Title: SUBSTITUTED HETEROARYL AMIDE MODULATORS OF GLUCOCORTICOID RECEPTOR, AP-1, AND/OR NFκB ACTIVITY AND USE THEREOF

Abstract: The present invention relates to new class of non-steroidal compounds which are useful in treating diseases associated with modulation of the glucocorticoid receptor, AP-1, and/or NFκB activity including obesity, diabetes, inflammatory- and immune-associated diseases, and have the structure (I) including all stereoisomers thereof, tautomers thereof, or a produg thereof, or a pharmaceutically acceptable salt thereof, wherein X is selected from N, O, and S; Y is N or CR1; Z is a ring; and where R, R1, R2, R3, R4, R5, R6, R7, and R8 are as defined herein. Also provided are pharmaceutical compositions and methods of treating obesity, diabetes and inflammatory or immune associated diseases comprising said compounds.
SUBSTITUTED HETEROARYL AMIDE MODULATORS OF GLUCOCORTICOID RECEPTOR, AP-1, AND/OR NF-kB ACTIVITY AND USE THEREOF

5

ABSTRACT OF THE DISCLOSURE

The present invention relates to new class of non-steroidal compounds which are useful in treating diseases associated with modulation of the glucocorticoid receptor, AP-1, and/or NF-κB activity including obesity, diabetes, inflammatory- and immune-associated diseases, and have the structure

![Chemical Structure](image)

including all stereoisomers thereof, tautomers thereof, or a prodrug thereof, or a pharmaceutically acceptable salt thereof, wherein X is selected from N, O, and S; Y is N or CR₆; Z is a ring; and where R, R₁, R₂, R₃, R₄, R₅, R₁, R₂, R₃, R₄, and R₅ are as defined herein. Also provided are pharmaceutical compositions and methods of treating obesity, diabetes and inflammatory or immune associated diseases comprising said compounds.

- 133 -
SUBSTITUTED HETEROARYL AMIDE MODULATORS OF
GLUCOCORTICOID RECEPTOR, AP-1, AND/OR NF-κB ACTIVITY AND
USE THEREOF

[0001] This application claims the benefit of priority from U.S. Provisional
Application Ser. No. 60/643,509, filed January 13, 2005, the entirety of which is
incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to new class of non-steroidal compounds
which are particularly effective modulators of the glucocorticoid receptor, AP-1,
and/or NF-κB activity and thus are useful in treating diseases such as obesity, diabetes
and inflammatory or immune associated diseases, and to a method for using such
compounds to treat these and related diseases.

BACKGROUND OF THE INVENTION

[0003] The transcription factors NF-κB and AP-1 are involved in regulating the
expression of a number of genes involved in mediating inflammatory and immune
responses. NF-κB regulates the transcription of genes including TNF-α, IL-1, IL-2,
IL-6, adhesion molecules (such as E-selectin) and chemokines (such as Rantes),
among others. AP-1 regulates the production of the cytokines TNF-α, IL-1, IL-2, as
well as, matrix metalloproteases. Drug therapies targeting TNF-α, a gene whose
expression is regulated by both NF-κB and AP-1, have been shown to be highly
efficacious in several inflammatory human diseases including rheumatoid arthritis and
Crohn’s disease. Accordingly, NF-κB and AP-1 play key roles in the initiation and
perpetuation of inflammatory and immunological disorders. See Baldwin, AS,
Journal of Clin. Investigation, 107, 3 (2001); Firestein, G.S., and Manning, A.M.,
Arthritis and Rheumatism, 42, 609 (1999); and Peltz, G., Curr. Opin. in Biotech. 8,
467 (1997).

[0004] There are many signaling molecules (kinases and phosphatases) upstream
of AP-1 and NF-κB which are potential therapeutic drug targets. The kinase JNK
plays an essential role in regulating the phosphorylation and subsequent activation of
c-jun, one of the subunits which constitute the AP-1 complex (fos/c-jun). Compounds
which inhibit JNK have been shown to be efficacious in animal models of
inflammatory disease. See Manning AM and Davis RJ, Nature Rev. Drug Disc., V. 2,
554 (2003). A kinase critical to the activation of NF-κB is the IκB kinase (IKK). This kinase plays a key role in the phosphorylation of IκB. Once IκB is phosphorylated it undergoes degradation leading to the release of NF-κB which can translocate into the nucleus and activate the transcription of the genes described above. An inhibitor of IKK, BMS-345541, has been shown to be efficacious in animal models of inflammatory disease. See Burke JR., Curr Opin Drug Discov Devel., Sep;6(5), 720-8, (2003).

[0005] In addition to inhibiting signaling cascades involved in the activation of NF-κB and AP-1, the glucocorticoid receptor has been shown to inhibit the activity of NF-κB and AP-1 via direct physical interactions. The glucocorticoid receptor (GR) is a member of the nuclear hormone receptor family of transcription factors, and a member of the steroid hormone family of transcription factors. Affinity labeling of the glucocorticoid receptor protein allowed the production of antibodies against the receptor which facilitated cloning the glucocorticoid receptors. For results in humans see Weinberger, et al., Science 228, 640-742, (1985); Weinberger, et al., Nature, 318, 670-672 (1986) and for results in rats see Miesfeld, R., Nature, 312, 779-781, (1985).

[0006] Glucocorticoids which interact with GR have been used for over 50 years to treat inflammatory diseases. It has been clearly shown that glucocorticoids exert their anti-inflammatory activity via the inhibition by GR of the transcription factors NF-κB and AP-1. This inhibition is termed transrepression. It has been shown that the primary mechanism for inhibition of these transcription factors by GR is via a direct physical interaction. This interaction alters the transcription factor complex and inhibits the ability of NF-κB and AP-1 to stimulate transcription. See Jonat, C., et al., Cell, 62, 1189 (1990); Yang-Yen, H.F., et al., Cell, 62, 1205 (1990); Diamond, M.I. et al., Science 249, 1266 (1990); and Caldenhoven, E. et al., Mol. Endocrinol., 9, 401 (1995). Other mechanisms such as sequestration of co-activators by GR have also been proposed. See Kamer Y, et al., Cell, 85, 403 (1996); and Chakravarti, D. et al., Nature, 383, 99 (1996).

[0007] In addition to causing transrepression, the interaction of a glucocorticoid with GR can cause GR to induce transcription of certain genes. This induction of transcription is termed transactivation. Transactivation requires dimerization of GR and binding to a glucocorticoid response element (GRE).
Recent studies using a transgenic GR dimerization defective mouse which cannot bind DNA have shown that the transactivation (DNA binding) activities of GR could be separated from the transrepressive (non-DNA binding) effect of GR. These studies also indicate that many of the side effects of glucocorticoid therapy are due to the ability of GR to induce transcription of various genes involved in metabolism, whereas, transrepression, which does not require DNA binding leads to suppression of inflammation. See Tuckermann, J. et al., Cell, 93, 531 (1998) and Reichardt, HM, EMBO J., 20, 7168 (2001).

PCT application WO 2004/009017 published January 29, 2004, assigned to Applicant and incorporated herein in its entirety, describes substituted bicyclooctanes useful in treating diseases such as obesity, diabetes and inflammatory or immune associated diseases.

Compounds that modulate AP-1 and/or NF-κB activity would be useful as such compounds would be useful in the treatment of inflammatory and immune diseases and disorders such as osteoarthritis, rheumatoid arthritis, multiple sclerosis, asthma, inflammatory bowel disease, transplant rejection and graft vs. host disease.

Also, with respect to the glucocorticoid receptor pathway, it is known that glucocorticoids are potent anti-inflammatory agents, however their systemic use is limited by side effects. Compounds that retain the anti-inflammatory efficacy of glucocorticoids while minimizing the side effects such as diabetes, osteoporosis and glaucoma would be of great benefit to a very large number of patients with inflammatory diseases.

Additionally concerning GR, the art is in need of compounds that antagonize transactivation. Such compounds may be useful in treating metabolic diseases associated with increased levels of glucocorticoid, such as diabetes, osteoporosis and glaucoma.

Additionally concerning GR, the art is in need of compounds that cause transactivation. Such compounds may be useful in treating metabolic diseases associated with a deficiency in glucocorticoid. Such diseases include Addison's disease.
[0014] Also, there is a need for new compounds with improved activity compared with known modulators of GR, AP-1, and/or NF-κB activity. It is also desirable and preferable to find compounds with advantageous and improved characteristics in one or more categories, which may be, but are not limited to, the following: (a) pharmaceutical properties; (b) dosage requirements; (c) factors which decrease blood concentration peak-to-trough characteristics; (d) factors that increase the concentration of active drug at the receptor; (e) factors that decrease the liability for clinical drug-drug interactions; (f) factors that decrease the potential for adverse side-effects; (g) factors that improve manufacturing costs or feasibility and (h) factors leading to desirable physical characteristics, such as a desirable balance of hydrophilic and lipophilic properties.

DESCRIPTION OF THE INVENTION

[0015] In accordance with the present invention, compounds are provided having the structure of formula (I):

![Chemical Structure](image)

(I)

or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:

- \(X \) is selected from N, NH, O, and S;
- \(Y \) is N, NH, or CR\(^5\);
- \(R \) is hydrogen, cyano, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, aryl, arylalkyl, aryloxy, heteroaryl, cycloheteroalkyl, heteroaryalkyl, cycloheteroalkylalkyl, cycloalkyl, cycloalkylalkyl, cyanoalkyl, aminoalkyl, hydroxyalkyl, arloxyalkyl, or hydroxyaryl;
- \(Z \) is a cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, or heteroaryl ring;
- \(R^1 \) is hydrogen or C\(_{1-4}\)alkyl.
R² and R³ are independently at each occurrence hydrogen, halogen, hydroxy, alkyl, alkenyl, alkylnyl, alkoxy, cyano, nitro, NR²R³, or CHO, provided that if Y is CR⁶ and X is S, then R² and R³ are not both methyl;

or R² and R³ combine to form =O or a double bond, wherein the double bond is substituted by hydrogen, aryl, alkyl, alkenyl, alkylnyl, alkoxy, amino, substituted amino, alkoxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, heteroaryl, cycloheteroalkyl, heteroarylalkyl, cycloheteroalkylalkyl, cycloalkyl, or cycloalkylalkyl;

R⁴ and R⁵ are independently at each occurrence hydrogen, alkyl, aryl, cycloalkyl, heteroaryl, or cycloheteroalkyl;

R⁶ is hydrogen, halogen, hydroxy, alkyl, alkenyl, alkylnyl, alkoxy, aryl, aryloxy, heteroaryl, cycloheteroalkyl, heteroarylalkyl, cycloheteroalkylalkyl, cyano, heteroarylaminocarboxyl, cycloheteroalkylcarboxyl, cyanoalkyl, alkylaminoalkyl, hydroxyalkyl, hydroxyaryl, aryloxyalkyl, nitro, NR²R³, CHO, CO₂alkyl, alkoxyalkyl, CONR⁷R⁸, CH₂NR²R³, CO₂H, CH₂OH, CH₂NHC(O)R²R³, NHCOR⁸, NHCONR⁹R¹⁰,

NH₂, SO₂NR²R³, NR²SO₂NR²R³, or NR²SO₂pR⁸;

R⁸ and R⁹ are independently selected from hydrogen, halogen, hydroxy, alkyl, alkenyl, alkylnyl, alkoxy, aryl, aryloxy, heteroaryl, cycloheteroalkyl, heteroarylalkyl, cycloheteroalkylalkyl, cyano, heteroarylaminocarboxyl, cycloheteroalkylcarboxyl, cyanoalkyl, alkylaminoalkyl, hydroxyalkyl, hydroxyaryl, aryloxyalkyl, alkoxyalkyl, nitro, NR²R³, CHO, CO₂alkyl, CONR⁷R⁸, CH₂NR²R³, CO₂H, CH₂OH, CH₂NHC(O)R²R³, NHCOR⁸, NHCONR⁹R¹⁰, and NH₂;

R³ and R⁴ are independently selected from hydrogen, alkyl, alkenyl, alkylnyl, alkoxy, NR²R³, aryl, hydroxy, aryloxy, heteroaryl, cycloheteroalkyl, heteroarylalkyl, cycloheteroalkylalkyl, hydroxyaryl, and aryloxyalkyl;

R⁸ and R⁹ are independently at each occurrence selected from hydrogen, aryl, alkyl, alkenyl, alkylnyl, alkoxy, amino, substituted amino, alkoxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, heteroaryl, cycloheteroalkyl, heteroarylalkyl, cycloheteroalkylalkyl, cycloalkyl, and cycloalkylalkyl, provided R⁸ and R⁹ are not both alkoxy or amino;

or R⁸ and R⁹ at each occurrence can be taken together with the nitrogen to which they are attached to form a 5-, 6- or 7-membered heteroaryl or cycloheteroalkyl ring which contains 1, 2 or 3 hetero atoms which can be N, O or S;
R^g and R^i independently at each occurrence are selected from hydrogen, aryl, alkyl, alkenyl, alkynyl, alkoxy, amino, substituted amino, alkoxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, heteroaryl, cycloheteroalkyl, heteroarylalkyl, cycloheteroalkylalkyl, cycloalkyl, and cycloalkylalkyl;

p is 0, 1 or 2;

r is 0, 1 or 2; and

s is 0, 1 or 2.

