OFFICE DE LA PROPRIETE
INTELLECTUELLE DU CANADA

OPIC CIPO

ProrERTY OFFICE

(72) JOHNSON, Verlyn Mark, US
(72) KOSKI, Dennis Dale, US
(72) SHORE, Thomas Alan, US

(12) (19) (CA) Demande-Application

CANADIAN INTELLECTUAL

1) (A1) 2,251,980
86) 1997/02/19
&7 1997/10/30

(71) INTERNATIONAL BUSINESS MACHINES CORPORATION, US

(s1y Int.C1.° GOGF 9/44, GOGF 17/30
(30) 1996/04/24 (08/639,322) US

54y MECANISME DE CANEVAS ORIENTE OBJET POUR

RAISONNEMENT PAR CAS

54y OBJECT ORIENTED CASE-BASED REASONING

FRAMEWORK MECHANISM

Zoo Administration

e

Z00 Keeper Mechanism

E

o

N

Animal Mechanism

Containment Unit
Mechanism

(57) Un canevas de programmation orienté objet destiné
a une coquille de systeme de raisonnement basé¢ sur des
cas qui permet a un utilisateur de construire une base de
cas munie de définitions de structures de cas (104) et de
définitions de cas (106). Le systeme de raisonnement
basé sur des cas recoit les interrogations de 1’utilisateur
(108) et produit une solution a I’interrogation qui peut
étre incorporée a la base de cas. Le canevas orienté objet
comprend une composante de session qui contrdle le
traitement du systeme de raisonnement par cas, une
composante de débit de contréle qui gere I’extension des
catégories et des classes du canevas orienté objet, une
composante de mémoire de données qui mémorise les
cas, les définitions de structures de cas qui se répetent,
ainsi qu'un journal des variations, une composante de
présentation qui gere I'interface utilisateur du systeme de
raisonnement par cas, et une machine d’interrogation qui
évalue 'interrogation regue par rapport 4 la base de cas.
Les définitions de cas et les descriptions de la base de cas
comprennent un ensemble de classes orientées objet
organisées en hiérarchie par héritage.

I*I Industrie Canada Industry Canada

(57) An object-oriented programming framework for a
case-based reasoning (CBR) system shell that permits a
user build a case base having Case Structure Definitions
(104) and Case Instance Definitions (106). The case-
based reasoning system receives user queries (108) and
produces a query solution that can be incorporated into
the case base. The object-oriented framework includes a
Session component that controls processing of the CBR
system, a Control Flow component that manages the
extension of the categories and classes of the object-
oriented framework, a Data Store component that stores
persistent case structure definitions, case instances, and a
change log, a Presentation component that manages the
user interface to the CBR system user, and a Query
Engine that evaluates a received query against the case
base. The case definitions and case base descriptions
comprise a set of object-oriented classes that are
organized into an inheritance hierarchy.

CA 02251980 1998-10-19

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 17/30 Al

(11) International Publication Number:

(43) International Publication Date:

WO 97/40455

30 October 1997 (30.10.97)

(21) International Application Number: PCT/US97/02574

(22) International Filing Date: 19 February 1997 (19.02.97)

(30) Priority Data:

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
With international search report.

08/639,322 24 April 1996 (24.04.96) Us

(71) Applicant: INTERNATIONAL BUSINESS MACHINES
CORPORATION [US/US]; Old Orchard Road, Armonk,
NY 10504 (US).

(72) Inventors: JOHNSON, Verlyn Mark; R.R. 1, Box 169, Wykoff,
MN 55990 (US). KOSKI, Dennis, Dale; 4066 4th Place
N.W., Rochester, MN 55901 (US). SHORE, Thomas, Alan;
2121 17th Street N.E., Rochester, MN 55906-4313 (US).

(74) Agents: ROTH, Steven, W. et al.; IBM Corporation, Building
006-1, Dept. 917, 3605 Highway 52 North, Rochester, MN
55901-7829 (US).

(54) Title: OBJECT ORIENTED CASE-BASED REASONING FRAMEWORK MECHANISM

(57) Abstract

An object-oriented programming framework for a case-based reason-
ing (CBR) system shell that permits a user build a case base having Case
Structure Definitions (104) and Case Instance Definitions (106). The case-
based reasoning system receives user queries (108) and produces a query
solution that can be incorporated into the case base. The object-oriented
framework includes a Session component that controls processing of the
CBR system, a Control Flow component that manages the extension of the
categories and classes of the object-oriented framework, a Data Store com-
ponent that stores persistent case structure definitions, case instances, and
a change log, a Presentation component that manages the user interface to
the CBR system user, and a Query Engine that evaluates a received query
against the case base. The case definitions and case base descriptions com-
prise a set of object-oriented classes that are organized into an inheritance
hierarchy.

START
102\

START-UP PROCESSING

104

“

BUILD CASE
STRUCTURE DEFINITION

106
BUILD CASE_INSTANCE
DEFINITIONS
108
QUERY THE
CASE BASE

120 I

NEXT CBR TASK

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Degcription

Object Oriented Case-Based Reasoning Framework Mechanism

Background of the Invention

Field of the Invention

The present invention relates generally to data processing
and, more specifically, to object-oriented programming systems and
processes.

Description of the Related Art

The phrase "case-based reasoning” (CBR) generally refers
to a computer process that finds solutions to current problems by
examining descriptions of similar, previously encountered problems
and their associated solutions, matching the novel problems to the
closest previously encountered problems, and using the associated
solutions to produce a solution to the current problem. 1In a CBR
system, problem-solution descriptions are stored in a database
called a case base. Weights assigned to different properties of
each case are used in scoring cases for similarity against a current
problem. The CBR system receives a description of a current
problem, retrieves the closest matching cases from the case base
using a query engine processor, and iteratively prompts the user for
additional descriptive information until the retrieved case or cases
are sufficiently close (similar) to be considered a solution to the
current problem. The produced solution is then validated through a
variety of means, such as user feedback or automatic validation. A
validated solution can be added to the case base and used in future
problem solving, if appropriate.

CBR systems permit experience gained from solving problems
to be applied to a much larger number of problem situations than
could ©possibly be remembered by any one individual with
substantially reduced chance of providing erroneous or inconsistent
solutions. Validation of problem solutions provides an additional
safeqguard. Finally, updating the case base permits continuous
expansion of the case base against which problems are matched,
reducing the likelihood that a satisfactory problem solution cannot
be produced. In practical terms, CBR systems are gaining use in
computer-assisted and automated help-desk and customer service
systems and in computer help programs.

-1-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

The construction of the case base and the way in which
stored cases are matched and retrieved can vary greatly from CBR
system to CBR system. For example, the case base can comprise
problem-solution descriptions stored as plain language text, data
records having predefined fields, or semantic networks. Case
matching and retrieval processing by the query engine can comprise
implementation of nearest-neighbor algorithms, decision trees, or
associative memories. The user interface also must be part of the
CBR system development process, including construction of the user
input and solution presentation mechanisms. The development of each
CBR system therefore can require much time, effort, and expense in
making such data representation and processing decisions and
implementing them.

Many CBR systems are tailored for each particular subject
matter application and are developed using conventional procedure-
oriented programming languages, such as FORTRAN, Pascal, and C.
Many lines of computer programming code must be created for each
application. For example, even if the same type of case-matching,
query engine processing is used for different CBR systems, the query
engine must be adapted to work with the problem-solution description
being wused. Some code can be modified from other versions, or
deleted and replaced with different instructions for different
applications, which still can require much analysis and design
effort. The development of CBR systems would be easier, less
expensive, and less time consuming if the user interface could be
more consistent, representation of the problem-solution descriptions
standardized, development of the case base made simpler, and the
guery engine made interchangeable from application to application.

As CBR systems become more widely distributed, more users
of CBR systems will be novice users who might be unfamiliar with the
case base and with CBR search techniques generally. With current
CBR search implementations, search technigues employed by novice
users can easily be relatively ineffective. For example, CBR
systems typically use weighted matching techniques to find the cases
in the case base that are the closest match to a set of specified
search criteria. Cases are defined by a set of properties and cases
are deemed more closely matched to a search query if they have more
properties in common. Conventional weighting techniques can be said
to penalize cases that are more completely defined (have more
properties in their definition) because searches that leave many

properties unspecified result in fewer completely-defined cases

-2-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

being deemed a match. Novice users are especially prone to leaving
search properties unspecified. - ,

Many CBR search techniques also penalize cases that are
under -defined, or that have fewer properties defined than are
defined in the search query. Users of the CBR system have no
control over the way in which the system deals with unspecified
properties. Some systems attempt to reduce such problems by
assigning different weights to properties and thereby properly
accommodate case properties that are not specified in a search, case
properties that are unmatched to a search, or search properties that
are unmmatched to a case. Specifying the case base can become
relatively complicated, as case base developers struggle to assign
weights. Moreover, different weights might be advisable, depending
on the specific search. The CBR system either becomes unresponsive
to different searches or case definition becomes too complex.

In addition, it would be advantageous to permit both case
base developers and CBR system users to include their knowledge
about the relative importance of properties for each search query
and to adjust the match scoring approach. That is, a CBR system
user should not be forced to use the weight set specified by the
case base developer. Unfortunately, a CBR system that also supports
input of weight values for each search guery has not been available.

From the discussion above, it should be apparent that
there is a need for a case-based reasoning system development
mechanism tool that provides a basis for more rapid, less expensive,
and simpler development of case-based reasoning systems with greater

user flexibility. The present invention satisfies this need.

Summary of the Invention

In accordance with the present invention, a reusable
object oriented (00) framework for use with object oriented
programming systems comprises a case-based reasoning (CBR) shell
that permits a framework user to use a case set comprising a set of
case instance descriptions and generates a case-based reasoning
system that receives user requests for query solutions and produces
a query solution that can be incorporated into the set of case
instance descriptions. The object oriented framework includes a
Control Flow component that controls processing of the CBR system,
a Data Store component that manages all persistent data associated
with the system, and a Presentation component that manages interface
to users of the CBR system. After the 00 operating environment is

-3-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

established, the CBR system user can engage in operations such as
query processing, building case history definitions, and modifying
operating parameters, according to the object definitions. Thus,
the case history descriptions and search queries comprise a set of
object oriented classes that are organized into an inheritance
hierarchy. 1In this way, a single framework can be used to generate,
update, and use many different case histories and evaluate search
gueries with reduced development time. The extended framework
thereby quickly and efficiently provides a variety of case-based
reasoning systems.

In addition, the present invention permits dynamic, user
adjustment of property weights used in specifying a search query and
in specifying a case set from which a solution will be retrieved.
Such dynamic weighting can be applied to a case-based reasoning
system implemented in an object oriented environment or in a
procedural environment.

In one aspect of the invention, the CBR system developer
uses the framework to provide a set of case definitions, property
definitions, and case base descriptions for the CBR system under
development. The framework provides the CBR system shell having the
Control Flow component, Presentation component, Data Store
component, and a Query Engine component. The extended framework
provides a CBR system that includes the case base and receives a
current problem query, matches the current query description to the
closest case history description in the case base, and produces a
solution to the current query. The produced solution is validated
and, if appropriate, is added to the case base. In this way, a CBR
system developer can more guickly integrate a case base with a query
engine and user interface to provide an operable CBR system.

In another aspect of the present invention, property
weights assigned to cases in the case base are dynamically adjusted
during search and property weights are also assigned to the search
query. In this way, users specifying searches can control which
properties are used, what combinations of weights are used, and
whether or not missing properties should penalize the case history
matching.

For the case base, cases are stored as sets of
property/value pairs and each property is assigned an importance
rank value relative to the other properties of the case. The rank
values are normalized, so that unspecified properties in a query

that ordinarily would result in a lower match score instead can be

-4 -

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

compared in relative terms. Also, only properties specified in a
query are considered in calculating the normalized rank score, soO
that unspecified properties do not skew the scoring. In a similar
fashion, search queries are specified as property/value pairs and
each property is assigned a normalized importance rank relative to
the other properties of the search query and a match score is
computed considering only the defined properties of the query. 1In
this way, unspecified properties in a search query do not result in
lower match scoring.

Other features and advantages of the present invention
should be apparent from the following description of the preferred
embodiment, which illustrates, by way of example, the principles of
the invention.

Brief Description of the Drawings

Figure 1 1is a category diagram of an exemplary Zoo
Administration framework that illustrates the principles implemented
by the system of the present invention.

Figures 2, 3, 4, 5, and 6 are class diagrams for the
exemplary Zoo Administration framework of Figure 1.

Figure 7 is an object diagram for the exemplary framework
of Figures 1 through 6.

Figure 8 is a functional block diagram of a computer
processing system constructed in accordance with the present
invention.

Figure 9 is a flow diagram that illustrates the processing
steps performed by the framework mechanism of the computer
processing system illustrated in Figure 8.

Figure 10 is a flow diagram that illustrates the
processing steps performed by the extended framework mechanism of
the computer processing system in executing the build case structure
definition step of Figure 9.

Figure 11 is a flow diagram that illustrates the
processing steps performed by the extended framework mechanism of
the computer processing system in executing the construct
properties, values, and weight set processing step of Figure 10.

Figure 12 is a flow diagram that illustrates the
processing steps performed by the extended framework mechanism of
the computer processing system in executing the build case instance
definitions processing step of Figure 9.

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Figure 13 1is a flow diagram that illustrates the
processing steps performed by the extended framework mechanism of
the computer processing system illustrated in Figure 8 in producing
a solution to a query.

Figure 14 is a category diagram representation of the
framework mechanism of the computer processing system illustrated in
Figure 8.

Figure 15 is a class diagram representation of the CBR
Session category implemented by the computer processing system
illustrated in Figure 8.

Figure 16 is a class diagram representation of the CBR
Base category implemented by the computer processing system
illustrated in Figure 8.

Figure 17 is a class diagram representation of classes
related to a case structure definition for the CBR system as
implemented by the computer processing system illustrated in
Figure 8.

Figure 18 is a class diagram representation that shows the
functions implemented by the CaseDefinition category shown in
Figure 17.

Figure 19 is a class diagram representation of the
CaseDefinition category and related classes implemented by the
computer processing system illustrated in Figure 8.

Figure 20 is a class diagram representation of the
PropertyDefinition category and related classes implemented by the
computer processing system illustrated in Figure 8.

Figure 21 is a class diagram representation of the CaseSet
category and related classes implemented by the computer processing
system illustrated in Figure 8.

Figure 22 is a class diagram representation of classes
related to a case history instance as implemented by the computer
processing system illustrated in Figure 8.

Figure 23 is a class diagram representation of the Case
category and related classes implemented by the computer processing
system illustrated in Figure 8.

Figure 24 is a class diagram representation of the Value
category and related classes implemented by the computer processing
system illustrated in Figure 8.

Figure 25 is a class diagram representation of the
Caselnstance category and related classes implemented by the

computer processing system illustrated in Figure 8.

-6~

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Figure 26 is a class diagram representation of classes
related to a case qguery as implemented by the computer processing
system illustrated in Figure 8.

Figure 27 is a class diagram representation of the
CBRQuery category and related classes implemented by the computer
processing system illustrated in Figure 8.

Figure 28 is a class diagram representation of the Pattern
category and related classes implemented by the computer processing
system illustrated in Figure 8.

Figure 29 is a class diagram representation of the
DataStoreComponent category and related classes implemented by the
computer processing system illustrated in Figure 8.

Figure 30 is a class diagram representation of the
ControlFlowComponent category and related classes implemented by the
computer processing system illustrated in Figure 8.

Figure 31 is a class diagram representation of the
PresentationPart category and related classes implemented by the
computer processing system illustrated in Figure 8.

Figure 32 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when a CaseDefinition is created.

Figure 33 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when Property, Value, and WeightSet objects are
constructed.

Figure 34 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when ActionPrompt, Tracking, and IndexDefinition objects
are constructed.

Figure 35 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when Pattern objects are constructed.

Figure 36 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when a ParseDefinition object is updated.

Figure 37 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when a CaseDefinition object is stored.

Figure 38 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when a CaseInstance Definition object is created.

-7-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Figure 39 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 for selection of a CaseDefinition object.

Figure 40 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when a PropertyInstance object is created.

Figure 41 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when PropertyInstance and Value objects are built.

Figure 42 is a scenarioc diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when ActionPrompt objects are created and Audit methods are
performed.

Figure 43 is a scenario diagram representation of the
processing steps executed by the host processor illustrated 1in
Figure 8 when IndexDefinition objects are refreshed and a
CaseInstance object is stored.

Figure 44 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when a single CBR Query is received from a user.

Figure 45 is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when building a pattern for the CBR Query.

Figure 46 1is a scenario diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when a received CBR Query is evaluated.

Figure 47 is a scenaric diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when a CaseMatch Set is built.

Figure 48 is a scenarioc diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when a PropertyMatch Set is built.

Figure 49 is a scenarioc diagram representation of the
processing steps executed by the host processor illustrated in
Figure 8 when a Query solution is evaluated.

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Description of the Preferred Embodiment

Overview- -Object Oriented Technology

The present invention was developed using Object-Oriented
(00) framework technology. The preferred embodiment is implemented
in an object oriented programming environment. Therefore, an
exemplary 00 system will be described next. Individuals skilled in
the art of 00 framework technology may wish to proceed to the
Detailed Description section of this specification. However, those
individuals who are new to framework technology, or new to 00O
technology in general, should read this overview section in order to
best understand the benefits and advantages of the present
invention.

Object-Oriented Technology v. Procedural Technology

Though the present invention relates to a particular 00
technology (i.e., 00 framework technology), the reader must first
understand that, in general, OO0 technology 1is significantly
different than conventional, process-based technology (often called
procedural technology). While both technologies can be used to
solve the same problem, the ultimate solutions to the problem are
always quite different. This difference stems from the fact that
the design focus of procedural technology is wholly different than
that of 00 technology. The focus of process-based design is on the
overall process that solves the problem; whereas, the focus of 00
design is on how the problem can be broken down into a set of
autonomous entities that can work together to provide a solution.
The autonomous entities of 00 technology are called objects. Stated
another way, OO technology is significantly different from
procedural technology because problems are broken down into sets of
cooperating objects instead of into hierarchies of nested computer
programs or procedures. That is, procedural technology defines a
system in terms of data variables and process functions whereas 00
technology defines a system in terms of objects and classes.

The Term "Framework"

There has been an evolution of terms and phrases which
have particular meaning to those skilled in the art of 00 design.
However, the reader should note that one of the most 1loose
definitions in the 00 art is the definition of the word “framework."

-9-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

The word framework means different things to different people.
Therefore, when comparing the characteristics of two supposed 00
frameworks, the reader should take care to ensure that the
comparison is indeed one of “apples to apples.” As will become
more clear in the forthcoming paragraphs, the term framework is used
in this specification to describe an 00 technology system that has
been designed to have core function and extensible function. The
core function is that part of the framework that is not subject to
modification by the framework purchaser. The extensible function,
on the other hand, is that part of the framework that has been
explicitly designed to be customized and extended by the framework
purchaser as part of its implementation.

00 Framework

While in general terms an 00 framework can be properly
characterized as a type of 00 solution to a programming problem,
there is nevertheless a fundamental difference between a framework
and a basic 00 programming solution. The difference is that
frameworks are designed in a way that permits and promotes
customization and extension of certain aspects of the 0O solution,
whereas a basic 00 solution can be said to comprise a particular
collection, or library, of classes and objects. In other words,
frameworks provide an 00 programming solution that can be customized
and extended to address individualized requirements that change over
time. Of course, the customization/extension gquality of frameworks
is extremely valuable to purchasers (referred to herein as framework
consumers) because the cost of customizing or extending a framework
is much less than the cost of replacing or reworking an existing
program solution.

Therefore, when framework designers set out to solve a
particular problem, they should do more than merely design
individual objects and specify how those objects interrelate. They
should also design the core function of the framework (i.e., that
part of the framework that is not to be subject to potential
customization and extension by the framework consumer) and the
extensible function of the framework (i.e., that part of the
framework that is to be subject to potential customization and
extension). 1In the end, the ultimate worth of a framework rests not
only on the quality of the object design, but also on the design
choices involving which aspects of the framework represent core

function and which aspects represent extensible function.

10

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

ZAF--An Illustrative Framework

While those skilled in the art appreciate that framework
design is necessarily an intertwined and iterative process, example
design choices for a simplistic framework are set forth in the
paragraphs that follow. It should be understood, though, that this
is only an example framework that is being used in this
specification to illustrate and best explain frameworks such that
the reader can better understand and appreciate the benefits and
advantages of the present invention.

Framework designers determine what objects are needed for
a framework mechanism by selecting objects from what is called the
problem domain. The problem domain i1s an abstract view of the
specific problem at hand. The example problem domain chosen for the
illustrative framework is that of zoc administration. The specific
problem presented is that of designing a framework that assists zoo
keepers in the care and feeding of zoo animals. In the example,
which will be referred to as a Zoo Administration Framework (ZAF),
an 00 framework designer would look to the zoological problem domain
and decide that any ZAF would of necessity involve an abstraction
that represents the relationship between zoo keepers and animals
(i.e., represents how zoo keepers care for animals). The framework
designer would also likely recognize that zoo animals usually live
in cages, pens, tanks, and other sorts of containment units.
Therefore, the framework designer also would start with the idea
that the framework would have to involve abstractions or mechanisms
that represent all of these fundamental entities and relationships.

How ZAF is Designed

To begin the design process, the framework designer would
likely begin with what is called a category diagram. Category
diagrams are used to describe frameworks at a high level and to
define how the framework components relate to one another. Figure 1
is a category diagram for the example framework ZAF. The notation
used in Figure 1, and that used in the other figures of this
specification, is explained in detail in the Notation section at the
end of this portion of the specification. Each entity, or icon, in
a category diagram represents groupings of data objects that perform
a particular function. For the purposes of illustration, assume
that the framework designer decides that ZAF should be made up of
four components that, at a high level perspective, will be referred

-11-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

to as mechanisms: a Zoo Administration mechanism, a Zoo Keeper
mechanism, an Animal mechanism, and a Containment Unit mechanism.

As shown in Figure 1, the Zoo Administration mechanism has
been designed to use the Zoo Keeper mechanism to administer the zoo.
The Zoo Administration mechanism is therefore said to have a "“using"
relationship with the Zoo Keeper mechanism. (Again, please refer to
the notation section of this specification for an explanation of
this relationship and the other notation used in this
specification.)

As discussed above, the Zoo Administration mechanism has
been designed to have responsibility for overall control of ZAF.
Accordingly, the Zoco Administration mechanism is responsible for
scheduling the operation of the Zoo Keeper mechanism. Note also
that the framework dJdesigner has designed the Zoo Administration
mechanism to be a core function of ZAF, which means that it has been
designed such that it will not be subject to potential customization
and extension. The upper case block letter "C" in the category box
for the Zoo Administration mechanism denotes this fact. Note
further that the "uses" relationship between the Zoo Administration
mechanism and the Zoo Keeper mechanism also has been designed as a
core function such that it is not available for ultimate
customization by the framework consumer.

The Zoo Keeper mechanism has been designed to be generally
responsible for the care and feeding of the zoo animals.
Accordingly, it uses the Animal and Containment Unit mechanisms to
perform its tasks. Unlike the design of the Zoo Administration
mechanism, however, the framework designer has designed the Zoo
Keeper mechanism to be an extensible function, which again means
that the Zoo Keeper mechanism has been designed to be available for
modification and/or extension by the framework consumer to address
future care and feeding requirements. This fact is denoted by the
upper case block letter "E" in the Zoo Keeper mechanism category
box.

The framework designer has designed the Animal mechanism
to represent the animal side of the interaction between zoo animals
and zoo keepers. Since the animal population in the zoo 1is
something that changes on a regular basis, the Animal mechanism has
similarly been designed as an extensible function. The Containment
Unit mechanism interacts with the %Zoo Keeper mechanism by
representing individual containment units such as pens, tanks, and

cages. Like the Animal mechanism, the Containment Unit mechanism

-12-

10

15

20

25

30

35

490

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

has been designed as an extensible function such that it can handle
future customization and extension reguirements. Please note here,
however, that even though the Zoo Keeper, Animal, and Containment
Unit mechanisms have all been designed as extensible functions, the
relationships between the mechanisms have been designed to be a core
function of 2ZAF. 1In other words, even though it is desirable to
give ZAF's consumers flexibility relative to the Zoo Keeper, Animal,
and Containment Unit mechanisms, it is not desirable to allow ZAF'’s
consumers to change how these mechanisms relate to one another.

The framework designer next designs the classes and
relationships that make up the mechanisms shown on Figure 1. A
class is a definition of a set of like objects. As such, a class
can be thought of as an abstraction of the objects or as a
definition of a type of object. From the view of a computer system,
a single object represents an encapsulated set of data and the
operation or a group of operations that are performed by a computer
system upon that data. In fact, in a secure computer system, the
only access to the information controlled by an object is via the
object itself. This is why the information contained in an object
is said to be encapsulated by the object.

Fach class definition comprises data definitions that
define the information controlled by the object and operation
definitions that define the operation or operations performed by
objects on the data that each object controls. In other words, a
class definition defines how an object acts and reacts to other
objects by defining an operation or set of operations that is/are
performed on the defined data. (Please note that operations are
sometimes callied methods, method programs, and/or member functions.)
When taken together, the defined operation(s) and data are said to
be the behavior of the object. In essence, then, a class definition
defines the behavior of its member object or objects.

Figure 2 is an 00 class diagram that shows the fundamental
classes that the framework designer has designed for ZAF. Fach
class representation indicates its relationship to the mechanisms
shown on Figure 1. For example, the Zoo Keepers class is denoted as
being from the Zoo Keeper mechanism. The fundamental classes of ZAF
include: the Zoo Administrator class, which is part of the Zoo
Administration mechanism; the Zoo Keeper Registry class, which is
also part of the Zoo Administration mechanism; the Animal Registry
class, which is part of the Zoo Keeper mechanism; the Zoo Keepers
class, which is also part of the 2Zoo Keeper mechanism; the

-13-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Containment Unit Registry class, which is also part of the Zoo
Keeper mechanism; the Animals class, which is part of the Animal
mechanism; and the Containment Unit class, which is part of the
Containment Unit mechanism. It should be noted that the
relationships between the classes have been designed as core
functions of ZAF such that they are not available for ultimate
modification by ZAF’'’s consumers.

The Zoo Administrator class is the definition of the
object that is responsible for the overall control of ZAF. Again,
00 classes only define the objects that interact to provide a
solution to the problem. However, 1t 1s Dby exploring the
characteristics of the class definitions that one is able to
understand how the objects of the framewcrk mechanism have been
designed to provide a living solution that can be customized and/or
extended to address future reguirements.

The Zoo Administration class has been designed to have a
vuses" relationship with the Zoo Keeper Registry class. The
framework designer has designed the Zoo Administration and Zoo
Registry classes to be a core function of ZAF because the designer
has decided that ZAF's consumers should not be allowed to modify the
behavior of objects that are members of these class definitions.
The Zoo Keeper Registry, which has what is called a "contains by
reference" relationship with the Zoo Keepers class, is simply a
class that defines an object that is a container for all zoo keeper
objects. Accordingly, the Zoo Keeper Registry includes a definition
for a list_zoo_keepers(}) operation. As will be described later,
this operation is responsible for providing a list of Zoo Keepers
objects to other objects that request such a list.

Figure 3 shows a lower level view of the Zoo Administrator
class. Because objects of type zoo administrator have
responsibility for overall control of ZAF, the Zoo Administrator
class has been designed to include operations that perform tasks
oriented towards zoo administration. The class definition includes
the following five operations: 5_minute_timer{(),
add/delete_animal(), add/delete_containment_unit (),
add/delete_zoo_keeper(), and start_zoo_admin()} .

The start_zoo_admin() operation 1s responsible for
starting ZAF. That is, a user or system administrator will interact
with the start_zoo_admin{() operation to begin administration of a

Zoo via ZAF. The start_zoo_admin() operation has been designed to
initiate the 5_minute_timer() operation such that, every five

-14_

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

minutes, the S5_minute_timer () operation instructs the Zoo Keepers
objects to go out and check on the =zoo animals. The
add/delete_zoo_keeper() operation is responsible for interacting

with users of ZAF to define additional zoo keepers (i.e., additional
7200 Keepers classes), to add additional zoo keepers (i.e., 200
Keepers objects), and to remove Zoo Keeper classes and/or objects.
As will become clear in the forthcoming paragraphs, each of the Zoo
Keepers objects is responsible for performing a particular zoo task.
Therefore, it is natural that a user of ZAF might well want to add
a Zoo Keepers definition and object to handle an additional zoo task
or to remove a definition or object that is no longer needed. The
ZAF framework designer has provided this flexibility by designing
the Zoo Keeper mechanism as an extensible function.

Like the add/delete_zoo_keeper () operation, the
add/delete_animal () operation is responsible for interacting with
users to define additional zoo animal classes and objects and also
to remove classes and objects that are no longer needed. Again, it
is guite natural for a zoo to need to add and remove animals. The
add/delete_containment_unit () operation 1is responsible for the
definition of new Containment Unit classes and objects and for
removal of classes and/or objects that are no longer necessary.
Again, the framework designer has provided such flexibility by
designing the Animal and Containment Unit mechanisms as extensible
functions.

