PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 :

GO6F 11/14, 11/20 Al

(11) International Publication Number:

(43) International Publication Date:

WO 00/60463

12 October 2000 (12.10.00)

(21) International Application Number: PCT/US00/08940

(22) International Filing Date: 5 April 2000 (05.04.00)

(30} Priority Data:

60/127,881 5 April 1999 (05.04.99) Us

(71) Applicant: MARATHON TECHNOLOGIES CORPORA-
TION [US/US]; 1300 Massachusetts Avenue, Boxboro,
MA 01719 (US).

(72) Inventors: BISSETT, Thomas, D.; 30 Higgins Drive, Kingston,
RI 02881 (US). LEVEILLE, Paul, A.; 12 Stratton Road,
Grafton, MA 01519 (US). MUENCH, Erik; 677 Salem
Street, Groveland, MA 01834 (US). LORD, Christopher,
C.; 294 Hubbardston Road, Princeton, MA 01541 (US).

(74) Agents: HAYDEN, John, F. et al.,; Fish & Richardson P.C.,
601 Thirteenth Street, N.W., Washington, DC 20005 (US).

(81) Designated States: AU, CA, IP, European patent (AT, BE,
CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC,
NL, PT, SE).

Published
With international search report.

(54) Title: BACKGROUND SYNCHRONIZATION FOR FAULT-TOLERANT SYSTEMS

(57) Abstract

An inactive memory is synchronized with an active mem-
ory in a fault-tolerant computer system that includes an active
processor. Data is copied from the active memory to the inactive
memory using a background process that permits the active pro-
cessor to perform normal operations while the copying is proceed-
ing. Regions of the active memory in which changes are made
are tracked while the copying is proceeding, and, after copying
is complete, a determination is made as to whether data from the
regions of the active memory in which changes were made can be
copied to the inactive memory within a predetermined time pe-
riod using a foreground process that prevents the active processor
from performing normal operations. If the data can be copied to
the inactive memory within the predetermined time period using
the foreground process, the data is copied to the inactive memory
using the foreground process. If the data cannot be copied to the
inactive memory within the predetermined time period using the
foreground process, the copying, tracking, and determining are
repeated for the regions of the active memory in which changes
were made.

105
Y
[EVALUATE CHANCES OF SUCCESS |

110

NO

YES
115
[CREATE MEMORY COPY LIST[”
Te

[BACKGROUND COPY FROM LIST}-120

[CREATE MEMORY cOPY LisT 125

130
{ ESTIMATE FOREGROUND TIME}”

< PERMITTED NO

14\0
[FOREGROUND COPY FROM LIST]

145
COPY CONTEXT

MAX # OF
BACKGROUND
ATTEMPTS?

NO

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

BR
BY
CA
CF

CH
CI

CM
CN
CU
Cz
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT,

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzertand
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
Kp

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
T
UA
UG
us
vz
VN
YU
YA

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 00/60463 PCT/US00/08940

BACKGROUND SYNCHRONIZATION FOR FAULT-
TOLERANT SYSTEMS

TECHNICAL FIELD
The invention relates to restoring synchronized execution by processors in fault

resilient/fault tolerant computer systems.

BACKGROUND

Computer systems that are capable of surviving hardware failures or other faults
generally fall into three categories: fault resilient, fault tolerant, and disaster tolerant.

Fault resilient computer systems can continue to function, often in a reduced capacity,
in the presence of hardware failures. These systems operate in either an availability mode or an
integrity mode, but not both. A system is "available" when a hardware failure does not cause
unacceptable delays in user access, which means that a system operating in an availability
mode is configured to remain online, if possible, when faced with a hardware error. A system
has data integrity when a hardware failure causes no data loss or corruption, which means that a
system operating in an integrity mode is configured to avoid data loss or corruption, even if the
system must go offline to do so.

Fault tolerant systems stress both availability and integrity. A fault tolerant system
remains available and retains data integrity when faced with a single hardware failure, and,
under some circumstances, when faced with multiple hardware failures.

Disaster tolerant systems go beyond fault tolerant systems. In general, disaster tolerant
systems require that loss of a computing site due to a natural or man-made disaster will not
interrupt system availability or corrupt or lose data.

All three cases require an alternative component that continues to function in the
presence of the failure of a component. Thus, redundancy of components is a fundamental
prerequisite for a disaster tolerant, fault tolerant or fault resilient system that recovers from or
masks failures. Redundancy can be provided through passive redundancy or active
redundancy, each of which has different consequences.

A passively redundant system, such as a checkpoint-restart system, provides access to
alternative components that are not associated with the current task and must be either activated

or modified in some way to account for a failed component. The consequent transition may

10

16

20

25

30

WO 00/60463 PCT/US00/08940

cause a significant interruption of service. Subsequent system performance also may be
degraded. Examples of passively redundant systems include stand-by servers and clustered
systems. The mechanism for handling a failure in a passively redundant system is to
"fail-over," or switch control, to an alternative server. The current state of the failed
application may be lost, and the application may need to be restarted in the other system. The
fail-over and restart processes may cause some interruption or delay in service to the users.
Despite any such delay, passively redundant systems such as stand-by servers and clusters
provide "high availability" and do not deliver the continuous processing usually associated with
"fault tolerance."

An actively redundant system, such as a replication system, provides an alternative
processor that concurrently processes fhe same task and, in the presence of a failure, provides
continuous service. The mechanism for handling failures is to compute through a failure on the
remaining processor. Because at least two processors are looking at and manipulating the same
data at the same time, the failure of any single component should be invisible both to the
application and to the user.

The goal of a fault tolerant system is to produce correct results in a repeatable fashion.
Repeatability ensures that operations may be resumed after a fault is detected. In a checkpoint-
restart system, this entails rolling back to a previous checkpoint and replaying the inputs again
from a journal file. In a replication system, repeatability results from simultaneous operation
on multiple instances of a computer.

Processes performed when a fault occurs in an actively redundant system may include
fault detection, fault isolation, fault recovery, repair, and system restoration (including
synchronization). For example, when application instructions are executed in the same order
on all copies of a processor, and a fault occurs in one copy of the processor:

1. The fault is detected.

2. The fault is identified as coming from a particular copy of the processor and
effects of the fault are constrained so as not to adversely affect the system.

3. The system recovers from the fault and continues with no side effects to the
application, but with a reduced level of fault tolerance.

4. The faulty processor is repaired or replaced.

10

15

20

25

30

WO 00/60463 PCT/US00/08940

5. The repaired processor synchronizes itself with the remaining processors to

restore the system’s normal level of fault tolerance.

The synchronization process may be performed as a foreground process or a
background process. Foreground synchronization takes complete control of the processors and
dedicates them to copying all memory contents and processor context information to the
synching processor. Background synchronization copies the memory contents to the synching
processor as a background process (i.e., while application programs continue to run), and then
switches to a short foreground synchronization process to copy processor context information.

 Foreground synchronization consumes 100% of the processors' operating cycles for the
duration of the memory copy. This locks out any application programs being run by the
processors from all external devices, which may be a problem if the memory copy takes too
long. For example, with some network protocols, a network connection that is not serviced at
least once every six seconds can be dropped. This places a restriction on the maximum
memory size that can be supported without making special provisions in the application
program for the fault tolerant state of the system, which is undesirable.