[0016] Whether or not specifically listed, all compounds of the present invention include prodrugs and solvates thereof (including prodrug esters), as well as stereoisomers thereof, tautomers thereof, or pharmaceutically acceptable salts thereof. Aspects of preferred compounds include those described in numbered paragraphs 1-12, listed immediately below.

1. Compounds within the scope of formula (I), as defined above, including all stereoisomers thereof, tautomers thereof, or a pharmaceutically acceptable salt thereof, wherein:

Z is a cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, or heteroaryl ring where each ring is substituted by 0-4 R^7 and 0-1 R^8;

R^6 is hydrogen, halogen, hydroxy, C_{1-4}alkyl, trifluoromethyl, C_{1-4}alkoxy, -C(O)NR^fR^i, nitro, or cyano;

R^7 and R^8 are independently at each occurrence hydrogen, halogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, aryl, aryloxy, heteroaryl, cycloheteroalkyl, heteroarylalkyl, cycloheteroalkylalkyl, cyan, heteroarylamino, cyclohetoroalkylcarbonyl, cyanakyl, alkylaminoalkyl, hydroxyalkyl, hydroxyaryl, aryloxyalkyl, alkoxyalkyl, nitro, oxo, -O(CH_2)_nR^h, NR^kR^f, CHO, CO_2alkyl, CONR^kR^f, CH_2NR^kR^f, CO_2H, CH_2OH, CH_2NHC(O)R^kR^f, NR^kCOR^i, NR^kCONR^kR^f, NR^kSO_R^i, -SO_2NR^kR^f, NR^kSO_2NR^kR^f, or NR^kSO_R^i;

or R^7 and R^8 located on adjacent atoms can be taken together to form an optionally substituted cycloalkyl, aryl, heteroaryl, or cyclohetoroalkyl ring;

R^h is selected from aminocarbonyl, O(CH_2)_nO(CH_2)_mR^i, alkylamino,

heterocycloalkyl, heteroaryl, and aryl; and

v, y and z are independently at each occurrence selected from 0, 1 and 2.
2. Compounds within the scope of paragraph 1, as defined above, having the structure

![Chemical Structure Image]

or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:

- R is H or alkyl;
- R^a and R^b are independently selected from H, C$_1$-alkyl, OH, CN, NO$_2$, NH$_2$, CHO, CO$_2$-alkyl, CONRgRh, and CH$_2$NRgRh; and
- R^c and R^d are independently selected from H, halogen, OH, CN, NO$_2$, NH$_2$, CHO, CO$_2$-alkyl, CONRgRh and CH$_2$NRgRh.

3. Compounds within the scope of formula (I), as defined above, including all stereoisomers thereof, tautomers thereof, or a pharmaceutically acceptable salt thereof, wherein:

- R is H or C$_1$-alkyl; and
- R^c and R^d are H.

4. Compounds within the scope of formula (I), as defined above, including all stereoisomers thereof, tautomers thereof, or a pharmaceutically acceptable salt thereof, wherein:

- R^a is selected from H and NO$_2$; and
- R^b is selected from H, CH$_3$, Cl, Br, NH$_2$, CN, and NO$_2$.

5. Compounds within the scope of formula (I), as defined above, including all stereoisomers thereof, tautomers thereof, or a pharmaceutically acceptable salt thereof, wherein X is NH or S.

6. Compounds within the scope of formula (I), as defined above, including all stereoisomers and tautomers thereof, or a prodrug ester thereof, or a pharmaceutically acceptable salt thereof, wherein Z is a heterocycloalkyl, aryl, or heteroaryl ring, each ring substituted by 0-4 R^7 and 0-1 R^8.

- 7 -
7. Compounds within the scope of numbered paragraph 6, including stereoisomers thereof, tautomers thereof, or a pharmaceutically acceptable salt thereof, wherein:

- \(Z \) is a phenyl, naphthyl, pyrimidyl, pyridinyl, pyridazinyl, piperazinyl, thiophenyl, thiazolyl, isoxazolyl, or imidazolyl ring;

- \(R^6 \) is hydrogen;

- \(R^7 \) and \(R^8 \) are independently at each occurrence:

 (a) hydrogen, bromo, chloro, fluoro, \(C_{1-4} \)alkyl, arylalkyl, OR\(^{11} \), oxo, NO\(_2\), cyano, NH\(_2\), \(-NHC_{1-4} \)alkyl, \(-N(C_{1-4} \)alkyl\)\(_2\), SO\(_2\)C\(_{1-4} \)alkyl, \(-NHC(O)C_{1-4} \)alkyl, \(-C(O)\)N\((C_{1-4} \)alkyl\)\(_2\), \(-C(O)\)NH\((C_{1-4} \)alkyl\), \(-C(O)\)NH\(_2\), CO\(_2\)H, \(-CO_2(C_{1-4} \)alkyl\), or arylalkyl; or

 (b) a phenyl, naphthyl, pyrazolyl, pyrimidinyl, pyridinyl, isoxazolyl, indolyl, or morpholinyl ring; each of which is optionally further substituted by 1-3 \(R^{13} \); or

 (c) \(R^7 \) and \(R^8 \) located on adjacent atoms can be taken together to form a dioxole or phenyl ring, where each ring is optionally further substituted;

- \(R^{11} \) at each occurrence is selected from hydrogen, \(C_{1-4} \)alkyl, \((CH_2)_n\)C(O)NH\(_2\), \((CH_2)_n\)heteroaryl, \((CH_2)_n\)O\((CH_2)_m\)O\((CH_2)_n\)OR\(^{12} \), \((CH_2)_n\)N\((C_{1-4} \)alkyl\)\(_2\), \((CH_2)_n\)heterocycloalkyl, and \((CH_2)_n\)phenyl;

- \(R^{12} \) is hydrogen or \(C_{1-4} \)alkyl; and

- \(R^{13} \) is halogen, oxo, NH\(_2\), hydroxy, \(C_{1-4} \)alkyl, \(C_{1-4} \)alkoxy, \(-(CH_2)_n\)aryl, or heterocycloalkyl.

8. Compounds within the scope of numbered paragraphs 6 and 7, as defined above, including all stereoisomers thereof, tautomers thereof, or a pharmaceutically acceptable salt thereof, wherein \(Z \) is selected from:

- ![Chemical structures](image-url)
5
9. Compounds within the scope of formula (I), as defined above, including all stereoisomers thereof, tautomers thereof, or a pharmaceutically acceptable salt thereof, wherein:

\[R^2 \text{ is hydrogen, halogen, or hydroxy; and} \]
\[R^3 \text{ is hydrogen, halogen, hydroxy, alkyl, alkenyl, alkylnyl, alkoxy, cyano, nitro, } NR^i R^j, \text{ or CHO;} \]

or \[R^2 \text{ and } R^3 \text{ combine to form } =O \text{ or a double bond, wherein the double bond is substituted by hydrogen, aryl, alkyl, alkenyl, alkynyl, alkoxy, amino, substituted amino, alkoxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, heteroaryl, heterocycloalkyl, heteroarylamalkyl, heterocycloalkylalkyl, cycloalkyl, or cycloalkylalkyl.} \]

10. Compounds within the scope of formula (I), as defined above, including all stereoisomers thereof, tautomers thereof, or a pharmaceutically acceptable salt thereof, wherein:

\[R^2 \text{ and } R^3 \text{ are, independently, hydrogen, halogen, or hydroxy;} \]

or \[R^2 \text{ and } R^3 \text{ combine to form } =O. \]

11. Compounds within the scope of numbered paragraph 5, as defined above, having the formula:

![Chemical Structure](image)

including all stereoisomers thereof, tautomers thereof, or a pharmaceutically acceptable salt thereof, wherein:

\[R \text{ is } C_{1-4} \text{alkyl;} \]

\[R^8 \text{ is } C_{1-4} \text{alkoxy; halogen, pyrimidine, isoxazole, pyrazole, or pyridine, where the } C_{1-4} \text{alkoxy; halogen, pyrimidine, isoxazole, pyrazole, or pyridine, groups are substituted by hydrogen, morpholino, } C_{1-4} \text{alkoxy, or } C_{1-4} \text{alkyl; and} \]

\[R^9 \text{ is selected from H, CH}_3, \text{ Cl, Br, and CN.} \]

12. Compounds within the scope of numbered paragraph 2, as defined above, having the formula:
including all stereoisomers thereof, or a pharmaceutically acceptable salt thereof, wherein:

R² and R³ are independently hydrogen, halogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, cyano, nitro, NR²R⁴, or CHO;

or R² and R³ combine to form =O or a double bond, wherein the double bond is substituted by hydrogen, aryl, alkyl, alkenyl, alkynyl, alkoxy, amino, substituted amino, alkoxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, heteroaryl, heterocycloalkyl, heteroarylalkyl, heterocycloalkylalkyl, cycloalkyl, or cycloalkylalkyl; and

Rᵇ is selected from H, CH₃, Cl, Br, NO₂, and CN.

Individual or groups of variable definitions of the above-described preferred aspects may replace related variables of other aspects to form other preferred aspects of the present invention.

[0017] In another aspect of the present invention, pharmaceutical compositions are provided that are useful in treating endocrine disorders, rheumatic disorders, collagen diseases, dermatologic disease, allergic disease, ophthalmic disease, respiratory disease, hematologic disease, gastrointestinal disease, inflammatory disease, autoimmune disease, diabetes, obesity, and neoplastic disease, as well as other uses as described herein, which includes a therapeutically effective amount (depending upon use) of a compound of formula I of the invention and a pharmaceutically acceptable carrier.

[0018] In still another aspect, the present invention provides a method of treating endocrine disorders, rheumatic disorders, collagen diseases, dermatologic disease, allergic disease, ophthalmic disease, respiratory disease, hematologic disease, gastrointestinal disease, inflammatory disease, autoimmune disease, diabetes, obesity, and neoplastic disease, diseases that are associated with the expression product of a gene whose transcription is stimulated or repressed by glucocorticoid receptors, or a method of treating a disease associated with AP-1- and/or NF-κB-induced
transcription, or a method for preventing, inhibiting onset of or treating a disease associated with AP-1 and/or NF-κB dependent gene expression, wherein the disease or disorder is associated with the expression of a gene under the regulatory control of AP-1 and/or NF-κB, including inflammatory and immune diseases and disorders as described hereinafter, which includes the step of administering a therapeutically effective amount of a compound of formula I of the invention to a patient in need of treatment.

[0019] Another aspect of the present involves a method for treating a disease associated with the expression product of a gene whose transcription is stimulated or repressed by glucocorticoid receptors, or a method of treating a disease associated with AP-1- and/or NF-κB-induced transcription, or a method for preventing, inhibiting onset of or treating a disease associated with AP-1 and/or NF-κB dependent gene expression, wherein the disease is associated with the expression of a gene under the regulatory control of AP-1 and/or NF-κB, such as inflammatory and immune disorders, cancer and tumor disorders, such as solid tumors, lymphomas and leukemia, and fungal infections such as mycosis fungoides.

[0020] The term “disease associated with GR transactivation,” as used herein, refers to a disease associated with the transcription product of a gene whose transcription is transactivated by a GR. Such diseases include, but are not limited to: osteoporosis, diabetes, glaucoma, muscle loss, facial swelling, personality changes, hypertension, obesity, depression, and AIDS, the condition of wound healing, primary or secondary andrenocortical insufficiency, and Addison’s disease.

[0021] The term “treat”, “treating”, or “treatment,” in all grammatical forms, as used herein refers to the prevention, reduction, or amelioration, partial or complete alleviation, or cure of a disease, disorder, or condition, wherein prevention indicates treatment of a person at risk for developing a disease.

[0022] The terms “glucocorticoid receptor” and “GR,” as used herein, refer either to a member of the nuclear hormone receptor family of transcription factors which bind glucocorticoids and either stimulate or repress transcription, or to GR-beta.

These terms, as used herein, refer to glucocorticoid receptor from any source, including but not limited to: human glucocorticoid receptor as disclosed in Weinberger, et al. Science 228, pp. 640-742, (1985), and in Weinberger, et al. Nature,

The term, “disease associated with AP-1-dependent gene expression,” as used herein, refers to a disease associated with the expression product of a gene under the regulatory control of AP-1. Such diseases include, but are not limited to: inflammatory and immune diseases and disorders; cancer and tumor disorders, such as solid tumors, lymphomas and leukemia; and fungal infections such as mycosis fungoides.