Referring back to Figure 2, the Zoo Keepers class
definition has a "uses" relationship with the Animal Registry,
Animals, Containment Unit Registry, and Containment Unit classes.
Since the value of ZAF is enhanced by allowing ZAF’s consumers to
customize and extend the Zoo Keepers, Animals, and Containment Unit
classes, the ZAF framework designer has designed these classes as
extensible functions. However, changing the behavior of the Animals
and Containment Unit Registry classes would disrupt the basic
operation of ZAF. Therefore, the framework designer has designed
these classes to be core functions of ZAF.

Figure 4 is a class diagram of the Zoo Keepers class.
However, before describing the details of Figure 4, it is worthwhile
to point out that the class definitions shown on Figure 4 are ranked
in a very simple ordering called a class hierarchy. A class, like
the Zoo Keepers class, that represents the most generalized/abstract
class in a class hierarchy is referred to as the base class of the
hierarchy. The ordering of classes in a class hierarchy goes from

-15-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

most general to least general (i.e., from general to specific).
Less general classes (e.g., the Feeder class) are said to inherit
characteristics from the more general class or classes (i.e., the
Zoo Keepers class in this case). As such, class definitions Feeder,
Veterinarian, and Temperature Controller are said to be subclasses
of the Zoo Keepers class. Inheritance mechanisms will be explored
in more detail in the discussion associated with Figure 5.

As shown on Figure 4, the Zoo Keepers class definition
contains a single operaticn definition, the check_animals/{)
operation definition. The reader should also note that the Zoo
Keepers class definition is marked as being an abstract class.
Abstract classes are not designed to have objects created as their
members, but are instead used to define a common interface/protocol
for their subclasses. A class is said to be an abstract class when
at least one of its operation definitions is a pure virtual
operation definition. Pure virtual operation definitions are
designed for the sole purpose of defining a common interface for
subclass definition of that operation. In other words, the design
of the actual behavior (i.e., the data and operations) is left to
the subclasses themselves. In the case of the Zoo Keepers class
definition, the Feeder, Veterinarian, and Temperature Controller
subclasses define specific implementations of the pure virtual
check_animals () operation definition that is contained in the Zoo
Keepers class. An operation is marked as a pure virtual operation
when it is set equal to 0.

It is important to note, though, that the common interface
of a pure virtual operation definition must be honored by all
subclasses such that reguesting objects (called client objects) can
use subclass member objects (called server objects) without needing
to know the particular subclass of the server object. For example,
whenever the object defined by the Zoo Administrator class needs a
particular action performed, it interacts with a Zoo Keepers object.
Because the interface to these objects was defined in abstract, base
class Zoo Keepers and preserved in the subclass definitions for the
check_animals () operation, the Zoo Administrator object need not
have special knowledge about the subclasses of any of the server
objects. This has the effect of decoupling the need for the action
(i.e., on the part of the zoo administrator object) from the way in
which the action is carried out (i.e., by one of the objects of the
Zoo Keepers subclasses). Designs (such as the ZAF design) that take

_16-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

advantage of the characteristics of abstract classes are said to be
polymorphic. ‘

Polymorphism is extremely important to 0O framework design
because it allows the way in which something is done (called the
implementation) to be changed or extended without effecting the
mechanisms that depend on the fact that the action is actually
performed. In other words, client objects need only understand that
certain objects perform certain functions, not how those functions
are actually carried out. This is one way 1in which a properly
designed 00 framework can be readily customized and extended to
satisfy future reguirements.

As previously discussed, the framework designer has
designed the ZAF framework such that Zoo Keepers objects interact
with Animals and Containment Unit objects to perform their
respective tasks. Figure 5 1is a class diagram for the class
hierarchy of the abstract class Animals. Because the Animals class
definition is responsible for representing the characteristics and
behavior of zoo animals, the framework designer has designed the
abstract class Animals in a way that reflects this responsibility.
As shown, the example class definition for Animals includes data
definitions feed freqg, location, and temp_range and operation
definitions get_temp_range (), feed (), needs_food (),
needs_vet_visit(), and vet_visit{().

For the purposes of this framework overview, it is not
necessary to 'explore each definition in detail. However, the
temp_range data definition and the get_temp_range() and feed()
operation definitions are good examples of well thought out
framework design choices.

The feed() operaticn definition is designed to perform the
actual feeding of the animals (i.e., through specific feeding
apparatus, which is not shown). The feed() operation 1s a pure
virtual operation. Again, this means that the design of the class
is such that the actual mechanism that performs the needed function
has been left to be defined by the subclasses. Requiring subclass
definition is a good design choice in cases like this where cobjects
that are created as members of the subclasses have particularized
needs. 1In the ZAF framework, for example, each type of animal is
likely to have need for a particularized feeding apparatus, which
not only makes definition of a generic feed() operation difficult,
but valueless.

-17-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

By way of comparison, the framework designer has
explicitly designed the get_temp range{) operation such that it is
not a pure virtual operation definition. This means that
get_temp_range () has been generically defined as a default
operation. As such, 1t is considered a virtual operation. Default
operations are used to provide generic function to subclasses. The
subclasses can simply use the default operations or they can
customize or extend the default operations by redefinition.
Redefinition of a default operation is called overriding the default
operation.

Figure 5 shows that Mammals is a subclass of the class
Animals and, as such, the Mammals class inherits all of the
characteristics of the Animals class. The Mammals class is also
designed as an abstract class, which again means that it has not
been designed to have objects created as its members, but has
instead been designed to provide a common interface for its
subclasses. Subclass Mammals is further subclassed into classes
Carnivore and Herbivore.

Because definition of the feed() operation has been left
up to the subclasses, the subclasses Carnivore and Herbivore each
have their own definition of the feed() operation. Again, this is
a good design choice because meat-eating carnivores are going to
have different needs than their plant-eating counterparts.

Temp_range is a data definition for the range of
temperatures that coincides with that of the specific animal’s
natural habitat and the get_temp range() operation definition is
designed to retrieve the temp_range for a specific animal and return
it to a requesting client object. Subclass Reptiles contains 1its
own data definition for temp_range and its own definition for the
get_temp_range() operation. ZAF has been designed this way to point
out that data definitions can be overridden just like operation
definitions. 8ince many reptiles live in desert conditions, where
nights can be very cold and days very hot, the default temp_ range
definition has been overridden in the Reptiles class to include time
and temperature information (not explicitly shown on Figure 5).
This is another good design choice because it allows ZAF to treat
reptile containment units differently than other containment units
by allowing temperature adjustments to be made based on the time of
day as well as on the current temperature of the containment unit
itself.

-18-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Figure 6 is a class diagram showing a lower level view of
the Containment Unit class. The containment unit class contains a
virtual operation definition adjust_templ(). The adjust_temp ()
definition defines both the interface and mechanism used to actually
adjust the temperature in the containment units of the zoo (i.e.,
via heating and cooling mechanisms that are not shown).

How the ZAF Obijects Interact

Beyond designing the objects that make up the solution to
the specific programming problem, the framework designer must also
design how the individual objects interrelate. In other words, the
objects must interrelate in way that takes advantage of the manner
in which they were designed. As discussed, the way in which the
defined operations of an object operate on the data defined for the
object is called the object’s behavior. While objects may be
characterized as autonomous entities, it is still very important
that each object exhibit a consistent behavior when interrelating
with other objects. Consistent behavior is important because
objects depend upon the consistent behavior of other objects so that
they themselves can exhibit consistent behavior. In fact,
consistent behavior is so important that an object’s behavior 1is
often referred to as the contract the object has with the other
objects. When an object does not exhibit a consistent behavior, it
is said to have violated its contract with the other objects.

When an operation of one object needs access to the data
controlled by a second object, it is considered to be a client of
the second object. To access the data controlled by the second
object, one of the operations of the client will call or invoke one
of the operations of the second object to gain access to the data
controlled by that second object. One of the operations of the
called second object (i.e., a server operation in this case) is then
executed to access and/or manipulate the data controlled by the
called object.

Figure 7 is an object diagram showing how the example
objects of ZAF interact to assist zoo personnel in operating the
Z00. A detailed analysis of the interaction of all of the ZAF
objects is unnecessary for the purposes of this overview. However,
the reader should review the following simple control flow to obtain
a rudimentary understanding of how objects in an OO environment
interact to solve problems.

-19_

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

As mentioned, an object is created to be a member of a
particular class. Therefore, the object Zelda the Zoo Administrator
706 is an object that is a member (actually, the only member) of the
Zoo Administrator class. As such, object Zelda is responsible for
overall control of ZAF. All of the Zoo Keeper objects have
registered with the Zoo Keeper Register object [object 700].
Therefore, object Zelda obtains a list of the current zoo keepers by
calling the list_zoo_keepers() operation [step 1] of the Zoo Keeper
Register object. The 2Zoo Keeper Register object 700 has been
created as a member of the Zoo Keeper Register class. For the
purposes of illustration, assume that this occurs every five minutes
as part of Zelda’'s 5_minute timer() operation. The Zoo Keeper
Register object then responds with the zoo keepers list [step 2].
The 1list of zoo keepers includes Tina the Temperature Checker
[object 714], Vince the Vet. [object 740], and Fred the Animal

Feeder [object 752]1. Each zoo keeper has been created as a member
of the Zoo Keepers class. In particular, objects Tina the Temp.
Checker, Vince the Vet., and Fred the Feeder are respectively

members of the Temperature Controller, Veterinarian, and Feeder
subclasses.

Once the list of current zoo keepers has been returned to
object Zelda 706, object Zelda instructs each zoo keeper in the list
to check the animals by calling the check_animals() operation of
each Zoo Keeper object. Only the call to Tina the Temp. Checker is
shown, indicated as step 3. It should be noted that object Zelda
did not need to understand the types of zoo keepers that were in the
zoo keeper list, the number of Zoo Keeper objects in the list, or
the specialized characteristics of any one Zoo Keeper object.
Object Zelda uses the same interface (i.e., the check_animals{)
operation) to communicate with each Zoo Keeper object. It is then
up to the individual Zoo Keeper objects to perform the task for
which they have been created. Each Zoo Keeper object performs its
assigned task through use of its own check_animals() operation. For
example, object Tina's check_animals() operation retrieves a list of
current animals from the Animal Registry object by calling the
list_animals() operation [step 4] and then a list of containment
units from the Containment Unit Register object by calling the
list cont_units() operation [step 6]. Upon examining the animal
list, object Tina’s check_animals () operation determines that there
are only two animals currently registered in the zoo, Sam the Snake
[object 728] and Simba the Lion [object 718].

-20-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Object Tina’s check_animals() operation then calls the
get_temp_range() operations to get temperature ranges from objects
Sam and Simba [steps 8 and 10]. Once the temperature ranges have
been returned, the check_animals() operation of object Tina
determines which containment units house the respective animals
{(i.e., Simba and Sam) and then calls the adjust_temp() operation of
the appropriate containment unit (i.e., Lion Cage 7 in the case of
object Simba and Snake Pit 3 in the case of object Sam) to adjust
the temperature of the containment units [steps 12 and 13].

The adjust_temp() operation of each containment unit then
completes the control flow by proceeding to adjust the temperature
in a way that is appropriate for the animals contained in each
containment unit. {(That is, the temperature is adjusted based on
time and temperature for Snake Pit 3 and based on time alone for

Lion Cage 7.) The reader should note that the relationship between
the check animals{) operation and the adjust temp() operations is
polymorphic. In other words, the check_animals() operation of

object Tina 714 does not require specialized knowledge about how
each adjust_temp() operation performs its task. The check_animals ()
operation merely had to abide by the interface and call the
adjust_temp () operations. After that, it is up to the individual
adjust_temp() operations to carry our their tasks in the proper
manner.

At this point, it is again worthwhile to point out that
the ZAF system is an extremely simplistic framework that has been
presented to help novice readers understand some basic framework
concepts 5O as to better appreciate the benefits and advantages of
the present invention. These benefits and advantages will become

more clear upon reference to the following Detailed Description.

The Computer System of the Preferred Embodiment

Figure 8 is a block diagram of a computer system 30
constructed in accordance with the present invention. The computer
system includes a central processing unit (CPU) 32 that operates in
response to operator commands, which it receives from an
operator/display interface 34 to which it is connected by a system
bus 36. The CPU also communicates over the system bus with a main
memory 38. The main memory is illustrated containing a variety of
data structures, including application programs 40, objects 42,
data 44, and an operating system 46. The main memory 38 1is
represented as a single entity, but those skilled in the art will

-21-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

appreciate that the main memory can comprise a combination of random
access memory (RAM), hard disk drives, optical disk drives, and
other storage devices containing 1logically segmented storage
locations.

The operating system 46 preferably supports an object
oriented programming environment such as provided, for example, by
the C++ programming language. The application programs 40 are
invoked, or 1launched, by a user through the operator/display
interface 34. The application programs can be written in a variety
of languages, including C++. The objects 42 are programming data
structures of an object oriented programming language, such as C++.

The computer system 30 also includes a direct access
storage device (DASD) interface 48 that is connected to the system
bus 36 and also is connected to a DASD 50. Those skilled in the art
will appreciate that the DASD 50 can receive and read computer
program products 52 from, for example, integrated circuit chips, and
also machine-readable storage devices such as magnetic media disks,
on which are recorded program instructions whose execution
implements the framework of the present invention. The machine-
readable storage devices also can comprise, for example, media such
as optical disks. The computer system 30 also includes a network
interface 54 that permits communication between the CPU 32 and other
computer systems 56 over a network 58, The other computer
systems 56 can comprise, for example, computer systems similar in
construction to the exemplary computer system 30. In that way, the
computer system 30 can receive data into the main memory 38 over the
network 58 after communication between the computer systems has been
established by well-known methods that will be understood by those
skilled in the art without further explanation.

It is important to note that, while the present invention
has been (and will continue to be) described in the context of a
fully functional computer system, those skilled in the art will
appreciate that the mechanisms of the present invention are capable
of being distributed as a program product in a variety of forms, and
that the present invention applies equally regardless of the
particular type of signal bearing media used to actually carry out
the distribution. Examples of signal bearing media include:
recordable-type media such as floppy disks and CD ROMs and
transmission-type media such as digital and analog communication
links.

-22-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

System Processing

Start-Up Processing Steps

Figure 9 is a flow diagram that represents a typical
sequence of processing steps executed by the computer system
illustrated in Figure 8 in processing a guery following case-based
reasoning (CBR) system generation and start-up processing. The flow
diagrams that follow are supplemented by category and object-
scenario diagrams described further below.

Each time the CBR system is used, start-up processing is
performed that includes initialization of data objects for classes
called CBR_Session, ControlFlowComponent, DataStoreComponent,
PresentationComponent, and ChangeLog. In accordance with one aspect
of object oriented programming conventional practice, object and
class names will be written as words run together with initial
capitals. As illustrated by the "ZAF" example described above,
names are also written as words connected by an underscore. The
objects and classes are described in greater detail below and are
instantiated, or built, according to the object oriented programming
environment provided by the computer system illustrated in Figure 8.
The start-up processing is represented by the flow diagram box
numbered 102.

The processing represented by the flow diagram box
numbered 102 is further described by the following table of pseudo-
code, in which line numbers are provided to indicate ordering of
processing steps:

Table 1. Start-Up Processing.

Construct/Initialize CBR_SessionComponent;
Construct/Initialize ControlFlowComponent;
Construct/Initialize DataStoreComponent;
Construct/Initialize PresentationComponent;
Construct ChangeLog;
Execute main control flow;
Display menu of user options such as:
Single Query,
Build CaseDefinition,
Build Caselnstance;
Reduce Changes Changelog;
Insert ChangeLog DataStoreComponent;
Insert CBR_Session DataStoreComponent;

Woo~JoOYU Wk =

e
WO

-23-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

In the preferred embodiment, the CBR system is implemented
in an object oriented programming environment. Therefore, the
processing represented by the Figure 9 flow diagram box numbered 102
(and described in the pseudo-code of Table 1) comprises establishing
the necessary processing environment. Such processing includes
constructing and initializing a CBR_SessionComponent object to
control processing in the CBR system and determine the environment
required by the user for additional processing, as represented by
line 1 of Table 1. The information received from the
CBR_SessionComponent guides construction of a ControlFlowComponent
object, a DataStoreComponent object, and a PresentationComponent
object, as indicated by lines 2-4 of Table 1. A Changelog object
also is constructed, as represented by line 5, to store system
selections and changes by the user.

CBR System Input--Query Processing, Case Definitions, Search

Patterns

After the system environment is established, the user can
invoke various CBR system options, specifying gquery processing,
building case definitions, or building case instances. Preferably,
the user selects and defines such options in the main control flow
through the user interface, by selecting menu options shown on the
user display screen. These exemplary options are specified in
lines 6-10 of Table 1. Those skilled in the art will appreciate
that associated object oriented "destruct" operations (not listed in
the pseudo-code) will be performed at the conclusion of CBR system
operations to delete the objects that were constructed and/or
initialized. Before any destruct operations, the CBR system changes
initiated by the user are recorded in the Changelog object, as
represented by line 11 of Table 1. The recorded changes comprise
processed information that might be required in a future system
operation and therefore are saved in a format for retrieval using
the DataStoreComponent, as indicated by line 12. The information in
the CBR_Session object also is saved for retrieval at the next
system operation, as represented by line 13.

As part of CBR processing, users may build case structure
definitions, which specify how case instance descriptions will be
stored. The data objects comprising each case structure are built,
again according to the object oriented programming environment
provided by the computer system illustrated in Figure 8. The case

structure definition processing includes parsing definitions, which

-24-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

are necessary to define how similar cases are recognized and problem
descriptions will be analyzed. This processing is represented by
the flow diagram box numbered 104. The flow diagram box numbered
106 indicates that the case instance {case base) definitions are
received and built next. In the preferred embodiment, the case
instance objects follow the structure and behaviors specified by the
case structure definition. It should be noted, however, that the
case instance descriptions need not comprise object oriented data.
In terms of programming languages, the case instance definitions are
metadata for the case instance objects.

In the next step of system processing, indicated by the
flow diagram box numbered 108, the system receives a problem
description {(query) from a CBR system user and builds a query, which
is used to query the case base. The processing of the flow diagram
box numbered 108 includes evaluating the query by retrieving the
closest matching case (or cases) from the case base. This 1is
described in greater detail below. After evaluation, the CBR system
receives the next CBR task, such as a next search query, at the flow
diagram box numbered 120. The next task could be, for example, to
build additional search queries, case definitions, or case
instances.

The remaining flow diagrams provide further detail
descriptions of the processing steps generally described in
connection with Figure 9.

Case Structure Definition Processing

Figure 10 is a flow diagram that represents the processing
steps executed by the computer system illustrated in Figure 8 in
performing the case structure definition processing of the Figure 9
flow diagram box numbered 104. The case structure definition
processing provides the means for a user to define a new case
structure for use by the extended framework system and to modify
existing case structures. A case structure definition 1is a
definition, or specification, of the attributes, properties, and
relationships between the objects of the case base. Thus, the case
structure definition informs the CBR system how the data comprising
the case base will be organized and stored.

The Figure 10 flow diagram box numbered 132 indicates that
the first step in the case structure definition processing is to
create and/or retrieve and document the case definition. In the

object oriented programming environment, such processing includes

-25-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

constructing a CaseDefinition object. That is, the processing
represented by the flow diagram box numbered 132 is to receive input
from a user that indicates the case description data structure in
terms of the data objects comprising that data structure. The
received input can be a previous description or a selection of a
previously defined description. Receiving the data structure from
the user permits greater flexibility in the details of the extended
(CBR) system and does not unduly restrict the framework user.

The processing represented by the Figure 10 flow diagram
box numbered 132 includes constructing the CaseDefinition object and
displaying a user interface screen that permits the framework user
to build various elements (comprising data objects) of the
CaseDefinition. A CaseSet object 1is then constructed, which
includes a determine() method that permits the user to select the
CaseSet to be associated with the newly defined CaseDefinition. 1In
particular, all existing CaseSet objects are retrieved by the
DataStoreComponent object and the list of case sets is displayed to
the framework user for selection.

The case structure definition processing next includes
constructing a ParseDefinition object for the selected CaseSet. The
ParseDefinition can be retrieved by the DataStoreComponent object.
In processing described further below, the user is provided with the
option of changing the parsing definition again, before the parsing
definition is stored by the DataStoreComponent object. If a user
has entered data for an initial problem description for the
CaseDefinition object, then parsing methods of the ParseDefinition
class are executed to parse the Description object into searchable
components.

The option to retrieve a case definition (in contrast to
creating one) as indicated in the flow diagram box means that a
framework user is free to use previously defined case descriptions,
thereby reducing the work involved in creating new CBR applications.
The documentation of the case definition can take a variety of
forms, depending on the choice of the framework provider. See, for
example, the section entitled "Notation" on representing object
oriented data structures, located at the end of this Specification.

Case Properties, Values, and Weights Entry and Updating

The next case definition processing step in Figure 10,
represented by the flow diagram box numbered 134, is to enter and/or
update the properties for the case definition from the prior

_26-

10

15

20

25

30

35

40

CA 02251980 1998-10-19
WO 97/40455 PCT/US97/02574

processing step. Again, the framework user is free to specify the
case description properties, thereby providing maximum flexibility
to the framework wuser and avoiding undue restriction. The
processing represented by the flow diagram box numbered 134 permits
the framework user to define Properties class attributes associated
with the CaseDefinition object. The Properties define what data is
permitted for defining Caselnstance objects that are used with a
selected CaseSet. The processing is repeated for each property that
is associated with the CaseDefinition object.

Figure 11 is a flow diagram that represents processing
steps executed by the computer system in performing the case
definition properties update processing step. That is, Figure 11
represents the processing executed in the Figure 10 flow diagram box
numbered 134.

The processing represented by the flow diagram box
numbered 152 of Figure 11 includes constructing a PropertyUsage
object that permits the framework wuser to input property
information. The processing further includes building a
PropertyDefinition object, represented by the flow diagram box
numbered 154. This involves the user selecting (using a determine ()
method of the PropertyUsage object) which property definition to
include. The allowable property definitions for the selected case
set are retrieved by the DataStoreComponent and are shown to the
user for selection. If a new PropertyDefinition object is being
built, appropriate input prompt information is displayed to the user
so the information can be received. Such prompting is implemented
by the user interface according to the framework user.

The properties processing permits the user to add
allowable values, which are associated with the PropertyDefinition
object being added to the new case definition. This is represented
by the Figure 11 flow diagram box numbered 156. A value can be
either a simple value or a compound value, and each case 1is
constructed and displayed for input from the user as the user
selects and/or adds to the wvalues.

Finally, the user defines the allowable weighting.
Accordingly, a WeightSet object is built and displayed, comprising
chosen weight definitions, represented by the Figure 11 flow diagram
box numbered 158. Weight values are later associated with
properties of case instances, as described below, and are used by
the query engine to select the closest match to the current problem.
As with the case structure itself, the weight structure may be

-27-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

received from the framework user to thereby permit greater
flexibility in the details of the extended (CBR) system and not
unduly restrict the framework user. As new definitions for
properties, wvalues, and weights are created or changed, the
processing updates the change log (that 1is, creates ChangeLog
objects) to reflect the changes. This is represented by the
Figure 11 flow diagram box numbered 160. This completes the
properties definition processing.

Action Prompt, Tracking, and Index Definitions

Returning to Figure 10, the next processing step of the
case structure definition processing is represented by the flow
diagram box numbered 136, which is to enter and/or update action
prompt, tracking, and index definitions. The processing represented
by the flow diagram box numbered 136 includes constructing an
ActionPromptDefinition object, a TrackingDefinition object, and an
IndexDefinition object. The construction of such objects can be
accomplished in any order. Each CaseDefinition can have more than
one of each of such object elements.

Using the DataStoreComponent object and its methods, the
framework user asscciates action prompt definitions to the case
definition. An ActionPromptDefinition object is constructed and
displayed to the user to permit the user to input information.
Accordingly, a list of permissible definitions for the chosen case
set is retrieved and displayed to the user for selection, or the
user can decide to build a new ActionPromptDefinition object. Any
updates or creations are added to the ChangeLog object. Similar
processing would be followed for the creation and/or building of the
tracking definitions and index definitions to be added to the case
definition.

Search Pattern Construction

The next processing step is represented by the Figure 10
flow diagram box numbered 138, which indicates that the framework
constructs Pattern objects that are associated with the
CaseDefinition data object. The processing includes constructing a
Pattern data object. The Pattern object is displayed to the
framework user to permit the user to input pattern information. A
Pattern object consists of one or many single PropertyInstance
objects and/or CompoundPropertyValue objects. As these objects are
added, each is constructed and displayed to the user for input of

-28-

10

15

20

25 .

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

the information. The appropriate objects are built and values are
added, comprising either simple or compound values. The Pattern
limits, or constrains, the combinations of property values that can
be defined in case instances of the case definition.

Case Set Parsing Definitions

The next processing step is represented by the Figure 10
flow diagram box numbered 140, which indicates that the framework
user updates Parse definitions that are associated with the case set
into which the new case definition will be added. The processing
includes permitting the user to select a parse definitiocn, such as
by displaying a parse definition screen for selection of the parse
definition. The selected parse definition is checked for any errors
or data structure incompatibilities. As noted above, 1in the
preferred embodiment, changes to the CBR system are recorded in a
change log history. The change history can be used, for example,
for providing an audit trail, failure recovery, or undo of edit
operations.

Completion of Case Definition; Storing the Case Definition

The next processing step is represented by the Figure 10
flow diagram box numbered 142, which indicates that the framework
stores the case structure definition. The store processing includes
inserting all of the defined objects in the appropriate data store
and destructiﬁg each one of the objects not needed after storing.
The destruction completes the CaseDefinition processing.

Case Instance Definition Processing; Case Set and Parsing

Selection

Figure 12 is a flow diagram that represents the processing
steps executed by the computer system of Figure 8 in performing the
case instance definition processing of the Figure 9 flow diagram box
numbered 106. The case instance definition processing provides the
means for a user to define new problem description-solution pairs,
called history cases, for inclusion in the case base and to perform
maintenance on existing cases. Each problem description-solution
pair, or case instance, has a data structure specified by the case
structure defined in the prior processing step (Figure 9). Similar
processing would be used to update case instances by first
retrieving them and then updating them via the user interface.

-29-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

FPigure 12 shows that the first processing step performed
in defining case instances 1is to create a new case instance
definition or retrieve an existing definition, as represented by the
flow diagram box numbered 172. That is, the framework must
determine the data structure of the incoming data. The CaseInstance
data object is first constructed according to the object-oriented
programming environment of the computer system. After the
CaseInstance object is constructed, the user determines the CaseSet
to be used. This is accomplished when the user enters data that is
used to search for a specific CaseSet from a retrieved 1list of
CaseSet objects to contain the current Caselnstance object. A
CaseSet object collects Caselnstances, which conform to the
structure of the case definitions associated with the CaseSet
object. This can be used to logically separate cases for search
purposes.

After the case set is selected, the next step in the
processing of the flow diagram box numbered 172 is for the
appropriate ParseDefinition objects to be retrieved. This
processing permits the user to select the type of parsing that will
be used. The user may select tri-string or token parsing either
individually or together, as desired, to parse the input data
(problem description or gquery). The tri-string parse will break
down the input data in successive three-character groups. This type
of parsing permits some so-called "fuzzy" matching and tolerance for
incorrectly spelled words in the input data. The token parse breaks
down each word in the input data into a "base" or token word,
essentially stripping predetermined prefix and suffix combinations
from the individual words. Common synonyms also can be handled by
the token parse.

Selection of Case Definition

The next processing step, represented by the flow diagram
box numbered 174, is to select the case definition that will control
the structure of the new case instance. The "select Case Definition”
processing of the flow diagram box numbered 174 includes
interactions necessary for the selection of a CaseDefinition object
and the assignment of property and value information to the defined
case. The stored CaseDefinition objects are first retrieved to
permit the user to select which CaseDefinition object should be
used. Next, the objects necessary for populating the CaseDefinition
objects with the proper data attributes are constructed. The

-30-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

attributes include objects called PropertyDefinition, ActionPrompt,
IndexDefinition, TrackingDefinition, and Incident, which are created
and retrieved by the DataStoreComponent. These are described
further below.

Property Instance/Incident Processing

The next processing step, represented by the Figure 12
flow diagram box numbered 176, is to create a PropertyInstance data
object. The "create Property Instance" processing creates the
PropertyInstance data objects for the ©previously selected
CaseInstance based on either the data from an Incident cbject or by
creating new PropertyInstance objects from user input data. Iin
creating the property instance objects, a list of Incident objects
may be first retrieved to permit selection of a stored Incident
object as the source for building a Caselnstance object. As noted
previously, the DataStoreComponent is the mechanism through which a
user can retrieve stored data such as for selection of a stored
Incident object. A "convert-to-case" method identifies all
known Property Instance/Value pairs from the Incident and creates
objects for such pairs for the newly selected CaselInstance. These
PropertyiInstance and Value objects can then be modified if necessary
for the CaseInstance object. Additional PropertyInstance objects
can then be selected from a list of all PropertyDefinition objects
that are valid for the current CaseDefinition object. Again,
selection of stored objects will be accomplished through the
DataStoreComponent. The user may access additional
PropertyDefinition objects if necessary, using the
DataStoreComponent. Similarly, new PropertyDefinition objects can
be stored into persistent storage using the DataStoreComponent.
Lastly, the flow diagram box 176 processing finishes with update of
the ChangelLog to reflect all changes made by the user.