The maximum memory size that can be supported for a particular maximum
synchronization time can be increased by increasing the 1/0 bandwidth in a direct, linear
relationship with the increase in memory size. In recent years, desired growth in memory size
has outpaced the I/O bandwidth of computers, making it difficult to synchronize desired
memory sizes with foreground synchronization.

Background synchronization renders the linear relationship between I/O bandwidth and
memory size unnecessary by allowing the memory copy to occur while the application is still
running. The timing constraint associated with background synchronization is that the duration
of the foreground process at the end of the bulk memory copy must be less than the permitted
maximum (e.g., six seconds).

One prior approach to background synchronization was to sweep all memory with direct
processor read/writes or with direct memory access ("DMA"). Every location touched was
transferred to the synching processor. This sweep was done while application processes were
running. Any location that an application process modified also needed to be transferred. This

was achieved using a custom memory controller that, every time that a memory write occurred,

-3-

10

15

20

25

WO 00/60463 PCT/US00/08940

automatically transferred the address/data pair associated with the memory write to the
synching processor. This approach guaranteed that, at the end of the memory sweep, all
memory had been transferred. The final foreground task consisted of sending the processor
context to the synching processor.

The background sweep could be stretched out over seconds to hours depending on the
memory size and the system /O bandwidth that the operator was willing to dedicate to the
synchronization process. The final foreground part of the synchronization occurred in less than

one second.

SUMMARY

In one general aspect, the invention features synchronizing an inactive memory with an
active memory in a fault-tolerant computer system that includes an active processor. Data is
copied from the active memory to the inactive memory using a background process that permits
the active processor to perform normal operations while the copying is proceeding. Regions of
the active memory in which changes are made are tracked while the copying is proceeding,
and, after copying is complete, a determination is made as to whether data from the regions of
the active memory in which changes were made can be copied to the inactive memory within a
predetermined time period using a foreground process that prevents the active processor from
performing normal operations. If the data can be copied to the inactive memory within the
predetermined time period using the foreground process, the data is copied to the inactive
memory using the foreground process. If the data cannot be copied to the inactive memory
within the predetermined time period using the foreground process, the copying, tracking, and
determining are repeated for the regions of the active memory in which changes were made.

Implementations may include one or more of the following features. For example, an
evaluation may be made as to whether the synchronizing is likely to be successful prior to
copying data from the active memory to the inactive memory using the background process.
Such an evaluation may be accomplished in one of several ways. For example, evaluating
whether the synchronizing is likely to be successful may include comparing a rate at which data
in the active memory are modified to a rate at which data can be transferred from the active

memory to the inactive memory using the background process.

10

15

20

25

30

WO 00/60463 PCT/US00/08940

When the result of the evaluating indicates that the synchronizing is not likely to be
successful, efforts may be made to mitigate the problem. Mitigation may include, for example,
increasing an amount of bandwidth allocated to the background process prior to repeating the
copying, tracking, and determining for the regions of the active memory in which changes were
made. Mitigation also may include restricting an amount of working memory for one or more
running applications to a minimum amount that still permits the one or more running
applications to run prior to repeating the copying, tracking, and determining for the regions of
the active memory in which changes were made. In addition, a data compression operation
may be performed on the data from the regions of active memory in which changes were made
prior to repeating the copying, tracking, and determining for the regions of the active memory
in which changes were made.

Active memory may be associated with the active processor. The active processor may
include a compute element and an I/O processor, where the compute element implements the
copying, tracking and determining.

A memory copy list identifying portions of the active memory for which data are to be
copied to the inactive memory using the background process may be created and used in
copying data using the background process. Tracking regions of the active memory may
include creating a new memory copy list.

When the computer system includes an inactive processor associated with the inactive
memory, and the active processor is associated with the active memory, the context of the
active processor may be copied to the inactive processor.

Tracking regions of the active memory may include using a page table structure
including pages of memory and correspdnding page table entries, with each page table entry
including an indicator bit that is set when a memory location of the corresponding page of
memory is modified. In another example, the active processor includes a memory control
section and tracking regions of the active memory includes using a memory block structure
allocated by the memory control section, including updating a flag corresponding to a block of
memory whenever the block of memory is modified.

When the data from the regions of the active memory in which changes were made
cannot be copied to the inactive memory within the predetermined time period using the

foreground process, the method may include, for example, increasing an amount of bandwidth

-5

10

15

20

25

WO 00/60463 PCT/US00/08940

allocated to the background process prior to repeating the copying, tracking, and determining
for the regions of the active memory in which changes were made. As an alternative, or in
addition, an amount of working memory for one or more running applications may be restricted
to a minimum amount that still permits the one or more running applications to run prior to
repeating the copying, tracking, and determining. Also, a data compression operation may be
performed on the data from the regions of active memory in which changes were made prior to
repeating the copying, tracking, and determining. These techniques also may be used prior to
the initial copying of data from the active memory to the inactive memory using the
background process.

A number of pages of active memory may be allocated to the synchronization process
prior to copying data from the active memory to the inactive memory using the background
process. Prior to the allocation, the inactive memory is cleared, and only unallocated pages are
copied.

Another implementation may include clearing the inactive memory and determining
which regions of the active memory contain nonzero data. In this implementation, copying
data from the active memory to the inactive memory using the background process includes
copying data only from the regions of the active memory that contain nonzero data. The active
processor may include a memory control section, and determining which regions of the active
memory contain nonzero data then may include using the memory control section to store a list
of which regions of active memory contain nonzero data.

The details of one or more embodiments of the invention are set forth in the accompa-
nying drawings and the description below. Other features, objects, and advantages of the

invention will be apparent from the descfiption and drawings, and from the claims.

DESCRIPTION OF DRAWINGS
Fig. 1 is a flow chart that illustrates a procedure for providing background

synchronization for a fault tolerant system.

Figs. 2 and 3 are block diagrams of a fault tolerant system that emulates clock lockstep

operation.

10

15

20

25

WO 00/60463 PCT/US00/08940

Fig. 4 is a flow chart that illustrates a procedure for providing background
synchronization for a fault tolerant system using a software-only, page table tracking
implementation.

Fig. 5 is a flow chart that illustrates a procedure for providing background
synchronization for a fault tolerant system using a software-only, balloon zeroing
implementation.

Fig. 6 is a flow chart that illustrates a procedure for providing background
synchronization for a fault tolerant system using a hardware-assisted memory controller

tracking method.

Like reference symbols in the various drawings indicate like elements.

DETAILED DESCRIPTION

A heuristic approach may be used to provide background synchronization without
requiring a custom memory controller. The heuristic approach attempts to perform the
foreground part of the synchronization in less than the permitted maximum synchronization
time (e.g., six seconds). The background task is not limited in time or in the number of
memory sweeps performed.

Referring to Fig. 1, the heuristic approach operates according to a procedure 100. First,
the chances that the synchronization will complete successfully are evaluated (step 105). As
discussed in more detail below, this evaluation may involve a comparison of the rate at which
memory is copied to the rate at which memory is modified. If there is no chance of success
(step 110), the evaluation is repeated (stép 105), with the hope that system conditions will have
changed in a way that permits synchronization to complete successfully. The evaluation may
be repeated upon expiration of a fixed delay period.