The term “inflammatory or immune associated diseases or disorders” is used herein to encompass any condition, disease, or disorder that has an inflammatory or immune component, including, but not limited to, each of the following conditions: transplant rejection (e.g., kidney, liver, heart, lung, pancreas (e.g., islet cells), bone marrow, cornea, small bowel, skin allografts, skin homografts (such as employed in burn treatment), heart valve xenografts, serum sickness, and graft vs. host disease, autoimmune diseases, such as rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, Type I and Type II diabetes, juvenile diabetes, obesity, asthma, inflammatory bowel disease (such as Crohn’s disease and ulcerative colitis), pyoderma gangrenous, lupus (systemic lupus erythematosis), myasthenia gravis, psoriasis, dermatitis, dermatomyositis; eczema, seborrheoa, pulmonary inflammation, eye uveitis, hepatitis, Grave’s disease, Hashimoto’s thyroiditis, autoimmune thyroiditis, Behcet’s or Sjorgen’s syndrome (dry eyes/mouth), pernicious or immunohaemolytic anaemia, atherosclerosis, Addison’s disease (autoimmune disease of the adrenal glands), idiopathic adrenal insufficiency, autoimmune polyglandular disease (also known as autoimmune polyglandular syndrome), glomerulonephritis, scleroderma, morphea, lichen planus, viteligo (depigmentation of the skin), alopecia areata, autoimmune alopecia, autoimmune hypopituatarism, Guillain-Barre syndrome, and alveolitis; T-cell mediated hypersensitivity diseases, including contact
hypersensitivity, delayed-type hypersensitivity, contact dermatitis (including that due
to poison ivy), urticaria, skin allergies, respiratory allergies (hayfever, allergic rhinitis)
and gluten-sensitive enteropathy (Celiac disease); inflammatory diseases such as
osteoarthritis, acute pancreatitis, chronic pancreatitis, acute respiratory distress
syndrome, Sezary's syndrome and vascular diseases which have an inflammatory and
or a proliferatory component such as restenosis, stenosis and atherosclerosis.
Inflammatory or immune associated diseases or disorders also includes, but is not
limited to: endocrine disorders, rheumatic disorders, collagen diseases, dermatologic
disease, allergic disease, ophthalmic disease, respiratory disease, hematologic disease,
gastrointestinal disease, inflammatory disease, autoimmune disease, congenital
adrenal hyperplasia, nonsuppurative thyroiditis, hypercalcemia associated with cancer,
juvenile rheumatoid arthritis, Ankylosing spondylitis, acute and subacute bursitis,
acute nonspecific tenosynovitis, acute gouty arthritis, post-traumatic osteoarthritis,
synovitis of osteoarthritis, epicondylitis, acute rheumatic carditis, pemphigus, bullous
dermatitis herpetiformis, severe erythema multiforme, exfoliative dermatitis,
seborrheic dermatitis, seasonal or perennial allergic rhinitis, bronchial asthma, contact
dermatitis, atopic dermatitis, drug hypersensitivity reactions, allergic conjunctivitis,
keratitis, herpes zoster ophthalmicus, iritis and iridocyclitis, chorioretinitis, optic
neuritis, symptomatic sarcoidosis, fulminating or disseminated pulmonary
tuberculosis chemotherapy, idiopathic thrombocytopenic purpura in adults, secondary
thrombocytopenia in adults, acquired (autoimmune) hemolytic anemia, leukemias and
lymphomas in adults, acute leukemia of childhood, regional enteritis, autoimmune
vasculitis, multiple sclerosis, chronic obstructive pulmonary disease, solid organ
transplant rejection, sepsis. Preferred treatments include treatment of transplant
rejection, rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, Type 1 diabetes,
asthma, inflammatory bowel disease, systemic lupus erythematosus, psoriasis and
chronic pulmonary disease.

[0025] In addition, in accordance with the present invention a method of treating a
disease associated with AP-1-induced or NF-κB-induced transcription is provided
wherein a compound of formula I of the invention is administered to a patient in need
of treatment in a therapeutically effective amount to induce NHR transrepression of
the AP-1-induced or NF-κB-induced transcription, thereby treating the disease.
Other therapeutic agents, such as those described hereafter, may be employed with the compounds of the invention in the present methods. In the methods of the present invention, such other therapeutic agent(s) may be administered prior to, simultaneously with or following the administration of the compound(s) of the present invention.

In a particular embodiment, the compounds of the present invention are useful for the treatment of the aforementioned exemplary disorders irrespective of their etiology, for example, for the treatment of transplant rejection, rheumatoid arthritis, inflammatory bowel disease, and viral infections.

METHODS OF PREPARATION

The compounds of the present invention may be synthesized by many methods available to those skilled in the art of organic chemistry. General synthetic schemes, in accordance with the present invention, for preparing compounds of the present invention are described below. These schemes are illustrative and are not meant to limit the possible techniques one skilled in the art may use to prepare the compounds disclosed herein. Different methods to prepare the compounds of the present invention will be evident to those skilled in the art. Additionally, the various steps in the synthesis may be performed in an alternate sequence in order to give the desired compound or compounds. Examples of compounds of the present invention prepared by methods described in the general schemes are given in the preparations and examples section set out hereinafter.

As illustrated below, compounds of Formula I are generally synthesized by the formation of the amide from the “core” acid and the “side chain” amine.

Synthesis of the core acid is described in co-pending application U.S. Serial No. 10/621,909, which is incorporated by reference in its entirety.
There are many methods for synthesizing various side chain amines known to one skilled in the art of organic synthesis. Scheme 1 illustrates a number of classic methods for synthesizing reactive intermediates 1-6 which are then used to form heteroaryl amines 7 and 8.

SCHEME 1

1. \(\text{R}^8\text{O} = \text{Br}_2\) → \(\text{BrO}_{\text{R}}\text{Z}\) → acetone reflux → \(\text{BrO}_{\text{R}}\text{Z}\)

2. \(\text{R}^8\text{O} = \text{Br}_2\) → \(\text{BrO}_{\text{R}}\text{Z}\)

3. \(\text{Cl}\) →

4. \(\text{Cl}\) →

5. \(\text{Cl}\) →

6. \(\text{Cl}\) →

- 18 -
Reaction (1) shows typical conditions for brominating alpha to a ketone. In this specific case, bromination occurs first at the benzylic position and then at the desired R8-substituted position. Using the procedure of Chi et al (Org. Lett. 2003, 5, 411-414), dibromination followed by debenromination with acetone yields the desired alpha-bromoketone 1. Reaction (2) is the same transformation as reaction (1) but when the methylene adjacent to Z is substituted, bromination occurs selectively or exclusively at the desired position to give structure 2. Reaction (3) is a summary of the method of Takano (Heterocycles 1989, 29, 1861-1864; also see Zhao et al Bioorg. Med. Chem. Lett. 1998, 6, 2531-2539) which describes the use of cuprates to open epichlorohydrin to form chlorohydrins. It should be noted that Grignard reagents themselves open epoxides either in the presence or absence of copper salts (see, Mazzocchi et al Synth Commun. 1986, 309-312; Eur. J. Med. Chem. 1979, 14, 165-170). Oxidation of the chlorohydrin using Dess-Martin periodinane or other suitable oxidant yields the desired chloromethylketone 3. Another method of forming chloromethylketones is shown in reaction (4). Lithiation of activated methyl groups using butyllithium followed by reaction with chloroacetylchloride (or ethyl chloroacetate, Khim. Geterot. Soed. 1986, 6, 802-809) directly provides the chloromethylketone 4 intermediate. Reaction (5) shows the method of Nugent et al (J. Org. Chem. 2004, 69, 1629-1633) which uses dimethyl sulfoxonium methylide to nucleophilically add to esters forming reactive β-keto sulfur ylides 5. Lastly, a widely used acid homologation procedure shown in reaction (6) involves the conversion of a carboxylic acid to a mixed anhydride (or acid chloride) followed by treatment with diazomethane and then HCl to form the chloromethylketone 6.
Scheme 1 also shows that reactive intermediates 1-6 can be treated with thiourea with or without added acid to yield the desired substituted 2-aminothiazoles 7. Synthesis of substituted 2-aminoimidazoles 8 is best accomplished using the procedure of Little and Webber (J. Org. Chem. 1994, 59, 7299-7305) using N-acetylguanidine as the nucleophile followed by acid hydrolysis of the acetyl group.

Alternate syntheses of 2-aminoimidazoles are listed in Scheme 2.

SCHEME 2

As described in Scheme 2, reaction (1), an aminomethylketone is condensed with cyanamide to form an intermediate guanidinomethylketone which undergoes dehydration upon treatment with HCl (see, Lancini and Lazzari, J. Het. Chem. 1966, 3, 152-154) to form compound 9. Aminomethyl ketones can be synthesized from the reactive intermediates 1-6 (Scheme 1) using standard procedures known to one skilled in the art. Reaction (2) details the procedure of Horne et al (Tetrahedron. Lett. 1993, 34, 6981-6984) to make substituted 2-aminoimidazoles. Briefly, commercially available 2-aminoimidazole reacts with aldehydes to form hydroxyalkylaminomimidazoles which are conveniently protected in situ with a CBZ group in situ to facilitate purification. Catalytic hydrogenation of this intermediate
under mild conditions first reduces the CBZ group to give the hydroxyalkylaminimidazoles 10. Prolonged hydrogenation under stronger conditions reduces the benzylic hydroxyl group to give compound 9. If the intermediate hydroxyalkylaminimidazole is first oxidized (using Dess-Martin periodinane for example) and then treated with under mild hydrogenation conditions, the 2-amino-4-ketoimidazole compound 11 is formed.

Scheme 3 illustrates several additional synthetic transformations for the preparation of substituted 2-aminothiazoles.

SCHEME 3

[0035] Starting from commercially available 2-aminothiazole-4-carboxylic ester, the amino group is protected using Boc anhydride. The ester moiety is reduced with RedAl. Oxidation of the resultant alcohol with Dess-Martin periodinane gives the aldehyde which can undergo reactions with organometallic reagents such as Grignard reagents to give compound 12. TFA deprotection of 12 gives amine 13 which is ready for coupling to different core acids to make compounds of Formula I. Alternatively, oxidation of intermediate 12 gives the keto compound 14 that can either be deprotected to give compound 15 or fluoridated using DAST and deprotected to give compound 16. Compound 14 may also be homologated using a Horner-Wadsworth-Emmons procedure to give the α,β-unsaturated ester 17. Ester 17 can be deprotected with TFA to give compound 18, the ester converted using standard procedures to amide 19, and lastly reduced to amide 20.
As shown in Scheme 4, compounds 7-11, 13, 15, 16, 18, 19, and 20 may be coupled to the core carboxylic acids to form compounds of Formula I.

The coupling may proceed via the use of preactivated cores such as acid fluorides, or the acids may be coupled in situ using well-established peptide coupling reagents such as carbodiimide reagents mixed with hydroxybenzothiazole (or other methods described in Chamberlin et al Chem Rev 1997, 97, 2243-2266).

Alternatively, compounds of Formula I may also be synthesized by coupling an intermediate substituted 2-aminothiazole or 2-aminoimidazole first and then using additional chemistry to elaborate the substitution on the side chain as shown in Scheme 5.
Starting with the bromobenzyl side chain 21, this compound can be further elaborated to compounds of Formula I using: (1) a Suzuki reaction to form biaryl systems via compound 22, (2) Buchwald aminations to form amines via compound 23, or (3) palladium-mediated cyanation to form the nitrile 24. Compound 24 can be hydrolyzed to the carboxylic acid 25 and coupled to amines using standard peptide coupling reagents to form amides 26. Alternatively, the nitrile of compound 24 can be reduced to an aminomethyl compound 27 and subsequently functionalized by acylation with acid chlorides, sulfonyl chlorides, isocyanates, and the like to form amides, sulfonamides, and ureas respectively of the structure 28. When the Rx group is CBZ, it can be removed by hydrogenation to give the free amine which may be
coupled to the core molecule. When the Rx group is Boc, it can be removed with trifluoroacetic acid to give the free amine which may be coupled to the core molecule.

Scheme 6 depicts additional examples of side chain amine elaboration.

SCHEME 6

Reaction (1) illustrates a number of diverse side chains that can be synthesized from a phenol. Using standard alkylative conditions (e.g. Cs₂CO₃ and alkyl chloride in polar solvent) or Mitsunobu conditions (the phenol, alkyl alcohol, diethyldiazodicarboxylate, and triphenylphosphine), phenols can be converted efficiently into ethers. Reaction (2) shows how a nitro group can be reduced with tin (II) chloride and then coupled with acid chlorides, sulfonyl chlorides, or isocyanates to form amides, sulfonamides, and ureas respectively. Reaction (3) shows how a 2-amido-4-chloromethylthiazole or N-protected variants can be reacted with heterocyclic nitrogen-bearing nucleophiles to provide heterocyclic derivatives at the 4-position of the thiazole. When the 2-amino group is protected by a Boc or CBZ protecting group, it can be removed and the free amino coupled to the core acid to give compounds of Formula I.
DEFINITION OF TERMS

[0043] Unless otherwise indicated, the term "lower alkyl", "alkyl" or "alk" as employed herein alone or as part of another group includes both straight and branched chain hydrocarbons, containing 1 to 20 carbons, preferably 1 to 10 carbons, more preferably 1 to 8 carbons, in the normal chain, and may optionally include an oxygen or nitrogen in the normal chain. Accordingly, the term "lower alkyl", "alkyl" or "alk" includes groups such as methyl, ethyl, propyl, isopropyl, butyl, t-butyl, isobutyl, pentyl, hexyl, isohexyl, heptyl, 4,4-dimethylpentyl, octyl, 2,2,4-trimethylpentyl, nonyl, decyl, undecyl, dodecyl, the various branched chain isomers thereof, and the like as well as such groups including 1 to 4 substituents such as halo, for example F, Br, Cl or I, alkoxy, aryloxy, aryl(aryl) or diaryl, arylalkyl, arylalkyloxy, alkynyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkyloxy, amino, hydroxy, hydroxyalkyl, acyl, heteroaryl, heteroaryloxy, HO-\(\text{N}\)-, cyclohydrocarbonyl, cycloalkyloxyalkyl, alkoxycarbonyl, alkoxycarbonyloxy, aryloxyalkyl, aryloxyaryl, alkylamido, alkanoylamino, hydroxyalkyl (aryl)amino carbonyl, arylicarbonylamino, nitro, cyano, thiol, haloalkyl, trihaloalkyl and/or alkylthio as well as other substituents listed below for aryl.