Build Vvalues for the Property Instance

The next processing step, represented by the Figure 12
flow diagram box numbered 178, is to build Value objects for the
PropertyInstance objects and assign weilghts to the properties of
those Value objects. The "build Values” processing permits building
the Value objects associated with the PropertyInstance objects,
constructing the WeightInstance objects, and inferring additiocnal
PatternvValue objects. First, the wvalues allowed for the current
selected CaseDefinition object are listed for selection by the user.

-31-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

This controls the structure and values of property instances, and
indicates if users can also add new properties to the case instance
and case definition. If the user decides to add a new Value object,
then the user selects between the Simplevalue and CompoundvValue
object types. A Simplevalue is a unitary value type, while a
CompoundValue is a combination of one or more SimpleValues. If
Value objects are added or changed, they are reflected in the
Changel.og.

The WeightDefinition objects are retrieved from storage
(from the appropriate data objects, using the DataStoreComponent)
for user selection. If the user creates a new WeightDefinition
object, the new object is stored and the ChangeLog is updated.
After the new PropertylInstance, Value, and Weight objects are
created or selected, the processing to infer Value Pattern objects
will enhance the Caselnstance object with additional
PropertyInstance objects and/or Value objects that can be determined
based on the case definition structure and constraints. In this
way, the infer process checks the query against further constraints
that might be possible to extract from the case definition. This
completes the processing of the flow diagram box numbered 178.

Next, as represented by the decision box numbered 179, the
CBR system checks to determine if additional property instances are
needed. That is, an "infer" operation will determine if the values
and weights provide sufficient constraints on the defined case
instances to duickly lead to a solution set. For example, if case
instance properties that are important (as indicated by ranking
data) have not been specified by the user, the system will attempt
to enhance the case instance definition by repeating the property
instance and value/weight building steps represented by the flow
diagram boxes numbered 176 and 178. Thus, 1if needed, such
constraint processing is repeated by 1looping back (a negative
outcome from the decision box 179).

With the processing represented by the Figure 12 flow
diagram box numbered 178, the framework user can enter and/or update
the wvalues and weights for each property associated with a case
instance. This involves storing the case instances into the case
base. It should be appreciated that loading the case base need not
be done one by one for each case instance. Rather, a data file can
be prepared and stored at an appropriate computer data base
location. That is, the case instances can be loaded in their
entirety. The data file, comprising multiple case instance objects

-32-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574
or indexes, can be retrieved using the DataStoreComponent and
loaded. In this way, the "build values" processing need not be

repeated at every invocation of the CBR system.

Value and Weight Processing

The last processing steps of the property instance
processing are for entering and/or updating the weight values for
each of the properties associated with the case instances. The
weight values are applied via the weight structure to assign rank
values to the problem descriptions in the case base and thereby
permit the query engine to identify and select the case history
instance that most closely matches the current problem.

Thus, after the values processing of the flow diagram box
numbered 178, the next case instance definition processing is
represented by the Figure 12 flow diagram box numbered 180, which is
to create ActionPrompt and Audit objects and to audit the case
instance that has been built. In the action prompt/audit
processing, ActionPrompt objects are first constructed and then are
retrieved to permit user selection of existing ActionPrompt objects
or user creation of new ActionPrompt objects. If new objects are
created, they are inserted into the appropriate DataStoreComponent
objects of the data storage and the ChangelLog object is updated to
reflect the addition. After the construction of the ActionPrompt
objects, a series of Audit methods are performed to ensure valid
PropertyUsage attributes for the selected CaseDefinition,
PropertyValue attributes for the PropertyUsage, ActionPrompt,
WeightDefinition and WeightSet, and PatternCase objects.

The next processing step, represented by the Figure 12
flow diagram box numbered 182, is to create refresh indexes and
store the CaseInstance. The box 182 processing includes refreshing
the IndexDefinition objects by constructing Index objects and
IndexEntry objects. The IndexDefinition objects must be refreshed
whenever the referenced items are changed or new items added. After
the refresh, each element of the newly created Caselnstance objects
are stored in the data base with an insert operation. Next, the
processing of the flow diagram box 182 stores the PropertylInstance
and associated Value and WeightInstance objects.

The flow diagram box 182 processing also stores the
ActionPromptInstance, IndexInstance, and IndexEntrylInstance objects
for each CaseInstance in the data base. Finally, the "build Case
Instance" processing of box 182 includes destructing each one of the

-33-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

objects not needed after the data storage. This concludes the case
instance definition processing. After completing the case instance
definition, processing continues with the Figure 9 flow diagram box
numbered 108.

Evaluating the CBR Query

Figure 13 is a flow diagram that represents the processing
steps executed by the computer system illustrated in Figure 8 in
operating the query engine to generate a solution to a received
current problem. That is, Figure 13 represents the processing
carried out in the Figure 9 flow diagram box numbered 108 that
specifies the step of querying the case base, including evaluating
the CBR query by retrieving the case instance set that most closely
matches the current problem.

The first step in matching the closest case instance set,
as represented by the Figure 13 flow diagram box numbered 1%2, is to
obtain the query information from the CBR system user and build a
CBR query on the case instances. In the preferred embodiment, the
user gquery is represented by a CBR Query object. Next, the system
constructs a case set that contains the case instances {(the data
descriptions) against which a received query will be searched. This
step is represented by the flow diagram box numbered 194. After the
user provides the query and the query is transformed into a query
object, the user builds a search pattern, which further defines and
specifies what the query is searching for. The search pattern, for
example, can specify sets of cases with which query matches will be
tested. The search pattern processing 1s represented by the
Figure 9 flow diagram box numbered 196.

The next processing step, represented by the Figure 13
flow diagram box numbered 198, is to search the case base and
retrieve the case history instances with property values that match
the property values of the current problem, in accordance with a
parse definition defined previously. The flow diagram box numbered
200 indicates that the next processing step is to use match scoring
to score each of the retrieved cases and thereby determine the
closest matches to the current problem. The match score 1is a
measure of the number of property values shared in common between a
guery and a case instance. In this way, the match score indicates

the similarity of the query to a case instance description.

-34_

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Checking for a Solution After Query Scoring

At the decision box numbered 202, the system checks for
a solution by calculating an evaluation score. If the score
indicates a sufficiently close match, then the retrieved case or
cases are designated a solution or solutions. If there is one or
more solution, an affirmative outcome at the decision box 202, then
the next processing step 1s for the CBR system to generate a
solution presentation and provide it to the user, who then can
continue with further actions and processing, if desired. This step
is indicated by the flow diagram box numbered 204. The
PresentationComponent is the mechanism through which data (such as
the solution cases) is provided to the user. The solution can be
provided, for example, in the form of one or more screen displays of
the solution cases. The further user actions can include
submitting a new gquery, saving the current query, or saving the
query as an incident. The CBR system then updates the case base, if
appropriate, as indicated by the flow diagram box numbered 206. The
DataStoreComponent is the mechanism through which data is stored or
retrieved from persistent storage of the system, such as DASD files.
This completes the CBR system processing for the received query.

If no solution was found, a negative outcome at the
decision box numbered 202, then the CBR system ranks the properties

by computing a property values score to guide the user in providing

additional information. The user may execute prompts to aid in
this. This processing is represented by the flow diagram box
numbered 208. The property values score permits the user to

determine which additional information would be of the most benefit
in finding a solution. The PresentationComponent is the mechanism
through which additional priority values are obtained from the user.
Ranking of the properties, as described further below, is
carried out to determine the relative importance of properties
specified in the case structure definitions so as to identify the
properties that contribute the most to solution scoring and
therefore move the system most rapidly to finding a solution. The
processing of the ranking step (box 208) includes system prompting
that asks the user to provide additional property values. After
property ranking, processing returns to the flow diagram Dbox
numbered 196 to modify the search pattern, if desired. Thus, the
steps represented by the boxes numbered 196, 198, and 200 can be
repeated as necessary until a query solution is identified.

_35-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Dynamic Weighting

Conventionally, many case based reasoning systems carry
out query evaluation match scoring that will effectively penalize
(or fail to penalize) attributes or categories that are unspecified
in either a query or in a case instance. The system user has no
control over such processing, as it is part of the evaluation
scoring methodology selected by the system designer.

In performing match scoring, represented by the Figure 13
flow diagram box numbered 200, the preferred embodiment permits the
user to control whether or not cases and search gueries with
unspecified properties will be "penalized" by providing dynamic case
property weighting and scaled query weights to affect the evaluation
score. Case property weighting permits the user to assign
differential weights to specified properties of cases to emphasize
or minimize particular properties of cases. Scaled query weights
permit a user to control the extent to which properties specified in
a query are used in scoring.

It should be noted that the dynamic weighting can be
implemented independently of the object oriented aspects of the
preferred embodiment. Thus, although the description of dynamic
weighting in the preferred embodiment will assume an object oriented
implementation, in keeping with the design of the preferred
embodiment, the features of the dynamic weighting and the processing
described further below can be implemented in a procedural
programming environment. Those skilled in the art will be able to
readily construct a procedural implementation of the dynamic
weighting based on the following explanation.

Case instances are stored as sets of property/value pairs
and each property is assigned an importance rank value relative to
the other properties of the case when the case is stored. That is,
value ranking is assigned at the time the case is added to the case
base. 1In accordance with the present invention, at the time a query
is evaluated and a score 1is computed, the rank values are
normalized, so that unspecified properties in a query that
ordinarily would result in a lower match score instead can be
compared 1in relative terms. Normalizing the values avcids
penalizing less precisely defined cases in the data base, as
explained below.

Generally, case-based reascning systems (and some document
retrieval systems) use weighted matching techniques to find the

cases in a history (case instance) data base that are the most

_36-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

similar, and therefore the closest match, to a set of specified
search criteria. This technique penalizes history cases in the data
base that are more completely defined than others, because for many
queries a large percentage of the properties will be unspecified.

For example, a query might specify a set of five different
properties of a case instance (the total number of properties
available to define a case instance 1is specified by the case
structure definition). If a case in the data base (a history case)
does not have data concerning one of the properties, the evaluation
score for that case can be reduced relative to other history cases
that have the property defined because a simple summation of
property-value multiplication products will result in a zero for the
missing property. The score for the case with the unspecified
property might be lower than another completely specified case, even
if the completely specified case is not as close a match on the four
remaining properties. Thus, it might be desirable to avoid
penalizing extra case properties. In accordance with the invention,
if unspecified properties should not penalize a case, then weights
for that property are normalized across the weights of the other
properties.

Many weighted matching techniques also penalize a history
case if properties are specified in the query that are not defined
for the case. The users making queries typically have nc control
over the manner in which unspecified properties are handled. Some
systems attempt to address the problem by requiring those who define
cases to provide weights to be associated with each property to
allow for unmatched property values, matched property values, or
unspecified properties. Such weights are static and cannot be
adjusted for specific searches. This approach is not satisfactory,
because the weights are static, cannot be changed by the user, and

make case definition complicated.

Dynamic Weighting of Properties

The present invention permits dynamic weighting so that
each property of a history case is assigned an importance ranking
relative to the other properties of the case when the case is stored
into the case base. The weights are then accounted for in the match
scoring evaluation processing of the query in two ways. First, if
the query is one in which unspecified properties should result in
lower scoring of a history case, then a standard normalization of
the property rankings is used as the weighting factor for each

_37-

10

15

20

25

30

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

property in the case definition. Second, if unspecified properties
should not penalize scoring, then only the history case properties
specified in the query will be normalized in accordance with their
ranking and computed as the case is scored. This permits properties
to be indicated as "mandatory" for scoring by simply making the
relative ranking of the property sufficiently arge that the
solution case set threshold is not reached without that property
being present in the history case. 1In particular, match scoring in
accordance with the invention is performed according to the
following formula:

MS = qf * dngw + cf * dncw; where
m m
MS is the computed match score for a case;
gf is a query weighting usage factor;
dngw is a dynamically normalized query weight

for a property;
dngw is the sum of the normalized query weight set

values where case instance property values
match query pattern property values;

ct is a case weighting usage factor;
dncw is a dynamically normalized case weight for a
property:;
dncw is the sum of the normalized case weight values

where case instance property values match query
pattern property values.

Each guery includes a scaling factor that indicates the
relative importance of query weights as compared to case weights as
the match scores are calculated. A case usage factor (cf) of 1 and
query usage factor (gf) of 0 indicates that guery weights are to be
ignored. A query usage factor (gf) of 1 where the case usage factor
(cf) is 0 indicates that case weights should be ignored.
Combinations of values between these extremes permit scaled use of

-38-

10

15

20

25

30

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

the case and query usage weights and gives users the ability to
combine the knowledge of case base developers with their user
knowledge of what 1is important to specific gqueries. The case
factors can be received in an interactive manner from the display
and keyboard input devices illustrated in Figure 8 or can be
received as larger data transfers, such as a data file from the
direct access storage device or network shown. Similarly, the query
factors can be received at the time the guery is received.

For each gquery search, the sum of the query weighting
usage factor and the case weighting usage factor will be 1, so that:

gf + cf = 1.

For each case being scored, the query weighting and case weighting
are normalized, so that the sum of all the query weights (and case
weights), without regard to matching against case instance property
values, will be 1:

I dngw 1 and

1t
'_l

% dncw

If desired, the technique described above can be extended
so that a different usage factor is received for each property.
Such property usage factors provide users with greater control over
the relative importance of properties when cases are scored. That
is, the user is not forced to accept the decision of the case base
developer as to the relative importance of the properties. The
property usage factors are employed by multiplying the usage factor
for each property by the weight factor for each property. It also
should be noted that techniques for matching and scoring multiple
value properties can be integrated with the multiple property usage
factor described above. In such a circumstance, a property match
value is first computed and then is multiplied by the weighting and
usage factors to derive the match score.

Dynamic Weighting Examples

Example A
The dynamic weighting of case properties and query

properties will be better understood with reference to examples of

-39 -

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

weighting calculations. In the first example that follows,
summarized below in the table entitled Example A, a history-only
query analysis (case factor = 1) is used with a weighting in which
there is no penalty associated with either guery or case properties
that are unspecified. Other examples follow and are discussed in
turn, covering cases where unspecified properties are penalized and
not penalized, and where the query factor is zero (case factor = 1)
and non-zero (case factor = 0.75).

Example A. Penalize Neither Extra Query Nor Extra Case

Properties.
Query Factor = 0 Case Factor =1
Query Cases
Prop. Value Ranking ID Prop. Value Ranking Weight
A Testl 1 1 A Testl 1 .1
B Test2 3 B Test2 2 .2
C no 1 C no 4 .4
D yves 4 D yes 1 .1
E Test3 1 E Test3 2 .2
2 A NoTestl 1 .1
B Test2 5 .5
C no 2 .2
D no 2 .2
3 A Testl 2 .25
B Test2 2 .25
C no 1 125
D yes 1 .125
E Test3 2 .25
F Testd 2 *
MS1 = (.1 + .2 + .4 + .1 + .2) * (1) = 1.0
MS2 = (0 + .5 + .2 + 0) * (1) = 0.7
MS3 = (.25 + .25 + ,125 + .125 + ,[25) * (1) = 1.0

Example A illustrates dynamic adjustment of case weights so
properties specified in the guery, but not specified in a history
case, will not result in a lower evaluation score for that case.
This performance is achieved by ignoring the unspecified properties
when the normalized weights are calculated. Note, in particular,
the processing for the history case with ID=3. For Case 3, Property
F is unspecified. The match score calculated for Case 3, listed at
the bottom of Example A, ignores the unspecified value from the

-40_

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

calculation. Because only case weights are being used for ranking,
no dynamic adjustments are required for the extra query property
that is present when compared against Case 2.

Example B
The next example, Example B, illustrates a query in which

unspecified properties are penalized:

Example B. Penalize Both Extra Querv And Extra Case Properties.

Query Factor = 0 Case Factor =1
Query Cases

Prop. Value Ranking ID Prop. Value Ranking Weight

A Testl 1 1 A Testl 1 1

B Test2 3 B Test2 2 2

o no 1 C no 4 4

D ves 4 D yes 1 1

E Test3 1 E Test3 2 2

2 A NoTest 1 .091
B Test2 5 .454
C no 2 .182
D no 2 .182
E * 1 .091
3 A Testl 2 .2

B Test2 2 .2
o no 1 .1
D yes 1 .1
E Test3 2 .2
F Test4 2 .2

MS1 = (.1 + .2 + .4 + .1 + .2) * (1) = 1.0

MS2 = (0 + .454 + .182 + 0) * (1) = 0.636

MS3 = (.2 + .2 + .1 + .1+ .2 + 0) * (1) = 0.8

Example B illustrates dynamic adjustment of case weights so that
either properties specified in the query but not defined in a
history case, or properties specified in a history case but not in
the query, result in a lower evaluation match score. For the case
of Example B, this performance is achieved by including the query
specified relative ranking for Property E in the dynamic calculation
of the weights. Note that, because only case wights are used in the
scoring, no adjustment is made to the query weights to allow for the
extra property specified in Case 3. Thus, the scoring for Case 3 is

-41-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

effectively penalized for the unspecified property F by treating
that property as an unmatched value.

Example C

Example C below is an example of the case where no penalty
is associated with extra properties 1in either the query or in
history cases:

Example C. Penalize Neither Extra Query Nor Extra Case

Properties.
Query Factor = 0.25 Case Factor = 0.75
Query Cases
Prop. Value Ranking Weight ID Prop. Value Ranking Weight
(1,3) (2)
A Testl 1 L1 111 1 A Testl 1 .1
B Test2 3 3 .333 B Test2 2 .2
C no 1 1 111 C no 4 .4
D ves 4 4 .444 D yes 1 .1
E Test3 1 1 * B Test3 2 .2
2 A NoTest 1 .1
B Test2 5 .5
C no 2 .2
D no 2 .2
3 A Testl 2 .25
B Test2 2 .25
C no 1 .125
D ves 1 .125
E Test3 2 .25
F Testd 2 *
MS1 = (.1 + .3 + .1 + .4 + .1) * (,25) +
(.1 + .2 + .4 + .1 + .2) * (,75) = 1.0
MS2 = (0 + .333 + .111 + 0 + 0) * (.25) +
(0 + .5+ .2 +0 + 0) * (,75) = 0.625
MS3 = (.1 + .3 + .1 + .4 + .1) * (,25) +
(.25 + .25 + .,125 + ,125 + .25) * (.75) = 1.0

Example € illustrates dynamic adjustment of case weights so
properties specified in the query but not present in a history case
does not result in a lower evaluation match score. This performance
is achieved ignoring an unspecified property when the normalized
weights are calculated. Thus, in Case 3, the unspecified Property

42

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

F is ignored in the match scoring shown at the bottom of the Example
C text. Similarly, because query weights are used for scoring, such
weights must be dynamically adjusted when comparing against Case 2
by not including the unspecified Property E in the normalization
calculation.

Example D
Example D below is the case where a penalty is associated

with extra properties in both the query and in a history case:

Example D. Penalize Both Extra Quervy And Extra Case Properties.

Query Factor = 0.25 Case Factor = 0.75
Query Cases
Prop. Value Ranking Weight ID Prop. Value Ranking Weight
(1,3) (2)
A Testl 1 L1 111 1 A Testl 1 .1
B Test2 3 3 .333 B Test2 2 .2
C no 1 1 111 o no 4 .4
D yves 4 4 .444 D ves 1 .1
E Test3 1 1 * E Test3 2 .2
2 A NoTest 1 .1
B Test2 5 .5
C no 2 .2
D no 2 .2
3 A Testl 2 .25
B Test2 2 .25
o no 1 125
D ves 1 .125
E Test3 2 .25
F Testd 2 *
MS1 = (.1 + .3 + .1 + .4 + .1) * (,25) +
(.1 + .2 + .4+ .1+ .2) * (,75) = 1.0
MS2 = (0 + .333 + .111 + 0 + 0) * (,25) +
(0 + .5 + .2 + 0 + 0) * (.75) = 0.625
MS3 = (.1 + .3 + .1 + .4 + 1) * (.25) +
(.25 + ,25 + ,125 + .125 + .25) * (.75) = 1.0

Example D illustrates dynamic adjustment of case weights so that
either properties specified in the query but not defined in a
history case, or properties specified in a history case but not in

-43-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

the query, result in a lower evaluation match score. In Example D,
this performance is achieved by including the gquery-specified
relative ranking for Property E in the dynamic calculation of the
weights for Case 2. It should be noted that, because the qguery
weights are included in the match scoring, the query weights must be
adjusted for the extra property in Case 3. This is done by
including the case-specified relative ranking for Property F in the
dynamic calculation of the weights.

Dynamic Weighting With Delta Factor To Reduce Query Evaluation

Time

Dynamic weighting and calculation of match scores can
potentially increase the time needed to evaluate a gquery. Such
slowed processing can be minimized if property weight values are
retained and if the structure of a present case is checked against
previously evaluated cases. If two cases are similar in structure,
then the previous property weight values can be used, making it
unnecessary to calculate the property weight values again for each
case. Alternatively, dynamic weight processing can be made more
efficient by calculating a "delta" factor using either the weighting
factors or relative ranking data, rather than dynamically adjusting
the property weighting factors for each match scoring. The delta

factor is expressed in terms of ranking values and is defined by:

Y {ignoredrankingvalues) - Y (additional rzanking values)

delta factor =1 + Y (ranking values) -} (ignoredranking values) + Y (additional ranking values)

The match score is calculated using the delta factor by
first calculating a raw match score without dynamic adjustments
(property weights can be pre-calculated at definition time). Next,
the calculated raw score is multiplied by the delta factor to adjust
for dynamic property weighting. Such an approach avoids the need to
recalculate the property weighting factors as each match is scored.
If scaled query weighting is also being used, then a delta factor is
calculated for both the query and case terms in the final match
score. 1In the preferred embodiment, the ranking values are scalar
numbers that specify a relative ranking (that is, 1, 2, 3,...).
Alternatively, the ranking values can be raw ranking multiplier data
values comprising weight factors. If weight factors are used
instead of scalar ranking numbers, then the delta factor 1is

-44 -

10

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

calculated according to the equation above with the ranking terms
replaced with weight factors.

Example E

The dynamic weight adjustment with delta factor will be
better understood with reference to the following examples. In
Example E below, there is no penalty associated with either query or
case properties that are unspecified. The delta factor is
calculated to have a value of 1.25, as follows:

delta factor = 1 + [2 / (10-2) 1 = 1.25,
which is then applied to Case 3 because the Property F is ignored.

Thus, dynamic weight adjustment increases the evaluation matching
score that otherwise would be obtained.

-45 -

10

15

20

25.

30

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Example E, Delta Factor: Penalize Neither Extra Query Nor
Extra Case Properties.

Query Factor = 0 Case Factor =1
Query Cases
Prop. Value Ranking ID Prop. Value Ranking Weight
A Testl 1 1 A Testl 1 1
B Test?2 3 B Test2 2 2
c no 1 C no 4 4
D yes 4 D yes 1 1
E Test3 1 E Test3 2 2
2 A NoTest 1 .1
B Test2 5 .5
C no 2 .2
D no 2 .2
3 A Testl 2 .2
B Test2 2 .2
C no 1 .1
D yes 1 .1
E Test3 2 .2
F Testd 2 .2
MS1 = (.1 + .2 + .4 + .1 + .2) * (1) = 1.0
MS2 = (0 + .5 + .2 + 0) (1) = 0.7
MS3 = (.2 + .2 + .1 + .1 + Q) * (1) = .8 *(1.25) = 1.0
Example F

In Example F below, a penalty is associated with both
query and case properties that are unspecified. The delta factor is
calculated to have a value of 0.909, as follows:

delta factor =1 + [-1 / (10+1) 1 = 0.909,
which is then applied to Case 2 because of unspecified properties.

Thus, dynamic weight adjustment decreases the evaluation matching
score that otherwise would be cbtained for Case 2.

-46_

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Example F. Delta Factor: Penalize Both Extra Query And Extra
Case Properties.

Query Factor = 0 Case Factor = 1
Query Cases

Prop. Value Ranking ID Prop. Value Ranking Weight

A Testl 1 1 A Testl 1 .1

B Test?2 3 B Test2 2 .2

C no 1 C no 4 .4

D ves 4 D yes 1 .1

E Test3 1 E Test3 2 .2

2 A NoTest 1 .1
B Test2 5 .5
C no 2 .2
D no 2 .2
3 A Testl 2 .2

B Test2 2 .2
C no 1 1
D ves 1 .1
E Test3 2 .2
F Testd 2 .2

MS1 = (.1 + .2 + .4 + .1 + .2) * (1) = 1.0

MS2 = (0 + .5 + .2 + 0 + 0) *) = ,7 * (.909) = .636

MS3 = (.2 + .2 + .1+ .1 + 0) * (1) = .8

The evaluation time of some gqueries will be improved with
dynamic property weighting, despite the dynamic calculations needed.
For example, if cases contain many properties that are not relevant
to the search, then matching of these property values can be
eliminated by not specifying the properties in the query and
indicating that unspecified case properties should not penalize the
matching scores (that is, the case weighting usage factor is set to
0). This eliminates unnecessary calculating steps and reduces
evaluation time. Another approach for eliminating unnecessary
matching is to scale the total use of query weights and set the
rankings and weight factors for unnecessary properties to 0. This
reduces the actual property value matching to only those properties
that are necessary to identify the desired candidate cases.

-47-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

The methods described above in conjunction with the Figure
13 flow diagram box numbered 200 improve the efficiency of the match
scoring step and improve the efficiency of the CBR system
constructed in accordance with the invention.

The Object Oriented Implementation of the Preferred Embodiment

The present invention provides an object oriented
framework. The operation of the CBR system developed using the
framework can be understood with reference to the procedural flow
diagrams of Figures 9, 10, 11, 12, and 13. Persons skilled in the
art, however, will appreciate that the framework objects, their
relationships, and their processing also can be precisely and
completely described in terms of object oriented programming
representations. Therefore, the framework of the preferred
embodiment will next be described in terms of category diagrams and
object diagrams similar to those described above in conjunction with
Figures 1 through 7 for the zoo keeper example.

Figure 14 1is a category diagram for the framework
implemented in the computer system of Figure 8. Those skilled in
the art will appreciate that the categories illustrated in Figure 14
correspond to object oriented programming (OOP) objects that
encapsulate data attributes and behaviors, and are stored in the
memory 38 illustrated in the block diagram of Figure 8. Such
objects can be implemented, for example, in a computer system
operating environment that supports the C++ programming language.

The framework includes five primary components, or
mechanisms, that are indicated as being "core" mechanisms and
therefore will not change with framework extensions. These core
mechanisms are shown as comprising a Query Engine mechanism, a Case
Structure Definition mechanism, a Parse Definition mechanism, a Case
History Instance Definition mechanism, and a Control Flow Engine
mechanism.

The Query Engine mechanism receives the user gquery and
applies it to the case base. The Case Structure Definition
mechanism contains the data structure that defines the way in which
problem description-solution pairs are recorded. The Parse
Definition mechanism contains the parsing rule set for breaking down
queries 1into searchable components. The Case History Instance
Definition mechanism contains the problem description-solution pairs
that comprise the case base (the case instances), which have a
structure specified by the case structure definition. The Control

-48-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Flow Engine mechanism executes control logic that implements the
order of processing desired by a user. That is, the CBR system user
can specify an Application Control Flow object to provide a desired
order and manner of executing the CBR system, and the Control Flow
Engine will see to it that the specified Application Control Flow is
implemented.

The framework also includes seven extensible mechanisms.
Being extensible, the objects, attributes, and behaviors comprising
such mechanisms will be freely modified by the framework user. The
extensible mechanisms comprise an Application Control Flow
mechanism, a Match Scoring Weighting mechanism, a Property Scoring
Weighting mechanism, a Value Operations mechanism, a User Interface
mechanism, which also will be referred to generally as the user
interface, and a Case Definitions History Instances mechanism.

The Application Control Flow mechanism, as mentioned
above, determines how a user can navigate through the CBR system
features, in conjunction with execution by the Control Flow Engine.
The Match Scoring Weighting mechanism specifies how the Query Engine
mechanism will score items recorded in the case base against a
received query. The Property Scoring Weighting mechanism interprets
the relative importance of properties that will lead to a sclution
if input by the user. The Value Operations mechanism assigns
received object attributes and values to the corresponding data
structures. The Case Definitions History Instances mechanism
contains the problem description-solution pairs; that is, the case
base. This mechanism is extensible because it 1is populated
according to the particular case base being used by the framework
user. Finally, the user interface maintains input and output flow
to and from the CBR system user.

CBR Session Class

Figure 15 1is a class diagram that illustrates the
characteristics of the class called CBR Session. Each use of the
framework causes instantiation of a CBR Session object. The class
cloud for CBR Session indicates that it is "from" the User Interface
Mechanism, meaning that the CBR Session class 1s part of the user
interface category. The *C" in the class cloud indicates that it is
a core class whose objects and object relationships cannot be
changed by the user. The class cloud also shows that the CBR
Session class includes operations or methods called
initializeDataStore(), initializePresentation{(),

-49 -

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

initializeControlFlow(}, and execute(). The method called
initializeDataStore() instantiates the objects that are necessary
for further CBR system processing. The initializePresentation()
method performs similar functions for the presentation screens that
will be displayed to the user. The initializeControlFlow() method
instantiates the ControlFlowComponent objects necessary for the
control flow class. Finally, the execute() method manages
processing for a single CBR Session of the system.