If there is some chance of success, a memory copy list is created (step 115). Next, all
blocks of memory in the memory copy list are copied to the synching processor using a
background process (step 120).

A new memory copy list then is created (step 125). This new list identifies all memory

blocks that have been modified since the last memory copy list was created. From the new

10

15

20

25

30

WO 00/60463 PCT/US00/08940

memory copy list, the time required to perform a foreground synchronization process is
estimated (step 130).

If the estimated time for foreground synchronization is less than the permitted
maximum (e.g., six seconds) (step 135), then the memory copy is completed using foreground
synchronization (step 140). After memory copy is completed, the processor context is copied
to the synching processor in the foreground to complete the synchronization procedure (step
145).

If the estimated time for foreground synchronization is greater than the permitted
maximum (step 135), and background memory copy has not been attempted a maximum
number of times (step 150), all blocks of memory in the memory copy list are copied to the
synching processor using a background process (step 120). The procedure then proceeds as
described above.

If the estimated time for foreground synchronization is greater than the permitted
maximum (step 135), and background memory copy has been attempted a maximum number of
times (step 150), this attempt at synchronization has failed. Upon failure of synchronization,
the chances that the synchronization will complete successfully are again evaluated (step 105).

A memory block structure is used to track the areas of memory that have been modified
and to create the memory copy lists. The memory block structure may be provided in several
different ways.

The most basic way is a page table structure. This structure is provided by processors
currently available from Intel Corporation. Each page table entry ("PTE") includes a dirty bit
that is set when a memory location of the page is modified. The dirty bit is set by hardware,
and is not altered by the operating systenﬁ. The PTEs can be used to track which pages of
memory are modified while the background memory copy is performed.

The PTEs provide a very detailed list of modified pages. For example, for a one
gigabyte memory, there are up to one million page table entries. This list may be too detailed
to use for synchronization purposes.

An alternate approach is to add a tracking mechanism to the memory control section of
the motherboard chip set. A section of memory (part of system memory, on-chip memory, or
dedicated external memory) can be allocated to a modified block structure. Whenever a block

of memory is written, a corresponding flag in the modified block structure is updated. Between

-8-

10

15

20

25

30

WO 00/60463 , PCT/US00/08940

passes of the background copy process, a snapshot of the modified block structure is made to
control the next pass of the background copy process.

There is a tradeoff between the resolution of the modified block structure and the
transfer time for a block. Each background copy pass requires scanning the structure and
setting up transfers (i.e., creating the memory copy list). The transfer time for each block is
directly related to the block size, while the scan time is inversely related to the block size.

To evaluate whether the synchronization will complete successfully (step 105), the
block modification rate is monitored to see if a background synchronization procedure will ever
finish. For example, if two blocks get modified during the time required to copy one block,
then the background synchronization will never finish.

To create the first memory copy list (step 115), a list of all blocks of memory is created.
To create subsequent memory copy lists (step 125), a list of all modified blocks of memory is
created. In either case, the PTEs or the modified block structure are cleared after the memory
copy list is created.

The procedure is not guaranteed to complete. If the block modification rate is too high,
there will always be more modified memory blocks to copy than can be copied in the permitted
foreground copy time. Several refinements can be made to improve the chances of success. In
a first example, the bandwidth that the background copy task is allowed to consume is
increased. In a second example, any running applications are restricted down to their minimum
working memory sets. In a third example, rudimentary data compression is performed on the
memory images before transfer. Particular implementations may use one or more of these
techniques.

The more bandwidth that is alloWed to the background synchronization copy, the fewer
blocks of memory the applications will have time to modify during the background copy. At
100% background allocation, synchronization will always succeed. However, this is likely to
violate the maximum synchronization time requirement, since background synchronization
with a 100% allocation is really foreground synchronization.

The synchronization process can allocate large chunks of system memory to itself. This
memory then can be zeroed in both processors, so that it does not need to be copied. In
addition, synchronization allocation restricts the number of memory pages available for

applications to modify.

10

15

20

25

30

WO 00/60463 PCT/US00/08940

To implement synchronization allocation, the synchronization process starts with a
small set of pages and expands the number of pages until the operating system prevents the
process from taking any more. The synchronization process runs as a driver under the
operating system, which means that the process is allowed to lock down pages of memory so
that they are never sent out to disk storage. Accordingly, any pages given to the
synchronization process represent pages of physical memory that do not have to be copied.
The physical memory available to applications that are running is compressed until the
applications are close to their minimum working sets.

The memory data to be copied may be compressed before a copy. A benefit of such a
compression is that the processor-to-memory bandwidth is much greater than the memory-to-
I/O bandwidth. As a result, a simple compression scheme can reduce the total copy time
significantly.

Referring to Fig. 2, the procedure 100 may be implemented by a fault tolerant system
200, such as the Endurance® 4000 system, which is available from Marathon Technologies
Corporation of Boxboro, Massachusetts. The system operates multiple instances of a compute
element in instruction stream lockstep, which means that the multiple instances of a compute
element perform the same sequence of instructions in the same order. By contrast, fully phase-
locked operation, which also may be referred to as clock lockstep operation, occurs when
multiple instances of a compute element perform the same sequence of instructions in the same
order, with each instruction being performed in the same clock cycle by each instance of the
compute element.

As noted, the instances of a compute element in the system 200 operate in instruction
stream lockstep. The time needed to execute the instruction stream varies due to the
uncontrolled past history of each compute element. For example, caches, table look-ahead
buffers, branch prediction logic, speculative execution logic, and execution pipelines of the
compute elements can have different initial values, which, even though the instruction streams
being executed are the same, result in varying execution times.

Clock lockstep operation may be achieved by using a common oscillator to provide
clocks to all instances of the compute element. However, such an implementation may be
unsuited for fault tolerant operation because it includes a single component, the common

oscillator, the failure of which will cause failure of the entire system.

- 10 -

10

15

20

25

30

WO 00/60463 PCT/US00/08940

Emulated clock lockstep operation avoids the single point of failure and is achieved
using the techniques described below. Emulated clock lockstep operation offers the
considerable additional benefit of permitting the different instances of a compute element to be
separated by distances of up to a kilometer or more.

In general, all computer systems perform two basic operations: (1) manipulating and
transforming data, and (2) moving the data to and from mass storage, networks, and other I/0
devices. The system 200 divides these functions, both logically and physically, between two
separate processors. For this purpose, each half of the system 200, called a tuple, includes a
compute element ("CE") 205 and an I/O processor ("IOP") 210. The compute element 205
processes user application and operating system software. Thus, the compute element 205
implements the procedure 100. 1/O requests generated by the compute element 205 are
redirected to the I/O processor 210. This redirection is implemented at the device driver level.
The I/O processor 210 provides I/O resources, including 1/0 processing, data storage, and
network connectivity. The I/O processor 210 also controls synchronization of the compute
elements.

The system 200 is fault tolerant in that it continues to operate transparently to its users
in the presence of any single hardware failure. The system 200 emulates a traditional
computing environment by partitioning the environment into two components. The compute
element 205 handles all computing tasks for the operating system and any applications. The
I/O processor 210 handles all I/O devices. Thus, the I/O processor 210 handles all of the
asynchronous activities associated with a computer, while the compute element 205 handles all
of the synchronous computing activities.