[0044] Unless otherwise indicated, the term "cycloalkyl" as employed herein alone or as part of another group includes saturated cyclic hydrocarbon groups containing 1 to 3 rings, including monocyclicalkyl, bicyclicalkyl and tricyclicalkyl, containing a total of 3 to 20 carbons forming the rings, preferably 3 to 10 carbons, forming the ring and which may be fused to 1 or 2 aromatic rings (defined below). Accordingly, the term "cycloalkyl" includes groups such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, cyclohexenyl,

\[\text{and the like as well as such groups including 1 to 4 substituents such as halogen, alkyl, alkoxy, hydroxy, aryl, aryloxy, arylalkyl, cycloalkyl, alkylamido,} \]
alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol and/or alkylthio and/or any of the substituents for alkyl.

The term “cycloalkenyl” as employed herein alone or as part of another group refers to cyclic hydrocarbons containing 3 to 12 carbons, preferably 5 to 10 carbons and 1 or 2 double bonds. Exemplary cycloalkenyl groups include cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclohexadienyl, and cycloheptadienyl, which may be optionally substituted as defined for cycloalkyl.

The term “cycloalkylene” as employed herein refers to a “cycloalkyl” group which includes free bonds and thus is a linking group such as

\[\begin{array}{c}
 \text{and the like, and may optionally be substituted as defined above for “cycloalkyl”.
}
\end{array} \]

The term “alkanoyl” as used herein alone or as part of another group refers to alkyl linked to a carbonyl group.

Unless otherwise indicated, the term “lower alkenyl” or “alkenyl” as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons, and more preferably 1 to 8 carbons in the normal chain, which include one to six double bonds in the normal chain, and may optionally include an oxygen or nitrogen in the normal chain. Accordingly, the term “lower alkenyl” or “alkenyl” includes groups such as vinyl, 2-propenyl, 3-butynyl, 2-butynyl, 4-pentenyl, 3-pentenyl, 2-hexenyl, 3-hexenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 3-octenyl, 3-nonenyl, 4-decenyl, 3-undecenyl, 4-dodecenyl, 4,8,12-tetradecatrienyl, and the like as well as such groups including 1 to 4 substituents such as halogen, haloalkyl, alkyl, alkoxy, alkenyl, alkyny, aryl, arylalkyl, cycloalkyl, amino, hydroxy, heteroaryl, cycloheteroalkyl, alkanoylamino, alkylamido, arylcarbonylamino, nitro, cyano, thiol, alkylthio and/or any of the substituents for alkyl set out herein.

Unless otherwise indicated, the term “lower alkynyl” or “alkynyl” as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons and more preferably 2 to 8 carbons in the normal chain, and may
optionally include an oxygen or nitrogen in the normal chain. Accordingly, the term
“lower alkynyl” or “alkynyl” includes groups such as 2-propynyl, 3-butynyl, 2-
butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2-heptynyl, 3-heptynyl, 4-
heptynyl, 3-octynyl, 3-nonynyl, 4-decynyl, 3-undecynyl, 4-dodecynyl and the like as
well as such groups including 1 to 4 substituents such as halogen, haloalkyl, alkyl,
alkoxy, alkenyl, alkynyl, aryl, arylalkyl, cycloalkyl, amino, heteroaryl,
cycloheteroalkyl, hydroxy, alkanoylamino, alkylamido, arylcarbonylamino, nitro,
cyano, thiol, and/or alkylthio, and/or any of the substituents for alkyl set out herein.

[0050] The terms “aryllkynyl” and “aryllkynyl” as used alone or as part of
another group refer to alkenyl and alkynyl groups as described above having an aryl
substituent.

[0051] Where alkyl groups as defined above have single bonds for attachment to
other groups at two different carbon atoms, they are termed “alkylene” groups and
may optionally be substituted as defined above for “alkyl”.

[0052] Where alkenyl groups as defined above and alkynyl groups as defined
above, respectively, have single bonds for attachment at two different carbon atoms,
they are termed “alkenylene groups” and “alkynylene groups”, respectively, and may
optionally be substituted as defined above for “alkenyl” and “alkynyl”.

[0053] (CH₂)ₙ and (CH₃)ₙ, includes alkenylene, allenyl, alkenylene or alkynylene
groups, as defined herein, each of which may optionally include an oxygen or nitrogen
in the normal chain, which may optionally include 1, 2, or 3 substituents which
include alkyl, alkenyl, halogen, cyano, hydroxy, alkoxy, amino, thioalkyl, keto, C₃-C₆
cycloalkyl, alky carbonylamino or alky carbonyloxy; the alkyl substituent may be an
alkylene moiety of 1 to 4 carbons which may be attached to one or two carbons in the
(CH₂)ₙ or (CH₃)ₙ group to form a cycloalkyl group therewith.

[0054] Examples of (CH₂)ₙ, (CH₃)ₙ, alkenylene, alkenylene and alkynylene include

\[
\begin{align*}
\text{CH}=&\text{CH=CH}_2^-, \quad \text{CH}_2\text{CH=CH}^-, \quad \text{C}≡\text{C}−\text{CH}_2^-, \quad \text{CH}_2\text{=C}^-, \\
\text{CH}_2\text{=CH}_2^-, \quad \text{CH}_2\text{CH=CH}_2-, \quad \text{C}≡\text{C}−\text{CH}_2^-, \quad \text{CH}_3
\end{align*}
\]
The term “halogen” or “halo” as used herein alone or as part of another group (e.g. CF₃ is a haloalkyl group) refers to chlorine, bromine, fluorine, and iodine, with chlorine fluorine or bromine being preferred.
The term “metal ion” refers to alkali metal ions such as sodium, potassium or lithium and alkaline earth metal ions such as magnesium and calcium, as well as zinc and aluminum.

Unless otherwise indicated, the term “aryl”, as employed herein alone or as part of another group refers to monocyclic and bicyclic aromatic groups containing 6 to 10 carbons in the ring portion (such as phenyl or naphthyl including 1-naphthyl and 2-naphthyl) and may optionally include one to three additional rings fused to a carbocyclic ring or a heterocyclic ring (such as aryl, cycloalkyl, heteroaryl or cycloheteroalkyl rings. Accordingly, the term “aryl” includes, for example

![Chemical structures](image)

and may be optionally substituted through available carbon atoms with 1, 2, or 3 groups selected from hydrogen, halo, haloalkyl, alkyl, haloalkyl, alkoxy, haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, alkynyl, cycloalkyl-alkyl, cycloheteroalkyl, cycloheteroalkylalkyl, aryl, heteroaryl, aryalkyl, aryloxy, aryloxyalkyl, aryalkoxy, alkoxy, alkyloxyalkyl, aryloxyalkyl, aryalkoxyalkyl, arylalkyl, arylalkoxyalkyl, aryloxyalkyl, aryloxyalkyl, arylalkoxyalkyl, aryloxyalkyl, aryloxyalkyl, aryloxyalkyl, aryloxyalkyl, aryloxyalkyl, aryloxyalkyl.
hydroxy, nitro, cyano, amino, substituted amino wherein the amino includes 1 or 2
substituents (substituents are described in definition for substituted amino, below),
thiol, alkylthio, arylthio, heteroaryltio, arylthioalkyl, alkoxylthioalkyl, alkylcarbonyl,
arylcarbonyl, alkylaminocarbonyl, aminocarbonyl, alkylcarbonyloxy, alkylcarbonylamino,
arylcarbonylamino, arylsulfanyl, arylsulfinylalkyl, arylsulfonylamino or
aryl sulfonamino carbonyl, carboxy, cycloalkyl, arylalkoxy, aryloxycarbonyl,
cycloalkylaminocarbonyl, cycloalkylalkylaminocarbonyl, alkoxycarbonylalkyl,
alkoxyalkylaminocarbonyl, heteroarylaminocarbonyl, heteroarylalkylaminocarbonyl,
arylalkylaminocarbonyl, N-hydroxyalkyl(N-alkyl)aminocarbonyl,
cycloalkylaminocarbonyl, cycloalkylalkylaminocarbonyl, N-aryl(N-
alkyl)aminocarbonyl, N-arylalkyl(N-cyanalkyl)aminocarbonyl,
dialkylaminocarbonyl, dialkylaminocarbonyl, alkyl-, arylalkyl- or aryl-
cycloalkylaminocarbonyl, N-dialkylaminocarbonyl(N-alkyl or N-
arylalkyl)aminocarbonyl, N-heteroarylalkyl(N-alkyl)aminocarbonyl, N-arylalkyl(N-
alkyl)aminocarbonyl, N-dialkylaminocarbonyl(N-arylalkyl)aminocarbonyl, N-hydroxyalkyl(N-
arylalkyl)aminocarbonyl, aminoalkyloxycarbonyl, cycloalkylcarbonyl, N=N=N,
alkylsulfonyl, aminosulfonyl, heteroarylaminosulfonyl, and/or any of the substituents
for alkyl set out herein.

[0058] Unless otherwise indicated, the term “lower alkoxy”, “alkoxy”, “aryloxy”
or “aralkoxy” as employed herein alone or as part of another group includes any of the
above alkyl, aralkyl or aryl groups linked to an oxygen atom.

[0059] Unless otherwise indicated, the term “substituted amino” as employed
herein alone or as part of another group refers to amino substituted with one or two
substituents, which may be the same or different, such as alkyl, aryl, arylalkyl,
heteroaryl, heteroarylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkylalkylalkyl, cycloalkyl,
cycloalkylalkyl, haloalkyl, hydroxyalkyl, alkoxyalkyl or thioalkyl. These substituents
may optionally be further substituted with a carboxylic acid and/or any of the
substituents for alkyl as set out above. In addition, the amino substituents may be
taken together with the nitrogen atom to which they are attached to form 1-
pyrrolidinyl, 1-piperidinyl, 1-azepinyl, 4-morpholinyl, 4-thiomorpholinyl, 1-
piperazinyl, 4-alkyl-1-piperazinyl, 4-aryalkyl-1-piperazinyl, 4-diaryalkyl-1-
piperazinyl, 1-pyrroldinyl, 1-piperidinyl, or 1-azepinyl, optionally substituted with alkyl, alkoxy, alklythio, halo, trifluoromethyl or hydroxy.

[0060] Unless otherwise indicated, the term "lower alkylthio", alkylthio", "arylthio" or "aralkylthio" as employed herein alone or as part of another group includes any of the above alkyl, aralkyl or aryl groups linked to a sulfur atom.

[0061] Unless otherwise indicated, the term "lower alkylamino", "alkylamino", "acylamino", sulfonlamino, "arylamino", or "aralkylamino" as employed herein alone or as part of another group includes any of the above alkyl, aryl or arylalkyl groups linked to a nitrogen atom.

[0062] Unless otherwise indicated, the term "acyl" as employed herein by itself or part of another group, as defined herein, refers to an organic radical linked to a carbonyl \[\text{(O)} \] group; examples of acyl groups include any of the R groups attached to a carbonyl, such as alkanoyl, alkenoyl, aroyl, aralkanoyl, heteroaroyl, cycloalkanoyl, cycloheteroalkanoyl and the like.

[0063] Unless otherwise indicated, the term "lower alkylamino", "alkylamino", "acylamino", "arylamino", or "aralkylamino" as employed herein alone or as part of another group includes any of the above alkyl, aryl or arylalkyl acyl groups linked to a nitrogen atom. The term "acylamino", for example, includes the group -NHC(O)alkyl.

[0064] Unless otherwise indicated, the term "cycloheteroalkyl" as used herein alone or as part of another group refers to a 5-, 6- or 7-membered saturated or partially unsaturated ring which includes 1 to 2 hetero atoms such as nitrogen, oxygen and/or sulfur, linked through a carbon atom or a heteroatom, where possible, optionally via the linker (CH\(_2\))\(_p\) (where p is 0, 1, 2 or 3), such as

![Diagram](image-url)
and the like. The above groups may include 1 to 4 substituents such as alkyl, halo, oxo and/or any of the substituents for alkyl or aryl set out herein. In addition, any of the cycloheteroalkyl rings can be fused to a cycloalkyl, aryl, heteroaryl or cycloheteroalkyl ring.

[0065] Unless otherwise indicated, the term “heteroaryl” as used herein alone or as part of another group refers to a 5-, 6- or 7-membered aromatic ring which includes 1, 2, 3 or 4 hetero atoms such as nitrogen, oxygen or sulfur, and such rings fused to an aryl, cycloalkyl, heteroaryl or cycloheteroalkyl ring (e.g. benzothiophenyl, indolyl), and includes possible N-oxides, linked through a carbon atom or a heteroatom, where possible, optionally via the linker (CH₂)ₜ (where t is 0, 1, 2 or 3). The heteroaryl group may optionally include 1 to 4 substituents such as any of the substituents for alkyl or aryl set out above. Examples of heteroaryl groups include the following:
and the like.

[0066] Examples of A rings and B rings include, but are not limited to any of the 6- membered heteroary1 groups as defined above, 6- membered cycloheteroalkyl groups as defined above, and 6- membered aryl groups as defined above.

[0067] The term “cycloheteroalkylalkyl” as used herein alone or as part of another group refers to cycloheteroalkyl groups as defined above linked through a C atom or heteroatom to a (CH₂)ₚ chain.

[0068] The term “heteroarylalkyl” or “heteroarylalkenyl” as used herein alone or as part of another group refers to a heteroaryl group as defined above linked through a C atom or heteroatom to a -(CH₂)ₚ chain, alkyne or alkenylene as defined above.

