block diagram model.

27. A medium for use with a computational device holding instructions executable by the
computational device for performing a method, comprising the steps of:

providing a block diagram model; and

providing a locked element as part of the block diagram model;

wherein the locked element functions within the block diagram model but access to

the functionality of the locked element requires authorization.

28. The medium of claim 27 wherein the method further compnses requiring authorization to

access the implementation details of the locked element.

29. The medium of claim 27, wherein the method further comprises generating code from

the block diagram model.

30. The medium of claim 28, wherein code generated from the locked element without the

authorization is obfuscated.

31. The medium of claim 27 wherein authorization allows the use of an application program

interface (API) on the element.
32. A system for generating and displaying a graphical modeling application, comprising:
user-operable input means for inputting data to the graphical modeling application;

a display device for displaying a graphical model; and

21

10

15

20

25

30

WO 2007/035491 PCT/US2006/036047

a computational device including memory for storing computer program instructions
and data, and a processor for executing the stored computer program instructions, the
computer program instructions including instructions for

providing a block diagram model; and

providing a locked element as part of the block diagram model;

wherein the locked element displays within the block diagram model but

access to the functionality of the locked element requires authorization.

33. The system of claim 32 wherein the instructions further comprise requiring authorization

to access the implementation details of the locked element.

34. The system of claim 32, wherein the instructions further comprise generating code from

the block diagram model.

35. The medium of claim 34, wherein code generated from the locked element without the

authorization is obfuscated.

36. The system of claim 32 wherein authorization allows the use of an application program

interface (API) on the element.

37. A system for generating and displaying a graphical modeling application, comprising:
a distribution server for providing to a client device, a locked element requiring
authorization to access the functionality of the locked element; and

a client device in communication with the distribution server.

38. The system of claim 37 wherein the locked element further requires authorization to

access the implementation details of the locked element.

39. In a network having a server, execuﬁng a graphical modeling environment, and a client
device in communication with the server, a method comprising the steps of:

providing, at the server, a block diagram model of a dynamic system having a locked
element;

receiving, at the server from the client device, a request for access to the functionality

of the locked element; and

22

10

15

WO 2007/035491 PCT/US2006/036047

receiving, at the client device from the server, a request for authorization

40. The method of claim 39 further comprising the steps of:
receiving, at the server from the client, authorization; and
receiving, at the client from the server, access to the functionality of the locked

element.

41. The system of claim 40 further comprising receiving, at the client from the server, access

the implementation details of the locked element.

42. The system of claim 40 further comprising generating, at the sei'ver, code from the block

diagram model.

43. The system of claim 40 wherein authorization allows the use of an application program

interface (API) on the element.

23

WO 2007/035491

PCT/US2006/036047

113
& &—10
N
User 2
8
A /8 [
/O Device Mouse Processor |- 7
Display o - 4

\ eyboard Memory 6

\«8a _ 8c Diagramming application
Block
Diagram Bl%c‘::ks ‘
Editor, 6a —

. Graphical Execution

F] A entities Engine

Ig. 6 || 6
12
Create Block Diagram —
| I
Compile Block Diagram e
. l , _f—1 6
Link Block Diagram
Simulate —f18
Generate Code _I-ZO

Fig. IB

9
5

Storage

WO 2007/035491

2113

PCT/US2006/036047

File Edit View Simulaton Format Tools Help

=[0X]

Do @& XB@|o ~|) w[w7] fomd [O DL #|BED T @

N

| 200
' 210
220~ 212 214 230
Image \1 Graphic //
Source —#1Block
Out1
221 211

Ready [100% | | | il

Fig. 24

WO 2007/035491

PCT/US2006/036047

313

M [w] B3
File Edit Simulaton View Tools Add . Help .
>0 |PRBE|IXBR|x x| 1 = |HSE|IQ®a
=) 4]
® I 252
®
fa A
Bl 250 24 [input == input2]
=1 Y,
[l
AN ~ R
- (e b
N
260
. J v
< | | >