Figure 15 shows that the CBR Session class has a "uses"
relationship with classes called DataStoreComponent,
PresentationComponent, and ControlFlowComponent. That is, an object
of the CBR Session class uses objects of the data store class,
presentation class, and the control flow class. Finally, Figure 15
shows that the CBR Session class has an association relationship
with the ChangelLog class. An association relationship indicates
that objects of the ChangelLog class record or track the session-
related objects that are modified during the execution of the CBR
Session class. The association relationship includes an indication
of cardinality, wherein a single CBR Session object will have an
association with multiple ChangeLog objects.

CBR Base Class
Figure 16 shows the object class CBR Base, indicated as
being from the User 1Interface Mechanism, with an inheritance

relationship to multiple classes. Thus, the CBR Base cbjects serve
as a super class and thereby define the structure and behavior of
the inheriting subclass. The inheriting subclasses can further
define their own specific methods or attributes in addition to those
specified by the super class. The subclasses illustrated in Figure
16 include those of CaseSet, QueryParameter, CBRQuery, Pattern,

WeightInstance, PropertylInstance, Caselnstance, WeightSet,
WeightDefinition, ActionPromptDefinition, PropertyDefinition,
CaseDefinition, ActionPromptInstance, IndexDefinition, and
ParseDefinition.

Case Structure Definition Classes
Figure 17 is a class diagram that illustrates the classes
related to the case structure definition. The CaseDefinition class

is shown having "has" relationships with multiple classes. Thus,
the CaseDefinition class represents an aggregate class that contains
objects from the classes TrackingDefinition, IndexDefinition,

-50-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Pattern, ActionPromptDefinition, PropertyUsage, and CaseSet.
Cardinality is indicated to show that a single CaseDefinition object
contains many of the latter objects, with the exception of the
CaseSet relationship. Many CaseDefinition objects will be contained
in a single CaseSet, or case base, and therefore the cardinality
indicated is for multiple CaseDefinition objects and a single
CaseSet object. The other class relationships shown in Figure 17,
such as the relationship of Value to Parse Definition and Property
Usage classes, will be described below.

Case Definjtion Methods

Figure 18 illustrates the CaseDefinition class in greater
detail and shows that it includes many methods. The CaseDefinition
class methods include undo(), which deletes a CaseDefinition or a
portion of a CaseDefinition, auditCaseInstances(), which generates
an audit of one or more Caselnstance objects associated with the
corresponding CaseDefinition object, and auditPropertyUsage (), which
generates an audit of properties for a CaseInstance object in
relation to a CaseDefinition object. The CaseDefinition methods
further include inferPatternValue(), which infers new data to add
values to a pattern object based on constraint patterns associated
with the definition; showPropertyDefinitions(), which retrieves and
displays PropertyDefinition objects that currently exist either
within the corresponding CaseDefinition or within all of the
instantiated CaseDefinition objects; and addPropertyDefinition(),
which adds new PropertyDefinition objects associated with a current

CaseDefinition.
Other CaseDefinition methods include
showAllowablePropertyVvValues (), which retrieves and displays

allowable PropertyvValues for all properties currently existing in a
CaseDefinition object or in all of the CaseDefinition objects of a
CaseSet class. Additional methods include
addAllowablePropertyvalue (), which adds property values to a
CaseDefinition, and showActionPromptDefinitions (), which retrieves
and displays ActionPromptDefinitions that exist for a particular
CaseDefinition class.

Additional CaseDefinition methods include
addActionPromptDefinition(), which adds new ActionPromptDefinitions

associated with a current CaseDefinition class,
showIndexDefinitions{(), which retrieves and displays
IndexDefinitions, and addIndexDefinition(), which adds new

-51_

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

IndexDefinitions associated with a current CaseDefinition. Other

methods are showAllowableValuePatterns(), which retrieves and
displays AllowableValuePatterns that are current for a
CaseDefinition, and addAllowableValuePattern(), which adds a new

AllowableValuePattern associated with a current CaseDefinition.

Finally, the CaseDefinition class also includes methods called
auditvaluePatterns (), which generates an audit of the property value
combinations with respect to allowable patterns for a
CaseDefinition, useDefinition(), which determines the suitability
(that is, correctness) of a Casebefinition, determine(), which
retrieves and shows or displays a list of CaseDefinitions to permit
selection of a desired CaseDefinition, store(), which stores all
CaseDefinition objects intoc the database of the CBR system,
showTrackingDefinitions (), which retrieves and displays tracking
definitions to permit user selection, and refreshIndexes(), which
updates indexes when new case objects are added to the case base.

CaseDefinition Related Classes

Figure 19 shows the objects and methods of the various
classes of which the CaseDefinition class 1s comprised. The
PropertyUsage class includes a method called validProperty(), which
ensures that a property selected by a user to be included in a query
evaluation is valid for the related CaseDefinition. The
PropertyUsage class also includes a method called
auditPropertyvalue(), which ensures that the property value selected
for audit is valid for the property in the CaseDefinition. In
either case, if the property is not valid (that is, is undefined),
then the CBR system user is provided with an error warning through
the user interface. Typically, the CBR system user will be alerted
by a warning message on a screen display device.

Figure 19 shows that the TrackingDefinition class includes
a method called doIncrement(). This method increments a count that
indicates when a specified condition is satisfied. That is, a
particular CaseInstance property might be the subject of a tracking
definition so that every CaselInstance object having the specified
property being tracked results in the TrackingDefinition object
count being incremented.

Another class shown in Figure 19 is IndexDefinition, which
includes a method called doInclude(). The doInclude() method
determines if a property should be included in an Index. Another
IndexDefinition method is called DoCover (), which determines if an

52

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

IndexDefinition will be useful by containing the output of the
doInclude () method if a property is indicated as to be included.
The last IndexDefinition method is called refresh(), which updates
a case definition index when new indexes are added to a
CaseDefinition object.

Figure 19 also shows the ActionPromptDefinition class
having methods called determine() and auditValue(). The determine ()
method shows the user the action prompts that have been defined.
Action prompts are specified by a user to initiate system actions
desired by the wuser. The auditvalue() method compares an
ActionPromptInstance object against the set of
ActionPromptDefinition objects for the CaseDefinition and confirms
their validity.

Property Definition Class and Related Methods

Figure 20 shows the methods of the various objects related
tc the PropertyDefinition class. Figure 20 shows that the
PropertyDefinition class is an aggregate class made up of members
comprising a class called Value, a class called
ActionPromptInstance, and a class called WeightSet. The WeightSet
class, in turn is shown being an aggregate class made-up of
WeightDefinition class members. The relationships are further
specified by the indicated cardinality relationships.

The PropertyUsage class is shown in Figure 20 having a
"hag" relaﬁionship with a class called Value and the
PropertyDefinition class. The Value class is indicated as being an
abstract base class by the upper-case block "A" within a triangle.
An abstract class is a class for which no instances may be created,
the abstract class being a c¢lass of classes. The aggregate
relationship illustrated in Figure 20 for the PropertyUsage class
indicates that the PropertyUsage class comprises an aggregate class
that is made up of Value classes and PropertyDefinition classes.
The relationships shown in Figure 20 are further specified by the
cardinality provisions indicated.

Figure 20 further shows that the ActionPromptInstance
class includes two methods, one called determine(), which retrieves
and shows to the user a list of ActionPromptInstances to permit
selection by the user of a desired ActionPromptInstance, and
execute (), which verifies a user's prompt level approval and
executes the associated action that was prompted according to the
type and selection parameter received from the user. Figure 20 also

_53-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

shows that the PropertyDefinition class includes methods called
auditvalue(), determine(), showAllowableValues(), and buildValue().
The auditValue() method generates an audit of the input wvalue
received against the allowable values for the associated
PropertyDefinition. The determine ()} method checks a Value specified
by a wuser against the 1ist of allowable Values for the
PropertyDefinition and provides an error indication if an invalid
selection is made by the user. The showAllowableValues () method
displays to the user the Value objects that can be assumed by the
PropertyDefinition. The buildvalue() method is the means by which
the user can add to, delete, or otherwise change the Values that can
be assumed by the PropertyDefinition.

Figure 20 shows that the WeightDefinition class also
includes an auditvValue{) method, which performs a function for the
WeightDefinition similar to that performed by the auditValue()
method for the PropertyDefinition, and determine(), which performs
a function for WeightDefinition similar to that performed by the
determine() method for the PropertyDefinition. Finally, the
WeightSet class is shown in Figure 20 as having an auditSetValues()
method, which generates an audit of an input value or values against
the allowable values for the associated defined WeightDefinition in
the WeightSet corresponding to the PropertyDefinition.

CaseSet Class and Related Methods
Figure 21 is a class diagram that illustrates the objects

that make up the CaseSet class of the framework. Figure 21 shows
that the CaseSet class is an aggregate class having members from the
ChangelLog class and the ParseDefinition class. The CaseSet class
partitions case definitions, instances, and gqueries into sets and
permits retention of information common to the group. To perform
these functions, the CaseSet class includes a number of "show"
methods that result in the retrieval and display of named attributes
for associated CaseDefinition objects. These show methods include
showCaseDefs (), which retrieves and displays the case definition
objects that currently exist within the associated CaseSet, and
showPropertyDefs (), which retrieves and displays property
definitions that currently exist with all of the CaseDefinitions for
the associated CaseSet. Other CaseSet "show" methods are
called showAllowablePropertyValues (), showActionPromptDefinitions (),
showIncidents (), showAllowablePatterns (),
showActionPromptInstances (), showCaseInstances (),

_54-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574
showPropertyInstances (), ShowAllowablePropertyValues (),
showTrackingDefs (), showIndexDefs(), and showList(). Each of these

ngshow" methods results in the retrieval and display of the named
CaseDefinition attributes.

Another CaseSet method is called wuseSet(), which
calculates the suitability of a particular CaseSet for a current
incident or query, The CaseSet class also includes a method called
resetTrackingCounters (), which resets or initializes counters that
indicate case set processing, and determine(), which retrieves all
CaseSet instances for the CaseDefinition being processed.

Figure 21 also shows the ChangeLog class, which includes

methods called cleanup{), reduceChanges (), and add(). The ChangeLog
class records changes that have been made to either transitory or
persistent class data. The ChangelLog is used for audit trail,
failure recovery, and "undo" of edit operations. The cleanup()

method maintains a ChangeLog for a selected CaseSet based log
retention attributes, which typically will be set by the framework
designer. The reduceChanges({) method reduces a set of ChangeLog
entries that are retrieved from a trace of all the steps taken for
a particular CaseSet through last previously taken step, identified
for writing into the ChangeLog class. This step occurs at the end
of the CBR session. The add() method creates an instantiation of
the ChangelLog class. Figure 21 also shows the
ParseDefinition class, which records the data needed for parsing of
case descriptions using the tri-string and token parsing methods.
The ParseDefinition class includes methods called tri-stringParse(),

tokenParse (), findWwords(), findTokens(), and checkUsed(). The tri-
stringParse () method parses the associated text into all
permutations of three character groups. The tokenParse() method

locates and identifies words as tokens in the CBR data base, that
is, the tokenParse() method replaces a string of words with tokens.
The findWords() method of the ParseDefinition class finds all words
associated with a particular token, the findTokens() method locates
tokens for all words resulting from a token parse, and the
checkUsed () method checks to determine where a token has been
applied within a case description. With these ParseDefinition
methods, tokens can be used to eguate synonyms or to translate words
into other languages.

-55-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Case History Instance and Related Classes

Figure 22 is a class diagram that illustrates the classes
related to the CaselInstance class that contains objects related to
the case history instance definition. The CaselInstance class 1is
shown having "has" relationships with multiple classes. Thus, the
CaselInstance class represents an aggregate c¢lass that contains
objects from the classes called TrackinglInstance,
ActionPromptInstance, and IndexInstance. Figure 22 shows that a
CaseSet is comprised of Case objects, whose structure and attributes
are specified by CaseInstance objects and Incident objects. Figure
22 further shows that a Case is made up of many PropertyInstance
objects, which in turn are an aggregate of WeightInstance objects
and Value objects. Finally, Figure 22 shows that the Value class is
made up of Simplevalue objects and CompoundValue objects.

Figure 23 is a class diagram that illustrates the Case
class and related objects and their methods. Figure 23 shows that
the Case class includes two methods, called undo() and store(). The
Case class is indicated as an abstract base class, which again means
that no instantiations of this class will exist. The Case class
provides the common base for CaselInstances, which are the data that
are examined by queries, or for incidences, which are recorded but
are not fully populated for examination by queries. The Case class
is illustrated as having multiple PropertyInstance classes. The
CaseSet is comprised of many Case classes. Figure 23 also shows
that the classes called CaseInstance and Incident inherit from the
Case class and therefore their structure and behavior must conform
to that specified by the Case class. The undo() method of the Case
class is an undo of the last set of changes received from the
framework user. The store() method stores all Caselnstance or
Incident objects into the CBR data base. The CaselInstance
contains a history case or problem description-solution. If a
CaseInstance object 1is active, meaning that it has Dbeen
instantiated, then it can be returned in response to a guery. The
CaseInstance, because it inherits from the Case, must conform to the
structure and rules of the associated CaseDefinition. The methods
of the Caselnstance are described further below in relation to the
Figure 25 description. The Incident class records a set of property
values that have not yet been formalized into a history case. The

information in an Incident 1is not available via a query. The
showKnown (} method of the Incident class finds and displays
CaselInstances that refer to the associated incident. The

_56-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

determine () methecd retrieves and displays incidents. The
buildFromQuery() method builds an incident by transforming query
data, the convertToCase() builds a case from properties and data

that are contained in the associated Incident, and the store()
method stores all Incident objects into the CBR data base.

The PropertylInstance class is an instance of a property
that is associated with a Caselnstance object. The structure and
behavior of the PropertyInstance objects conform to the
PropertyDefinition of the CBR base (see Figure 16). Figure 23 shows
that the Propertylnstance class has a method called compareValue(},
which compares a property input to the collection of stored cases in
the CBR data base. The showValue() method retrieves and displays a
property value and the buildvalue () method assembles a
PropertyInstance value structure and associates it with the property
collection class. Finally, the PropertyInstance class includes a
determine () method that retrieves and shows a list of
PropertyInstances from which the user will make a selection.
Figure 23 shows that the PropertyInstance class includes objects of
a WeightInstance class and of a Value class, the latter comprising
an abstract base class.

Figure 24 illustrates the object structure of the Value
class. The Value class, as noted above, is an abstract base class
and provides a common base for SimpleValues and Boolean combinations
of Values. The SimpleValue class is a collection of objects that
simply contain data values, which also can comprise text from a
problem description-solution pair or query. The CompoundvValue class
is a collection of ocbjects that groups SimpleValues into Boolean
combinations of Simplevalues or other CompoundvValues. The
CompoundValue class, for example, can implement Boolean operations
such as AND, OR, and exclusive-or (XOR). Thus, the CompoundvValue
includes a collection of left terms and right terms, as indicated in
Figure 24, which are joined by the particular Boclean operator.

Property, Tracking, Index, and Action Prompt Definition Methods

Figure 25 illustrates the objects that make up the case
instance class of the framework and related classes. Figure 25
shows the CaselInstance class with a "has" relationship to the

classes called TrackingInstance, ActionPromptInstance, and
IndexInstance. The CaselInstance class is shown having methods called
showRelated(), which retrieves and displays related cases,
showReference (), which retrieves and displays referenced incident

-57-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

objects, compareDescription(), which compares a received description
against descriptions in the case base, and storef(), which stores all
case instance objects associated with the class into the data base
of the CBR system. The ActionPromptlInstance class methods called
determine () and execute() were defined previously in the discussion
for Figure 20.

Figure 25 shows the IndexInstance class with a "has"
relationship to the IndexEntry class. The IndexEntry class contains
the actual data, or attributes, comprising the index instances. The
IndexInstance class of objects includes methods called

loadInternal (), which loads index entries into the CBR system data
base, refresh(), which updates and maintains IndexInstance objects,
and compare(), which matches patterns against index entries and

returns identifiers of partially matching Caselnstance objects.
Finally, the TrackingInstance class includes methods called
increment (), which increments counters that are associated with a
CaseInstance object to indicate comparison conditions such as when
a score is greater than a threshold value or when a case is selected
for use in a query. The other method of the TrackingInstance class
is called reset (), which initializes particular counters to zero.

Case Query Classes and Methods

Figure 26 is a class diagram that illustrates the classes
related to the case query classes. Figure 26 shows a CBRQuery class
being related to classes called CaseMatchSet, PropertyMatchSet,
Incident, and CaseSet. Figure 26 also shows the CBRQuery class with
a "has" relationship to the QueryParameter class and the Pattern
class. The classes of RankedCaselInstance and PropertyRankedInstance
are shown related to the RankInstance class, and these ranked
instance classes are shown related to the Caselnstance and
PropertyInstance classes, respectively. The PropertyInstance class
is, in turn, related to the PropertyMatchSet class, which, along
with the CaseMatchSet, is related to the CBRQuery class.

In particular, Figure 26 shows that the CaseMatchSet and
PropertyMatchSet classes inherit from the MatchSet class, and
therefore their structure and behavior conform to the specifications
of the MatchSet. That is, the MatchSet class is an abstract base
class that serves as a template for CaseMatchSet and
PropertyMatchSet objects. Ssimilarly, the CaseRank class and
RankedPropertyInstance class inherit from the RankInstance class,
which is an abstract base class, and therefore their structure and

58

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

behavior conform to the RankInstance class. The RankInstance class
includes no methods but contains several attributes. The rank
attribute is calculated to indicate how closely a Caselnstance
matches a gquery pattern or to determine which unknown property
values would most increase the rank score. The rank type indicates
the ranking algorithm to use, and the status indicates a status for
a Caselnstance. Examples of a case status include matched or
examined, which indicate a case match or a case being examined,
respectively. The Caselnstance and PropertyInstance classes were
previously described in conjunction with Figure 23.

Figure 27 illustrates the object relationships and
behaviors of the CBRQuery class. The CBRQuery class groups a set of
information that is needed to search history cases (case instance
descriptions) from the CBR data base. The CBR class may include
multiple QueryParameter objects and pattern objects. The CBRQuery
class has a dual relationship with the CaseSet class. A CaseSet
includes multiple CBRQuery objects while a CBRQuery object uses the
CaseSet class in a client-supplier relationship. The CBRQuery class
has simple association relationships with the classes called
Incident, PropertyMatchSet, and CaseMatchSet.

The CBRQuery method called undo() reverses the last
received operation performed as part of building the query. The
CBRQuery method called BuildPattern() assembles a search pattern for
a query and the method called evaluate() searches the case histories
for matches to a query pattern. The store() method stores all
CBRQuery objects into the CBR data base, the determine() method
retrieves and displays to the user the stored CBRQueries SO one can
be selected, and the showList() method displays a list of the stored
CBRQueries.

The CaseMatchSet class is an execution time collection
class that hold information while a query is being processed. The
buildCaseMatchSet () method of the CaseMatchSet builds a set of
ranked CaseInstances, the showCaseMatchSet() method shows a set of
ranked CaselInstances, and the exclude() method permits the framework
user to remove a case or property instance from the CaseMatchSet.
The rankCaseMatchSet{() method of the CaseMatchSet calculates an
initial rank score using both the description text and the received
pattern, and the re-rankSet() method selects records from a matched
set based on additional information in the pattern and then
calculates a rank score using both the description text and the
pattern. Finally, the refresh() method rebuilds a CaseMatchSet

-59-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

based on changes to a Pattern that require different cases from the
case base.

The PropertyMatchSet includes methods called
buildPropertyMatchSet (), which builds a set of ranked property
instances, and showPropertyMatchSet (), which shows a set of ranked
property instances. The exclude() method permits a user to remove
a property from further consideration, the rankPropertyMatchSet ()
method calculates an initial rank score using both the description
text and pattern, and the re-rankSet() method selects records from
the property match set based on additional information in a pattern
and calculates a new rank score using both description text and
pattern. The refresh() method of the PropertyMatchSet rebuilds a
PropertyMatchSet based on the changes to the pattern that require
different cases from the case data base.

Figure 28 illustrates that the PropertyInstance and
CompoundPropertyvValue classes inherit from the Pattern class and
therefore the Pattern class serves to define respective property
value patterns. That is, the structure and behavior of the
PropertyInstance and CompoundPropertyValue objects conform to the
specifications of the Pattern class. The CompoundPropertyValue
class contains property-value pairs joined by Boolean operators.
The Boolean operators can comprise, for example, the AND, OR, and

XOR operations.

Data Store and Control Flow
Figure 29 indicates that a CaseSet object may use objects

from multiple DataStoreComponent classes. Figure 29 illustrates two
exemplary extensions of the DataStoreComponent, classes called
DB2 DataStorelImplementat i on and
PersistentObjectDataStoreImplementation.

Figure 30 shows several possible extensions of the
ControlFlowComponent class, comprising classes called
FlowMarkControlFlowImplementation, BasicControlFlowImplementation,
and C++ControlFlowImplementation. Thus, the framework user is free
to use different means for controlling the flow of applications that
use the CBR system. Figure 30 indicates that a user can utilize
control flow implementations that comprise FlowMark, Basic, or C++
programming language implementations. In this way a framework user
can customize a framework extension to utilize a variety of
operating system interface products supplied by vendors.

-60 -

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Presentaticon Component Class Diagram

Figure 31 illustrates possible extensions of the framework
in terms of the PresentationComponent class and its related classes
and objects. Thus, Figure 31 shows that the CaseSet class uses the
PresentationComponent class, which in turn uses the PresentationPart
class. The PresentationPart class, an abstract base class, defines
certain objects comprising Window, Text, Line, MenuBar, Pointer,
Button, and the like. These objects are necessary to provide the
presentation interface to the framework user. The PresentationPart
class in turn uses the PresentationImplementation class. The
PresentationImplementation class is illustrated in Figure 31 with
two possible extensions, one comprising an 0S/2 PresentationManager
and the other comprising a "MicroSoft" (MS) Windows class. Each of
these implementations will contain the classes described for the

PresentationPart class.

Scenario Diagrams

The operating steps performed by the case-based reasoning
system constructed in accordance with the present invention will be
better understood with reference to object scenario diagrams, which
those skilled in the art will appreciate show the processing for an
object oriented programming implementation having the object classes
and compiled as described above.

Case Structure Definition Object Interactions

Figures 32 through 37 relate to case definition
processing. That is, the processing steps represented by the Figure
10 and Figure 11 flow diagrams (most readily understood in a
procedural programming context) may also be described by
corresponding object-scenario diagrams that relate to the object
oriented programming context, in view of the category diagrams of
Figures 14 through 31. The operational steps represented by each
object-scenario diagram are further described by tables of pseudo-
code for each diagram. Line numbers for the text in the pseudo-code
correspond to legends of the connecting lines in the diagrams.

More particularly, Figure 32 is an object-scenario diagram
for the framework implemented in the computer system illustrated in
Figure 8 and shows a first set of operations to construct a case
definition and a parse definition. Figure 32 assumes that the
framework has already been extended so as to instantiate a CBR
Session object and a ControlFlowComponent, so that the proper data

-61-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

structures are active and performing the necessary behaviors for the
CBR system processing to proceed.

Figure 32 shows that the case definition processing begins
with construction of the CaseDefinition object, represented by "1.
construct® on the connecting line from the ControlFlowComponent
object cloud to the CaseDefinition object cloud. The next operation
is to display a user interface scCreen that permits the framework
user to build the various data objects of the CaseDefinition. This
is represented by the legend "2. displayForInput" on the same
connecting 1line. The connecting 1line labelled "3. construct®
indicates that a CaseSet object is next constructed, followed by
execution of the "4. determine()}" method that permits the user to
select the CaseSet to be associated with the newly defined
CaseDefinition. The legend "5. selectCaseSet" indicates that all
existing CaseSet objects are retrieved by the DataStoreComponent
object, and "6. showList" indicates that the list of case sets 1is
displayed to the framework user for selection.

The case definition processing next includes constructing
a ParseDefinition object for the selected CaseSet, represented by
the legend "7. constructParseDefinition" on the connecting line from
the ControlFlowComponent object cloud to the ParseDefinition object
cloud. The wuser has the option of retrieving a desired
ParseDefinition with the DataStoreComponent object, as represented
by the legend "8. selectParseDefinition" on the connecting line from
the ParseDefinition object cloud to the DataStoreComponent object
cioud. The user also has the option of prescribing a tri-string
parse and a token parse. A tri-string parse is a user-defined group
of three text (alphanumeric) characters that will be used to score
case instances in a query evaluation. A token parse is a single
user input character that will be used to replace text in a case
instance. User input of a tri-string parse is represented by "9.
tri-String Parse" and input of a token parse is represented by "10.
tokenParse" on the connecting line from the CaseDefinition object
cloud to the ParseDefiniticn cloud.

In processing described further below, the user is
provided with the option of changing the parsing definition again,
before the parsing definition is stored by the DataStoreComponent
ocbject. If a user has entered data for an initial problem
description for the CaseDefinition object, then parsing methods of
the ParseDefinition class are executed to parse the Description

-62_

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

object into searchable components. Parsing 1is described in
lines 20-23 of the Table 2 pseudo-code.

The processing represented by the Figure 32 diagram is
further described by the following pseudo-code, labelled Table 2.
This pseudo-code table can be understood with relation to Table 1,
which relates to start-up processing, as comprising processing steps
that are executed following the execution of the Table 1 pseudo-code
processing steps. The lines of pseudo-code in Table 2 are numbered
consecutively, to indicate ordering of processing steps:

Table 2. Create the Case Definition.

construct CaseDefinition object;

Display for input "Case Definition®;

Construct CaseSet object;

Determine CaseSet;
Select CaseSet DataStoreComponent;
Show List CaseSet;

Construct ParseDefinition object;

If needed:

8 Select ParseDefinition DataStoreComponent;
If needed:

9 Input Tri-string ParseDefinition;
If needed:

10 Input Token ParseDefinition;

1OV U W N

The next sequence of processing steps in the build case
definition processing is illustrated in Figure 33 and relates to
construction of the objects associated with a PropertyUsage. The
first property usage operation performed is indicated by the legend
®11. construct® on the connecting line from the CaseDefinition
object «cloud to the PropertyUsage object cloud, comprising
construction of a PropertyUsage object in accordance with the object
oriented programming environment of the preferred embodiment.
Figure 33 indicates that a property usage input prompt is displayed
to the user, represented by the legend "12. displayForInput" on the
same connecting line, to receive property information from the user.
Next, as indicated by "13. construct", the PropertyUsage object
constructs a PropertyDefinition object. The legend "14. determine"
represents processing that uses a determine() method of the
PropertyUsage object to retrieve the appropriate property definition
in accordance with the property usage input.

Next, the allowable property definitions for the selected
case set are retrieved by the DataStoreComponent and are shown to

-63-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

the user for selection. This processing 1is represented by the
legend "15. showAllowable" on the connecting 1line from the
PropertyDefinition object cloud to the CaseSet cbject cloud. The
user makes a selection from the allowable list and it is retrieved

by the DataStoreComponent, as represented by "l6.
selectPropertyDef." on the connecting line from the CaseSet object
cloud to the DataStoreComponent object cloud. If a new

PropertyDefinition object is being built by the user, the system
displays a Property Definition prompt and receives the new
information, as represented by the legend "17. displayForInput" at
the PropertyDefinition object cloud.

The user can add allowable values associated with the
PropertyDefinition object being added. To do so, a Value object
must first be built, processing that is represented by the legend
v“18. buildvalue" on the connecting line from the CaseDefinition
object cloud to the PropertyUsage object cloud. A value can be
either a simple value or a compound value, and each case is
constructed and displayed for input from the user as the user
selects and/or adds to the values. Any existing, allowable values
are displayed (represented by "19. showAllowable") and selected by
the user (represented by "20. selectPropValue").

If a simple value is selected, then a SimpleValue object
is constructed, a "simple value" prompt is displayed to the user for
receiving the selection, and the selection 1is recorded into the
change log. These operations are represented, respectively, by the
legends n21. construct", w22, displayForInput", and "23.
addSimplevalue". Similar processing in the case of a compound value
is represented by "24. construct", "25. displayForInput", and "26.
addCompoundValue". The PropertyUsage object ensures that only
appropriate values are defined by performing an audit method,
represented by the legend "27. audit" on the connecting line from
the PropertyUsage object cloud to the PropertyDefinition object
cloud.

The user also can define the allowable weighting.
Therefore, the control flow of the CBR system causes a WeightSet
object to be constructed and a user prompt displayed, as represented
by "28. construct" and "29. displayForInput" on the connecting line
from the PropertyUsage object cloud to the WeightSet object cloud.
As noted above, weight values are associated with properties of case
instances and are used by the query engine to select the closest
match to the current problem. The weight definitions can be

-64-

10

15

20

25

30

35

40

45

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

received from the user and this processing is represented by "“30.
construct" and "31. displayForlInput®. Lastly, the new weight
definitions are recorded in the change log, as represented by the
legend "32. add" on the connecting line from the WeightSet object
cloud to the ChangelLog cbject cloud.