[0069] The term “polyhaloalkyl” as used herein refers to an “alkyl” group as defined above which includes from 2 to 9, preferably from 2 to 5, halo substituents, such as F or Cl, preferably F, such as CF₃CH₂, CF₃ or CF₃CF₂CH₂.

[0070] The term “polyhaloalkyloxy” as used herein refers to an “alkoxy” or “alkyloxy” group as defined above which includes from 2 to 9, preferably from 2 to 5, halo substituents, such as F or Cl, preferably F, such as CF₃CH₂O, CF₃O or CF₃CF₂CH₂O.

[0071] The use of a circle in a ring of a chemical structures denotes an aromatic system. Accordingly the group is a five-membered aromatic ring system, including tautomers where possible, containing nitrogen and variables X and Y. Where X is defined to be N, O, NH or S and Y is N, NH or CR⁶, this includes ring system such as for example:
which are preferred embodiments of the variable “Z” in the present invention. More preferred are compounds where Z is the first, 4th and 5th structures drawn immediately above.

[0072] The term “prodrug” denotes a compound which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield a compound of the formula (I), and/or a salt and/or solvate thereof. For example, compounds containing a carboxy group can form physiologically hydrolyzable esters which serve as prodrugs by being hydrolyzed in the body to yield formula (I) compounds per se. Such prodrugs are preferably administered orally since hydrolysis in many instances occurs principally under the influence of the digestive enzymes. Parenteral administration may be used where the ester per se is active, or in those instances where hydrolysis occurs in the blood. Examples of physiologically hydrolyzable esters of compounds of formula (I) include C_{1-6}alkylbenzyl, 4-methoxybenzyl, indanyl, phthalyl, methoxymethyl, C_{1-6}alkanoyloxy-C_{1-6}alkyl, e.g. acetoxyethyl, pivaloyloxymethyl or propionyloxymethyl, C_{1-6}alkoxycarbonyloxy-C_{1-6}alkyl, e.g. methoxycarbonyl-oxymethyl or ethoxycarbonyloxymethyl, glycoxyloxymethyl, phenylglycoxyloxymethyl, (5-methyl-2-oxo-1,3-dioxolen-4-yl)-methyl and other well known physiologically hydrolyzable esters used, for example, in the penicillin and cephalosporin arts. Such esters may be prepared by conventional techniques known in the art.

[0073] Prodrug ester examples include the following groups:
(1-alkanoyloxy)alkyl such as,

\[
\begin{align*}
\text{R}^2 \text{O} & \text{C} \text{O} \text{C} \text{O} \text{C} \text{O} \text{R}^3 \\
\text{R}^2 \text{O} & \text{C} \text{O} \text{C} \text{O} \text{C} \text{O} \text{R}^3 \\
\text{R}^2 & \text{O} \text{C} \text{O} \text{C} \text{O} \text{C} \text{O} \text{R}^3
\end{align*}
\]

wherein R\text{Z}, \text{R}^1 and \text{R}^2 are H, alkyl, aryl or arylalkyl; however, R^2O cannot be HO.

[0074] Examples of such prodrug esters include
CH₃CO₂CH₂⁻, CH₃CO₂CH₂⁻, t-C₄H₉CO₂CH₂⁻, or

\[
\begin{align*}
\text{O} \\
\text{(CH₃)₂}
\end{align*}
\]

C₂H₅OCOCH₂⁻.

[0075] Other examples of suitable prodrug esters include

[0076] For further examples of prodrug derivatives, see:

a) **Design of Prodrugs**, edited by H. Bundgaard, (Elsevier, 1985) and

 (Academic Press, 1985);

[0077] The term “tautomer” refers to compounds of the formula (I) and salts thereof that may exist in their tautomeric form, in which hydrogen atoms are transposed to other parts of the molecules and the chemical bonds between the atoms
of the molecules are consequently rearranged. It should be understood that the all
tautomeric forms, insofar as they may exist, are included within the invention.

[0078] The terms pharmaceutically acceptable “salt” and “salts” refer to basic
salts formed with inorganic and organic bases. Such salts include ammonium salts;
alkali metal salts, such as lithium, sodium and potassium salts (which are preferred);
alkaline earth metal salts, such as calcium and magnesium salts; salts with organic
bases, such as amine like salts (e.g., dicyclohexylamine salt, benzathine, N-methyl-D-
glucamine, and hydrabamine salts); and salts with amino acids like arginine, lysine
and the like; and zwitterions, the so-called “inner salts”. Nontoxic, pharmaceutically
acceptable salts are preferred, although other salts are also useful, e.g., in isolating or
purifying the product.

[0079] The term pharmaceutically acceptable “salt” and “salts” also includes acid
addition salts. These are formed, for example, with strong inorganic acids, such as
mineral acids, for example sulfuric acid, phosphoric acid or a hydrohalic acid such as
HCl or HBr, with strong organic carboxylic acids, such as alkanecarboxylic acids of 1
to 4 carbon atoms which are unsubstituted or substituted, for example, by halogen, for
example acetic acid, such as saturated or unsaturated dicarboxylic acids, for example
oxalic, malonic, succinic, maleic, fumaric, phthalic or terephthalic acid, such as
hydroxycarboxylic acids, for example ascorbic, glycolic, lactic, malic, tartaric or citric
acid, such as amino acids, (for example aspartic or glutamic acid or lysine or
arginine), or benzoic acid, or with organic sulfonic acids, such as (C₁-C₄) alkyl or
arylsulfonic acids which are unsubstituted or substituted, for example by halogen, for
example methanesulfonic acid or p-toluenesulfonic acid.

[0080] Additionally, the instant inventive compounds may have trans and cis
isomers and may contain one or more chiral centers, therefore existing in
stereoisomeric (enantiomeric and diastereomeric) forms. The invention includes all
such isomers, as well as mixtures of cis and trans isomers, mixtures of diastereomers
and racemic mixtures of enantiomers (optical isomers). When no specific mention is
made of the configuration (cis, trans or R or S) of a compound (or of an asymmetric
carbon), then any one of the isomers or a mixture of more than one isomer is intended.
The processes for preparation can use racemates or stereoisomers as starting materials.
When stereoisomeric products are prepared, they can be separated by conventional
methods for example, chromatographic or fractional crystallization. The inventive compounds may be in the free or solvate (e.g. hydrate) form.

COMBINATIONS

[0081] Where desired, the compounds of structure I may be used in combination with one or more other types of therapeutic agents such as immunosuppressants, anticancer agents, anti-viral agents, anti-inflammatory agents, anti-fungal agents, antibiotics, anti-vascular hyperproliferation agents, anti-depressive agents, hypolipidemic agents or lipid-lowering agents or lipid modulating agents, antidiabetic agents, anti-obesity agents, antihypertensive agents, platelet aggregation inhibitors, and/or anti-osteoporosis agents, which may be administered orally in the same dosage form, in a separate oral dosage form or by injection.

[0082] The immunosuppressants which may be optionally employed in combination with compounds of formula I of the invention include cyclosporins, for example cyclosporin A, mycophenolate, interferon-beta, deoxyspergulin, FK-506 or Ant.-IL-2.

[0083] The anti-cancer agents which may be optionally employed in combination with compounds of formula I of the invention include azathiprine, 5-fluorouracil, cyclophosphamide, cisplatin, methotrexate, thiotepa, carboplatin, and the like.

[0084] The anti-viral agents which may be optionally employed in combination with compounds of formula I of the invention include abacavir, aciclovir, ganciclovir, zidovudine, vidarabine, and the like.

[0085] The anti-inflammatory agents which may be optionally employed in combination with compounds of formula I of the invention include non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, cox-2 inhibitors such as celecoxib, rofecoxib, aspirin, naproxen, ketoprofen, diclofenac sodium, indomethacin, piroxicam, steroids such as prednisone, dexamethasone, hydrocortisone, triamcinolone diacetate, gold compounds, such as gold sodium thiomalate, TNF-α inhibitors such as tenidap, anti-TNF antibodies or soluble TNF receptor, and rapamycin (sirolimus or Rapamune) or derivatives thereof, infliximab (Remicade® Centocor, Inc.). CTLA-4Ig, LEA29Y, antibodies such as anti-ICAM-3, anti-IL-2 receptor (Anti-Tac), anti-CD45RB, anti-CD2, anti-CD3 (OKT-3), anti-CD4, anti-
CD80, anti-CD86, monoclonal antibody OKT3, agents blocking the interaction between CD40 and CD154 (a.k.a. “gp39”), such as antibodies specific for CD40 and/or CD154, fusion proteins such as etanercept, fusion proteins constructed from CD40 and/or CD154gp39 (e.g. CD40lg and CD8gp39), inhibitors, such as nuclear translocation inhibitors, of NF-kappa B function, such as deoxyspergualin (DSG).

The anti-fungal agents which may be optionally employed in combination with compounds of formula I of the invention include fluconazole, miconazole, amphotericin B, and the like.

The antibiotics which may be optionally employed in combination with compounds of formula I of the invention include penicillin, tetracycline, amoxicillin, ampicillin, erythromycin, doxycycline, vancomycin, minocycline, clindamycin or cefalexin.

The anti-vascular hyperproliferation agents which may be optionally employed with compounds of formula I of the invention include methotrexate, leflunomide, FK506 (tacrolimus, Prograf),

The hypolipidemic agent or lipid-lowering agent or lipid modulating agents which may be optionally employed in combination with the compounds of formula I of the invention may include 1,2,3 or more MTP inhibitors, HMG CoA reductase inhibitors, squalene synthetase inhibitors, fibric acid derivatives, ACAT inhibitors, lipoxigenase inhibitors, cholesterol absorption inhibitors, ileal Na⁺/bile acid cotransporter inhibitors, upregulators of LDL receptor activity, bile acid sequestrants, and/or nicotinic acid and derivatives thereof.

All of the above U.S. Patents and applications are incorporated herein by reference.
Most preferred MTP inhibitors to be employed in accordance with the present invention include preferred MTP inhibitors as set out in U.S. Patent Nos. 5,739,135 and 5,712,279, and U.S. Patent No. 5,760,246.

The most preferred MTP inhibitor is 9-[4-[4-[[2-(2,2,2-trifluoroethoxy)benzoyl]amino]-1-piperidinyl]butyl]-N-(2,2,2-trifluoroethyl)-9H-fluorene-9-carboxamide

The hypolipidemic agent may be an HMG CoA reductase inhibitor which includes, but is not limited to, mevastatin and related compounds as disclosed in U.S. Patent No. 3,983,140, lovastatin (mevinolin) and related compounds as disclosed in U.S. Patent No. 4,231,938, pravastatin and related compounds such as disclosed in U.S. Patent No. 4,346,227, simvastatin and related compounds as disclosed in U.S. Patent Nos. 4,448,784 and 4,450,171. Other HMG CoA reductase inhibitors which may be employed herein include, but are not limited to, fluvastatin, disclosed in U.S. Patent No. 5,354,772, cerivastatin disclosed in U.S. Patent Nos. 5,006,530 and 5,177,080, atorvastatin disclosed in U.S. Patent Nos. 4,681,893, 5,273,995, 5,385,929 and 5,686,104, itavastatin (Nissan/Sankyo’s nisvastatin (NK-104)) disclosed in U.S. Patent No. 5,011,930, Shionogi-Astra/Zeneca visastatin (ZD-4522) disclosed in U.S. Patent No. 5,260,440, and related statin compounds disclosed in U.S. Patent No. 5,753,675, pyrazole analogs of mevalonolactone derivatives as disclosed in U.S. Patent No. 4,613,610, indene analogs of mevalonolactone derivatives as disclosed in PCT application WO 86/03488, 6-[2-(substituted-pyrrol-1-yl)-alkyl]pyran-2-ones and derivatives thereof as disclosed in U.S. Patent No. 4,647,576, Searle’s SC-45355 (a 3-substituted pentanedioic acid derivative) dichloroacetate, imidazole analogs of mevalonolactone as disclosed in PCT application WO 86/07054, 3-carboxy-2-hydroxy-propane-phosphonic acid derivatives as disclosed in French Patent No.

[0095] In addition, phosphinic acid compounds useful in inhibiting HMG CoA reductase suitable for use herein are disclosed in GB 2205837.

[0098] Other hypolipidemic agents suitable for use herein include, but are not limited to, fibric acid derivatives, such as fenofibrate, gemfibrozil, clofibrate, bezafibrate, ciprofibrate, clinofibrate and the like, probucol, and related compounds as disclosed in U.S. Patent No. 3,674,836, probucol and gemfibrozil being preferred, bile acid sequestrants such as cholestyramine, colestipol and DEAE-Sephadex (Secholex®, Poliexcel®) and cholestagel (Sankyo/Geltex), as well as lipostabil (Rhone-Poulenc), Eisai E-5050 (an N-substituted ethanolamine derivative), imanixil (HOE-402), tetrahydrolipstatin (THL), istigmastanylphos-phorylcholine (SPC, Roche), aminocyclodextrin (Tanabe Seiyoku), Ajinomoto AJ-814 (azulene derivative),
melineamide (Sumitomo), Sandoz 58-035, American Cyanamid CL-277,082 and CL-283,546 (disubstituted urea derivatives), nicotinic acid (niacin), acipimox, acifran, neomycin, p-aminosaliclyc acid, aspirin, poly(diallylmethylamine) derivatives such as disclosed in U.S. Patent No. 4,759,923, quaternary amine
5 poly(diallyl dimethylammonium chloride) and ionenes such as disclosed in U.S. Patent No. 4,027,009, and other known serum cholesterol lowering agents.