To provide the necessary redundahcy for fault tolerance, the system 200 includes at
least two compute elements 205 and at least two I/O processors 210. The two compute
elements 205 operate in lockstep while the two I/O processors 210 are loosely coupled. The
I/O processors 210 feed both compute elements 205 the exact same data at a controlled place in
the instruction streams of the compute elements. The I/O processors 210 verify that the
compute elements 205 generate the same I/O operations and produce the same output data at
the same time. The I/O processors 210 also cross check each other for proper completion of

requested I/O activity.

-11-

10

15

20

25

30

WO 00/60463 PCT/US00/08940

The system 200 uses a software-based approach in a configuration based on
inexpensive, industry standard processors. For example, the compute elements 205 and I/0
processors 210 may be implemented using Pentium Pro processors available from Intel
Corporation. The system may run unmodified, industry-standard operating system software,
such as the Windows NT operating system available from Microsoft Corporation, as well as
industry-standard applications software. This permits a fault tolerant system to be configured
by combining off-the-shelf, Intel Pentium Pro-based servers from a variety of manufacturers,
which results in a fault tolerant or disaster tolerant system with low acquisition and life cycle
costs.

Each compute element 205 includes a processor 215, memory 220, and an interface
card 225 (also referred to as a Marathon interface card, or MIC). The interface card 225
includes drivers for communicating with two I/O processors simultaneously, as well as
comparison and test logic that assures results received from the two I/O processors are
identical. In the fault tolerant system 200, the interface card 225 of each compute element 205
is connected by high speed links 230, such as fiber optic links, to interface cards 225 of the two
1/O processors 210. The interface cards 225 may be implemented as PCl-based adapters.

Each I/O processor 210 includes a processor 215, memory 220, an interface card 225,
and /O adapters 235 for connection to I/O devices such as a hard drive 240 and a network 245.
As noted above, the interface card 225 of each I/O processor 210 is connected by high speed
links 230 to the interface cards 225 of the two compute elements 205. In addition, a high speed
link 250, such as a private Ethernet link, is provided between the two I/O processors 210.

All /O task requests from the compute elements 205 are redirected to the /O
processors 210 for handling. The I/O prbcessor 210 runs specialized software that handles all
of the fault handling, disk mirroring, system management, and resynchronization tasks required
by the system 200. By using a multitasking operating system, such as Windows NT, the I/O
processor 210 may run other, non-fault tolerant applications. In general, a compute element
may run Windows NT Server as an operating system while, depending on the way that the 1/O
processor is to be used, an I/O processor may run either Windows NT Server or Windows NT
Workstation as an operating system.

The two compute elements 205 run lockstep control software, also referred to as

quantum synchronization software, and execute the operating system and the applications in

-12-

10

15

20

25

30

WO 00/60463 PCT/US00/08940

emulated clock lockstep. Disk mirroring takes place by duplicating writes on the disks 240
associated with each I/O processor 210. If one of the compute elements 205 should fail, the
other compute element 205 keeps the system running with a pause of only a few milliseconds
to remove the failed compute element 205 from the configuration. The failed compute element
205 then can be physically removed, repaired, reconnected, and turned on. The repaired
compute element then is brought back automatically into the configuration by transferring the
state of the running compute element to the repaired compute element over the high speed links
230 and resynchronizing using, for example, the procedure 100. The states of the operating
system and applications are maintained through the few seconds it takes to resynchronize the
two compute elements 205 so as to minimize any impact on system users.

If an I/O processor 210 fails, the other I/O processor 210 continues to keep the system
running. The failed I/O processor then can be physically removed, repaired and activated.
Since the 1/O processors are not running in lockstep, the repaired system may go through a full
operating system reboot, and then may be resynchronized. After being resynchronized, the
repaired 1/O processor automatically rejoins the configuration and the mirrored disks are
re-mirrored in background mode over the private connection 250 between the /O processors
210. A failure of one of the mirrored disks is handled through the same process.

The connections to the network 245 also are fully redundant. Network connections
from each I/O processor 210 are booted with the same address. Only one network connection
is allowed to transmit messages, while both are allowed to receive messages. In this way, each
network connection monitors the other through the private Ethernet 250. Should either network
connection fail, the I/O processors 210 will detect the failure and the remaining connection will
carry the load. The I/O processors 210 notify the system manager in the event of a failure so
that a repair can be initiated.

While Fig. 2 shows both connections on a single network segment, this is not a
requirement. Each I/O processor's network connection may be on a different segment of the
same network. The system also accommodates multiple networks, each with its own redundant
connections. The extension of the system to disaster tolerance requires only that the connection
between the tuples be optical fiber or a connection having compatible speed. With such

connections, the tuples may be spaced by distances of a kilometer or more. Since the compute

- 13-

10

15

20

25

30

WO 00/60463 PCT/US00/08940

elements are synchronized over this distance, the failure of a component or a site will be
transparent to the users.

Fig. 3 provides a summarized view of the system 200 of Fig. 2. The system includes
redundant compute elements 205 ("CEs") and I/O processors 210 ("IOPs"). Each CE 205 is
responsible for all computing and may be implemented using an industry standard
motherboard. Each IOP 210 is responsible for access to 1/0 devices, and for system control.
The IOPs 210 run asynchronously of each other and verify that the CEs 205 are performing the
same operations in the same order. The IOPs 210 also track each other's I/O completion to
ensure that no I/O is lost.

The CEs 205 generate the same outputs in the exact same sequence, and run in emulated
clock lockstep, even though the CE clocks are asynchronous to each other. The CEs 205 are
initialized to the same state and are fed consistent inputs at exactly the same time. The CEs
205 are periodically realigned using a self-generated interrupt that is related to the occurrence
of a quantum of clock cycles (e.g., 100,000 clock cycles) and is referred to as a quantum
interrupt ("QI"). All inputs to the CEs 205 are delivered at either an output window or after the
completion of an instruction quantum. Both of these points are guaranteed to occur at the same
point in the instruction streams of the CEs 205. The approach employed by the system 200 is
described in U.S. Patent Nos. 5,600,784 and 5,615,403, both of which are incorporated by

reference.

Foreground Synchronization

A CE must be synchronized back into the system 200 following removal of the CE.
The CE may have been removed for any number of reasons: a transient failure, a hard failure
and repair, or even a scheduled removal. To rejoin the system, a foreground synchronization
procedure may be used to transfer the static state of a suspended CE to a synchronizing CE. A
large part of this procedure involves the transfer of CE main memory.

The CE operating system is suspended for the duration of the foreground
synchronization procedure. This suspension is visible to users, since applications and network
communications are temporarily stopped. The CE operating system resumes operation after the
synchronization procedure has completed. The temporary suspension, however, may cause

network session timeouts or exceed a user's requirements for application dead time.

-14-

10

16

20

WO 00/60463 PCT/US00/08940

Network connections are able to survive a full foreground synchronization on systems
that adhere to the 128 MB guideline for CE memory capacity. At 16 MB/s, foreground
synchronization of 128 MB is typically completed in approximately eight seconds. Users with
more than this amount of memory are advised to disable automatic CE synchronization and, as
necessary, to initiate the synchronization procedure at a convenient time of day or night.
Although this may be a viable work-around for some users, it is unacceptable to others.