The processing represented by the Figure 33 object-
scenario diagram is further described by the following pseudo-code,
labelled Table 3, which is a continuation of Table 2 and therefore
includes table line numbers that are numbered consecutively from the
lines of pseudo-code in Table 2, to indicate ordering of processing

steps:

Table 3. Construct Properties, Values, Weight Sets.

Repeat as needed (Construct PropertyUsage):

11 Construct PropertyUsage;
12 Display for Input "Property Usage";
13 Construct PropertyDefinition;
14 Determine PropertyDefinition;
15 Show AllowablePropertyDefinitions CaseSet;
16 Select PropertyDefinition DataStoreComponent
If new
17 Display for input "Property Definition";
Repeat as needed (Build ValuePropertyUsage):
18 Build ValuePropertyUsage;
If existing
19 Show AllowablePropertyValues
PropertyDefinition;
20 Select PropertyValue
DataStoreComponent;
If needed:
21 Construct SimplevValue;
22 Display for input “Simple Value';
23 Add ChangeLog;
If needed:
24 Construct CompoundvValue;
25 Display for input "Compound Value“;
26 Add ChangelLog;
27 Audit Value PropertyDefinition;

End Build Value PropertyDefinition;
Repeat as needed (Construct WeightSet):

28 Construct WeightSet;

29 Display for input "Weight Set";

30 Construct WeightDefinition;

31 Display for input "Weight Definition";
32 Add ChangelLog;

End Construct WeightSet Repeat;
End Construct PropertyUsage Repeat;

The next sequence of operations to be performed by the CBR
system is to construct action prompts, tracking definitions, and

index definitions for use in gquery evaluation processing. These

-65-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

operations are represented by the object-scenario diagram of
Figure 34. The first step of action prompt processing 1is
represented by the legend "33. construct" and "34. displayForInput"
on the connecting line from the CaseDefinition object cloud to the
ActionPromptDefinition object cloud, indicating that an
ActionPromptDefinition object 1is constructed and the wuser is
prompted for the definition input. If there is an existing action
prompt set, then the set is displayed to the user (represented by
"35, show") and the user selects from the displayed set (represented
by "36. selectActionPrompt"). The modification to the system
implemented by the selection 1is added to the change 1log, as
indicated by "37. add".

Next, the tracking definition is received from the user.
This processing is initiated with construction of a
TrackingDefinition object (represented by "38. construct”), followed
by user specification of the definition (represented by "39.
displayForInput"). If an existing tracking definition is specified
by the user, in a manner determined by the user interface, then the
existing definitions are displayed (represented by "40. show") and
the user selects one using the DataStoreComponent (represented by
v41. selectTrackingDef."). The modification is added to the change
log, indicated by "42. add".

The user then specifies the desired index definition. The
next processing is to construct an IndexDefinition object and
receive user input ("43. construct" and "44. displayForInput" on the
connecting line from CaseDefinition to IndexDefinition). If an
existing index definition was desired, then the index definition set
is displayed to the user ("45. show") and the user makes a
selection, as indicated by the legend "46. selectIndexDef." on the
connecting line from the CaseSet object cloud to the
DataStoreComponent object cloud. Modifications are recorded into
the change log at the step indicated by *47. add".

The processing represented by the Figure 34 object-
scenario diagram can be further described by the following table of
pseudo-code, which is a continuation of the previous tables:

-66-

10

15

20

25

30

35

40

45

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Table 4. Construct Action Prompts, Tracking, and Index

Definitions..

Repeat as needed (Construct ActionPromptDefinition) :

33 Construct ActionPromptDefinition;
34 Display for Input "Action Prompt Definition*;
If existing
35 Show ActionPromptDefinitions CaseSet;
36 Select ActionPromptDefinition

DataStoreComponent;
37 Add Changel.og;
End Construct Action Prompt Instance Repeat;
Repeat as needed (Construct Tracking Definition):

38 Construct TrackingDefinition;
39 Display for input "Tracking Definition";
If existing
40 Show TrackingDefinition CaseSet;
41 Select TrackingDefinition

DataStoreComponent;
42 Add Changelog;
End Construct Tracking Instance Repeat;
Repeat as needed (Construct Index Definition):

43 Construct IndexDefinition;
44 Display for input "Index Definition";
If existing
45 Show IndexDefinition CaseSet;
46 Select IndexDefinition

DataStoreComponent;
47 Add ChangeLog;
End Construct Index Instance Repeat;

The next series of processing steps performed by the CBR
system of the extended framework is to construct Pattern objects
that are associated with the CaseDefinition data object. The
pattern processing is represented by the Figure 35 object-scenario
diagram.

The initial step of pattern processing is to construct a
Pattern object and receive a user-selected pattern, as represented
by the legends "48. construct" and "49. displayForInput" on the
connecting line from the CaseDefinition object cloud to the Pattern
object cloud. If one or more existing patterns are available for
selection by the user, then the system shows the allowable set of
patterns to the user (indicated by "50. showAllowablePatterns") and
the user makes a selection (indicated by "51. select"). Property
values can be compound, and therefore the next processing is to
construct a compound property value and display to the user a prompt
to receive the user specification, represented respectively by "52.
construct" and "523. displayForInput”. If a CompoundPropertyValue is
added, then the change is recorded ("54. add").

-67-

10

15

20

25

30 -

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

A Pattern object consists of one or many single
SimpleValue objects and/or CompoundValue objects that are associated

with PropertyInstance objects. Thus, the next processing is to
construct a PropertyInstance object specified by the user ("55.
construct" and "56. displayForInput"). Next, SimplevValue objects
are similarly constructed ("57. construct® and “58.

displayForInput"), as are CompoundValue objects ("53. construct" and
“§0. displayForInput"). Finally, the revised Pattern is generated
by the infer method ("61. inferPatternvalue"). In this way, the
Pattern object limits, or constrains, the combinations of property
values that can be defined in case instances of the case definition.
The processing represented by the Figure 35 object-
scenario diagram can be further described by the following table of
pseudo-code, which is a continuation of the previous tables:

Table 5. Construct Patterns.

Repeat as needed (Construct Patterns):

48 Construct Patterns;

49 Display for input "“Pattern";
If existing

50 Show AllowablePattern CaseSet;

51 Select Pattern

DataStoreComponent;

If needed:

52 Construct CompoundPropertyValue;

53 ’ Display for input "Compound Property

Value";

54 Add Changelog;
If needed:

55 Construct Propertylnstance;

56 Display for input "Property Instance";
If needed:

57 Construct SimpleValue;

58 Display for input "Simple Value%;
If needed:

59 Construct CompoundvValue;

60 Display for input "Compound Value";

61 Infer PatternValue CaseDefinition;

End Construct Patterns Repeat;

Figure 36 is an object-scenario diagram that represents
processing associated with updating a parse definition, the next
sequence of operations. The Figure 36 processing begins with a
display for user input to receive a parse definition, as indicated
by the legend "62. displayForInput" on the connecting line from the
CaseDefinition object cloud to the ParseDefinition object cloud.

-68_

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

The user makes a selection ("63. select") and then the system checks
to determine where the parse definition was used, or located, in the
case definition ("64. check"). The parse definition 1is then
subjected to an audit operation that ensures the words are allowable
("65. audit"). Finally, the modifications to the parse definition
being used are recorded in the ChangeLog ("66. add").

The processing represented by the object-scerarioc diagram
of Figure 36 can be further described by the following table of
pseudo-code, which is a continuation of the previous -ables:

Table 6. Update Parse Definition.

Repeat as needed (Update Parse Definition):

62 Display for input "Parse Definition";

63 Select ParseDefinition DataStoreComponent;
64 Check Used ParseDefinition;

65 Audit Words ParseDefinition;

66 Add ChangeLog:

End Update Parse Definition Repeat;

Figure 37 is an object-scenario diagram that illustrates
the processing to store the case definition in the persistent
storage of the CBR system using the DataStoreComponent. The first
store operation is for the ControlFlowComponent to cause storage of
the CaseDefinition, comprising all of the objects associated with
the various classes of which the CaseDefinition is comprised. This
operation is represented in Figure 37 by the legend "67.
storeCaseDefinition" on the connecting line from the
ControlFlowComponent object cloud to the CaseDefinition object
cloud. The next series of operations comprises the insertion of the
objects into persistent storage using the DataStoreComponent. These
steps are represented by the legend "68-80. 1insert"™ on the
connecting line from the CaseDefinition cloud to the
DataStoreComponent cloud. Individual operations associated with
these steps are listed in Table 7 below. Finally, in accordance
with object oriented programming principles, objects not needed
after the storing is complete are destructed ("81l. destruct").

The processing represented by the Figure 37 object-
scenario diagram can be further described by the following table of
pseudo-code, which is a continuation of the previous tables:

-69 -

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Table 7. Store Case Definition.

67 Store CaseDefinition;

68 Insert WeightDefinition DataStoreComponent;

69 Insert PropertyDefinition DataStoreComponent;

70 Insert Values DataStoreComponent;

71 Insert ParseDefinition DataStoreComponent;

72 Insert ActionPromptDefinition DataStoreComponent;
73 Insert CaseDefinition DataStoreComponent;

74 Insert PropertyUsage DataStoreComponent;

75 Insert Values DataStoreComponent;

76 Insert WeightSet DataStoreComponent;
77 Insert ActionPrompt DataStoreComponent;
78 Insert Pattern DataStoreComponent;

79 Insert TrackingDefinition DataStoreCcomponent;

80 Insert IndexDefinition DataStoreComponent;

End Store CaseDefinition;
81 Destruct;
End Build Case Definition.

Case Instance Object Interactions

A user defines new problem description-solution pairs, the
history cases, and performs maintenance on existing cases by using
the case instance definition processing. Each history case, called
a case instance, has a data structure specified by the case
definition structure. The case definition processing was described
above in conjunction with Figures 32-37. The case instance
processing is similar in many respects to the case definition
processing, and is illustrated in Figures 38-43.

Figure 38 is an object-scenario diagram that illustrates
operating steps in the case instance processing. First, a
Caselnstance object is constructed and the user 1is permitted to
designate a case instance set. These steps are represented by the
legends "1. construct" and "2. displayForlInput" on the connecting
line from the ControlFlowComponent object cloud to the Caselnstance
object cloud. A CaseSet object 1is constructed and the allowable
CaseSet objects are determined (indicated by "3, construct" and "“4.
determine" on the connecting line from ControlFlowComponent to
CaseSet) . The user next selects one of the available CaseSet
objects, using the DataStoreComponent ("5. select"), from among the
list of available CaseSet objects ("6. showList").

After the case set is selected, the next step in the
CaseInstance processing is for the appropriate ParseDefinition
objects to be retrieved. First, a ParseDefinition object must be
constructed, as represented by the legend "7. construct" on the

-70-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

connecting line from the ControlFlowComponent object cloud to the
ParseDefinition object cloud. The user then selects a
ParseDefinition using the DataStoreComponent ("8. select”). The
selected parse definition may be either a tri-string parse or a
token parse, individually or together, as desired. The tri-string
parse will break down the input data in successive three-character
groups to permit "fuzzy" matching and tolerance for incorrectly
spelled words in the input data and the token parse breaks down each
word in the input data into a tcken, thereby stripping predetermined
prefix and suffix combinations from the input words and handling

common Synonyms. The tri-string and token parse selection is
represented by "S. retrieveTriStringParseDef ." and by "10.
retrieveTokenParseDef.", respectively.

The processing of the Figure 38 case instance definition
object-scenario diagram can be further described by the following
table of pseudo-code, in which pseudo-code line numbers are provided

to indicate ordering of processing steps:

Table 8. Create Case Instance Definition.

Construct CaselInstance object;

Display for input "Case Instance";

Construct CaseSet;

Determine CaseSet;
Select CaseSet DataStoreComponent;

Show List of CaseSet;

Construct ParseDefinition;

If needed:

8 Select ParseDefinition DataStoreComponent;
If needed:

9 Retrieve Tri-string ParseDefinition;
If needed:

10 Retrieve Token ParseDefinition;

N oYU s LW

Figure 39 is an object-scenario diagram that illustrates
selection of a case definition to control the structure of the new
case 1instance. The first processing step 1is to construct a
CaseDefinition object and to determine the set of allowable
CaseDefinition objects, as represented by the legends "11.
construct® and "12. determine® on the connecting line from the
ControlFlowComponent object cloud to the CaseDefinition object
cloud. To permit the user to select a CaseDefinition, first the set
of allowable objects from the CaseSet is shown to the user ("13.

-71-

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

show") and then the user selects one of them wusing the
DataStoreComponent ("14. select").

The selected CaseDefinition is wused ("15. use") to
construct a PropertyUsage object ("16. construct"). The user then
selects a PropertyUsage object, as represented by the legend "17.
select" on the connecting line from the CaseSet object cloud to the
DataStoreComponent object cloud. With the selected PropertyUsage,
the next step is to construct PropertyDefinition objects specified
by the PropertyUsage object. This is represented by "18. construct"
on the connecting line from PropertyUsage to PropertyDefinition.
The user then selects a PropertyDefinition object ("19. select").
A property definition includes simple values, compound values, and
weights, and therefore the next processing involves constructing and
selecting a SimpleValue object ("20. construct" and "21. select"),
constructing and selecting a Compoundvalue object ("22. construct"
and "23. select"), and constructing and selecting a WeightSet object
(v24. construct" and "25. select").

As part of WeightSet processing, the CBR system constructs
the corresponding WeightDefinition objects and permits the user to
make a selection, represented by the legend "26. construct" on the
connecting line from the WeightSet object cloud to the
WeightDefinition object cloud and the legend "27. select" on the
connecting 1line from the CaseDefinition object cloud to the
DataStoreComponent object cloud.

Attributes of the CaseDefinition include action prompts,
index definitions, and tracking definitions. Therefore, the next

case definition processing includes constructing
ActionPromptDefinition objects ("28. construct”) and selecting an
ActionPromptDefinition ("29. select"). The processing also includes

constructing IndexDefinition objects ("30. construct") and selecting
one ("31. select"), and also constructing TrackingDefinition objects
("32. construct") and selecting one ("33. select"). This completes
case definition processing.

The processing represented by the Figure 39 object-
scenario diagram can be further described by the following table of
pseudo-code, which is a continuation of the previous tables of

pseudo-code:

-72-

10

15

20

25

30

35

40

45

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Table 9. Select Case Definition.

11 Construct CaseDefinition;

12 Determine CaseDefinition;

13 Show CaseDefinition CaseSet;

14 Select CaseDefinition DataStoreComponent;
15 Use Selected CaseDefinition;

16 Construct PropertyUsage object;

17 Select PropertyUsage;

18 Construct PropertyDefinition objects;

19 Select Property Definition;

20 Construct SimplevValue object;

21 Select SimpleValue;

22 Construct CompoundValue object;

23 Select CompoundValue;

24 Construct WeightSet cbject;

25 Select WeightSet;

26 Construct WeightDefinition objects;
27 Select WeightDefinition;
28 Construct ActionPromptDefinition objects;

29 Select ActionPromptDefinition;

30 Construct IndexDefinition objects;

31 Select IndexDefinition;

32 Construct TrackingDefinition objects;

33 Select TrackingDefinition;

Figure 40 is an object-scenario diagram that illustrates
processing that creates the PropertyInstance objects for the
previously selected Caselnstance based on either the data from an
Incident object or by creating new Propertylnstance objects from
user input data. A list of Incident objects may be retrieved before
creating the property instance objects, to permit selection of a
stored Incident object as the source for building a CaseInstance
object. This processing is represented in Figure 40 by the legend
"34. construct” and "35. determine" on the connecting line from the
CaseInstance object cloud to the Incident object cloud, whereupon
the Incident object is created and its allowable objects are
determined. The allowable Incident objects from the CaseSet are
shown to the user ("36. show"), who then makes a selection using the
DataStoreComponent ("37. selectIncident"). As noted previously, the
DataStoreComponent is the mechanism through which a user can
retrieve stored data, such as for selection of a stored Incident
object.

A “"convert-to-case" method (represented by “38. convert"
on the connecting line from the CaseInstance object cloud to the
Incident object cloud) identifies all known Property Instance/Value
pairs from the Incident. The method causes PropertylInstance objects

..73-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

to be created ("39. construct") and the set of specified
PropertyDefinition objects valid for the current CaseDefinition are
determined ("40. determine"). The permissible PropertyDefinition
objects based on the CaseDefinition are shown to the user ("41.
show") and then are selected by the user ("42. select") using the
DataStoreComponent. If the PropertyDefinition selected by the user
is new, then a PropertyDefinition object is constructed (%43.
construct") and inserted into the persistent storage by the
DataStoreComponent ("44. insert"). The modification {(new
PropertyDefinition) is recorded in the change log ("45. add").

The processing represented by the object-scenario diagram
of Figure 40 can be further described by the following table of
pseudo-code, which is a continuation of the previous tables of
pseudo-code:

Table 10. Create Property Instance.

If needed:
34 Construct Incident object;
35 Determine Incident;
36 Show Incidents CaseSet;
37 Select Incident;
38 Use convert-to-Caselncident method;
Repeat as needed:
39 Construct PropertyInstance;
40 Determine PropertylInstance;
41 Show PropertybDefinition CaseDefinition;
42 Select PropertyDefinition;
If new PropertyDefinition
43 Construct PropertyDefinition;
44 Insert PropertyDefinition;
45 Add ChangelLog;

Figure 41 is an object-scenario diagram that illustrates
building Value objects for the PropertyInstance objects and
assigning weights to the properties of those Value objects. The
"build Values" processing permits building the Value objects
associated with the PropertylInstance objects, constructing the
WeightInstance objects, and inferring additional PatternValue
objects. First, the system builds Value objects based on the
PropertyInstance objects for the CaseDefinition. This processing is
represented by "46. use". Next, the allowable property values
allowed for the current selected CaseDefinition object are shown to

-74 -

10

15

20

25

30

35

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

the user ("47. show"). As noted above, such values can be simple
values and can be compound values.

First, a SimplevValue object 1is constructed (n48.
construct") and the user is queried for simple value input wvia the
user interface ("49. displayForInput"). If the SimplevValue selected
by the user is new, then it is inserted into the Value object using
the DataStoreComponent ("50. insert"). Any such changes to the
system are recorded in persistent storage (represented by "51. add"
on the connecting line from the Simplevalue object cloud to the
ChangelLog object cloud).

Next, a CompoundValue is constructed ("52. construct") and
the user is queried for compound value input {"53.
displayForInput"). If the CompoundvValue selected by the user is
new, then it is inserted into the Value object ("54. insert") and
both it and any other changes are recorded into the ChangeLog ("55.
add"). This concludes the BuildvValue processing.

The PropertyInstance objects include WeightInstance and
WeightDefinition objects and therefore the next portion of
processing includes construction of a WeightInstance object ("56.
construct") and displaying to the user a prompt to receive weight
instance input ("57. displayForInput®). If the WeightInstance input
from the user is new, then a new WeightDefinition object is
constructed to contain it ("58. construct"). The WeightDefinition
object is then stored into persistent data storage wusing the
DataStoreComponent ("59. insert") and then the change log is updated
("60. add"). After the new PropertyInstance, Value, and Weight
objects are created or selected, an "infer" processing step checks
against the Pattern objects associated with the case definitions to
determine if additional PropertyInstance or Value objects can be
automatically generated for the query, based on the constraints
specified in the CaseDefinition. In this way, the user first
provides as many defining values and weights assigned to those
values within the user's knowledge, and then the CBR system executes
the infer process to check the guery against further constraints.

The processing represented by the Figure 41 object-
scenario diagram can be further described by the following table of
pseudo-code, which is a continuation of the previous tables of
pseudo-code:

-75-

10

15

20

25

30

35

40

45

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Table 11. Build Value Property Instance objects.

Repeat as needed:

46 Use Build Value method on PropertylInstance;
47 Show Allowable PropertyValue CaseDefinition
If needed:
48 Construct SimpleValue;
49 Display for input "Simple Value";
If new
50 Insert Value DataStoreComponent;
51 Add Changelog;
If needed:
52 Construct Compoundvalue;
53 Display for input "Compound Value®;
If new
54 Insert Value DataStoreComponent;
55 Add Changelog;
End of Repeat Build Value PropertyInstance;
56 Construct WeightInstance;
57 Display for input "Weight Instance";
If new
58 Construct WeightDefinition object;
5% Insert WeightDefinition DataStoreComponent;
60 Add Changelog;
If needed:
61 Infer PatternValue from CaseDefinition;

End Construct Property Instance Repeat (see Table 10);

The next seguence of case instance definition processing
is to create ActionPrompt and Audit objects and to audit the case
instance that has been built. Figure 42 is an object-scenario
diagram that illustrates such processing.

In the action prompt/audit processing, ActionPrompt
objects are first constructed ("62. construct") and allowable
ActionPrompt objects are determined ("63. determine"). The
ActionPrompt objects available from the CaseDefinition are shown to
the user ("64. show"), who then makes a selection ("65. select").
The selected ActionPrompt objects are then constructed using the
ActionPromptDefinition ("66. construct") and are inserted into
persistent storage using the DataStoreComponent ("67. insert").
Modifications are inserted into the ChangeLog ("68. add").

A series of Audit methods are performed to ensure valid
property definition components. An audit call is made on the
PropertyUsage attributes for the selected CaseDefinition ("69.
auditPropertyUsage”), an audit is called on PropertyValue attributes
for the PropertyUsage ("70. auditPropertyValues"), and an audit is
called on ActionPrompt for the ActionPromptDefinition (71.
auditvalues"). An audit also is called on the PrqpertyDefinition

-76-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

for the CaseInstance ("72. auditvValues"), an audit is called on the
WeightDefinition attributes ("73. auditValues"), an audit is called
on the WeightSet ("74. auditValues"), and an audit is called on the
PatternCase objects ("75. auditvValuePatterns").

The processing represented by the Figure 42 object-
scenario diagram can be further described by the following table of
pseudo-code, which is a continuation of the previous table of
pseudo-code:

Table 12. Create Action Prompts and Audits.

Repeat as needed:

62 Construct ActionPromptInstance object;

63 Determine ActionPromptInstance;

64 Show ActionPromptDefinitions CaseDefinition;

65 Select ActionPromptDefinition
DataStoreComponent;

If new

66 Construct ActionPromptDefinition;

67 Insert ActionPromptDefinition
DataStoreComponent;

68 Add Changelog;

End Construct Action Prompt Instance Repeat;
69 Audit PropertyUsage CaseDefinition;
70 Audit PropertyValues PropertyUsage;
71 Audit Values ActionPromptDefinition;
72 Audit Values PropertyDefinition;
73 Audit Values WeightDefinition;
74 Audit Set Values WeightSet;
75 Audit Value Patterns CaseDefinition;

Figure 43 is an object-scenaric diagram that represents
the next sequence of processing steps, which creates refresh indexes
and stores the Caselnstance. In the refresh index/store case
instance processing, the IndexDefinition objects are refreshed ("76.
refresh”) by constructing Index objects ("77. construct") and
IndexEntry objects ("78. construct"). The ControlFlowComponent next
causes the CaselInstance to be stored ("79. store").

The IndexDefinition objects must be refreshed whenever the
referenced items are changed or new items added. After the refresh,
each element of the newly created Caselnstance objects must be
stored in the data base with an insert operation ("80. insert").
The PropertyInstance ("81. insert") and associated Value and
WeightInstance objects must be stored ("insert" items 82 and 83 of
the diagram). Next, the ActionPromptInstance, IndexInstance, and

-77 -

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

IndexEntryInstance objects for each CaseInstance also are stored in
the data base, as represented by the "insert" items numbered 84, 85,
and 86, respectively. Finally, the "build Case Instance" processing
includes destructing each one of the objects not needed after the
data storage, which is collectively indicated by the legend "87.
destruct®. This concludes the case instance definition processing.

The processing represented by the Figure 43 object-
scenario diagram can be further described by the following table of
pseudo-code, which is a continuation of the previous tables of
pseudo-code:

Table 13. Refresh Indexes; Store Case Instance.

Repeat as needed:

76 Refresh IndexDefinition;

77 Construct IndexInstance;

78 Construct IndexEntry;
End Refresh IndexDefinition Repeat;

79 Store Caselnstance; ‘

80 Insert Caselnstance DataStoreComponent;

81 Insert PropertyInstance DataStoreComponent;

82 Insert Values DataStoreComponent;

83 Insert WeightInstance DataStoreComponent;

84 Insert ActionPromptInstance DataStoreComponent;

85 Insert IndexInstance DataStoreComponent;

86 Insert IndexEntryInstance DataStoreComponent;
End StoreCaselnstance;

87 Destruct objects;

End Build Caselnstance.

This concludes the object-scenario diagrams for the build
case definition processing. The next sequence of processing
operations for the CBR system is to receive and evaluate guery input
from the user.

Query Processing

The object interactions for processing a query are
illustrated in Figures 44-49. Such processing applies a received
query against the case base and attempts to identify a solution set
of case instances

Figure 44 is a top-level object-scenario diagram for the
framework implemented in the computer system illustrated 1in
Figure 8. Figure 44 is a scenario that shows the resulting actions
that are performed in the framework mechanism for processing of a
single query, the simplest type of query that can be posed by the

-78-

10

i5

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

framework user. Figure 44 assumes that the framework has already
been extended so as to instantiate a CBR Session object and a
ControlFlowComponent, so that the proper data structures are active
and performing the necessary behaviors for the CBR system processing
to proceed.

Figure 44 shows that the processing of the extended
framework starts with the creation of a CBRQuery object, indicated
by the connecting line from the object cloud ControlFlowComponent to
the object cloud CBRQuery with the arrow labelled "1. construct”.
Those skilled in the art will understand that this is a
representation for the creation by the ControlFlowComponent object
of a CBRQuery object with all data, attributes, and behaviors
necessary to make the CBRQuery object complete. In the preferred
embodiment, the framework is implemented in a computer system with
the C++ programming language. Those skilled in the art will
understand that the creation process is typically a C++ constructor
that creates C++ objects.

After the CBRQuery object is created, a determine () method
can be used to assist the user in selecting a query that was
previously built and saved by the DataStoreComponent. For such
processing, a list of gueries from the DataStoreComponent can be
provided to the user, from which the user can select one as an
initial query.

As noted above, the computer system receives interactive
information from the user in response to display prompts. The
legend "2. displayForInput" on the Figure 44 connecting line from
the object cloud ControlFlowComponent to the object cloud CBRQuery
indicates that the second processing step is to display a user
prompt and prepare to receive a query. That is, in response to the
display prompt, a problem will be posed by the user to the CBR
system, for matching against the case base and generation of a
solution, from either the query retrieved from the
DataStoreComponent or a new query fashioned by the user.

In response to the received CBR query, the CBRQuery object
is inserted to the Changelog object for data storage. This step is
indicated by the connecting line from the CBRQuery object cloud to
the Changelog object cloud with the arrow labelled "3. add". Next,
the case base to be used is selected by the user. This processing
is indicated by the arrows labelled "4a. constructCaseSet" and "4b.
determineCaseSet" on the connecting line from the
ControlFlowComponent object cloud to the CaseSet object cloud and

_79-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

the arrow labelled "4c. selectCaseSet" on the connecting line from
the ControlFlowComponent object cloud to the DataStoreComponent
object cloud. The selected case base is displayed to the user,
indicated by the legend “"5. showCaseSet", and then is instantiated
for use by the CBR system, indicated by the legend "6. useCaseSet"
on the connecting line from the ControlFlowComponent object cloud to
the CaseSet object cloud.

Once the case base has been selected, the next step is to
select the parsing definition that will be used, according to the
input start-up processing determined by the framework user. This
step is represented by the arrow labelled "y,
selectParseDefinition" on the connecting line from the CBRQuery
object cloud to the DataStoreCompconent object cloud. Figure 30 next
shows parsing in the case that both the tri-string parse and token
parse have been selected. Accordingly, the next processing steps
are indicated as "8. tri-StringParse" and "9. tokenParse" on the
connecting line from the CBRQuery object cloud to the
ParseDefinition object cloud. It should be understood that
selection of a parsing definition is not necessarily needed, and one
or both of these processing steps may be skipped. After the parse
definitions have been settled, the next step is to receive the user
gquery. This step is represented in Figure 44 by the legends "10a.
construct" and "10b. displayForInput" on the connecting line from
the CBRQuery object cloud to the QueryParameter object cloud.
Finally, the received data input (qguery) is placed into the
appropriate data objects with the "11. add" label on the connecting
line from the QueryParameter object cloud to the ChangeLog object
cloud.

The processing represented by Figure 44 can be further
described by the following table of pseudo-code, in which code line
numbers are provided to indicate ordering and generally correspond
to the numbered legends on the connecting lines 1illustrated in

Figure 44:

Table 14. Pseudo-code for Single Query.