[00100] The hypolipidemic agent may be an upregulator of LD2 receptor activity such as MD-700 (Taisho Pharmaceutical Co. Ltd) and LY295427 (Eli Lilly).

[00101] The hypolipidemic agent may be a cholesterol absorption inhibitor
30 preferably Schering-Plough’s ezetimibe (SCH58235) and SCH48461 as well as those disclosed in Atherosclerosis 115, 45-63 (1995) and J. Med. Chem. 41, 973 (1998).
[00102] The hypolipidemic agent may be an ileal Na⁺/bile acid cotransporter inhibitor such as disclosed in Drugs of the Future, 24, 425-430 (1999).

[00103] The lipid-modulating agent may be a cholesteryl ester transfer protein (CETP) inhibitor such as Pfizer’s CP 529,414 (WO/0038722 and EP 818448) and Pharmacia’s SC-744 and SC-795.

[00104] The ATP citrate lyase inhibitor which may be employed in the combination of the invention may include, for example, those disclosed in U.S. Patent No. 5,447,954.

[00105] Preferred hypolipidemic agents are pravastatin, lovastatin, simvastatin, atorvastatin, fluvastatin, cerivastatin, itavastatin and visastatin and ZD-4522.

[00106] The above-mentioned U.S. patents are incorporated herein by reference. The amounts and dosages employed will be as indicated in the Physician’s Desk Reference and/or in the patents set out above.

[00107] The compounds of formula I of the invention will be employed in a weight ratio to the hypolipidemic agent (were present), within the range from about 500:1 to about 1:500, preferably from about 100:1 to about 1:100.

[00108] The dose administered must be carefully adjusted according to age, weight and condition of the patient, as well as the route of administration, dosage form and regimen and the desired result.

[00109] The dosages and formulations for the hypolipidemic agent will be as disclosed in the various patents and applications discussed above.

[00110] The dosages and formulations for the other hypolipidemic agent to be employed, where applicable, will be as set out in the latest edition of the Physicians’ Desk Reference.

[00111] For oral administration, a satisfactory result may be obtained employing the MTP inhibitor in an amount within the range of from about 0.01 mg to about 500 mg and preferably from about 0.1 mg to about 100 mg, one to four times daily.

[00112] A preferred oral dosage form, such as tablets or capsules, will contain the MTP inhibitor in an amount of from about 1 to about 500 mg, preferably from about 2 to about 400 mg, and more preferably from about 5 to about 250 mg, one to four times daily.
[00113] For oral administration, a satisfactory result may be obtained employing an HMG CoA reductase inhibitor, for example, pravastatin, lovastatin, simvastatin, atorvastatin, fluvastatin or cerivastatin in dosages employed as indicated in the Physician’s Desk Reference, such as in an amount within the range of from about 1 to 2000 mg, and preferably from about 4 to about 200 mg.

[00114] The squalene synthetase inhibitor may be employed in dosages in an amount within the range of from about 10 mg to about 2000 mg and preferably from about 25 mg to about 200 mg.

[00115] A preferred oral dosage form, such as tablets or capsules, will contain the HMG CoA reductase inhibitor in an amount from about 0.1 to about 100 mg, preferably from about 0.5 to about 80 mg, and more preferably from about 1 to about 40 mg.

[00116] A preferred oral dosage form, such as tablets or capsules will contain the squalene synthetase inhibitor in an amount of from about 10 to about 500 mg, preferably from about 25 to about 200 mg.

[00118] The compounds of formula I and the hypolipidemic agent may be employed together in the same oral dosage form or in separate oral dosage forms taken at the same time.

[00119] The compositions described above may be administered in the dosage forms as described above in single or divided doses of one to four times daily. It may be advisable to start a patient on a low dose combination and work up gradually to a high dose combination.
The preferred hypolipidemic agent is pravastatin, simvastatin, lovastatin, atorvastatin, fluvastatin or cerivastatin as well as niacin and/or cholesterol.

The other antidiabetic agent which may be optionally employed in combination with the compound of formula I may be 1,2,3 or more antidiabetic agents or antihyperglycemic agents including insulin secretagogues or insulin sensitizers, or other antidiabetic agents preferably having a mechanism of action different from the compounds of formula I of the invention, which may include biguanides, sulfonyl ureas, glucosidase inhibitors, PPAR γ agonists, such as thiazolidinediones, aP2 inhibitors, dipeptidyl peptidase IV (DP4) inhibitors, SGLT2 inhibitors, and/or meglitinides, as well as insulin, and/or glucagon-like peptide-1 (GLP-1).

The other antidiabetic agent may be an oral antihyperglycemic agent preferably a biguanide such as metformin or phenformin or salts thereof, preferably metformin HCl.

Where the antidiabetic agent is a biguanide, the compounds of structure I will be employed in a weight ratio to biguanide within the range from about 0.001:1 to about 10:1, preferably from about 0.01:1 to about 5:1.

The other antidiabetic agent may also preferably be a sulfonyl urea such as glyburide (also known as glibenclamide), glimepiride (disclosed in U.S. Patent No. 4,379,785), glipizide, gliclazide or chlorpropamide, other known sulfonylureas or other antihyperglycemic agents which act on the ATP-dependent channel of the β-cells, with glyburide and glipizide being preferred, which may be administered in the same or in separate oral dosage forms.

The compounds of structure I will be employed in a weight ratio to the sulfonyl urea in the range from about 0.01:1 to about 100:1, preferably from about 0.02:1 to about 5:1.

The oral antidiabetic agent may also be a glucosidase inhibitor such as acarbose (disclosed in U.S. Patent No. 4,904,769) or miglitol (disclosed in U.S. Patent No. 4,639,436), which may be administered in the same or in a separate oral dosage forms.
[00127] The compounds of structure I will be employed in a weight ratio to the glucosidase inhibitor within the range from about 0.01:1 to about 100:1, preferably from about 0.05:1 to about 10:1.

[00128] The compounds of structure I may be employed in combination with a PPARγ agonist such as a thiazolidinedione oral anti-diabetic agent or other insulin sensitizers (which has an insulin sensitivity effect in NIDDM patients) such as troglitazone (Warner-Lambert's Rezulin®, disclosed in U.S. Patent No. 4,572,912), rosiglitazone (SKB), pioglitazone (Takeda), Mitsubishi's MCC-555 (disclosed in U.S. Patent No. 5,594,016), Glaxo-Wellcome's GL-262570, enliglizone (CP-68722, Pfizer) or darglitazone (CP-86325, Pfizer, isaglitazone (MIT/J&J), JTT-501 (JPNT/P&U), L-895645 (Merck), R-119702 (Sankyo/WL), NN-2344 (Dr. Reddy/NN), or YM-440 (Yamanouchi), preferably rosiglitazone and pioglitazone.

[00129] The compounds of structure I will be employed in a weight ratio to the thiazolidinedione in an amount within the range from about 0.01:1 to about 100:1, preferably from about 0.05 to about 10:1.

[00130] The sulfonoyl urea and thiazolidinedione in amounts of less than about 150 mg oral antidiabetic agent may be incorporated in a single tablet with the compounds of structure I.

[00131] The compounds of structure I may also be employed in combination with an antihyperglycemic agent such as insulin or with glucagon-like peptide-1 (GLP-1) such as GLP-1(1-36) amide, GLP-1(7-36) amide, GLP-1(7-37) (as disclosed in U.S. Patent No. 5,614,492 to Habener, the disclosure of which is incorporated herein by reference), as well as AC2993 (Amylin) and LY-315902 (Lilly), which may be administered via injection, intranasal, inhalation or by transdermal or buccal devices.

[00132] Where present, metformin, the sulfonoyl ureas, such as glyburide, glimepiride, glipyride, glipizide, chlorpropamide and gliclazide and the glucosidase inhibitors acarbose or miglitol or insulin (injectable, pulmonary, buccal, or oral) may be employed in formulations as described above and in amounts and dosing as indicated in the Physician's Desk Reference (PDR).

[00133] Where present, metformin or salt thereof may be employed in amounts within the range from about 500 to about 2000 mg per day which may be administered in single or divided doses one to four times daily.
[00134] Where present, the thiazolidinedione anti-diabetic agent may be employed in amounts within the range from about 0.01 to about 2000 mg/day which may be administered in single or divided doses one to four times per day.

[00135] Where present insulin may be employed in formulations, amounts and dosing as indicated by the Physician's Desk Reference.

[00136] Where present GLP-1 peptides may be administered in oral buccal formulations, by nasal administration or parenterally as described in U.S. Patent Nos. 5,346,701 (TheraTech), 5,614,492 and 5,631,224 which are incorporated herein by reference.

[00137] The other antidiabetic agent may also be a PPAR α/γ dual agonist such as AR-HO39242 (AstraZeneca), GW-409544 (Glaxo-Wellcome), KRP297 (Kyorin Merck) as well as those disclosed by Murakami et al, "A Novel Insulin Sensitizer Acts As a Coligand for Peroxisome Proliferation-Activated Receptor Alpha (PPAR alpha) and PPAR gamma. Effect on PPAR alpha Activation on Abnormal Lipid Metabolism in Liver of Zucker Fatty Rats", Diabetes 47, 1841-1847 (1998).

[00138] The antidiabetic agent may be an SGLT2 inhibitor such as disclosed in U.S. application Serial No. 09/679,027, filed October 4, 2000 (attorney file LA49 NP), employing dosages as set out therein. Preferred are the compounds designated as preferred in the above application.

[00139] The antidiabetic agent may be an aP2 inhibitor such as disclosed in U.S. application Serial No. 09/391,053, filed September 7, 1999, and in U.S. application Serial No. 09/519,079, filed March 6, 2000 (attorney file LA27 NP), employing dosages as set out herein. Preferred are the compounds designated as preferred in the above application.

[00141] The meglitinide which may optionally be employed in combination with the compound of formula I of the invention may be repaglinide, nateglinide (Novartis) or KAD1229 (PF/Kissei), with repaglinide being preferred.

[00142] The compound of formula I will be employed in a weight ratio to the meglitinide, PPAR γ agonist, PPAR α/γ dual agonist, αP2 inhibitor, DP4 inhibitor or SGLT2 inhibitor within the range from about 0.01:1 to about 100:1, preferably from about 0.05 to about 10:1.

[00143] The other type of therapeutic agent which may be optionally employed with a compound of formula I may be 1, 2, 3 or more of an anti-obesity agent including a beta 3 adrenergic agonist, a lipase inhibitor, a serotonin (and dopamine) reuptake inhibitor, an αP2 inhibitor, a thyroid receptor agonist and/or an anorectic agent.

[00144] The beta 3 adrenergic agonist which may be optionally employed in combination with a compound of formula I may be AJ9677 (Takeda/Dainippon), L750355 (Merck), or CP331648 (Pfizer) or other known beta 3 agonists as disclosed in U.S. Patent Nos. 5,541,204, 5,770,615, 5,491,134, 5,776,983 and 5,488,064, with AJ9677, L750,355 and CP331648 being preferred.

[00145] The lipase inhibitor which may be optionally employed in combination with a compound of formula I may be orlistat or ATL-962 (Alizyme), with orlistat being preferred.

[00146] The serotonin (and dopamine) reuptake inhibitor which may be optionally employed in combination with a compound of formula I may be sibutramine, topiramate (Johnson & Johnson) or axokine (Regeneron), with sibutramine and topiramate being preferred.

[00147] The thyroid receptor agonist which may be optionally employed in combination with a compound of formula I may be a thyroid receptor ligand as disclosed in WO97/21993 (U. Cal SF), WO99/00353 (KaroBio), WO2000039077 (KaroBio, particularly in priority document GB98/28442), and U.S. Provisional
Application 60/183,223 filed February 17, 2000, with compounds of the KaroBio applications and the above U.S. provisional application being preferred.

[00148] The anorectic agent which may be optionally employed in combination with a compound of formula I may be dexamphetamine, phentermine, phenylpropanolamine or mazindol, with dexamphetamine being preferred.

[00149] The various anti-obesity agents described above may be employed in the same dosage form with the compound of formula I or in different dosage forms, in dosages and regimens as generally known in the art or in the PDR.

[00150] The antihypertensive agents which may be employed in combination with the compound of formula I of the invention include ACE inhibitors, angiotensin II receptor antagonists, NEP/ACE inhibitors, as well as calcium channel blockers, \(\beta \)-adrenergic blockers and other types of antihypertensive agents including diuretics.

[00151] The angiotensin converting enzyme inhibitor which may be employed herein includes those containing a mercapto (-S-) moiety such as substituted proline derivatives, such as any of those disclosed in U.S. Pat. No. 4,046,889 to Ondetti et al mentioned above, with captopril, that is, 1-[(2S)-3-mercapto-2-methylpropionyl]-L-proline, being preferred, and mercaptoacetyl derivatives of substituted prolines such as any of those disclosed in U.S. Pat. No. 4,316,906 with zofenopril being preferred.

[00152] Other examples of mercapto containing ACE inhibitors that may be employed herein include rentiapril (fentiapril, Santen) disclosed in Clin. Exp. Pharmacol. Physiol. 10:131 (1983); as well as pivopril and YS980.