Some users wish to impose a rigid limit on the amount of time an application can be
suspended, for any reason. Foreground synchronization will typically exceed this limit,
requiring the user to disable automatic CE synchronization.

One of the major benefits of the system 200 is its hands-off operation. Components are
automatically removed, joined (IOPs), mirrored, and synchronized as necessary to maintain a
high level of availability. This benefit cannot be fully realized by users that need to run with
larger CE memory sizes, yet have connectivity or real-time-like constraints. These users will
need to disable automatic CE synchronization and attempt to find a safe time to manually
initiate a resynchronization.

Permitted memory sizes may be increased by increasing the speed of the CE-to-CE
interconnect (i.e., the MIC). However, as shown below in Table 1, modest speed
improvements alone are not likely to reduce the foreground synchronization time to acceptable
levels. More aggressive interconnect speeds are possible, but only at much higher cost or by
imposing distance restrictions. The foreground synchronization rates of 50 MB/s and 100

MB/s are used here for illustrative purposes only.

CE Memory Size | Foreground Syxich Foreground Synch Ideal CE Synch
@ 50 MB/s @ 100 MB/s Time

1 GB 20 seconds 10 seconds < 6 seconds

2GB 40 seconds 20 seconds < 6 seconds

3GB 60 seconds 30 seconds < 6 seconds

4GB 80 seconds 40 seconds < 6 seconds

8 GB 160 seconds 80 seconds < 6 seconds

Table 1 - Foreground Synchronization Times

25

10

15

20

25

30

WO 00/60463 PCT/US00/08940

The ideal CE synchronization time is based on the worst-case session timeout period for
a protocol, such as TCP/IP, used by the system. In general, such a protocol will sustain
connections over longer periods of silence, but the exact time tolerated is determined and
adjusted dynamically by the protocol stacks. Tighter limits may be imposed by users with real-

time or substantially-real-time application requirements.

Background Synchronization

As discussed above, background synchronization refers to the process of transferring
portions of a running CE’s memory context to a synchronizing CE, without suspension of the
operating system. The CE operating system and applications are unaware of this controlled-
rate transfer, although the transfer does consume some portion of the MIC’s available
bandwidth. As the transfer is taking place, the CE operating system continues to run
applications and service network clients, with some tolerable level of degraded performance.
After many seconds of background transfer, depending on CE memory size and other
parameters, the CE operating system is suspended and foreground synchronization is performed
to transfer areas modified during the background synchronization.

The CE operating system workload profile can outpace the background memory
transfer such that the ensuing foreground synchronization will not complete within the desired
target time interval. However, software can pre-determine the foreground synchronization time
and choose to abort the synchronization process if user-selected limits are exceeded. This
allows automatic CE synchronization features to remain enabled, ensuring that network and
application timeout limits will not be exceeded.

The goals of the background synchronization are to allow all users to run the system
with automatic CE synchronization enabled, and to ensure that foreground synchronization will
never exceed a time limit established by the user. With these goals in mind, it is clear that the
overall time required to integrate a CE into the system is not particularly important. Some
degradation of CE operating system performance is also permissible during synchronization,

and this will likely also be settable by the user.

Software-Only, Page Table Tracking Implementation

-16 -

10

15

20

25

30

WO 00/60463 PCT/US00/08940

Referring to Fig. 4, this approach to a software-only implementation of background
synchronization employs the Pentium® architecture's ‘dirty’ indicators. These indicators are
provided for each page table entry and can be used to track processor modifications to memory.
The procedure 400 includes the same steps as the procedure 100 of Fig. 1, and adds two
additional steps. First, prior to performing a background copy of all pages to the target CE (i.e.,
after step 115 and before step 120), various page-table maintained indicators are set or cleared
(step 405). Following the background copy (step 120), these indicators are rechecked to
determine what pages were modified during the copy (step 410), and, therefore, must be copied
again during a subsequent background copy or during a foreground completion phase.

Advantages to this approach are that it works on existing Pentium-based systems, it is
not tied to hardware chip schedules, it permits page-level granularity of memory modifications,
and it should provide convergence on an acceptable foreground synchronization time under
most loads. Potential drawbacks of this approach are that its implementation is operating
system-specific, and that page tables only track processor-originated memory modifications,
and do not track adapter direct memory access ("DMA"). This approach also is sensitive to
operating system process context switching (e.g., page directory, and PTE management), and
may require access to the operating system source code to understand context-switch issues.
Finally, this approach raises the risk that unforeseen operating system behaviors, and future

operating system changes, may cause problems.

Software-Only, Balloon Zeroing Implementation

Referring to Fig. 5, a balloon zeroing procedure 500 provides a simpler approach to a
software-only implementation. Instead of performing a background copy of all memory, this
implementation begins by having the target CE clear all of its physical memory (step 505). The
master CE then drops into a foreground synchronization mode and transfers only pages that
contain non-zero data (step 510). This approach capitalizes on the observation that zero-filled
pages are quite common in most virtual-memory operating systems. In addition, cooperative
threads can be used to forcibly zero out a large portion of memory just prior to attempting the
foreground synchronization. This pre-zeroing effort is referred to as balloon zeroing,.

Advantages of this approach are that it works on existing Pentium-based systems; it is

not tied to hardware chip schedules; it is very simple to implement; and it permits page-level

-17-

10

15

20

25

30

WO 00/60463 PCT/US00/08940

granularity of zero/non-zero data. Potential disadvantages of this approach are that the scan
memory time to determine if foreground synchronization should be performed now may take
much more time, depending on memory size and processor speed; it may cause undesirable
application behavior if balloon zeroing is done too aggressively; and convergence on an
acceptable foreground synchronization time may not occur under many loads.

Balloon zeroing may be combined with other approaches. For example, the procedure
400 can be modified so that the target CE clears all of its memory prior to initiation of the
background copy. In this case, only non-zero memory of the master CE would be copied

during the first iteration of the background copy.

Hardware-Assisted Memory Controller Tracking Method

Referring to Fig. 6, with a small amount of hardware assistance from the memory
controller chip, a simple design and implementation that increases the chances for convergence
to an acceptable foreground wrap-up is possible. Rather than using the page table structure and
internal knowledge of the operating system's use of PTEs and other mechanisms, a small but
effective bitmap of block modifications can be maintained by the memory controller chip. The
granularity of this bitmap is far less than what is obtainable with PTE tracking, but is adequate
for the purpose of background synchronization. The procedure 600 differs from the procedure
100 shown in Fig. 1 only in that in step 605, which replaces step 115, the original memory copy
list is stored using the memory controller chip, and in step 610, which replaces step 125, the
updated memory copy list is created using the memory controller chip.

Advantages of this approach are that it is operating system independent, it is insensitive
to operating system uses of page table strﬁctures, it is insensitive to operating system methods
of process context switches, it is insensitive to future changes to operating system memory
management and kernel, it provides compact and efficient scanning of bitmap results, the
bitmap tracks all memory writes, including those originating from the processor and from the
MIC, and convergence on an acceptable foreground synchronization time should be very high.
This approach may be combined with balloon zeroing method to reduce background copy
traffic. Potential drawbacks of this approach are that it does not work with existing systems, it
is dependent on the motherboard and chip design cycle, its features are not supported on all

future chipsets, and that the granularity of memory modifications is limited by bitmap size.