WO 2007/035491

413

PCT/US2006/036047

270
/

File Edit View Simulaion Format Tools Help

=0]%]

D|o &S| XR&|o o) a[os]ford | Q8 DG |@eD] e

1 function louttput = fcn(inputl, input2)
2 % Embedded MATLAB function in Simulink.
3 ' 4
4 if inputl == input2
5 output = inputl;
6 else ’ ‘
g output = inputl;
8 end
Ready [100% |) I |

Fig. 2C

WO 2007/035491 PCT/US2006/036047

513

' 310
Providing o
Block Diagram Model

A\ 4

Providing Locked | °2
Element

e l________, 330
| Simulation of
| Block Diagram Model !

|r Generate Code from
| Block Diagram Model :

WO 2007/035491 PCT/US2006/036047

6/13

/ 400

(= 1X]
File Edit View Simulaton Format Tools Help
415 430 ™ 425
In1 Out1
double Aray Average double 4»
/
410 432 434 420
Encrypted Subsystem

Fig. 4

' 5(%?*\\\\\\

>> get_param('EncryptedSubsystemExample/Encrypted Subsystem', 'Blocks')
??7? Error using ==> get param
Cannot access encrypted block diagram: EncryptedSubsystemExample/Encrypted Subsystem

>>|

Fig. 5

WO 2007/035491 PCT/US2006/036047

73

/—‘ 600

_(0915QcdaPe0VO5NVGAKIGO _bSqObCxoIECPCWSPSPKMSD:
_DbSqObCxoIECPCWSPSO = 6Uw166Qgl5Ak 2Bkk 2Bk .
_JwmAjgoHAhoXATsXMR14M [7W3H7_G50Z07V_17gm9fgll;{
_CW5PcOZGH0O3NVOSNTjyuf2 04JFOpF2Cok5Qg15VNKLHO; const
_Qg15QcdaPe0V0O5NYGAkJIGO *_2DsV2ulW6TsGThgPfnBnBn =

& 6Uwl66Qgl5Ak 2Bk 2Bk . jwmAjgoHAhoXAisXMR14M [
_edaPel3IBlo 2Bk 6Rk06_1;for(04JFOpF2Cok5Qg15VNKLHO=
_7W3H7_G50707V_17gm9fgl; 04JFOpF2Cok5Qg15VNKLHO<
_QhpLOWCgNYC5NVOSeeeeel; 04JF0pF2Cok5Qg15VNKLHO+) (
_bSqObCx0IECPCWSPSPKMSO+=_2DsV2ul6TsGThgPfnBnBn [
_04JFOpF2Cok5Qg15VNKLHOT; }} zyvjzaRmShbBH7W3HTudbT1 .
_CcX9ec5Rk06w31B134KJGA0=_bSqObCxoIECPCWS5PSPKMSO/
_Vhi100aAA99023498ALCh . VNKLHx16Uwl2Ewks7X7X71;

Fig. 6

I (] P9
A 710 |
Accessing the encrypted subsystem requires a password.
Password | xxxxxxxx
, N 720
OK f Cancel]
10— 740

Fig. 7

WO 2007/035491

8/13

PCT/US2006/036047

, /* 800

Hd
File Edit View Simulaton Format Tools Help
810 820
[340 850
1 double oy double X double 1i
Array gl -
Sum of Divide Average
Elements ,
. /1, double
Sizel&"'o

Fig. 8

WO 2007/035491 PCT/US2006/036047

013

///—-'900

>> get param('EncryptedSubsystemExample/Encrypted Subsystem', 'Blocks')

ans =

‘Array’
‘Divide’
'Size’
"Sum of
Elements’
'Average’

>>

Fig. 9

1000
/

Y

Sum

I
Add or subtract inputs. Specify one of the following:

a)sizing containing + or - for each input port. [for spacer between ports (e.g. ++||++)
b)scalar >=1.A value > 1 sums all inputs: 1 sums elements of a single input vector