Repeat as needed to build/evaluate a guery:
1 If new query //(e.g., first iteratiomn)
Construct CBRQuery;

If needed:
la Determine CBRQuery;
1b Select CBRQuery DataStoreComponent;
1c Show List CBRQuery;

-80-

10

15

20

25

30

35

40

45

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574
2 Display for input "“CBR Query";
3 Add ChangeLog;
If new Query
4a Construct CaseSet;
If needed:
4b Determine CaseSet;
4c Select CaseSet DataStoreComponent;
5 Show List CaseSet;
If needed:
6 Use Set CaseSet (in accordance with user
selection);
If needed:
7 Select ParseDefinition DataStoreComponent;
If needed:
8 Tri-string Parse the ParseDefinition;
If needed:
9 Token Parse the ParseDefinition;
If needed:
10a Construct QueryParameter(s);
10b Display for input "Query Parameters";
11 Add ChangeLog;

The next seguence of processing steps in responding to a
single query are represented by the object-scenario diagram of
Figure 45. Proceeding from the last illustrated step in Figure 44,
the processing illustrated in Figure 45 shows building a pattern for
use by the query engine, which begins with receiving property value
and property instance selections from the framework user. Such
processing involves the step of displaying a pattern prompt to the
user, represented by the legends "12. construct" and "13.
displayForInput" on the connecting line from the CBRQuery object
cloud to the Pattern object cloud. As a result of such processing,
the system displays input screens for the user.

As part of providing the input pattern, the system next
constructs a CompoundPropertyValue object and receives the user
selection of the appropriate property value attributes. This
processing is represented in Figure 45 by the arrow from the Pattern
object cloud to the CompoundPropertyValue object cloud labelled with
"14. construct" and "15. displayForInput". The received compound
property value selection is added to the data base as a ChangelLog
data object, as represented by the legend "1lba. add" on the
connecting 1line from the Pattern object cloud to the ChangelLog
object cloud. After the property value input is received, the next
processing involves receiving a selected property instance. This
processing is represented by the legends "16. construct", "17.
displayForInput”, and "18. buildvalue™ on the connecting line from
the Pattern object cloud to the PropertyInstance object cloud. The

-81_

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

build value attributes are added to the data base and the inputs are
recorded into the ChangelLog object, as indicated by the "17a. add“
legend on the connecting line from the Pattern object cloud to the
ChangeLog object cloud.

Figure 45 shows processing assuming that both simple value
and compound value selections are received, but it should be
understood that both selections are not necessarily needed.
Accordingly, the next processing steps are shown as the arrows
labelled "19. construct" and "20. displayForInput” on the
connecting line from the PropertyInstance object cloud to the
SimplevValue object cloud, and also as the arrows labelled "21.
construct" and "22. displayForInput" on the connecting line from
the PropertyInstance object cloud to the CompoundvValue object cloud.
Depending on the responses received from the user, the system next
adds the simple value selection and compound value selection to the
data base, as indicated by the respective legends "20. add" and
"23. add" on the connecting line from the PropertylInstance object
cloud to the ChangelLog object cloud.

Finally, the CBRQuery object implements selection of the
CaseDefinition attributes after retrieving a menu of possibilities
from the data base. This processing is represented by the legend
"24a, selectCaseDef" on the connecting line from the CBRQuery
object cloud to the DataStoreComponent object cloud and the legends
"24b. showCaseDef ", w2dc. useCaseDef", and v244.
inferPatternvValue" on the connecting line from the CBRQuery object
cloud to the CaseDefinition object cloud. This processing
represents display of the case definitions to the wuser for
selection.

The processing represented by Figure 45 can be further
described by the following table of pseudo-code, which 1is a
continuation of the previous table of pseudo-code:

Table 15, Pseudo-code for Build Pattern-type CBR Query.

If new Build Pattern

12 Construct Pattern;
Repeat as needed:
13 Display for input "Pattern";
If new PropertyValue
14 Construct CompoundPropertyvValue;
15 Display for input "Compound Property Value";
15a Add ChangelLog;
1f new PropertyInstance
16 Construct Propertylnstance;

-82_

10

15

20

25

30

35

40

45

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

17 Display for input "Property Instance";

17a Add Changelog;

18 Build PropertyvValuelnstance;
If needed:

19 Construct SimpleValue;

20 Display for input "Simple Value";

20a Add Changelog;
If needed:

21 Construct CompoundValue;

22 Display for input "Compound Value®;

23 Add Changelog;

24a Select CaseDefinitions DataStoreComponent for each
user;

24b Show CaseDefinitions CaseSet;

24c Use Definition CaseDefinition;

2448 Infer PatternValue CaseDefinition;

13a Add ChangeLog;

End BuildPattern repeat;

After the guery pattern has been built, the next
processing is the evaluation of the query. The evaluation
processing is represented by the object-scenario diagram of
Figure 46. Proceeding from the last illustrated step in Figure 31,
the processing illustrated in Figure 46 shows the next step of "25.
evaluateCBRQuery" on the connecting line from the
ControlFlowComponent object cloud to the CBRQuery object cloud. In
response, the system next selects the index definitions to be used
in the evaluation for the case definitions that will be searched.
This step is represented by the legend "26. selectIndexDefinition"
on the connecting line from the CBRQuery object cloud to the
DataStoreComponent object cloud. Next, the system checks to
determine if the index definition being used contains information
that will be useful and will speed the search of the case
definitions. This step is indicated by the arrow labelled "“26a.
doCoverIndexDefinition" on the connecting line from the CBRQuery
object cloud to the IndexDefinition object cloud.

If the index definition is useful, and if the index
definition is not already retrieved, then the appropriate index
objects are loaded into memory. That is, the IndexDefinition
objects are constructed and instantiated. Loading the index entries
into the CBR system memory is indicated by the legend "27. load" on
the connecting 1line from the CBRQuery object cloud to the
IndexInstance object cloud. If the present evaluation is the first
iteration of processing for the query, then a CaseMatchSet object is
constructed. This is represented by the arrow labelled "28.
constructCaseMatchSet" on the connecting line from the CBRQuery

..83_

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

object cloud to the CaseMatchSet object cloud. The CaseMatchSet
will serve as a collection object to contain matches located in the
case base.

The processing represented by Figure 46 can be further
described by the following table of pseudo-code, which is a
continuation of the previous tables of pseudo-code:

Table 16. Pseudo-code for Evaluate CBR Query.

25 Evaluate CBRQuery:
26 Select IndexDefinition DataStoreComponent //(for
Case Definitions Used);
For selected Component

26a DoCover IndexDefinition;
If covers and not loaded //(per CBRSession)
27 Load InternallIndexInstance;
If new query
28 Construct CaseMatchSet;

Figure 47 illustrates the processing of a CaseMatchSet
after it is constructed. The step of building the CaseMatchSet is
represented by the legend "29. buildCaseMatchSet" on the connecting
line from the CBRQuery object cloud to the CaseMatchSet object
cloud.

Initially, the CaseMatchSet contains the results of
selecting Caselnstance objects that match the property values
defined in the Pattern object or whose description matches the
description in the Pattern. This processing is represented by the
legend "29a. compare" on the connecting line from the CBRQuery
object cloud to the IndexInstance object cloud and the legend "30.
selectCaselInstances" on the connecting line from the CaseMatchSet
object cloud to the DataStoreComponent object cloud. Next, the
selected CaseInstance objects are ranked for closeness to the
Pattern searched. If the Caselnstance has not changed (that is,
processing is for another iteration on a previously searched case),
then the CaselInstance objects are re-ranked. This processing is
represented by the legends "31. rankSet" and "32. re-RankSet" on
the connecting line from the CaseMatchSet object cloud back onto
itself.

Ranking invelves first constructing a RankedCaselnstance
object to contain the rank information for the Caselnstance of the
CaseMatchSet being processed. Therefore, for each selected
CaseInstance, a check is made to determine if it 1is a new

_84-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574
CaseInstance for evaluation. If the CaselInstance 1is new, a
RankedCaseInstance object is constructed. Each CaselInstance 1is

scored according to the Rank or re-Rank method of the CaseMatchSet
and the results are stored in the RankedCaseInstance. The
construction processing 1s represented by the 1legend "33.
constructRankedCase" and the rank processing is represented by the
legend "34. setRankTypeStatus" on the connecting line from the
CaseMatchSet object cloud to the RankedCaselnstance object cloud.

Next, tracking definitions are checked to see if any apply
to the case set. Therefore, the TrackingDefinition objects are
iteratively selected, as represented by the arrows labelled "35.
selectTrackingDefinition" and "36. doIncrementTrackingDefinition®
on the connecting lines from the CaseMatchSet object cloud to the
DataStoreComponent cloud and the TrackingDefinition cloud,
respectively. If any tracking definitions apply, the corresponding
tracking instances are iteratively selected, as represented by the
arrows labelled "37. selectTrackinglInstance” and "38. increment"
on the connecting lines from the CaseMatchSet object cloud to the
DataStoreComponent and TrackingInstance object clouds, respectively.

After the tracking instance processing, the ordered
CaseMatchSet is displayed to the user to provide an opportunity to
select case instances for exclusion from further processing. The
display 1is represented by the legend "39. showSet"™ on the
connecting line from the CBRQuery object cloud to the CaseMatchSet
object cloud. 1If at least one solution to the guery is not found,
that is, none has scored above a specified threshold, then the user
can exclude cases from the match set and repeat the evaluation or
the wuser can use a PropertyMatchSet object (which also 1is
constructed on the first iteration of evaluation processing) to help
determine which properties will most quickly lead to a solution and
to find values for those properties. This processing is represented
in Figure 47 by the arrow labelled "40. excludeSet" from the
CaseMatchSet object cloud back onto itself and the arrow labelled
"ql. constructPropertyMatchSet" on the connecting line from the
CBRQuery object cloud to the PropertyMatchSet object cloud. The
PropertyMatchSet will serve as a collection object to contain
properties that could be added to the pattern with associated values
to further constrain the search.

The processing represented by Figure 47 can be further
described by the following table of pseudo-code, which is a
continuation of the previous tables of pseudo-code:

-85-

10

15

20

25

30

35

40

45

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Table 17. Pseudo-code for Build Set Case Match Set.

29 Build CaseMatchSet:
If new Caselnstances because of new or updated Pattern
29%a Compare IndexInstance OR
30 Select CaseInstance(s) DataStoreComponent
// (that matches some part of the
Pattern and Description);
If new Case

31 Rank Set CaseMatchSet
else
32 Re-rank Set CaseMatchSet;

For each case:
If new Case

33 Construct RankedCaselInstance;

34 Set Rank, Type, Status RankedCaselInstance;

35 Select TrackingDefinition DataStoreComponent
// (for the CaseInstance used);

36 DoIncrement TrackingDefinition;

37 Select TrackingInstance DataStoreComponent

// (for the Caselnstance used);
If should increment

38 IncrementTrackingInstance;
39 Show Set CaseMatchSet;
If no solution yet
40 Exclude CaseMatchSet //(those indicated
by the user);
41 Construct PropertyMatchSet;

Figure 48 illustrates CBR system processing when a
PropertyMatchSet object is built as part of query evaluation. The
building of a PropertyMatchSet object is represented by the legend
"42. buildSet" on the connecting line from the CBRQuery object
cloud to the PropertyMatchSet object cloud. The property instances
contained in the PropertyMatchSet are selected from the case
instances in the CaseMatchSet that do not have values assigned to
them in the Pattern that is being evaluated. This processing step
is represented by the arrow labelled "43. selectProplnstances" on
the connecting line from the PropertyMatchSet object cloud to the
DataStoreComponent object cloud.

After PropertyInstance objects are selected, they are
ranked by the rank method according to the order in which they have
the most impact on finding a Caselnstance object solution to the
query. If the CaseInstance is new (that is, processing is for an
initial iteration), then the CaselInstance objects of the
PropertyMatchSet are ranked. On subsequent iterations, they are re-
ranked. Such processing is represented in Figure 34 by the legends

-86-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

m44. rankSet" and "45. re-RankSet" on the connecting line from the
PropertyMatchSet object cloud back onto itself.

As with the CaseMatchInstance processing, ranking involves
first constructing an object to contain the rank information.
Therefore, for each CaseInstance object selected with a Property, a
check is made to determine if it is a new CaselInstance. If the
CaselInstance is new, a RankedPropertyInstance object is constructed.
Each PropertyInstance object is scored according to the Rank or re-
Rank method of the PropertyMatchSet and the results are stored in
the RankedPropertylInstance. The construction processing 1is
represented by the legend "46. construct" and the rank processing
is represented by the legend "47. setRankTypeStatus" on the
connecting line from the PropertyMatchSet object cloud to the
RankedPropertyInstance object cloud. The set method indicates the
ranking and status of each PropertyInstance in the PropertyMatchSet.
Each property instance also is checked for specified tracking
definitions. If any tracking definitions apply, the corresponding

tracking instance count 1s incremented. This processing is
represented by the legends "48. selectTrackingDef", "49 .
doIncrement®, "50. selectTrackingInstance", and "51. increment" on

the connecting lines from the PropertyMatchSet object cloud to,
respectively, the object clouds DataStoreComponent,
TrackingDefinition, DataStoreComponent, and TrackingInstance.
After the PropertyMatchSet has been ranked it is displayed
to the user to provide an opportunity to select property instances
to be excluded from further processing. In Figure 48 the display
step is represented by the legend "52. showSet" on the connecting
line from the CBRQuery object cloud to the PropertyMatchSet object
cloud and the resulting exclusion is represented by the legend "53.
exclude" on the connecting line from the PropertyMatchSet object
cloud back onto itself. The user might want to display the property
instances, processing that is represented by the arrow labelled "54.
display" from the PropertyMatchSet object cloud to the
PropertyInstance object cloud. After display, the user can proceed
with viewing the property instance values and/or can execute action
prompt instances related to the Property object. Such processing is
intended to facilitate the user adding information to the Pattern
when iterative processing returns to the build pattern portion of
the build pattern/evaluate query processing loop of the CBR system.
The viewing values processing is represented by the arrow labelled
"55, showvalue" from the PropertyMatchSet object cloud to the

-87-

10

15

20

25

30

35

40

45

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

PropertyInstance object cloud and the action prompt processing is
represented by the arrow labelled "56. execute" from the
PropertyInstance object cloud to the ActionPromptInstance object
cloud.

The processing represented by Figure 48 can be further
described by the following table of pseudo-code, which 1is a
continuation of the previous tables of pseudo-code:

Table 18. Pseudo-code for Build Property Match Set.

42 Build PropertyMatchSet:

If new Caselnstance
43 Select Propertylnstances DataStoreComponent

//{for indicated case instances);

If new Caselnstance
44 Rank Set PropertyMatchSet else
45 Re-rank Set PropertyMatchSet;

For each Property:

If new Caselnstance

46 Construct RankedPropertylnstance;

47 Set Rank, Type, Status
RankedPropertyInstance;

48 Select TrackingDefinition DataStoreComponent
//{(for property instance used);

49 DoIncrement TrackingDefinition;

If should increment
50 Select TrackingInstance

DataStoreComponent //{for
property instances used);

51 Increment TrackingInstance;
52 Show Set PropertyMatchSet;
53 Exclude PropertyMatchSet //(those indicated
by user);
54 Display PropertyInstance //(if indicated by
user) ;
If displayed user can:
55 Show ValuePropertyInstance;
If prompt level is sufficient
56 Execute ActionPromptInstance;

Figure 49 illustrates the processing when a query
solution is found. The beginning of solution processing is
indicated by the legend "57. evaluate" on the connecting line
from the CBRQuery object cloud to the CaseMatchSet object
cloud. The status of the selected RankedCaselnstance 1is
updated to mark the associated CaselInstance object as a
solution for the query. This processing is indicated by the
arrow labelled "34a. setStatusRankedCaseInstance" on the

-88-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

connecting line from the CaseMatchSet object cloud to the
RankedCaselnstance object cloud. 7

A doIncrement() method is then performed to
determine if any tracking information should be updated and,

if applicable, corresponding tracking instances are
incremented. This processing 1is represented by the arrows
labelled *36a. doIncrement" and "38a. increment®" on the

connecting lines from the CaseMatchSet object cloud to the
TrackingInstance object cloud, respectively. Next, the
CaseInstance of the solution is displayed to the user, who may
then decide to execute associated action prompt instances.
Such processing is represented in Figure 35 by the arrows
labelled "58a. displayCaselInstance" from the CBRQuery object
cloud to the CaseInstance object cloud and "58b. execute"
from the Caselnstance object cloud to the ActionPromptInstance
object cloud.

The evaluation processing continues with providing
the user with the option of saving the query information into
the case base. That is, the CBRQuery information can be
saved, with associated objects, using the DataStoreComponent
and corresponding ChangeLog additions. The gquery information
becomes part of the case base so that it might conceivably be
retrieved to help build a subsequent user query. The storing
of the gquery information into the case base is represented by
the legend "60. insertCBRQuery" on the connecting line from
the CBRQuery object cloud to the DataStoreComponent object
cloud and the legend "61. addChangeLog" on the connecting
line from the DataStoreComponent object cloud to the ChangeLog
object cloud.

As an alternative (or in addition) to storing query
information in the case base, the user can save the
information as an Incident. An Incident cannot be retrieved
via a query. That is, the query information saved as an
Incident can be retrieved as an Incident or converted into a
Caselnstance, but it cannot be retrieved as a member of the
case base as a solution to a gquery. To save guery information
as an Incident, an Incident object first must be constructed,
which is represented by the arrow labelled "62.
constructIncident”, and then must be built by converting the
query information to an incident format, which is represented
by the arrow labelled "63. buildIncident", both arrows on the

-89 -

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

connecting line from the Incident cconnecting line back onto
itself. The built Incident is saved in the
DataStoreComponent, represented by the legend "64. insert" on
the connecting line from the Incident object cloud to the
DataStoreComponent.

After the query information is stored, either in
the case base or as an Incident, the Changelog is updated, as
represented by the arrow labelled "67. addChangelLog" on the
connecting line from the DataStoreComponent object cloud to
the ChangelLog object cloud. If needed, the tracking instances
are updated and the update is added to the Changelog. Such
processing is represented by the legends "66.
updateTrackingInstancesComponent" and "67. addChangeLog" on
the connecting lines from the CBRQuery object cloud to the
DataStoreComponent object cloud and from that cloud to the
ChangeLog object cloud. Finally, evaluation processing is
completed by executing destruct methods that delete the
instantiated objects from the object oriented programming
environment of the CBR system, as will be understood by those
skilled in the art.

The processing represented by Figure 49 can be
further described by the following table of pseudo-code, which
is a continuation of the previous tables of pseudo-code:

Table 19. Pseudo-code for End Build/Evaluate Querv repeat.

If have solution for the Query

57 Evaluate:

34a Set status RankedCaseInstance;

36a doIncrement TrackingDefinition;

If should increment
38a IncrementTrackingInstance;
If have solution for the Query

58a Display CaseInstance;

If user initiates and if prompt level is
satisfactory

58b Execute ActionPromptInstance;

If user wants to save Query

59 Store the CBRQuery:

60 Insert CBRQuery, QueryParameter,
Pattern, CompoundProperty
values, and PropertylInstances

DataStoreComponent;

61 Add Changelog;

If user wants to save Query as an Incident

62 Construct Incident;

-90-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

63 Build from QueryIncident;

64 Insert Incident, PropertyInstances,
SimpleValues, CompoundValues,
and DataStoreComponent;

65 Add Changel.og;
If needed:
66 Update TrackingInstances
DataStoreComponent;
67 Add ChangeLog;

Destruct objects;
End Single Query.

This destruct operation completes the processing of the CBR
system, which then awaits another user request.

The embodiments and examples set forth herein were
presented in order to best explain the present invention and
its practical application and to thereby enable those skilled
in the art to make and use the invention. However, those
skilled in the art will recognize that the foregoing
description and examples have been presented for the purposes
of illustration and example only. The description as set
forth is not intended to be exhaustive or to 1limit the
invention to the precise form disclosed. Many modifications
and variations are possible in light of the above teaching
without departing from the spirit and scope of the following

claims.
NOTATION

There 1is, as yet, no uniformly accepted notation
for communicating object-oriented programming ideas. The

notation used in this specification is very similar to that
known in the programming industry as Booch notation, after
Grady Booch. Mr. Booch is the author of Object-Oriented

Analysis and Design With Applications, 24 ed. (1994),

available from The Benjamin/Cummings Publishing Company, Inc.,
Redwood City, California, USA. Use of Booch notation concepts
within this specification should not be taken to imply any
connection between the inventors and/or the assignee of this
patent application and Mr. Booch or Mr. Booch’s employer. The
notational system used by Mr. Booch is more fully explained at
Chapter 5, pp. 171-228 of the aforementioned book. The
notational system used herein will be explained generally
below. Other notational conventions used herein will be
explained as needed.

-91_

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

A system that is modeled by an object-oriented
framework can be represented at a high level of abstractiocn by
a diagram called a top-level class diagram. Figure 1 of the
drawings is an example of a top-level class diagram containing
boxes that represent abstractions of the modeled system. The
boxes are arranged in a hierarchy such that boxes representing
abstractions close to the physical components of the system
are at the lower levels of the diagram and boxes representing
more abstract, functional components are closer to the top of
the diagram. In Figure 1, the boxes are 1labelled as
"mechanisms" to denote that the abstractions comprise means
for implementing modeled system components. The boxes
(mechanisms) can be thought of as categories comprising groups
of similar classes defined according to object-oriented
programming concepts. Figure 1 represents a zZ00
administration model and therefore the lower hierarchy boxes
include a box called 2nimal Mechanism, which represents
animals within the zoo model, and a box called Containment
Unit Mechanism, which represents animal pens and cages. At
the highest 1level of Figure 1, the box called Zoo
Administration represents a functional abstraction that
encompasses a variety of administrative tasks that are
performed by personnel.

The boxes in a top-level class diagram represent
the system abstractions that provide the system behavior. The
system abstractions include classes and objects. Details of
the system classes are provided in a class diagram that is
used to show the class categories and to indicate the
relationships and responsibilities of the classes. A class is
represented by an irregularly shaped, dashed-line icon
commonly referred to as a cloud. Figure 2, for example, shows
several classes represented as clouds. Fach class is
identified by a name that is unique to the associated class
category and also indicates the relationship of each class to
one of the mechanisms illustrated in Figure 1. Within a class
icon, the class name is listed above attribute names,
operation names followed by parentheses, and constraints that
are enclosed within brackets. Figure 3 illustrates the class
700 Administrator in greater detail. Figure 3 indicates that
the Zoo Administrator class includes multiple operations,

including ones called "5_minute_timer ()", "add _animal ()%, and

_92-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574
"add _containment_unit{()". Words in the operation names (and
class attribute names) are sometimes separated by an
underscore for easier reading. An example of a class

attribute 1listing is shown by the attributes called
"feed_freq" and "temp_range" in the class Animals illustrated
in Figure 5.

Connecting lines between mechanisms (Figure 1)} and
classes (Figure 2) indicate the nature of the relationships
between such respective abstractions. Thus, connections
between the boxes in Figure 1 represent relationships between

the wvarious mechanisms. A straight connecting 1line, for
example, represents a simple association relationship
indicating shared information. A "using” relationship is a

refinement of a simple asscciation whereby one abstraction
that is referred to as a server or supplier provides services
to another abstraction that is referred to as a client. Such
a relationship is indicated by an open circle at one end of a
simple association line, the open circle end designating the
client that "“uses" the associated server.

Another refinement of a simple association between
two classes 1s a type referred to as an inheritance
relationship. Inheritance is a relationship among classes in
which one class shares the structure and/or behavior
associated with one or more other classes. An inheritance
association is also referred to as a '"is a" relationship.
Thus, given two classes A and B, the class A has an
inheritance relationship with the class B if A is an example
of a B; A is said to be a subclass of B and B is said to be a
superclass or parent of A. That i1is, A "“is a" B. An
inheritance relationship is denoted with a connecting 1line
that includes an arrowhead at one end to indicate a subclass
that derives its characteristics from a parent class at the
other end of the line.

Another refinement of class relationships is called
an aggregation relationship, which denotes an association
between a whole and its parts or attribute classes. In
notation, an aggregation relationship is indicated between a
whole class and an attribute c¢lass connected with an
association line by a solid circle at the whole class end,
with an attribute class at the other end.

-93-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Another relationship specified by a class diagram
is an instantiation relationship. An instantiation
relationship represents an instance of a class such as a
particular implementation of a class as supported by a
programming language. For example, a class called "animal"
can have multiple instantiations comprising lions, tigers, and
bears. An instantiation of a class is represented by a dashed
association line with an arrowhead pointing from an instance
of a class to the general class.

Finally, a class relationship referred to as a
metaclass denotes a relationship in which a class itself is
treated as an object that can be manipulated. That is, a
metaclass is a class whose instances are themselves classes.
Some computer languages, such as Small Talk, support the
concept of a metaclass. Such relationships are denoted by a
shaded line with an arrowhead pointing from an instance of a
metaclass to the general metaclass.

Classes can be parameterized, which denotes a
family of classes whose structure and behavior are defined
independently of its formal class parameters. A parameterized
class is represented by a cloud-shaped class icon with a
rectangular box placed over a portion of the cloud. The
parameter 1list is named within the rectangular box. An
instantiated class includes a parameter box, called an
adornment, in contrast to a dashed line box for a general
class. The instantiation relationship between a parameterized
class and its instantiated class is represented as a dashed
line pointing to the parameterized class. Typically, an
instantiated class reguires a “using" relationship to another
concrete class for use as an actual parameter.

Properties of classes can be represented by class
adornments that are enclosed within the class cloud icon. In
particular, an abstract class is denoted by an upper case
block "A" within a triangle that is placed within a cloud. An
abstract class is a class for which no instances may be
created. That is, it is a class of classes. Other class
adornments are functions of the 00 implementation language.
For example, the C++ language permits special class
qualifications that will be given special adornments. A
static class is represented by an upper case block "S" within

an adornment triangle, a friend class is denoted by an upper

-94-

10

15

20

25

30

35

40

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

case block "F" within an adornment triangle, and a virtual
class is represented by an upper case block "V" within an
adornment triangle.

In addition to defining classes, a designer of an
object oriented programming system must define objects (see
Chapter 5 of the Booch reference). Objects are represented as
solid 1line clouds within which is placed the object name
located above a list of object attributes. An object is a
tangible entity that exhibits a well defined behavior. An
object is intended to represent some part of a real system
that is being represented by the object oriented program. An
object 1is characterized by a state, a behavior, and an
identity. An object can be thought of as an instance of a
class. The behavior of an object is an indication of how the
object acts and reacts in terms of its state changes and its
message-passing actions.

Objects and their interrelationships are
represented in object diagrams that comprise object icons
having links that indicate synchronization between objects.
Links are sequentially numbered to indicate the flow of
operations. The existence of a link between two objects
indicates an association between their corresponding classes
and denotes a path of communication between them. Thus, a
link between two objects indicates that one object may send
messages to another. The direction of message transfer is
indicated by adorning a simple connecting line with an
arrowhead that points from an object that invokes an
operation, referred to as the client, to the object that
provides the operation, referred to as the supplier. Such a
representation of a simple synchronization relationship
denotes the simplest form of message-passing. Such an
association can indicate, for example, the invocation of an
operation. Operation parameters can be indicated adjacent the
linking line.

Some objects may be active, meaning that they
embody their own thread of control. That is, such objects are
not simply sequential. Active objects may have a variety of
concurrency characteristics. If an object has multiple
threads of control, then synchronization must be specified.
Message synchronization can be synchronous, meaning that the
client will wait until the supplier accepts the message.

95

10

15

20

25

30

35

40

WO 97/40455

CA 02251980 1998-10-19

PCT/US97/02574

Synchronous synchronization is indicated with an "X" with an
arrowhead. Synchronization .can encompass balking message-
passing, meaning that the client will abandon the message if
the supplier cannot immediately service the message. Balking
is indicated with an arrowhead turned back on itself.
Synchronization can encompass a time-out synchronization,
meaning that the client will abandon the message if the
supplier cannot service the message within a specified amount
of time. Time-out synchronization is indicated with a clock
face representation adjacent a linking arrowhead. Finally,
synchronization can encompass an asynchronous message, meaning
that the client sends an event to a supplier for processing,
the supplier gueues the message, and the client then proceeds
without waiting for the supplier. Those skilled in the art
will appreciate that asynchronous message synchronization is
analogous to interrupt handling. Asynchronous message
synchronization is indicated with a half arrowhead.

It bears mention that the Booch notation includes
interaction diagrams that trace the execution of objects and
classes. Interaction diagrams are essentially restructured
object diagrams. That is, interaction diagrams do not convey
any additional information from that conveyed by object
diagrams, but simply present the same information in a
different format. The present specification makes use of
object diagrams rather than interaction diagrams, but those
skilled in the art will recognize that they are equivalent and
also will understand how to convert from one to the other
without further explanation.

In Figure 7, for example, the object called
7elda 706 obtains a list of current zoo keepers by calling an
operation called List Zoo Keepers from the object called Zoo
Keeper Register. The second processing step is represented in
Figure 7 by the Zoo Keeper Register object responding to the
operation call by passing a message to the Zelda object that
comprises the zoo keeper list. The z00 keeper objects include
members of the Zoo Keepers class called Tina, Vince, and Fred.
The third step indicated in the object diagram is for the
object Zelda to pass a message to each of the zoo keepers
instructing them to check the animals by calling the
respective Check Animals operaticn of each zoo keeper object.