- 18-

10

15

20

WO 00/60463 PCT/US00/08940

Hardware Approach to Background Synchronization

With the aid of specific features designed into the memory controller, a simple and
effective background synchronization mechanism may be implemented. The memory
controller provides a service whereby modifications made to areas of physical memory are
flagged in a bitmap structure, preferably register-based. Software chooses the time to clear this
bitmap and to enable the logging of memory writes to it. Software also requires the ability to
select the resolution of the bitmap, expressed as the number of base 2 kilobytes represented by
each bit. During the background transfer of CE memory, this bitmap is used to accumulate
block-level modifications to main memory on the sourcing CE.

The size of the bitmap determines the tracking granularity, or resolution, of each bit. A
1024-bit bitmap covers the same 4 GB range with a resolution of 0.1%, or 4 MB per bit. The
advantage is that automatic synchronization can be enabled at all times, allowing periodic
attempts at CE synchronization, which has a high probability of success.

The minimum recommended size of a hardware-maintained bitmap is such that a 0.1%

resolution is achievable. Table 2 lists the recommended bitmap sizes for various maximum

configurations.
Maximum Minimum Minimum Bitmap Resolution as
Memory Recommended Resolution Percent of
Configuration of Bitmap Size Maximum
Memory Memory
Controller
4GB 1024 bits 4 MB/bit 0.1%
8 GB 2048 bits 4 MB/bit 0.1%
16 GB 4096 bits 4 MB/bit 0.1%
32GB 8192 bits 4 MB/bit 0.1%
64 GB 16384 bits 4 MB/bit 0.1%

Table 2 - Recommended Bitmap Sizes

As indicated here, a bitmap of only 1024 bits is sufficient to support background
synchronization on configurations with up to 4 GB of memory. This results in a worst-case
resolution of 4MB, or 0.1% of the total memory, per bitmap bit. Allowing the resolution of the

-19.

10

15

20

25

30

WO 00/60463 PCT/US00/08940

bitmap to be software settable allows smaller memory configurations to be tracked with
comparable resolution.

Selectable resolutions finer than 1 MB/bit are necessary if the bitmap size implemented
is larger than the appropriate minimum recommended size from Table 2. For instance, a
bitmap of 2048 bits on a 4 GB (max) chipset requires a 0.5 MB/bit resolution to use all bitmap
bits if only 1 GB is actually present.

This approach may be implemented in a system that provides a register-based bitmap of
(at least) the recommended size (Table 2), or a memory-based bitmap using software-specified
base address and range. This latter approach is preferred because it gives software control over
resolution. Alternatively, a bitmap can be managed as a set of 32-bit registers, or as an internal
or external RAM array which is private to the memory controller chip.

The system also allows the bitmap to be cleared by software, preferably using
“longword writes” (i.e., overwriting the bitmap with words containing all zeroes).

The system also allows bitmap logging to be disabled (default) and enabled by
software. Disabling and enabling does not alter the contents of the bitmap. When enabled, all
processor or MIC originated writes to memory are tracked in the bitmap. Memory scrubbing
operations performed by the memory controller itself are not tracked.

The system also allows the block size (resolution) of the bitmap to be software settable.
Resolutions finer than 1 MB per bit are not essential, but are certainly desirable. If physical
memory is used for the bitmap, software sets the base physical address of the map, along with
the resolution (and, therefore, size).

Software guarantees that L1/L2 caches will be swept prior to evaluating the contents of
the memory controller’s bitmap. Softwafe also guarantees that writes (clears) to the bitmap
registers will never occur while bitmap tracking is enabled, ensuring that no dual-access
hazards need to be arbitrated by the memory controller. Other software operations affecting a
possible implementation, such as changing the base address of an external bitmap, occur only
when the logging feature is disabled.

A number of embodiments of the invention have been described. Nevertheless, it will
be understood that various modifications may be made without departing from the spirit and
scope of the invention. Accordingly, other embodiments are within the scope of the following

claims.

-20-

10

11

12

13

14

15

16

17

18

19

WO 00/60463 | PCT/US00/08940

WHAT IS CLAIMED IS:

1. A method of synchronizing an inactive memory with an active memory in a fault-
tolerant computer system that includes an active processor, the method comprising:

copying data from the active memory to the inactive memory using a background
process that permits the active processor to perform normal operations while the copying is
proceeding;

while the copying is proceeding, tracking regions of the active memory in which
changes are made;

after copying is complete, determining whether data from the regions of the active
memory in which changes were made can be copied to the inactive memory within a
predetermined time period using a foreground process that prevents the active processor from
performing normal operations;

if the data from the regions of the active memory in which changes were made can be
copied to the inactive memory within the predetermined time period using the foreground
process, copying the data from the regions of the active memory in which changes were made
to the inactive memory using the foreground process; and

if the data from the regions of the active memory in which changes were made cannot
be copied to the inactive memory within the predetermined time period using the foreground

process, repeating the copying, tracking, and determining for the regions of the active memory

in which changes were made.

2. The method of claim 1 further comprising, before copying data from the active
memory to the inactive memory using the background process, evaluating whether the

synchronizing is likely to be successful.

3. The method of claim 2 wherein evaluating whether the synchronizing is likely to be
successful comprises comparing a rate at which data in the active memory are modified to a
rate at which data can be transferred from the active memory to the inactive memory using the

background process.

-21-

WO 00/60463 _ PCT/US00/08940

4. The method of claim 2 further comprising, when the result of the evaluating
indicates that the synchronizing is not likely to be successful, increasing an amount of
bandwidth allocated to the background process prior to repeating the copying, tracking, and

determining for the regions of the active memory in which changes were made.

5. The method of claim 2 further comprising, when the result of the evaluating
indicates that the synchronizing is not likely to be successful, restricting an amount of working
memory for one or more running applications to a minimum amount that still permits the one or
more running applications to run prior to repeating the copying, tracking, and determining for

the regions of the active memory in which changes were made.

6. The method of claim 2 further comprising, when the result of the evaluating
indicates that the synchronizing is not likely to be successful, performing a data compression
operation on the data from the regions of active memory in which changes were made prior to
repeating the copying, tracking, and determining for the regions of the active memory in which

changes were made.

7. The method of claim 1 wherein the active memory is associated with the active

processor.

8. The method of claim 1 wherein the active processor comprises a compute element
and an I/O processor and the compute element implements the copying, tracking and

determining.

9. The method of claim 1 further comprising creating a memory copy list identifying
portions of the active memory for which data are to be copied to the inactive memory using the

background process, wherein copying data using the background process comprises using the

memory copy list.

-22-

WO 00/60463 PCT/US00/08940

10. The method of claim 9 wherein tracking regions of the active memory comprises

creating a new memory copy list.

11. The method of claim 1 wherein the fault-tolerant system further comprises an
inactive processor associated with the inactive memory, the active processor is associated with
the active memory, and the method further comprises copying a context of the active processor

to the inactive processor. .

12. The method of claim 1 wherein tracking regions of the active memory comprises
using a page table structure comprising pages of memory and corresponding page table entries,
with each page table entry including an indicator bit that is set when a memory location of the

corresponding page of memory is modified.