[00153] Other examples of angiotensin converting enzyme inhibitors which may be employed herein include any of those disclosed in U.S. Pat. No. 4,374,829 mentioned above, with N-[(1-ethoxycarbonyl-3-phenylpropyl)-L-alanyl-L-proline, that is, enalapril, being preferred, any of the phosphonate substituted amino or imino acids or salts disclosed in U.S. Pat. No. 4,452,790 with (S)-1-[6-amino-2-[[hydroxy-(4-phenylbutyl)phosphinyl]oxy]-1-oxohexyl]-L-proline or (ceronapril) being preferred, phosphinylalkanoyl prolines disclosed in U.S. Pat. No. 4,168,267 mentioned above with fosinopril being preferred, any of the phosphinylalkanoyl substituted prolines disclosed in U.S. Pat. No. 4,337,201, and the phosphonamidates disclosed in U.S. Pat. No. 4,432,971 discussed above.

[00155] Preferred ACE inhibitors are captopril, fosinopril, enalapril, lisinopril, quinapril, benazepril, fentiapril, ramipril and moexipril.

Preferred are those NEP/ACE inhibitors and dosages thereof which are designated as preferred in the above patents/applications which U.S. patents are incorporated herein by reference; most preferred are omapatrilat, BMS 189,921 ([S-\((R^*,R^*)\)]-hexahydro-6-[[2-mercapto-1-oxo-3-phenylpropyl]amino]-2,2-dimethyl-7-oxo-1H-azepine-1-acetic acid (gemopatrilat)) and CGS 30440.

The angiotensin II receptor antagonist (also referred to herein as angiotensin II antagonist or AII antagonist) suitable for use herein includes, but is not limited to, irbesartan, losartan, valsartan, candesartan, telmisartan, tasosartan or eprosartan, with irbesartan, losartan or valsartan being preferred.

A preferred oral dosage form, such as tablets or capsules, will contain the ACE inhibitor or AII antagonist in an amount within the range from about 0.1 to about 500 mg, preferably from about 5 to about 200 mg and more preferably from about 10 to about 150 mg.

For parenteral administration, the ACE inhibitor, angiotensin II antagonist or NEP/ACE inhibitor will be employed in an amount within the range from about 0.005 mg/kg to about 10 mg/kg and preferably from about 0.01 mg/kg to about 1 mg/kg.

Where a drug is to be administered intravenously, it will be formulated in conventional vehicles, such as distilled water, saline, Ringer’s solution or other conventional carriers.

It will be appreciated that preferred dosages of ACE inhibitor and AII antagonist as well as other antihypertensives disclosed herein will be as set out in the latest edition of the Physician’s Desk Reference (PDR).

Other examples of preferred antihypertensive agents suitable for use herein include omapatrilat (Vanlev®) amlodipine besylate (Norvasc®), prazosin HCl (Minipress®), verapamil, nifedipine, nadolol, diltiazem, felodipine, nisoldipine, isradipine, nicardipine, atenolol, carvedilol, sotalol, terazosin, doxazosin, propranolol, and clonidine HCl (Catapres®).

Diuretics which may be employed in combination with compounds of formula I include hydrochlorothiazide, torasemide, furosemide, spironolactone, and indapamide.
Antiplatelet agents which may be employed in combination with compounds of formula I of the invention include aspirin, clopidogrel, ticlopidine, dipyramidole, abciximab, tirofiban, eptifibatide, anagrelide, and ifetroban, with clopidogrel and aspirin being preferred.

The antiplatelet drugs may be employed in amounts as indicated in the PDR. Ifetroban may be employed in amounts as set out in U.S. Patent No. 5,100,889.

Antiosteoporosis agents suitable for use herein in combination with the compounds of formula I of the invention include parathyroid hormone or bisphosphonates, such as MK-217 (alendronate) (Fosamax®).

Dosages employed for the above drugs will be as set out in the Physician's Desk Reference.

PHARMACEUTICAL FORMULATIONS

The pharmaceutical composition of the invention includes a pharmaceutically acceptable carrier, adjuvant or vehicle that may be administered to a subject, together with a compound of the present invention, and which does not destroy the pharmacological activity thereof. Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of the present invention include, but are not limited to, the following: ion exchangers, alumina, aluminum stearate, lecithin, self-emulsifying drug delivery systems ("SEDDS") such as d(-tocopherol polyethylene glycol 1000 succinate), surfactants used in pharmaceutical dosage forms such as Tweens or other similar polymeric delivery matrices, serum proteins such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat. Cyclodextrins such as α-, β- and γ-cyclodextrin, or chemically modified derivatives such as hydroxyalkylcyclodextrins, including 2- and 3-
hydroxypropyl-β-cyclodextrins, or other solubilized derivatives may also be used to enhance delivery of the modulators of the present invention.

[00170] The compositions of the present invention may contain other therapeutic agents as described below, and may be formulated, for example, by employing conventional solid or liquid vehicles or diluents, as well as pharmaceutical additives of a type appropriate to the mode of desired administration (for example, excipients, binders, preservatives, stabilizers, flavors, etc.) according to techniques such as those well known in the art of pharmaceutical formulation.

[00171] The compounds of the invention may be administered by any suitable means, for example, orally, such as in the form of tablets, capsules, granules or powders; sublingually; buccally; parenterally, such as by subcutaneous, intravenous, intramuscular, or intrasternal injection or infusion techniques (e.g., as sterile injectable aqueous or non-aqueous solutions or suspensions); nasally such as by inhalation spray; topically, such as in the form of a cream or ointment; or rectally such as in the form of suppositories; in dosage unit formulations containing non-toxic, pharmaceutically acceptable vehicles or diluents. The compounds of the invention may, for example, be administered in a form suitable for immediate release or extended release. Immediate release or extended release may be achieved by the use of suitable pharmaceutical compositions including the compounds of the invention, or, particularly in the case of extended release, by the use of devices such as subcutaneous implants or osmotic pumps. The compounds of the invention may also be administered liposomally.

[00172] Exemplary compositions for oral administration include suspensions which may contain, for example, microcrystalline cellulose for imparting bulk, alginic acid or sodium alginate as a suspending agent, methylcellulose as a viscosity enhancer, and sweeteners or flavoring agents such as those known in the art; and immediate release tablets which may contain, for example, microcrystalline cellulose, dicalcium phosphate, starch, magnesium stearate and/or lactose and/or other excipients, binders, extenders, disintegrants, diluents and lubricants such as those known in the art. The present compounds may also be delivered through the oral cavity by sublingual and/or buccal administration. Molded tablets, compressed tablets or freeze-dried tablets are exemplary forms which may be used. Exemplary
compositions include those formulating the compound(s) of the invention with fast dissolving diluents such as mannitol, lactose, sucrose and/or cyclodextrins. Also included in such formulations may be high molecular weight excipients such as celluloses (Avicel) or polyethylene glycols (PEG). Such formulations may also include an excipient to aid mucosal adhesion such as hydroxy propyl cellulose (HPC), hydroxy propyl methyl cellulose (HPMC), sodium carboxy methyl cellulose (SCMC), maleic anhydride copolymer (e.g., Gantrez), and agents to control release such as polyacrylic copolymer (e.g., Carbopol 934). Lubricants, glidants, flavors, coloring agents and stabilizers may also be added for ease of fabrication and use.

Exemplary compositions for nasal aerosol or inhalation administration include solutions in saline which may contain, for example, benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, and/or other solubilizing or dispersing agents such as those known in the art.

Exemplary compositions for parenteral administration include injectable solutions or suspensions which may contain, for example, suitable non-toxic, parenterally acceptable diluents or solvents, such as mannitol, 1,3-butaneediol, water, Ringer's solution, an isotonic sodium chloride solution, or other suitable dispersing or wetting and suspending agents, including synthetic mono- or diglycerides, and fatty acids, including oleic acid. The term "parenteral" as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.

Exemplary compositions for rectal administration include suppositories which may contain, for example, a suitable non-irritating excipient, such as cocoa butter, synthetic glyceride esters or polyethylene glycols, which are solid at ordinary temperatures, but liquify and/or dissolve in the rectal cavity to release the drug.

Exemplary compositions for topical administration include a topical carrier such as Plastibase (mineral oil gelled with polyethylene).

The effective amount of a compound of the present invention may be determined by one of ordinary skill in the art, and includes exemplary dosage amounts for an adult human of from about 0.1 to 500 mg/kg of body weight of active compound per day, or between 5 and 2000 mg per day which may be administered in
a single dose or in the form of individual divided doses, such as from 1 to 5 times per
day. It will be understood that the specific dose level and frequency of dosage for any
particular subject may be varied and will depend upon a variety of factors including
the activity of the specific compound employed, the metabolic stability and length of
action of that compound, the species, age, body weight, general health, sex and diet of
the subject, the mode and time of administration, rate of excretion, drug combination,
and severity of the particular condition. Preferred subjects for treatment include
animals, most preferably mammalian species such as humans, and domestic animals
such as dogs, cats and the like.

[00178] A typical capsule for oral administration contains compounds of structure I
(250 mg), lactose (75 mg) and magnesium stearate (15 mg). The mixture is passed
through a 60 mesh sieve and packed into a No. 1 gelatin capsule.

[00179] A typical injectable preparation is produced by aseptically placing 250 mg
of compounds of structure I into a vial, aseptically freeze-drying and sealing. For use,
the contents of the vial are mixed with 2 mL of physiological saline, to produce an
injectable preparation.

[00180] Compounds of the invention, including the compounds described in the
examples hereof, have been tested in at least one of the assays described below and
have glucocorticoid receptor (GR)/Dexamethasone (Dex) inhibition activity (>25% at
10 μM, preferably >95% at 10 μM) and/or AP-1 inhibition activity (EC₅₀ less than 15
μM).

[00181] Identical and/or similar assays are described in copending U.S. Patent
Appl. Serial No. 10/621,807, filed July 18, 2002 which is incorporated herein in its
entirety by reference.

GR (Dex) Binding Assay

[00182] In order to measure the binding of compounds to Site I on the
glucocorticoid receptor a commercially available kit was used (Glucocorticoid
receptor competitor assay kit, Panvera Co., Madison, WI). Briefly, a cell lysate
containing recombinantly expressed human full-length glucocorticoid receptor was
mixed with a fluorescently labeled glucocorticoid (4nM FITC-dexamethasone) plus or
minus test molecule. After one hour at room temperature, the fluorescence
polarization (FP) of the samples were measured. The FP of a mixture of receptor, fluorescent probe (i.e. FITC-dexamethasone) and 1mM dexamethasone represented background fluorescence or 100% inhibition, whereas, the FP of the mixture without dexamethasone was taken to be 100% binding. The percentage inhibition of test molecules were then compared to the sample with 1mM dexamethasone and expressed as % relative binding activity with dexamethasone being 100% and no inhibition is 0%. Test molecules were analyzed in the concentration range from 0.1nM to 40 μM.

[00183] Site I binding assays for any NHR (Nuclear Hormone Receptor) are conducted similarly to the above. An appropriate cell lysate or purified NHR is used as the source of the NHR. The fluorescent probe and unlabeled competitor are appropriate for the specific NHR, i.e. are ligands for the specific NHR.

Cellular Transrepressional Assay

[00184] To measure the ability of test molecules to inhibit AP-1 induced transcriptional activity we utilized an A549 cell which was stably transfected with a plasmid containing 7x AP-1 DNA binding sites (pAP-1-Luc plasmid, Stratagene Co. La Jolla, CA) followed by the gene for luciferase. Cells were activated with 10ng/ml of phorbol myristic acid (PMA) plus or minus test molecules for 7 hours. After 7 hours a luciferase reagent was added to measure luciferase enzymatic activity in the cell. After a 10 minute incubation of luciferase reagent with cells, luminescence was measured in a TopCount luminescence counter. Repression of AP-1 activity was calculated as the percentage decrease in the signal induced by PMA alone. Test molecules were analyzed in the concentration range from 0.1nM to 40 μM. EC50s were determined by using standard curve fitting methods such as Excel fit (Microsoft Co.). An EC50 is the test molecule concentration at which there is a 50% repression of the maximal inhibition of transcription, i.e. a 50% reduction of AP-1 activity.

[00185] Other reporters and cell lines also may be used in a cellular transrepressional assay. A similar assay is performed in which NF-κB activity is measured. A plasmid containing NF-κB DNA binding sites is used, such as pNF-κB-Luc, (Stratagene, LaJolla CA), and PMA or another stimulus, such as TNF-α or
lipopolysaccharide, is used to activate the NF-κB pathway. NF-κB assays similar to that described in Yamamoto K., et al., *J Biol Chem* Dec 29;270(52):31315-20 (1995) may be used.

[00186] The cellular transrepressional assays described above may be used to measure transrepression by any NHR. One of skill in the art will understand that assays may require the addition of components, such as a stimulus (e.g. PMA, lipopolysaccharide, TNF-α, etc) which will induce transcription mediated by AP-1 or NF-κB. Additionally, AR mediated transrepression may be measured by the assay described in Palvimo JJ, et al. *J Biol Chem* Sep 27;271(39):24151-6 (1996), and PR mediated transrepression may be measured by the assay described in Kalkhoven E., et al. *J Biol Chem* Mar 15;271(11):6217-24 (1996).

[00187] The following abbreviations are employed throughout the specification including the Preparations and Examples given below.