_96-

: =
B~ W N - =W N e - W N P s W N P O W oUW N

[oeY

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

Claims
What is claimed is:
1. A computer system comprising:

a central processing unit;

a user interface; and

a main memory having an operating system that
supports an object oriented programming environment containing
a framework that provides an extensible case-based reasoning
system that evaluates a user query by determining a set of
case instance descriptions that most closely match properties
of a query object corresponding to the user guery and thereby
produces a solution to the user query.

2. A computer system as defined in claim 1, wherein
the case instance descriptions comprise an object oriented
programming case set class having case instance objects that
include property objects, value objects, and attributes.

3. A computer system as defined in claim 2, wherein
the framework permits a user to provide a case structure
definition class that specifies an inheritance data structure
for the case instance cbjects.

4. A computer system as defined in claim 3, wherein a
user may change the case structure definition class and the
computer system, in response, records the change in a change
log.

5. A computer system as defined in claim 4, wherein
the change log is an object oriented programming class of
objects.

6. A computer system as defined in claim 2, wherein
the case instance objects have a data structure and behavior
specified by a case structure definition class having property
objects and corresponding property value attributes.

7. A computer system as defined in claim 6, wherein

the property objects include simple value objects and compound
value objects.

_97-

(S S VO S o W N U W N [S2 B~ VS I N =W N

[

w

o N oy o W

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

8. A computer system as defined in claim 6, wherein
the case instance objects further include weight instance
objects that assign weight attribute values to each of the
property objects.

9. A computer system as defined in claim 2, wherein
the framework permits a user to provide an action prompt
definition class of objects that specify computer system
prompts that are displayed to a user and, upon a received user
response, initiate a computer system action.

10. A computer system as defined in claim 2, wherein
the framework permits a user to provide a tracking definition
class of objects that specify a case instance attribute status
condition that is to be detected and upon which a tracking

count 1s incremented.

11. A computer system as defined in claim 2, wherein
the framework permits a user to provide an index definition
class of objects that specify a subset of the case instance
object properties and in which the properties are included,
thereby comprising an index to the case instance objects.

12, A computer system as defined in claim 2, wherein
the framework permits a user to provide a parsing definition
class of objects that specify a parsing scheme to be used in
a parsing operation on text or property values in a query
object.

13. A computer system as defined in claim 12, wherein
the text parsing operation includes token parsing for language
translation.

14. A computer system as defined in claim 2, wherein
the query object includes a pattern of attributes and property
objects and value objects corresponding to the attributes,
property objects, and value objects of the case instance class
of objects, and is evaluated in a match scoring operation that
compares the attributes, properties, and values of the gquery
object with the corresponding attributes, properties, and
values of a case instance object and computes a match score

98

=
o

w N oy W NP

w

= W N o~ U e W o (SIS VS I S

(52 - VS A S

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

indicating the similarity of the guery object and the case
instance object.

15. A computer system as defined in claim 14, wherein
the match scoring operation comprises a dynamically weighted
operation in which weight multiplier values are applied to
designated properties of the query object and the case
instance object, wherein each weight multiplier value
indicates an importance ranking of the designated property
relative to the other properties of the respective query
object and case instance object.

16. A computer system as defined in claim 15, wherein
the weight multiplier values are received from the user and
are then applied to the query and case instance properties.

17. A computer system as defined in claim 16, wherein
one or more of the weight multiplier values are zerc, such
that a =zero weight multiplier value 1is designated for
properties that are not to be penalized in the computation of

a match score if unspecified.

18. A computer system as defined in claim 14, wherein
the match scoring operation comprises a dynamically weighted
operation in which relative usage factors are applied to
designated properties of the query object and case instance
object by multiplying each designated property weight of the
query object and case instance object by a corresponding
respective query usage scaling factor or case instance usage
scaling factor.

19. A computer system as defined in claim 18, wherein
the relative usage factors are received from the user and are
then applied to the property weights of the query and case
instance properties.

20, A computer system as defined in claim 14, wherein
the match scoring operation comprises calculating a raw match
score indicative of the similarity between the properties of
the query object and the case instance object and multiplying
the raw match score by a delta factor that is a function of

-99-

W o 3 &

10

11
12
13
14

(G2~ SV I S I [O S

oW N

S W oo s Ww N

-

WO 97/40455

CA 02251980 1998-10-19

PCT/US97/02574

property ranking values that indicate an importance ranking of
each property relative to the other properties of the
respective query object and case instance object, and the
delta factor is defined as

delta factor=1+ Y. (ignored ranking values) - Y (additional ranking valueg)
Y (ranking values) -}, (ignored ranking values) +), (additional ranking values)

where the ignored ranking values comprise properties that are
not specified in a query or case instance and the additional
ranking values comprise the remaining properties, and the
summation symbols indicate the sum o©f the corresponding
ranking values.

21. A computer system as defined in claim 20, wherein
the ranking values are scalar numbers that specify a relative
numerical ranking of each property relative to the others in
a case definition.

22. A computer system as defined in claim 2, wherein
the framework permits a user to store the guery object into
the case set class, whereupon the stored query object can then
be retrieved from the case set as the solution to a newly

defined query object.

23. A computer system as defined in claim 2, wherein
the framework permits a user to specify an incident class of
objects into which a query object can be stored for later
retrieval and further processing.

24. An object oriented framework for use in a computer
system having an operating system that supports an object
oriented programming environment that defines a case set class
having case instance objects that include property objects,
value objects, and attributes comprising case 1instance
descriptions and provides an extensible case-based reasoning
system that evaluates a user query by determining a set of the
case instance objects that most closely match a guery object
corresponding to the user query and thereby produces a

solution to the user Query.

-100-

> W N

[S2I — N VO RS O w s > W NP

oy

= W P w

(G2~ S VS I S

s W N

CA 02251980 1998-10-19

‘WO 97/40455 PCT/US97/02574

25. An object oriented framework as defined in
claim 24, wherein the framework permits a user to provide a
case structure definition class that specifies an inheritance

data structure for the case instance objects.

26. An object oriented framework as defined in
claim 25, wherein a user may change the case structure
definition class and the computer system, in response, records
the change in a change 1log.

27. An object oriented framework as defined in
claim 26, wherein the change log is an object oriented
programming class of objects.

28. An object oriented framework as defined in
claim 24, wherein the case instance objects have a data
structure and behavior specified by a case structure
definition class having property objects and corresponding
property value attributes.

29. An object oriented framework as defined in
claim 28, wherein the property objects include simple value
objects and compound value objects.

30. An object oriented framework as defined in
claim 28, wherein the case instance objects further include
weight instance objects that assign weight attribute values to
each of the property objects.

31. An object oriented framework as defined in
claim 24, wherein the framework permits a user to provide an
action prompt definition class of objects that specify
computer system prompts that are displayed to a user and, upon

a received user response, initiate a computer system action.

32. An object oriented framework as defined in
claim 24, wherein the framework permits a user to provide a
tracking definition class of objects that specify a case
instance attribute status condition that is to be detected and
upon which a tracking count is incremented.

-101-

[2 I = O N A U W NP

(98]

[

W NN oW NN

WO 97/40455

O W O ~N1 o U W NP

CA 02251980 1998-10-19

33. An object oriented framework as defined in
claim 24, wherein the framework permits a user to provide an
index definition class of objects that specify a subset of the
case instance object properties and in which the properties
are included, thereby comprising an index to the case instance
objects.

34. BAn object oriented framework as defined in
claim 24, wherein the framework permits a user to prcvide a
parsing definition class of objects that specify a parsing
scheme to be used in a parsing operation on text or property
values in a qguery object.

35. An object oriented framework as defined in
claim 34, wherein the text parsing operation includes token

parsing for language translation.

36. An object oriented framework as defined in
claim 24, wherein the query object includes a pattern of
attributes and property and value objects corresponding to the
attributes, property objects, and value objects of the case
instance class of objects, and is evaluated in a match scoring
operation that compares the attributes, properties, and values
of the query object with the corresponding attributes,
properties, and values of a case instance object and computes
a match score indicating the similarity of the query object
and the case instance object.

37. An object oriented framework system as defined in
claim 36, wherein the match scoring operation comprises a
dynamically weighted operation in which weight multiplier
values are applied to designated properties of the query
object and the case instance object, wherein each weight
multiplier wvalue indicates an importance ranking of the
designated property relative to the other properties of the
respective query object and case instance object.

38. An object oriented framework as defined in
claim 37, wherein the weight multiplier values are received

-102-

PCT/US97/02574

>

> W N w N oy Uk W N U > W N

W M ~ o U1 &= W N

=
o

11
12
13

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

from the user and are then applied to the query and case
instance properties.

39. An object oriented framework as defined in
claim 37, wherein one or more of the weight multiplier values
are =zero, such that a zero weight multiplier wvalue is
designated for properties that are not to be penalized in the
computation of a match score if unspecified.

40. An object oriented framework as defined in
claim 36, wherein the match scoring operation comprises a
dynamically weighted operation in which relative usage factors
are applied to designated properties of the query object and
case instance object by multiplying each designated property
weight of the gquery object and case instance object by a
corresponding respective query usage scaling factor or case

instance usage scaling factor.

41. An object oriented framework as defined in
claim 40, wherein the relative usage factors are received from
the user and are then applied to the property weights of the
guery and case instance properties.

42, An object oriented framework as defined in
claim 36, wherein the match scoring operation comprises
calculating a raw match score indicative of the similarity
between the' properties of the query object and the case
instance object and multiplying the raw match score by a delta
factor that is a function of property ranking values that
indicate an importance ranking of each property relative to
the other properties of the respective query object and case
instance object, and the delta factor is defined as

Y (ignored ranking values) -Y (additional ranking values)

deltafactor=1+ Y (ranking values) - Y, (ignored rankingvalues) +}, (additional ranking values)

where the ignored ranking values comprise properties that are
not specified in a query or case instance and the additional
ranking values comprise the remaining properties, and the

-103-

14

S, I SO TU R R TR R

> W N

=

=W N

> W NP

WO 97/40455

O W o N oy W N

CA 02251980 1998-10-19

PCT/US97/02574

summation symbols indicate the sum of the corresponding
ranking values.

43. An object oriented framework as defined in
claim 42, wherein the ranking values are scalar numbers that
specify a relative numerical ranking of each property relative
to the others in a case definition.

44. An object oriented framework as defined in
claim 24, wherein the framework permits a user to store the
guery object into the case set class, whereupon the stored
gquery object can then be retrieved from the case set as the
solution to a newly defined query object.

45, An object oriented framework as defined in
claim 24, wherein the framework permits a user to specify an
incident class of objects into which a query object can be
stored for later retrieval and further processing.

46 A program product for use in a computer system
having an operating system that supports an object-oriented
programming environment, the program product comprising:

a signal bearing media; and

a framework recorded on the signal bearing media,
the framework providing an extensible case-based reasoning
system that evaluates a user query by determining a set of
case instance descriptions that most closely match properties
of a gquery object corresponding to the user query and thereby

produces a solution to the user query.

47. A program product as defined in claim 46, wherein
the case instance descriptions comprise an object oriented
programming case set class having case instance objects that
include attributes, property objects, and value objects.

48. A program product as defined in claim 47, wherein
the framework permits a user to provide a case structure
definition class that specifies an inheritance data structure

for the case instance objects.

-104-

oW N

—

> W N W

=

(S0 I S R [S2 N - UC R (S =W N w

v o W N

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

49, A program product as defined in claim 48, wherein
a user may change the case structure definition class and the
computer system, in response, records the change in a change
log.

50. A program product as defined in claim 49, wherein
the change log is an object oriented programming class of
objects.

51. A program product as defined in claim 47, wherein
the case instance objects have a data structure and behavior
specified by a case structure definition class having property
objects and corresponding property value attributes.

52. A program product as defined in claim 51, wherein
the property objects include simple value objects and compound
value objects.

53. A program product as defined in claim 51, wherein
the case instance objects further include weight instance
objects that assign weight attribute values to each of the
property objects.

54. A program product as defined in claim 47, wherein
the framework permits a user to provide an action prompt
definition class of objects that specify computer system
prompts that are displayed to a user and, upon a received user
response, initiate a computer system action.

55. A program product as defined in claim 47, wherein
the framework permits a user to provide a tracking definition
class of objects that specify a case instance attribute status
condition that is to be detected and upon which a tracking
count is incremented.

56. A program product as defined in claim 47, wherein
the framework permits a user to provide an index definition
class of objects that specify a subset of the case instance
object properties and in which the properties are included,
thereby comprising an index to the case instance objects.

-105-

w U W N R

O W N U s W N

s

o ~N oy W NP

w

[©2 - VO RN S I

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

57. A program product as defined in claim 47, wherein
the framework permits a user to provide a parsing definition
class of objects that specify a parsing scheme to be used in
a parsing operation on text or property values 1in a gquery
object.

58. A program product as defined in claim 57, wherein
the text parsing operation of the framework includes token
parsing for language translation.

59. A program product as defined in claim 47, wherein
the gquery object includes a pattern of attributes and property
and value objects corresponding to the attributes, property
objects, and value objects of the case instance class of
objects, and is evaluated in a match scoring operation that
compares the attributes, properties, and values of the query
object with the corresponding attributes, properties, and
values of a case instance object and computes a match score
indicating the similarity of the gquery object and the case
instance object.

60. A program product as defined in claim 59, Wherein
the match scoring operation comprises a dynamically weighted
operation in which weight multiplier values are applied to
designated' properties of the query object and the case
instance object, wherein each weight multiplier wvalue
indicates an importance ranking of the designated property
relative to the other properties of the respective query
object and case instance object.

61. A program product as defined in claim 60, wherein
the weight multiplier values are received from the user and
are then applied to the query and case instance properties.

62. A program product as defined in claim 60, wherein
one or more of the weight multiplier wvalues are zero, such
that a =zero weight multiplier value 1is designated for
properties that are not to be penalized in the computation of
a match score if unspecified.

-106-

W o 1 O Ul W N

W o 3 O b W N

=
[ew]

11

12
13
14

= W N

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

63. A program product as defined in claim 60, wherein
the match scoring operation comprises a dynamically weighted
operation in which relative usage factors are applied to
designated properties of the query object and case instance
object by multiplying each designated property weight of the
query object and case instance object by a corresponding
respective query usage scaling factor or case instance usage
scaling factor.

64. A program product as defined in claim 63, wherein
the relative usage factors are received from the user and are
then applied to the property weights of the query and case
instance properties.

65. A program product as defined in claim 60, wherein
the match scoring operation comprises calculating a raw match
score indicative of the similarity between the properties of
the query object and the case instance object and multiplying
the raw match score by a delta factor that is a function of
property ranking values that indicate an importance ranking of
each property relative to the other properties of the
respective query object and case instance object, and the
delta factor is defined as

Y (ignored ranking values) - Y (additional ranking values)
Y (ranking values) - ¥, (1gnoredranking values) +), (additional ranking values)

delta factor =1 +

where the ignored ranking values comprise properties that are
not specified in a query or case instance and the additional
ranking values comprise the remaining properties, and the
summation symbols indicate the sum of the corresponding

ranking values.

66. A program product as defined in claim 65, wherein
the ranking values are scalar numbers that specify a relative
numerical ranking of each property relative to the others in
a case definition.

67. A program product as defined in claim 47, wherein
the framework permits a user to store the guery object into

-107-

(8]

o~ oY UL W N s W N s

! W N

= W N

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

the case set class, whereupon the stored query object can then
be retrieved from the case set as the solution to a newly
defined query object.

68. A program product as defined in claim 47, wherein
the framework permits a user to specify an incident class of
objects into which a query object can be stored for later
retrieval and further processing.

69. A program product as defined in claim 46, wherein
the signal bearing media comprises recordable media.

70. A program product as defined in claim 46, wherein
the signal bearing media comprises transmission media.

71. A method of executing an application program in a
computer system having a central processing unit that controls
processing in the computer system, a user interface, and a
main memory having an operating system that supports an object
oriented programming environment, the method comprising the
steps of:

providing an object oriented framework that
provides an extensible case-based reasoning system; and

evaluating a user query by determining a set of
case instance descriptions that most closely match properties
of a query object corresponding to the user query and thereby
produces a solution to the user query.

72. A method as defined in claim 71, wherein the case
instance descriptions of the provided object oriented
framework comprise an object oriented programming case set
class having case instance objects that include attributes,
preoperty objects, and value objects.

73. A method as defined in claim 72, wherein the
provided framework permits a user to provide a case structure
definition class that specifies an inheritance data structure

for the case instance objects.

-108-

bl W N =W N (2= =W N N

(S0~ UV S I

oA NN © 2 BN U6 B 6 B

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

74. A method as defined in claim 73, wherein a user may
change the case structure definition class and the computer
system, in response, records the change in a change log.

75. A method as defined in claim 74, wherein the change
log is an object oriented programming class of objects.

76. A method as defined in claim 72, wherein the case
instance objects have a data structure and behavior specified
by a case structure definition class having property objects
and corresponding property value attributes.

77. A method as defined in claim 76, wherein the
property objects include simple value objects and compound
value objects.

78. A method as defined in claim 76, wherein the case
instance objects further include weight instance objects that
assign weight attribute values to each of the property
objects.

79. A method as defined in claim 72, wherein the
provided framework permits a user to provide an action prompt
definition class of objects that specify computer system
prompts that are displayed to a user and, upon a received user
response, initiate a computer system action.

80. A method as defined in claim 72, wherein the
provided framework permits a user to provide a tracking
definition class of objects that specify a case instance
attribute status condition that is to be detected and upon
which a tracking count is incremented.

81. A method as defined in claim 72, wherein the
provided framework permits a user to provide an index
definition class of objects that specify a subset of the case
instance object properties and in which the properties are
included, thereby comprising an index to the case instance
objects.

-109-

[O N S

et
W ~1 v U W N O W o N O U bW NP

[y

w

(2N - VO S R

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

82. A method as defined in claim 72, wherein the
provided framework permits a user to provide a parsing
definition class of objects that specify a parsing scheme to
be used in a parsing operation on text or property values in
a guery object.

83. A method as defined in claim 82, wherein the text
parsing operation of the provided framework includes token
parsing for language translation.

84. A method as defined in claim 72, wherein the query
object includes a pattern of attributes and property objects
and value objects corresponding to the attributes, property
objects, and value objects of the case instance class of
objects, and is evaluated in a match scoring operation that
compares the attributes, properties, and values of the gquery
object with the corresponding attributes, properties, and
values of a case instance object and computes a match score
indicating the similarity of the guery object and the case
instance object.

85. A method as defined in claim 84, wherein the match
scoring operation of the provided framework comprises a
dynamically weighted operation in which weight multiplier
values are applied to designated properties of the query
object and the case instance object, wherein each weight
multiplier wvalue indicates an importance ranking of the
designated property relative to the other properties of the
respective query object and case instance object.

86. A method as defined in claim 85, wherein the weight
multiplier wvalues are received from the user and are then

applied to the query and case instance properties.

87. A method as defined in claim 86, wherein one or
more of the weight multiplier values are zero, such that a
zero weight multiplier value is designated for properties that
are not to be penalized in the computation of a match score if
unspecified.

-110-

WO o N oY U bW = W o o b W N

[un
(=4

11

12

13
14

> W N

[

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

88. A method as defined in claim 84, wherein the match
scoring operation of the provided framework comprises a
dynamically weighted cperation in which relative usage factors
are applied to designated properties of the query object and
case instance object by multiplying each designated property
weight of the gquery object and case instance object by a
corresponding respective query usage scaling factor or case
instance usage scaling factor.

89. A method as defined in claim 88, wherein the
relative usage factors are received from the user and are then
applied to the property weights of the query and case instance
properties.

90. A method as defined in claim 84, wherein the match
scoring operation of the provided framework comprises
calculating a raw match score indicative of the similarity
between the properties of the gquery obkject and the case
instance object and multiplying the raw match score by a delta
factor that is a function of property ranking values that
indicate an importance ranking of each property relative to
the other properties of the respective query object and case
instance object, and the delta factor is defined as

Y (ignored ranking values) - ¥ (additional ranking values)
Y, (ranking values) - § (ignored rankingvalues) +} (additional ranking values)

delta factor=1+

where the ignored ranking values comprise properties that are
not specified in a query or case instance and the additional
ranking values comprise the remaining properties, and the
summation symbols indicate the sum of the corresponding
ranking values.

91. A method as defined in claim 90, wherein the
ranking values are scalar numbers that specify a relative
numerical ranking of each property relative to the others in
a case definition.

92. A method as defined in claim 72, wherein the

provided framework permits a user to store the query object
into the case set class, whereupon the stored guery object can

-111-

182 B~

= W N

W NN oy Ul wN

NN NN N NN N R B R BR
Jd oUW N R OW DN, s WN R O W

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

then be retrieved from the case set as the solution to a newly
defined query object.

93. A method as defined in claim 72, wherein the
provided framework permits a user to specify an incident class
of objects into which a query object can be stored for later
retrieval and further processing.

S54. A method of executing an application program in a
computer system having a central processing unit that controls
processing in the computer system, a user interface, and a
main memory having an operating system that supports a
programming environment, the method comprising the steps of:

providing a case-based reasoning system that
operates in the programming environment; and

evaluating a user query by determining a set of
case instance descriptions that most closely match properties
of a user query and thereby produces a solution to the user
query; wherein:

the case instances comprise data structures that
include properties, values, and attributes;

the user query specifies a pattern of properties,
values, and attributes, and is evaluated in a match scoring
operation that compares the properties, values, and attributes
of the user guery with the corresponding properties, values,
and attributes of a case instance and computes a match score
indicating the similarity of the user gqguery and the case
instance; and

the match scoring operation comprises a dynamically
weighted operation in which weight multiplier values are
applied to designated properties of the user query and the
case instance, wherein each weight multiplier value indicates
an importance ranking of the designated property relative to
the other properties of the respective user gquery and case

instance.
95. A method as defined in claim 94, wherein the weight

multiplier values are received from the user and are then

applied to the user guery and case instance properties.

-112-

> W N N oy U ol W ;o WP

o N oy U W

10
11
12
13

= W N

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

96. A method as defined in claim 95, wherein one or
more of the weight multiplier values are zero, such that a
zero weight multiplier value is designated for properties that
are not to be penalized in the computation of a match score if
unspecified.

97. A method as defined in claim 96, wherein the match
scoring coperation comprises a dynamically weighted operation
in which relative usage factors are applied to designated
properties of the user query and case instance by multiplying
each designated property weight of the user query and case
instance by a corresponding respective query usage scaling
factor or case instance usage scaling factor.

98. A computer system as defined in claim $7, wherein
the relative usage factors are received from the user and are
then applied to the property weights of the user gquery and
case instance properties.

99. A method as defined in claim 94, wherein the match
scoring operation comprises calculating a raw match score
indicative of the similarity between the properties of the
user query and the case instance and multiplying the raw match
score by a delta factor that is a function of property ranking
values that indicate an importance ranking of each property
relative to the other properties of the respective user query
and case instance, and the delta factor is defined as

Y (ignored ranking values) - Y (additional ranking values)
Y (ranking values) - ¥, (1gnored ranking values) +}, (additional ranking values)

delta factor =1+

where the ignored ranking values comprise properties that are
not specified in a user guery or case instance and the
additional ranking values comprise the remaining properties,
and the summation symbols indicate the sum of the
corresponding ranking values.

100. A method as defined in claim 9%, wherein the
ranking values are scalar numbers that specify a relative
numerical ranking of each property relative to the others in

a case instance.

-113-

U W N

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

101. A method as defined in claim 99, wherein the step
of providing a case-based reasoning system comprises providing
an object oriented framework that provides an extensible case-
based reasoning system and the case instance descriptions and
user query are object oriented programming objects.

-114-

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

1/48

Z00 Administration

C
It
200 Keeper Mechanism
E
o N
Animal Mechanism Containment Unit
. Mechanism

FIG. |

PCT/US97/02574

2/48

— A -_ \\\\\n/

_ ~ J ~N
(wstueyday 1tun O\ \ N
JUAWUI_IUO) WONY) (usTueyoay [ewluy ___Et\
ﬁ/ 11un u:mE:_S:S S Slewtuy

\,u / \ %)

()STewIue 1T\

02251980 1998-10-19

CA

WO 97/40455

S~~~ -~ \ (WSTUBLDAW ™\
A_ ()SITUN IU0D 1SI] / :__mEmcumz /0 =\ 13d3ay 007 wWol}) v
(WS TURYDIIY 13daay 007 wolj) J
J 13d339) 007 wodj) S WELEE)N oON\\ \ AnsToo TERIt \\
\ 11un u:u___:_ﬁcou ~
\\I/..\ o
) - ,/
(7 _
, / | ~
) ()sJadaay 00z um:/ (uolleJdisiuiwpy 007 EEtJ
/ EoﬂmmeEE 007 WoJ}J) J (t.u - w___ 0 =/
eJ1siu
, A11s16ay Jadaay 007 / f/lu 1Stutipy 002
T\\ —

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574
3/48
_ ~
s~ _7 N
/ Zoo Administrator > — ~
g \
7 (from Zoo Administration) |
[5 minute_timer() /

add/delete_animal()

N add/delete_containment_unit()\
. add/delete_zoo_keeper()

\ start_zoo_admin() 5
{ //—\\\./
\ C v

N —

FIG. 3

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

4/48

v Old

\\\./~
7 (T—
, ~ / ()slewiue xuocu.w Aw — \
Spewiue)}29yd -
\\ e /v ﬁ/:hm:_mc__mpm>\\\ \\ Avm_msmcmtxuw:&v
1311041u0) N T ~—
. —_ 2Jnlelodwd] \\\ ~ mewwu \\\
N i ~ 7N s
(3 ~— |
//
) N
0=()STEwiuR %}23yd d

Y

\\ (WS TUBYIQY J3daay 007 wodj
\ SJadaa)y 007 \\\
AN T T — /

N —

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

5/48

] ()abuel duial 196\

~7 N\

G ol - | m/

v ()P00J7Spaau >

\ moﬁﬁuawm

l‘

/ ()Paay V /
N o 2JOAIQIRH 7 ,4\\\\w,|.
/ ebues duwd| \) N
m_m_E_mz \\

/\\j o

—0B=()11SIA 19A
0=()1ISTA 19A Spasu \
0=()p004 Spaau N
0=()pa3} ~
()3bued dwal 196 N
baJJ 2ISTA 13 \
abuel dus) \
Uo11e207
b3} paa /
(WS TUBYDIDY [ewiuy wody) e

~ s [ewiuy \
AN \\\\\l.r//,/:: /

~ - -

()P004 Spaau

\\/_

N
()pog}

//
/

aJ0ATUIR) [~

N\

(\\l/.\

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

6/48

~——-""\
/ =
"~ Containment Unit)

((from Containment Unit
NG Mechanism)
™~ adjust_temp() \

o E)
\w_~

e

FIG. 6

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

7748

€4/

191163y
[ewruy

()STewrue 3SI[:h

A%V

13paad
[ewTuy 9yl palg

J 9ld

Ot/
"J9A 3yl
JOUTA

81/

uot
J03el]STuTwpy
9yl equis ()abue. Jojenisuey
L “dwel 196:8
abe) uoll \\\\
S SIS - NN STewiue
— dwsl isnfpe:¢y B ol
‘-/

J9333Y)

"dwe] 9yl eurj IST[SJ9daay:g

004

131S163Y
13d33y 007

awnisnmezt e M
= ()SI1UNTU0071SIT+9
()obue.l
_dway 136:01

131S163Y 11uUn
juauwiuieljuo)

()SJodaay
T00Z7ASIT:T

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

8/48
,;0
OPERATOR/DISPLAY
INTERFACE CPU - [~—32
56 51/
58
) APPLICATION | 4q
36— PROGRAMS
' NETWORK OBJECTS — 42
y INTERFACE
5“// DATA —~A44
OPERATING | 46
56 SYSTEM
DASD
INTERFACE
7 38— MAIN MEMORY
48
50— DASD
52~

FIG. 8

CA 02251980 1998-10-19

WO 97/40455

START
102\

PCT/US97/02574

9/48

START CASE
STRUCTURE DEFINITION

132\ il

CONSTRUCT THE CASE
DEFINITION OBJECT

1314\

ENTER AND/OR UPDATE
PROPERTIES FOR THE

START-UP PROCESSING

CASE DEFINITION

104\ J

136\ v

BUILD CASE
STRUCTURE DEFINITION

ENTER AND/OR UPDATE

106+ l

BUILD CASE INSTANCE
DEFINITIONS

ACTION PROMPT,
TRACKING, AND
INDEX DEFINITION
OBJECTS

.