13. The method of claim 1 wherein the active processor comprises a memory control
section and tracking regions of the active memory comprises using a memory block structure
allocated by the memory control section, including updating a flag corresponding to a block of

memory whenever the block of memory is modified.

14. The method of claim 1 further comprising, when the data from the regions of the
active memory in which changes were made cannot be copied to the inactive memory within
the predetermined time period using the foreground process, increasing an amount of
bandwidth allocated to the background process prior to repeating the copying, tracking, and

determining for the regions of the active memory in which changes were made.

15. The method of claim 1 further comprising, when the data from the regions of the
active memory in which changes were made cannot be copied to the inactive memory within
the predetermined time period using the foreground process, restricting an amount of working
memory for one or more running applications to a minimum amount that still permits the one or
more running applications to run prior to repeating the copying, tracking, and determining for

the regions of the active memory in which changes were made.

-23.

WO 00/60463 PCT/US00/08940

16. The method of claim 1 further comprising restricting an amount of working
memory for one or more running applications to a minimum amount that still permits the one or
more running applications to run prior to copying data from the active memory to the inactive

memory using a background process.

17. The method of claim 1 further comprising, when the data from the regions of the
active memory in which changes were made cannot be copied to the inactive memory within
the predetermined time period using the foreground process, performing a data compression
operation on the data from the regions of active memory in which changes were made prior to
repeating the copying, tracking, and determining for the regions of the active memory in which

changes were made.

18. The method of claim 1 further comprising performing a data compression operation
on the data from the regions of active memory in which changes were made prior to copying

data from the active memory to the inactive memory using a background process.

19. The method of claim 1, wherein the method is implemented by a synchronization
process, the method further comprising allocating a number of pages of active memory to the
synchronization process prior to copying data from the active memory to the inactive memory

using a background process.

20. The method of claim 19 further comprising clearing pages of the inactive memory

corresponding to the allocated pages of the active memory.
21. The method of claim 19 further comprising clearing all of the inactive memory.
22. The method of claim 1 further comprising:
clearing the inactive memory; and

determining which regions of the active memory contain nonzero data, and wherein the

copying data from the active memory to the inactive memory using the background process

-24-

10
11
12
13
14
15
16
17
18
19

20

WO 00/60463 PCT/US00/08940

further comprises copying only data from the regions of the active memory that contain

nonzero data.

23. Software for use in synchronizing an inactive memory with an active memory in a
fault-tolerant computer system that includes an active processor, the software residing on a
computer-readable medium and comprising instructions causing the fault-tolerant computer
system to:

copy data from the active memory to the inactive memory using a background process
that permits the active processor to perform normal operations while the copying is proceeding;

while the copying is proceeding, track regions of the active memory in which changes
are made;

after copying is complete, determine whether data from the regions of the active
memory in which changes were made can be copied to the inactive memory within a
predetermined time period using a foreground process that prevents the active processor from
performing normal operations;

if the data from the regions of the active memory in which changes were made can be
copied to the inactive memory within the predetermined time period using the foreground
process, copy the data from the regions of the active memory in which changes were made to
the inactive memory using the foreground process; and

if the data from the regions of the active memory in which changes were made cannot
be copied to the inactive memory within the predetermined time period using the foreground
process, repeat the copying, tracking, and determining for the regions of the active memory in

which changes were made.
24. The software of claim 23, further comprising instructions causing the fault-tolerant
computer system to evaluate whether the synchronizing is likely to be successful, prior to

copying data from the active memory to the inactive memory using a background process.

25. The software of claim 23 wherein the fault-tolerant computer system further

comprises an inactive processor associated with the inactive memory, the active processor is

-25-

WO 00/60463 PCT/US00/08940

associated with the active memory, and the software further comprises instructions for causing

the system to copy a context of the active processor to the inactive processor.

26. The software of claim 23 wherein instructions causing the system to track regions
of the active memory comprise instructions causing the system to use a page table structure
including pages of memory and corresponding page table entries, with each page table entry
including an indicator bit that is set when a memory location of the corresponding page of

memory is modified.

27. The software of claim 23 wherein the active processor comprises a memory control
section and instructions causing the system to track regions of the active memory comprise
instructions causing the system to use a memory block structure allocated by the memory
control section, including instructions causing the system to update a flag corresponding to a

block of memory whenever the block of memory is modified.

28. The software of claim 23 further comprising, when the data from the regions of the
active memory in which changes were made cannot be copied to the inactive memory within
the predetermined time period using the foreground process, instructions causing the system to
increase an amount of bandwidth allocated to the background process prior to repeating the
copying, tracking, and determining for the regions of the active memory in which changes were

made.

29. The software of claim 23 further comprising instructions causing the system to
restrict an amount of working memory for one or more running applications to a minimum
amount that still permits the one or more running applications to run prior to copying data from

the active memory to the inactive memory using a background process.

30. The software of claim 23 further comprising instructions causing the system to
perform a data compression operation on the data from the regions of active memory in which
changes were made prior to copying data from the active memory to the inactive memory using

a background process.

- 26 -

10
11
12
13
14
15
16
17
18

19

WO 00/60463 PCT/US00/08940

31. The software of claim 23 further comprising instructions for causing the system to
allocate a number of pages of active memory to a synchronization process prior to copying data

from the active memory to the inactive memory using a background process.

32. The software of claim 23 further comprising instructions for causing the system to:

clear the inactive memory; and

determine which regions of the active memory contain nonzero data, and

wherein the instructions for causing the system to copy data from the active memory to
the inactive memory using the background process further comprise instructions for causing the

system to copy only data from the regions of the active memory that contain nonzero data.

33. A fault-tolerant computer system comprising an active processor with associated
active memory and an inactive processor with associated inactive memory, the system
configured to synchronize the inactive memory with the active memory by: copying data from
the active memory to the inactive memory using a background process that permits the active
processor to perform normal operations while the copying is proceeding;

while the copying is proceeding, tracking regions of the active memory in which
changes are made;

after copying is complete, determining whether data from the regions of the active
memory in which changes were made can be copied to the inactive memory within a
predetermined time period using a foreground process that prevents the active processor from
performing normal operations; ‘

if the data from the regions of the active memory in which changes were made can be
copied to the inactive memory within the predetermined time period using the foreground
process, copying the data from the regions of the active memory in which changes were made
to the inactive memory using the foreground process; and

if the data from the regions of the active memory in which changes were made cannot
be copied to the inactive memory within the predetermined time period using the foreground
process, repeating the copying, tracking, and determining for the regions of the active memory

in which changes were made.

-27-

WO 00/60463 PCT/US00/08940

34. The fault-tolerant computer system of claim 33, the system being further
configured to evaluate whether the synchronizing is likely to be successful before copying data

from the active memory to the inactive memory using the background process.

35. The fault-tolerant computer system of claim 33, the system being further .

configured to copy a context of the active processor to the inactive processor.

36. The fault-tolerant computer system of claim 33 wherein tracking regions of the
active memory comprises using a page table structure including pages of memory and
corresponding page table entries, with each page table entry including an indicator bit that is set

when a memory location of the corresponding page of memory is modified.