Main | Signal data types —~—17020

V4
Icon shape: | rectangular : /
rectangular

List of signs:
+

Sample time (-1 for inherited):
-1

OK Cancel Help

Fig. 10

Apply

WO 2007/035491 PCT/US2006/036047

10/13

/* Tocal block i/0 variables*/
real T rtb_SumofElements;

/* Sum: '<S1>/Sun of Elements' incorporates:

* Inport: '<Root>/Inl’

*/

rtb_SumofElements = EncryptedSubsystemExample U.In1[0];

{ |
int T1l;

const real_T *u0 = &EncryptedSubsystemtxample_U.In1[1]

for (i1=0; 11 < 37926; il++) {
rtb_SumofElements += uO[il];

}
}

/* Qutport: '<Root>/0utl’ incorporates:

* Product: '<S1>/Divide’

*/ _

EncfyptedSubsystemExamp]e_Y.Outl-= rtb_SumofE]emenfs /-
EncryptedSubsystemExample B.Size;

Fig 11

WO 2007/035491 PCT/US2006/036047

1113

Selecting Element |/~ 1210
(or Block Diagram Model)

v 1220
Locking Element f
(or Block Diagram Model)

I I
I

| Block Diagram Model !
} create {
I Block I

WO 2007/035491 PCT/US2006/036047

12113

/' 1300
T~ T

File Edit View Simulation Fgrmat- Help

Simulink Debugger...
1310 —_| Fixed-Point Settings...

" Model Advisor...

Model Reference Graph...

C1)-double s I ookup Table Editor.. B

Array Sum ol Data Class Designer...
Elemen| Bus Editor...

7 Profiler
7“7 Coverage Settings...
Size

age .

[

Requirements | 4

Signal & Scope Manager...

Real-Time Workshop ~ »
External Mode Control Panel...
Control Design)
Parameter Estimation

Report Generator...

Launch SystemTest

I
Fig. 134

WO 2007/035491 PCT/US2006/036047

1313

1320 \

M=
: } 1330
Please provide password to unlock Block.
- Password
L 1340
OK L Cancel]
Fig. 13B
1400

Storage
Device

1420 \
=

Client Device Server

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/036047

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F21/24 GO6F9/44 GO6F17/50

According o International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, whetre practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2004/221256 A1 (MARTIN MAURICE [US] ET 1-43

AL) 4 November 2004 (2004-11-04)

paragraphs [0027] - [0066], [0291] -

[0436]
A BOULILA N: "Group support for distributed 1-43

collaborative concurrent software
modeling"

AUTOMATED SOFTWARE ENGINEERING, 2004.
PROCEEDINGS. 19TH INTERNATIONAL CONFERENCE
ON LINZ, AUSTRIA SEPT. 20-24, 2004,
PISCATAWAY, NJ, USA,IEEE,

20 September 2004 (2004-09-20), pages

422-425, XP010730483
ISBN: 0-7695-2131-2
the whole document

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which Is cited to establish the publication date of another
citation or other special reason (as specified)

0 document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*X' document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document Is combined with one or more other such docu-—
.rn?rr‘ns, zuch combination being obvious to a person skilled
inthe art.

&' document member of the same patent family

Date of the actual completion of the international search

17 January 2007

Date of malling of the international search report

31/01/2007

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Maenpdd, Jari

Form PCT/SA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/036047

C{Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No,

A

CERA C D ET AL: "RoTe-based viewing
envelopes for information protection in
collaborative modeling”

COMPUTER AIDED DESIGN, ELSEVIER PUBLISHERS
BV., BARKING, GB,

vol. 36, no. 9, August 2004 (2004-08),
pages 873-886, XP00D4511139

ISSN: 0010-4485

the whole document

1-43

Form PCT/ISA/210 (continuation of second sheet) {April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2006/036047
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2004221256 Al 04-11-2004 NONE

Form PCT/ISA/210 (patent family annex) (Aprll 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - wo-search-report
	Page 39 - wo-search-report
	Page 40 - wo-search-report