138

108\

QUERY THE
CASE BASE

120\ l

NEXT CBR TASK

FIG. 9

CONSTRUCT PATTERN
OBJECTS

ILIO\ i

UPDATE PARSE
DEFINITION OBJECTS

o]

STORE THE CASE
DEFINITION OBJECT

.
C CONTINUE)

FIG. 10

WO 97/40455

CA 02251980 1998-10-19

10/48

SETS PROCESSING

152\ l

START PROPERTIES,
VALUES, AND WEIGHT

CONSTRUCT PROPERTY
USAGE OBJECT

154
-

BUILD PROPERTY
DEFINITION OBJECT

156 l
N

ADD ALLOWABLE VALUE
OBJECTS

|

BUILD WEIGHT SET
OBJECT

160
N

UPDATE THE
CHANGE LOG

<: CONTINUE j)

FIG. |

PCT/US97/02574

WO 97/40455

172
N

CA 02251980 1998-10-19

11/48

START CASE
INSTANCE DEFINITION
PROCESSING

CREATE A NEW CASE INSTANCE
DEFINITION OBJECT OR
RETRIEVE AN EXISTING ONE

I

173

SELECT A CASE SET AND
A PARSE DEFINITION OBJECT

174

:

SELECT CASE DEFINITION OBJECT

)

176+,

CREATE PROPERTY
INSTANCE OBJECTS

178

l

BUILD VALUE AND
WEIGHT OBJECTS

179

REPEAT

PROPERTY INSTANCE
CONSTRgCTION

NO

YES

180
N

CREATE ACTION PROMPT
OBJECTS AND AUDIT
THE CASE INSTANCE

182
AN

REFRESH INDEXES AND
STORE CASE INSTANCE

:
(: CONTINUE :)

PCT/US97/02574

FIG. 12

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

PERATION TO GENERATE SOLUTION

'

OBTAIN QUERY INFORMATION
192~ FROM USER AND

BUILD CBR QUERY
ON_CASE INSTANCES

I

194 CONSTRUCT CASE SET

ly

196 BUILD/MODIFY
SEARCH PATTERN

‘

SEARCH CASES AND
198| RETRIEVE CASES WITH
. MATCHING PROPERTY
VALUES, PER PARSE

<:9 START QUERY ENGINE :> 12/48

DEFINITION
USE MATCH SCORING TO 4
200~ SCORE EACH
RETRIEVED CASE /208
202 RANK CASE
NO PROPERTIES AND
SOLUTION » PROMPT USER
- FOR ADDITIONAL
YES INPUT

GENERATE SOLUTION
PRESENTATION AND

PROVIDE TO USER,
RECEIVE USER ACTIONS,
PERMIT SAVING OF QUERY

:

UPDATE CASE BASE,
206~ IF APPROPRIATE

204
N

02251980 1998-10-19

CA

PCT/US97/02574

13/48

WO 97/40455

] J wsiueyoay
vl 9l uoT1 U1 43(
21M19NJ11S
3 95€) ws [ueyday
92eJ131UT J3s()
d wstueyoay
UoT1IUTJaq o0 O
9 aoue1suj u%
A101SIH 3se) 3
E| suorlelsadg 9
3 ante
SSUBISUL |y WS [UBYD3Y 7
>_ouwwm J 2681015 BIE(3
WS TUBYD3Y
suonuLe BUIIYBTaM pue)
//////////o ST 6UTJ0JS 1dWold
J uoT3TUT4aQ
asied 3
"YI9 BUTIIUDIIM
pue 6UTJ0IS Yd1ew
J
J
WS [URYIY E WS [URYDAK MO
au1buy AlJang jo— 5 [0J1U07 UOT1EDI [ddy

J wstueyoay | /3
auibuj MO[4 [041UO)

CA 02251980 1998-10-19

WO 97/40455 ’ PCT/US97/02574

14/48

< \
/7 ControlFlowComponent

/
(from Control { —
~ Flow Engine \ ST \\sa\\
Mechanism) _ C‘) /7 Changelog)
\ g - \ /
—_ ~ (
A\ \
E 7 ~~
\//
A SN
) CBR Session L
e
/ (from User Interface Mechanism) A\
(initializeDataStore() /
initializePresentation()
\ initializeControlFlow() /
\\\\ executeControlFlow() \
\ \
e
-
__/_/
_— N -
- /'_
,//’ DataStore ~— e . N
Component h ,~ Presentation)
(from Data / \. tomponent
~_ Storage (™~
Mech.) __ E) Vg)
T ~—— \\ 7~
7~ —
N —

FIG. 15

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574
15/48
~— "\
= // Parse
P ~N (Definition / PUEPN
(CaseSet / \\ £\ y, N
h E} __4" " {indexDefinition
—~—~TN E
7 Query Y o~
(Parameter (TN
E s 'I:\)ction‘“)
P rompt
\— (\InstanceES
—_— -~
AR / \\/ ~—7
(Query L‘/ CBR Base ~_—"\
\ /\S \(from User Interface "'\// Case ~\)
l Mechanism) (\\Definition
ST '/\ ¢ \\ /\l';\
(\PatternEs \:% - -
N J
e /" Property)
— \{)efinitiogg
7 Weight) N
, \\I nstanceE (
—~) — 7N
N~ 7 action Y
—— /\ Prompt
< Property) \Deflm'g?nE/\
Q\InstanceE(~— S _~ ~=
/" Case
\Ulnstance [~I~
Ey A Weight") T -
~ P \Definitiog/
- v &)
N—

FIG. 16

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

16/48

1 9ld nml\

~ Z
F CN

19S :oSECmm

Eaaz I ___,/ Emax\

N
ER o~
)~ ddjueisul \\ \

1dwoid

(
w_ UOI12V ~u

N_——

I
\\}//C 1} .J .H'\ ~

) :oSECma/
ﬁ 1dWoJ14uo 112y

-

:oSECm3 E
(_f115d01d

\\./
ENEERN
usaried
w — i

— /
3

\:oEECo»

b 7 7 U0T11UT4a(
A sh BUTHIB] |
/Iu\\ln(
~ N
T \

Te—

£l T o\, \T
(3NIEA abesn \U
S n UoT11UT 4D
/___ .__ﬁ £143doud : pommw a
w
I <N\ 1 \\/
ﬂu - , ﬂAm_
E\, :Swﬁmmma J||||I£ 1959581 T‘i mSomcmS\/
~

/

)
S

WO 97/40455

CA 02251980 1998-10-19

17/48

CaseDefinition

(from Case History Instance
Definition Mechanism)
undo()

auditCaselnstances()
auditPropertyUsage()
inferPatternvalue()
showPropertyDefinitions()
addPropertyDefinition()
showAllowablePropertyValues()
addAllowablePropertyValue()
showActionPromptDefinitions()
addActionPromptDefinition()
showIndexDefinitions()
addIndexDefinition()
showAllowableValuePatterns()
addAllowableValuePattern()
auditValuePatterns()
useDefinition()

determine() //

store()
/

\ showTrackingDefinitions()

refreshindexes() _~
AN /

PCT/US97/02574

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

18/48

o e
Au ~ /

/ ()enieAalipne /////
/ ()3UTII313p
A:o~u~:~%mapasoLm:o~uuﬁ\
/

/(\I”

g

/

6l 914

\\\\//
u r

uJalled \\

T

/ u0111uUlJ}3gase) ,/ ﬂ

{

N—

—~ e
(3 — W

~
()aN[EAK112d0IdIIpNe
()A1JadoiadpiieA w

\
\\
abesA119d014
" /

//...\\..}/l\

-~

w

~
1asasey)
yd

/l|\\:l/:\\

()US3IJ3I _
()49A030D

\ ()spnfaujop
//:oﬂa_cﬁkmaxmccﬁx\\
TN T~ ~/

7N
~
3 \

/ ~N
uswia idUjo
/ O3 0P J

P:o_u_cﬁ;mnmc_xumLW\

= S

///l\\\llll(

)

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574
19/48
JT=T N
f Value ()
n
\ b
@ n
m
‘-—\ _
~ Prtl)[i)zgtyUsaie()) (ActionProthInstance\/
va roperty determine()
~auditPropertyValue(| ~ execute() /
N E) ~ E\
k < T~ /-\\-)
~] ll’ﬂ_ __//
— ~
/1 PropertyDefinition \\
7 (from Case Structure J
[Def. Mech.)
\ auditValue() /
N determine() /
~~_ showAllowableValues() \
N buildvalue()
| ——_E)
-
\\ PR m
—~—~__
\/weightDefinition /) 1 L7 Weightset
auditvalue() “m auditSetValues()
\\ determine() E\m \\ determine() |
" e

FIG. 20

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

20/48

/\\//-\

N _/ ParseDefinition™——
J - ~— 4 tri-stringParse()
/7 Changelog) ‘ tokenParse() /
cleanup () / ~ findWords()
“\reduceChanges() | ~N Eégglﬁkegfg) \
N\ addO] ¥C7)
E) S~
l T — \ “m
~— 1 —
— T N
/ —~___ 7 \1
CaseSet
(from Case History Instance Def. Mech.) \\“"‘-\\\
P useSet()
/// showCaseDefs() \\
showPropertyDefs()
(showAllowablePropertyvValues()
slowActionPromptDefinitions()
’ \\ showAllowablePatterns() //
showActionPromptInstances()
\\ showCaselnstances() /
showlncidents()
showPropertylnstances() \
. ShowAllowablePropertyValues()
resetTrackingCounters() \\
\ determine()
showList() }
‘ showTrackingDefs() ///"’—'"‘*s\\ E
showIndexDefs() S~ —
\ -
P

N —
FIG. 21

PCT/US97/02574

21/48

02251980 1998-10-19

CA

WO 97/40455

. —_—
2¢ 9ld EpfaN N
1) € \
(xopug 9UBISUT "\
N~ m 1dwo.d)
uotlay
~ o~/
[~ w
\3 \
) dduesu] ~
{ xepul y
~_—_r
l \II\\\J
{3 ‘.
3Jue1su]
1 L ___\ suryoedy J
57 TN
NI
L MEA ,\/E%BE J ™4 mucﬁw:_mmmw
~
) RE -\ u(\\&,\\ T\
\ N ~ ~.) N
/ 9dueisu] /\I||I~.Q aduelsu] j ase) Tu T 19S9sed
__ MUBISM _AHedoid - L \\ N7
-~ -~ N ~—

NS NS T

CA 02251980 1998-10-19

WO 97/40455 , PCT/US97/02574
22/48
3\ /. ~—
(_ Caseset ,~_Propertylnstance
™~ Value()
E (comparevVa /
| P m showValue()
— . buildvalue() |
\ ~E)
-1
—
m
m
/"_v/\
S otase T
< undo() / 1
—~— -~
- Store() [/ _\
\W =~ (' value
_,,/? .
\W _—b) m
-~ P W
/ ~~
/" Weightlnstance)
=T\ - /
./ Caselnstance '\) \ E\
-/ showRelated() \ T~
(showReference() / ~
. compareDescription(}
< N~
| —~E T \
\ ~— 1 Incident >—~_
— - showKnown ())
determine() /
. buildFromQuery() (
. convertToCase()
store() \
\ <7
\//

FIG. 23

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

23/48

/

Value
Right
term

Left

term
By

/’N"’/ \~ ~
C Slmp]eVa]ue / (CompoundValue {}

Ny
N E\ A\ \
T

\ ——~—

~

FIG. 24

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

24/48

,-_\‘___/,/’”‘\\\\

S—
\
~ Caselnstance

4 (from Case History Instance ‘/
(Definition Mechanism)

showRelated() (
~ showReference()
\\ compareDescription() \
store() E
\ s 2
_/
e N
m IndexInstance
/’"“ -~ ~— \ loadInternal () /
“TrackingInstance) \\\\ Eg;gg?gi; (
_ lIncrement() / —)
. reset() \ —
} _—E) N—"11
N~
|~ ~->~
—~Mj N\~
[N IndexEntry O\
- N\ L /
ActionPromptInstance / ~
L determine() (\ //_“E}
< execute() .

) ,/”—‘~\jiJ

. _~—

FIG. 25

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

25/48

~—
\ 3
/
\—

<)
anfep
£1dadoad
uc:oaaou

N

—,

N\
~

92 9l T sueasul ah
-
\, mu_:mmapow:% /\ \m_mucﬁms //
< pauey - ase))
— pajuey
e ~o -/
~— %vf w
m. mu:mwmc_ v
/ diueisu] A juey e 1e O\
_ banE\ ™ —— (3 \
TN~) asueasuy
(asey ./
I/E {..\
umm
yo1ey ﬁ;,|\\mmyd
BEaEn_ 198 J
yaley
3
/, v JUSPI2U] v £ zwuwzf,
Emﬁmm\ r/ 3587)
T)/1\\ r

N

/\/\

I
u/\)m\\\\\\a .
E:axmu{/.u
ummmmmu\.\\\\\\.\\oﬂ ._mumEmLmn_u

)

>._m:G \

/\

WO 97/40455

/

(bu
~

d
e

CA 02251980 1998-10-19

PCT/US97/02574
26/48
—~—-\
b . (\ CaseSet /
eryParameter
Y / \ £\
\ ~E T
\‘_// m 1
/_/"\\
7 N
Pattern
— &0 //\ m &\ <
/ CBRQuery ~ 1\ /*'*E/
(from Query Engine m -
Mechanism) /
undo()
buildPattern() —
evaluate() |1 /TN
N store() < _ N\
| determine() (:\ mi_ Incident /
showList() <—~__~/ \ e\
A // ~
/T~ //-\\
/ PropertyMatchSet ~~—~_
/ buildPropertyMatchSet()
— - \ showPropertyMatchSet() /
exclude()

Ve ~— N
CaseMatchSet \\~_\\

buildCaseMatchSet()
k showCaseMatchSet() /

exclude() ‘

~ rankCaseMatchSet()

\
\

re-rankSet() \
refresﬁi),,.~\~5/

~_——"

\\n{gnkPrODertyMatchSet()(
\ re-rankSet() \
refresh() E

/'—-—w—_—
-

~_—

FIG. 27

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

27748

—_——
-~ / N 4 CompoundProperty \/
\ PropertylInstance (/ (\ Value (
~N
\ __E) N . E)
~—— __/

FIG. 28

CA 02251980 1998-10-19

WO 97/40455 PCT/USY7/02574

28/48

N

4 DataStore /

N\ Component (
C)

N
T S~
v
—_—) —_—
4) // PersistentObj)
DB2 DataStore ersistentlbject
\\\ Implementation /’ \PﬁEaStoreImplementatlon {
> A N \
\ ///’“‘_,/ \ ’/,//”‘\\\E;/
o~ N\~

FIG. 29

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574
29/48
‘/__‘_’/"_
v N
(CaseSet /
~ (
A _E)

\

N—

‘SN
ControlFlow
\. Component (
~
\ ~t
\ g
__//\
J N~—
—_— — e C++
/ —~ N ControlFlow
//// Elontark ™ W Implementation /
owMar
\ ControlFlow // \‘\\
N Implementation —_ Q)
—~_ E) \\s_“/'//
\ % ~—
\._// N

VRt .
/ Basic ™

7 ControlFlow /
Implementation /
~ \
A ‘)
T
pd
S—

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574
30/48
N
T~ — “
-)
/ CaseSet
N /
~ \
\ ~t)
N~

—~L7\
S—

_ ™~
/7 Presentation)
Component

\ 5
\Y// /'\\-/'\

~="" -~ L
y N (~ . Presentation)

/" Ppresentation)c Ileementation /
N Part 14
\

L L

(Window)

_E) (Button_J AT ~
— E) (Presentatlon / \ wlndows (
o~ - ~_ Manager { lW K
C Text_/ ==~ \\W/ <E

_/—g (Pomter\{

TN \\ ~5
C, Line (—— -
~= =™ Cuindow) ('Button
(MenuBar (E) N gl
N E —_ —~
- = . \—
/\-/ *
Text)
\\ -5
-

FIG. 31

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

31/48

2¢ 9ld

UOTITUIJI([aSIed129]as 8

uotr3itutjaq
asJed

95.184uaN01 ‘ 0T * 19095 Jed1oN11SU0d "
as1edburlis-141°6 J3(os1ed /

UOTITUTJ3(Qase) .

JU3u0dwo)
aloiseieq

19$9587123[3S "G

aUIWII1apP ' h
12NJ1SU0d" ¢

1U3UOdILO)

ndujlto4Ae(dsipg \ MOT41043UO)
12N11SU0d°' T

1STIMOYs*9

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

ppe‘¢e

32/48

lndujso4Aerdsip ¢
13N43sSuod’g¢

1ndujlo4Ae[dSIP 62
12N131SuU0d*' 87

60j96uRY)

punodiio)jppe *g¢

aN[eAd

1249

ndupJ
AeJdst
10NJ11SUo

angen
CHLIAN

1NduyJ04
[AWIS Ae[dsip*z¢
PPE'¢Z\10Nn11SU0d ' 1¢

jndu

abesnA14adold

Ol

IndugJo4
Aeldsip* /1

anieA
punoduo’)

a{gemof e

04
P ae
2'he
anjeadold
jipne’ /¢ WEIERE
9[geMo[1y 1919570¢
MOUS "6l
1uauoduio)

QUTULIAI3P HT
12N41SU0D* ST

an[eapiing'gr /Uollluriagase)
[J0JARTASIDP 2T
JONJISUOD* |

asolseieq

" 39(
£143d0dd
1J39[3s°971

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

33/48

uotliutiaq

be 9l

" $9(0X3PUf139[3S 9L
*A3([BUINIRI]1I3[3S T
1dwo1duo112y129[as ' 9¢

MOYS " Gy

1UsUodWwo?)
alolseleq

60796uBY)
ppe’ /¢

Ppe* ¢h

uoIlrutjoaq
10W0l |
uotloy

uotltutjeq
BUTYIed |

Xapu]

1NduJO4AR[dASIP S
12NJ1SU0d*¢¢

INduiJ04ARTASIP ' 6S
19N41SU0D°g¢

IndujJlodAedsip i
12NJ3SU0d*¢h

uotltutjoqese)

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

34/48

e 90l il

a[auis
anjea
punodtio) 3ndujJiod
Aefdsip-gq
10NJ41SU0d° /G
Indujlo4Ae[dsip’ o9 sulalled

12NJ3Su0d* 6g 3[qeMo[[yMoUsS * Qg

129[9S°[9

3JuelSsu|

A113dold INduj404
Ae1dSIpP*9g

12NJ3SU027 GG

jusuoduio)
aJ4031Seleq

INdu[JOJABTASIP €S
19N415U02° 76

lnduijo4Ae(dsip el
12NJ1Suod *8h

IN[eA

ppe‘tG{ A113doidpunoduo)

60796uUBY) UOTITUT J3(Qase)

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

35/48

64, check
65.audit

Case
Definition

Parse

oL 62.displayForlnput
Definition

66.add

b63.select

Changelog

DataStore
Component

FIG. 36

CA 02251980 1998-10-19

WO 97/40455

36/48

67.storeCaseDefinition

PCT/US97/02574

Control
Flow
Component

Case
Definition

81.destruct

DataStore
Component

FIG. 37

68-80.insert

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

37/48

8¢ 9l TS

QUWLIALAP k
10NJ1SU0D ‘¢

109[3S°§

1U3u0dwo?) 1033s'§

uorltuiya
3J01SE18] [11utdeq

asJed

* }9J9S1B4UaN013A3 1419101
* J9(19S1edbUTI1S-T11]3A311331 6

uauoduo .
1 NOL] J 1Ndu1J04AB[ASIP ¢ / goueysujase)
(042009 32NJ3SuU0d° 1

3JNJ43suod "/

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

38/48

uorliutja(q
6UIYIed |

10NJ41SU0D " ZS

asn'gt

aululalap’ ¢l
10NJ31SU0D T

6¢ Old

MOUS "¢T

1J9[aS7¢¢
‘T¢°6C°LL°SC
AN VAN] B4 B]!

uolliutiaq
1duold
uoilay

1UaU0dIWo?)
9101S
eleq

uoriiutjsq
1UbToM

10N13SU02°9Z
12NJ1SU02°gZ

uo131Ul4aQ
A14adold

12n4]1suold 81

0ll1urjogase)

INJISUOD ' S

13N43SU6d ¢

punoduio?
19NJ1SU0D"§Z

abes)

13nJ3su0d*91 A}Jadodd

10NJ1SU02* 07
U3U0dwo?)

MOT 4
[042U0)

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

39/48

O Old

1usuodio)
a401§
ele(

JUIPIIUIIIOL3S " /E

195ase)

MOUS *9¢

1J9SUT kit

139195 Zh ppE’Sh

1J9AU0D ' 8¢
auTwialap g¢
32NJISU0D “§S

3Juelsuj

MOUS*Th (' £31.13dodd

uoriiutja(q
ase)

auul81sp Oh

32UBISUT
10N11SU0D ' §S

ase)

1IN41SU0D " Sk
0111UTJagA1Jadold

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

40/48

I Old

PpeE‘ TS

ppe’09

607
abuey?)

1InJ1suod

UOTIIUT A
BTN

84

Jasur®

ppe’qg

anjep
9[duIs

149suUl’ Qg

andujio4
AB[dSID 6h
12N11SU02°8h

6S
Juauoduwo’)
9401S
eieq

143sul '}¢

aniep
punoduio’)

INdU 104
Aefdsip’/q
10NJ1SU0D* GG

aouelsu]
K142doud

Induj
Jo4Ae1dsIp¢q
10NJ1SU02* 76

aJueISUJ
IYbIoM

3JueIsu]
ase)

asn'gy

an[eA
ujoliedJtajui*19
MOUS* /t

uotitutjsq
ase)

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

41/48

¢v 9Ol

uorjturjosq
A143adold

mo;
wmcmcu
1uauoduo?)
9J01S
le
a ppe*g9
143sul* /9
12913549
uotliurja
uot111utjaq .meu% >
lduodd 312n131suod*g9g
uorlay

sanieplIpne 1/

sanjealipne’ g/

sanjealipne‘g/
uolltuijaq

1UbTaM

asuelsui
1dwoJ4uor1oy

MOUS " #9

auTwialap* ¢y
12NJ1SU02°79

sulajiedonjiealipne g/

saniepalIpne‘y/

abesnA1Jadoldlipne’g9 Jjuelsu]

ase)

an{eAAl4adold
11pne* g/

abes|
£1J3dold

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

42/48

¢b Old

1Uauoduo?)
91018
ele(

3Jue1Su|
ase)

149sul *98-08

UsaJsjal g/
3dnJlisap /8

32N43SU02°g/ UOTIIUTJa(Q 9J01S°6/

Xapu [

1Uauodio?)
MO 41041U0)

19NJ1SU0D " //

aouelsu]
X9pu]

02251980 1998-10-19

CA

PCT/US97/02574

WO 97/40455

43/48

607196ueY)

ppe‘Il

J3l3aueled
AJang

Jo4Ae[dSIp
12N41SU02 *egT

bt 914

95.1eduayol’6
3sJedburils-141'g

ppe m/

uorirutisq

1UauodWo?)
uoritutje(
asied 3401Se1e(q
10913/

A13ngyd)

\

1959se)
129[9S '

Indu]
JojAe[dsip'z
10NJ1SU0d' T
‘./

1uauoduio)
MO[41041U0)

-

13$9se)asn’g

13S3SeIMOYS ' G
19S9se)al [Wwi319p G
1953Se)10N11SU0d "B

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

44/48

Casebefinition

DataStore

24b. showCaseDef
24c .useCaseDef
Component

24d, inferPatternValue

’5Za.selectCaseDef
CBRQuery
12.construct
13.displayForinput
13a.add
17500
[] a
Changelog -— Pattern
20.add 14.construct
\&- ad P \15.dxsplayFor
Input

16.construct
17 .displayForinput
18.buildValue

Property
Instance

CompoundProperty
Value

,/iQ.construct
20.displayFor
Input

21.construct

] 22.displayfFor

Simple Input
Value

Compound
Value

FIG. 45

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

45/48

ControlFlow
Component

/25.evaluateCBRQuery

28.constructCase

MatchSet CaseMatch
— Set
CBRQuery
27 .load
26.selectindex
Definitioz/ \\\\\

Index
Instance

DataStore
Component

26a.doCover
IndexDefinition

Index
Definition

FIG. 46

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

46/48

41, constructProperty

MatchSet
CBRQuery — ﬁlg‘t’gﬁgg{
Zg.ﬁuilﬁgase
/éga.compare 38F§hosget
Index 31.rankSet
Instance 32.re-RankSet
40.excludeSet
CaseMatchSet

33.constructRankedCase
34, setRankTypeStatus

’/// 30.selectCase

l Instances

35.selectTracking
Definition

37.selectTracking

Instance

RankedCase
Instance

DataStore
Component

38.increment

Tracking

36.doincrement
Definition /

Tracking
Definition

Tracking
Instance

FI1G. 47

CA 02251980 1998-10-19

WO 97/40455 PCT/US97/02574

47/48

ActionPrompt
Instance

CBRQuery

/gﬁ.execute

42 .buildSet
52.showSet

Property
Instance

/

54.display

44, rankSet Property 55.showValue
45, re-RankSet Match
53.exclude Set

46.construct
\\iz.setRankTyDeStatus

h3,.selectProp

Instances Ranked
48.selectTracking/ Property
Def Instance
50.selectTracking
Instance

\Q?.dolncrement

DataStore

\51.increment
Component

Tracking
Definition

Tracking
Instance

FIG. 48

CA 02251980 1998-10-19

WO 97/40455

48/48

Changelog

61.addChange
Log

67 .addChange
Log

65.add [

DataStore
Component

-

60. insertCBR
Query _
66.updateTracking
Instances
Component

64.insert
e,

Incident

62.constructincident
63.buildIncident

L“”“\\> 58a.displayCaselnstance
CBRQuery

PCT/US97/02574

ActionPrompt
Instance

/58b.execute

Case
Instance

29.buildCaseMatchSet
39. showCaseMatchSet

\\i7.evaluate

Tracking
Definition

FIG. 49

34a.setStatus

RankedCase
Instance
CaseMatch —_— Rggggd
Set
Instance

~\383.increment

Tracking
Instance

Zoo Administration

e

Z00 Keeper Mechanism

E
o ¢
Animal Mechanism Containment Unit
£ Mechanism

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - DESCRIPTION
	Page 66 - DESCRIPTION
	Page 67 - DESCRIPTION
	Page 68 - DESCRIPTION
	Page 69 - DESCRIPTION
	Page 70 - DESCRIPTION
	Page 71 - DESCRIPTION
	Page 72 - DESCRIPTION
	Page 73 - DESCRIPTION
	Page 74 - DESCRIPTION
	Page 75 - DESCRIPTION
	Page 76 - DESCRIPTION
	Page 77 - DESCRIPTION
	Page 78 - DESCRIPTION
	Page 79 - DESCRIPTION
	Page 80 - DESCRIPTION
	Page 81 - DESCRIPTION
	Page 82 - DESCRIPTION
	Page 83 - DESCRIPTION
	Page 84 - DESCRIPTION
	Page 85 - DESCRIPTION
	Page 86 - DESCRIPTION
	Page 87 - DESCRIPTION
	Page 88 - DESCRIPTION
	Page 89 - DESCRIPTION
	Page 90 - DESCRIPTION
	Page 91 - DESCRIPTION
	Page 92 - DESCRIPTION
	Page 93 - DESCRIPTION
	Page 94 - DESCRIPTION
	Page 95 - DESCRIPTION
	Page 96 - DESCRIPTION
	Page 97 - DESCRIPTION
	Page 98 - DESCRIPTION
	Page 99 - CLAIMS
	Page 100 - CLAIMS
	Page 101 - CLAIMS
	Page 102 - CLAIMS
	Page 103 - CLAIMS
	Page 104 - CLAIMS
	Page 105 - CLAIMS
	Page 106 - CLAIMS
	Page 107 - CLAIMS
	Page 108 - CLAIMS
	Page 109 - CLAIMS
	Page 110 - CLAIMS
	Page 111 - CLAIMS
	Page 112 - CLAIMS
	Page 113 - CLAIMS
	Page 114 - CLAIMS
	Page 115 - CLAIMS
	Page 116 - CLAIMS
	Page 117 - DRAWINGS
	Page 118 - DRAWINGS
	Page 119 - DRAWINGS
	Page 120 - DRAWINGS
	Page 121 - DRAWINGS
	Page 122 - DRAWINGS
	Page 123 - DRAWINGS
	Page 124 - DRAWINGS
	Page 125 - DRAWINGS
	Page 126 - DRAWINGS
	Page 127 - DRAWINGS
	Page 128 - DRAWINGS
	Page 129 - DRAWINGS
	Page 130 - DRAWINGS
	Page 131 - DRAWINGS
	Page 132 - DRAWINGS
	Page 133 - DRAWINGS
	Page 134 - DRAWINGS
	Page 135 - DRAWINGS
	Page 136 - DRAWINGS
	Page 137 - DRAWINGS
	Page 138 - DRAWINGS
	Page 139 - DRAWINGS
	Page 140 - DRAWINGS
	Page 141 - DRAWINGS
	Page 142 - DRAWINGS
	Page 143 - DRAWINGS
	Page 144 - DRAWINGS
	Page 145 - DRAWINGS
	Page 146 - DRAWINGS
	Page 147 - DRAWINGS
	Page 148 - DRAWINGS
	Page 149 - DRAWINGS
	Page 150 - DRAWINGS
	Page 151 - DRAWINGS
	Page 152 - DRAWINGS
	Page 153 - DRAWINGS
	Page 154 - DRAWINGS
	Page 155 - DRAWINGS
	Page 156 - DRAWINGS
	Page 157 - DRAWINGS
	Page 158 - DRAWINGS
	Page 159 - DRAWINGS
	Page 160 - DRAWINGS
	Page 161 - DRAWINGS
	Page 162 - DRAWINGS
	Page 163 - DRAWINGS
	Page 164 - DRAWINGS
	Page 165 - REPRESENTATIVE_DRAWING