37. The fault-tolerant computer system of claim 33 wherein the active processor
comprises a memory control section and tracking regions of the active memory comprises
using a memory block structure allocated by the memory control section, including updating a

flag corresponding to a block of memory whenever the block of memory is modified.

38. The fault-tolerant computer system of claim 33, the system being further
configured to increase an amount of bandwidth allocated to the background process prior to
repeating the copying, tracking, and determining for the regions of the active memory in which
changes were made when the data from the regions of the active memory in which changes
were made cannot be copied to the inactive memory within the predetermined time period

using the foreground process.

39. The fault-tolerant computer system of claim 33, the system being further
configured to restrict an amount of working memory for one or more running applications to a
minimum amount that still permits the one or more running applications to run prior to copying

data from the active memory to the inactive memory using a background process.

40. The fault-tolerant computer system of claim 33, the system being further

configured to perform a data compression operation on the data from the regions of active

-28.-

WO 00/60463 PCT/US00/08940

memory in which changes were made prior to copying data from the active memory to the

inactive memory using a background process.

41. The fault-tolerant computer system of claim 33, the system being further
configured to allocate a number of pages of active memory to a synchronization process prior

to copying data from the active memory to the inactive memory using a background process.

42. The fault-tolerant computer system of claim 33, the system being further
configured to:

clear the inactive memory; and

determine which regions of the active memory contain nonzero data, and

wherein copying data from the active memory to the inactive memory using the
background process further comprises copying only data from the regions of the active memory

that contain nonzero data.

-29.

WO 00/60463 PCT/US00/08940

1/6

105 l' ’
A

EVALUATE CHANCES OF SUCCESS

100

10

CHANCES
OF SUCCESS?

NO

115

CREATE MEMORY COPY LIST
<

BACKGROUND COPY FROM LIST |-120

4
CREATE MEMORY COPY LIST }125

: 130
ESTIMATE FOREGROUND TIME [~

< PERMITTED =

140
FOREGROUND COPY FROM LIST

MAX # OF
BACKGROUND
ATTEMPTS?

NO

145 Y
N COPY CONTEXT

YES

FIG. 1

SUBSTITUTE SHEET (RULE 26)

PCT/US00/08940

WO 00/60463

2/6

Gvc

¢ ‘9l

NV

39VHOLS
A34OHHIN

T B et e R e L L L P L EE R IETEED RIS >
o¢~xﬂmww GeT mmmw;ovm
062
% 72227 72
0ZZ-Pfadonan o/ ™ \ Y\§O_ \>mO_>_m__>_ 1-0¢¢
oLz V= Y 13svg oot 227N~ 0L T
siz-f_Ndo PJAHONINA-6zz azz P on Ndd M qiz
777 oce W27 77
H0OSS300Hd O/l SYNI1 a33dS HOIH \ HOSS300Hd O/l
0£C— Ewm;_] —0€¢
77 0£C 7 7
SLeH ndo JIN Ff-§et Gzz1_ O Nd0 HB-GlL¢C
S0V zzzzz
oNN-m>mozmj\mmwxw \\\\>mozm§‘loNN
77 \\ 7

00¢

IN3IW3T3 31NdINOD

Goz- LNAW3T3 31NdWOD

SUBSTITUTE SHEET (RULE 26)

PCT/US00/08940

WO 00/60463

3/6

014 “137vdvd TIvIH3S
‘ISNON ‘g ‘"HHL3 ISOS
NOI1O341d34d O/l

g1L 211 '91d
‘YA JIN ‘FOV4HIALNI OIN
‘O3dIA INS

ANOHHONASY 30 40 S30HNOS

€ Ol

oLz
|
(s)dol
GZZ~ GZTZ~
OIN OIN
30 30
| —]
G0z JONVISIA G0Z

00¢

SUBSTITUTE SHEET (RULE 26)

WO 00/60463

4/6

PCT/US00/08940

105 !
EVALUATE CHANCES OF SUCCESS

110

CHANCES NO

OF SUCCESS?

15
CREATE MEMORY COPY LIST

405

SET INDICATORS OF MODIFIED PAGES}

—

y

:

BACKGROUND COPY FROM LIST L120

RECHECK INDICATORS FOR MODIFIED PAGES [~

410

CREATE MEMORY COPY LIST 125

130
ESTIMATE FOREGROUND TIME

14\0

FOREGROUND COPY FROM LIST

145 i
COPY CONTEXT

FIG. 4

y

MAX # OF
BACKGROUND
ATTEMPTS?

NO

YES

SUBSTITUTE SHEET (RULE 26)

WO 00/60463 PCT/US00/08940

5/6

500

105 «

\ Y
EVALUATE CHANCES OF SUCCESS

CHANCE
OF SUCCESS?

NO

505

CLEAR MEMORY OF TARGET CE
(BALLOON ZEROING OPERATION)

!

130 | ESTIMATE FOREGROUND TIME

51\0
FOREGROUND COPY OF NONZERO DATA

145 :
~| COPY CONTEXT

FIG. b

SUBSTITUTE SHEET (RULE 26)

WO 00/60463

105
"y

6/6

-

PCT/US00/08940

600

\4

EVALUATE CHANCES OF SUCCESS

605

CREATE MEMORY COPY LIST
AND STORE IN CHIP MEMORY

|/

Y

BACKGROUND C

OPY FROM LIST 120

4

CREATE MEMORY COPY LIST
USING CHIP MEMORY

610

y

130

ESTIMATE FOREGROUND TIME

-

140

MAX # OF

FOREGROUND COPY FROM LIST

BACKGROUND

145

Y

COPY CONTEXT

FIG. 6

ATTEMPTS?

YES

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Intert nal Application No

PCT/US 00/08940

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 GO6F11/14 GO6F11/20

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7 GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are inciuded in the fields searched

EPO-Internal

Electronic data base consuited during the interational search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

column 22, line 9 - line 41

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 5 579 220 A (BARTHEL HERBERT ET AL) 1,2,7-9,
26 November 1996 (1996-11-26) 11,
23-25,
33-35
column 1, Tine 61 -column 4, line 28;
figure 1
A US 5 608 865 A (HOLBERGER KENNETH D ET 1,2,7-9,
AL) 4 March 1997 (1997-03-04) 11,
23-25,
33-35

D Further documents are listed in the continuation of box C.

Patent tamily members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earier document but published on or after the intemational
filing date

*L" document which may throw doubts on priority claim(s) or
which is cited to estabiish the publication date of another
citation or other special reason (as specified)

"0" document referring to an oral disclosure, use, exhibition or
other means

*P" document published prior to the intemational filing date but
later than the priority date claimed

“T" later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu~
m%r‘\ts. such combination being obvious to a person skilled
in the art.

"&" document member of the same patent family

Date of the actual completion of the intemational search

12 July 2000

Date of mailing of the intemational search report

18/07/2000

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL -~ 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 eponl,
Fax: (+31-70) 340-3016

Authorized officer

Fernandez Balseiro,J

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

wwormation on patent family members

Interr ~al Application No

PCT/US 00/08940

Patent document Publication Patent family Publication

cited in search report date member(s) date

US 5579220 A 26-11-1996 AT 180902 T 15-06-1999
DE 59408335 D 08-07-1999
EP 0636956 A 01-02-1995
ES 2134883 T 16-10-1999

US 5608865 A 04-03-1997 NONE

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