Ph = phenyl

Bn = benzyl

t-Bu = tertiary butyl

Me = methyl

Et = ethyl

TMS = trimethylsilyl

TMSN₃ = trimethylsilyl azide

TBS = tert-butyldimethylsilyl

FMOC = fluorenylmethoxycarbonyl

Boc = tert-butoxycarbonyl

Cbz = carbobenzyloxy or carbobenzoxy or benzylxycarbonyl

THF = tetrahydrofuran

Et₂O = diethyl ether

hex = hexanes

EtOAc = ethyl acetate

DMF = dimethyl formamide

MeOH = methanol

EtOH = ethanol
i-PrOH = isopropanol
DMSO = dimethyl sulfoxide
DME = 1,2 dimethoxyethane
DCE = 1,2 dichloroethane

5 HMPA = hexamethyl phosphoric triamide
HOAc or AcOH = acetic acid
TFA = trifluoroacetic acid
TFAA = trifluoroacetic anhydride
i-Pr₂NEt = diisopropylethylamine

10 Et₃N = triethylamine
NMM = N-methyl morpholine
DMAP = 4-dimethylaminopyridine
NaBH₄ = sodium borohydride
NaBH(OAc)₃ = sodium triacetoxyborohydride

15 DIBALH = diisobutyl aluminum hydride
LAH or LiAlH₄ = lithium aluminum hydride
n-BuLi = n-butyllithium
LDA = lithium diisopropylamide
Pd/C = palladium on carbon

20 PtO₂ = platinum oxide
KOH = potassium hydroxide
NaOH = sodium hydroxide
LiOH = lithium hydroxide
K₂CO₃ = potassium carbonate

25 NaHCO₃ = sodium bicarbonate
DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene
EDC (or EDC.HCl) or EDCI (or EDCI.HCl) or EDAC = 3-ethyl-3’-(dimethylamino)propyl-carbodiimide hydrochloride (or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride)

30 HOBT or HOBT.H₂O = 1-hydroxybenzotriazole hydrate
HOAT = 1-Hydroxy-7-azabenzotriazole
BOP reagent = benzotriazol-1-yl oxy-tris (dimethylamino) phosphonium hexafluorophosphate
NaN(TMS)_2 = sodium hexamethyldisilazide or sodium bis(trimethylsilyl)amide
Ph₃P = triphenylphosphine
Pd(OAc)₂ = Palladium acetate
(Ph₃P)₄Pd⁺⁺ = tetrakis triphenylphosphine palladium
DEAD = diethyl azodicarboxylate
DIAD = diisopropyl azodicarboxylate
Cbz-Cl = benzyl chloroformate
CAN = ceric ammonium nitrate
SAX = Strong Anion Exchanger
SCX = Strong Cation Exchanger
Ar = argon
N₂ = nitrogen
min = minute(s)
h or hr = hour(s)
L = liter
mL = milliliter
µL = microliter
g = gram(s)
mg = milligram(s)
mol = moles
mmol = millimole(s)
meq = milliequivalent
RT = room temperature
sat or sat'd = saturated
aq. = aqueous
TLC = thin layer chromatography
HPLC = high performance liquid chromatography
LC/MS = high performance liquid chromatography/mass spectrometry
MS or Mass Spec = mass spectrometry
NMR = nuclear magnetic resonance
NMR spectral data: s = singlet; d = doublet; m = multiplet; br = broad; t = triplet
mp = melting point

PREPARATIONS

The preparations set out below are for the synthesis of reagents that were not obtained from commercial sources and were employed for the preparation of compounds of Formula I of the invention. All chemical structures in the tables and schemes are racemic unless specified otherwise.

The preparation of Cores A-I can be made via methods disclosed in patent application U.S. Serial No. 10/621,909 filed July 17, 2003, the entirety of which is included herein by reference.

Preparation of Carboxylic Acid Fluorides:

To a solution of 9-cyano-9,10-dihydro-11-methyl-9,10-ethanoanthracene-11-carboxylic acid (hereafter called Core A) (5.26 g, 18.2 mmol) and pyridine (2.2 mL, 27.0 mmol) in 10 mL of DCM was added a solution of cyanuric fluoride (2.14 g, 27.0 mmol) dropwise. After stirring 30 min, the reaction was diluted with 1N HCl, and extracted 2 x DCM. The DCM extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator to give 4.8 g (91%) of 9-cyano-9,10-dihydro-11-methyl-9,10-ethano-anthracene-11-carboxylic acid fluoride, Core B. MS found: (M+H)⁺ = 292.

To a solution of 9-nitro-9,10-dihydro-11-methyl-9,10-ethanoanthracene-11-carboxylic acid (hereafter called Core C) (500 mg, 1.6 mmol) and pyridine (0.25 mL, 3.0 mmol) in 10 mL of DCM was added a solution of cyanuric
fluoride (400 mg, 3.0 mmol) dropwise. After stirring 30 min, the reaction was diluted with 1N HCl, and extracted 2 x DCM. The DCM extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator to give 482 mg (98%) of 9-nitro-9,10-dihydro-11-methyl-9,10-ethanoanthracene-11-carboxylic acid fluoride

Core D. MS found: (M+H)⁺ = 312.

General Coupling Method A:

[00191] To a solution of either Core B or Core D (0.12 mmol) in DMF or acetonitrile was added the 2-aminothiazole or 2-aminimidazole compound (0.12-0.24 mmol) and the reaction was warmed in an 80°C oil bath for 4-16 hr. The reaction was diluted with water, acetonitrile, and some TFA and purified by HPLC to give the desired coupled product.

General Coupling Method B:

[00192] To a solution of either Core A or Core C (0.20 mmol) in either DMF or acetonitrile was added 1-hydroxybenzotriazole (28 mg, 0.20 mmol), triethylamine (21 mg, 0.40 mmol), and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (40 mg, 0.20 mmol). After stirring 10 min, the 2-aminothiazole or 2-aminimidazole compound (0.20-0.40 mmol) was added and the reaction was warmed in an 80°C oil bath for 16 hr. The reaction was diluted with water, acetonitrile, and some TFA and purified by HPLC to give the desired coupled product.

[00193] The following Examples illustrate embodiments of the inventive compounds and starting materials, and are not intended to limit the scope of the claims.

EXAMPLES

EXAMPLE 1

(a) To a solution of commercially available (4-bromophenox)-tert-butyltrimethylsilane (21.7 g, 76 mmol) in 150 mL of dry THF was added sec-BuLi (76 mmol, 58 mL of 1.3 M in cyclohexane) over 10 min under N₂. After 1 hr, a
suspension of CuCN in 100 mL dry THF was cooled to -78 °C and added to the anion via cannula. The resulting suspension was warmed to 0 °C, cooled back to -78 °C, and treated with epichlorohydrin all at once. The reaction was stirred at -78 °C for 30 min, warmed to -40 °C for 1.5 hr, and was then warmed in an ice bath until the internal temperature was at 0 °C for 15 min. The reaction was quenched with sat NH₄Cl, extracted 2 x Et₂O, and the ethereal extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO₂ using 25% EtOAc in hexanes to give 8.35 g (75%) of a colorless oil 1a. ¹H-NMR (400 MHz, CDCl₃): δ 7.08 (d, 2H), 6.79 (d, 2H), 4.0 (m, 1H), 3.59 (dd, 1H), 3.49 (dd, 1H), 2.83(d, 2H), 2.19 (br s, 1H), 0.98 (s, 9H), 0.19 (s, 6H).

(b) To a solution of 1a (8.14 g, 27.1 mmol) in 400 mL of DCM cooled to 0 °C was added Dess Martin periodinane (11.49 g, 27.1 mmol) all at once. The reaction was allowed to warm to rt and was complete by TLC monitoring after 4 hr. The reaction was concentrated by rotary evaporator and the crude residue was purified on SiO₂ using DCM to give 7.37 g (91%) of pure chloromethylketone 1b as a yellow oil. This intermediate was taken up in 150 mL of EtOH and treated with a solution of thiourea (1.95 g, 24.7 mmol) in 50 mL EtOH. The reaction was concentrated in vacuo and a solid formed on standing to give pure 1c. ¹H-NMR (400 MHz, CDCl₃): δ 9.0 (br s, 2H), 7.09 (d, 2H), 6.78 (d, 2H), 5.84 (s, 1H), 3.78 (s, 2H), 0.97 (s, 9H), 0.19 (s, 6H).

(c) To a solution of 1c (1.0 g, 3.11 mmol) in 15 mL warm THF was added tetrabutylammonium fluoride (4.05 mmol, 4.05 mL of 1 M solution in THF) at rt. The reaction was complete after 4 hr and the solvent removed by rotary evaporation. The product was extracted from sat NaHCO₃ with EtOAc x 3. The organic layers were filtered and concentrated in vacuo to give 660 mg (100%) of an orange solid 1d. MS found: (M+H)⁺ = 207.

(d) To a solution of Core B (2.5 g, 8.59 mmol) in 100 mL acetonitrile was added 1d (2.75 g, 8.59 mmol) and triethylamine (1.74 g, 17.2 mmol) and the reaction was heated to 80 °C. After 6 hr, the reaction was extracted from dilute NaOH using EtOAc x 2. The organic layers were combined, dried over MgSO₄, filtered, and
concentrated. The crude residue was purified by HPLC to give 1.3 g (32%) of the desired Example 1. MS found: (M+H)^+ = 478.

General Phenol Alkylative Procedure A:

[00194] To a solution of 1d (25-80 mg, 0.08-0.26 mmol) in 2 mL DMF was added Cs$_2$CO$_3$ (2 equiv.) and stirred for 15 min. The alkyl halide (1.1 equiv.) was added all at once and the reaction was stirred at rt overnight. The reddish reaction was quenched with TFA/water and purified by HPLC if the analytical HPLC purity was <70%; otherwise the reaction was extracted from dilute NaHCO$_3$ using EtOAc x 3, the combined organic layers were dried over MgSO$_4$, filtered, and concentrated by rotary evaporator. The product from either workup was coupled using General Coupling Method A to give the final products.

General Phenol Alkylative Procedure B:

[00195] To a solution of 1d (100 mg, 0.49 mmol) in 1 mL DMSO was added NaH (10 mg of 60% oil dispersed, 0.24 mmol) and stirred for 10 min. The alkyl halide (0.24 mmol) was added all at once and the reaction was stirred at rt for approx. 30 min and monitored by TLC. The reddish reaction was quenched with TFA/water and purified by HPLC. The product was coupled using General Coupling Method A to give the final products.

EXAMPLE 2

[00196] Example 2 was prepared using General Phenol Alkylative Procedure B and iodobutane to give 44 mg (70%) of intermediate ether. MS found: (M+H)^+ = 263.

30 mg (0.11 mmol) of this intermediate was coupled to Core B (25 mg, 0.08 mmol) using General Coupling Method A to give 24 mg (56%) of Example 2. MS found: (M+H)^+ = 534.

EXAMPLE 3

- 62 -
Example 3 was prepared using General Phenol Alkylation Procedure A and iodoacetamide to give 71 mg (69%) of intermediate ether. MS found: \((\text{M}+\text{H})^+ = 264\). 34 mg (0.13 mmol) of this intermediate was coupled to Core B (40 mg, 0.13 mmol) using General Coupling Method A to give 44 mg (63%) of Example 3. MS found: \((\text{M}+\text{H})^+ = 535\).

EXAMPLE 4

Example 4 was prepared using General Phenol Alkylation Procedure A and 2-(chloromethyl)-1-methyl-1H-imidazole hydrochloride to give the intermediate ether. MS found: \((\text{M}+\text{H})^+ = 301\). All of this intermediate was coupled to Core B (30 mg, 0.10 mmol) using General Coupling Method A to give 47 mg (82%) of Example 4. MS found: \((\text{M}+\text{H})^+ = 572\).

EXAMPLE 5

Example 5 was prepared using General Phenol Alkylation Procedure A and 2-[2-(2-chloroethoxy)ethoxy]ethanol to give the 55 mg (12%) of intermediate ether. MS found: \((\text{M}+\text{H})^+ = 339\). All of this intermediate was coupled to Core B (50 mg, 0.16 mmol) using General Coupling Method A to give 10 mg (10%) of Example 5. MS found: \((\text{M}+\text{H})^+ = 610\).

EXAMPLE 6

Example 6 was prepared using General Phenol Alkylation Procedure A and 2-(dimethylamino)ethyl chloride hydrochloride to give the intermediate ether. MS found: \((\text{M}+\text{H})^+ = 278\). All of this intermediate was coupled to Core B (30 mg,
0.10 mmol) using General Coupling Method A to give 44 mg (10%) of Example 6 as a TFA salt. MS found: (M+H)^+ = 549.

EXAMPLE 7

[00201] Example 7 was prepared using General Phenol Alkylative Procedure B and 2-(dimethylamino)ethyl chloride hydrochloride to give the intermediate ether. MS found: (M+H)^+ = 320. All of this intermediate was coupled to **Core B** (30 mg, 0.10 mmol) using General Coupling Method A to give 26 mg (37%) of Example 7 as a TFA salt. MS found: (M+H)^+ = 591.

EXAMPLE 8

[00202] Example 8 was prepared using General Phenol Alkylative Procedure A and 2-iodopropane to give 44 mg (36%) of the intermediate ether. MS found: (M+H)^+ = 249. 30 mg (0.12 mmol) of this intermediate was coupled to **Core B** (30 mg, 0.10 mmol) using General Coupling Method A to give 24 mg (48%) of Example 8. MS found: (M+H)^+ = 520

EXAMPLE 9

[00203] Example 9 was prepared using General Phenol Alkylative Procedure A and 2-iodoethane to give 32 mg (36%) of the intermediate ether. MS found: (M+H)^+ = 235. 30 mg (0.13 mmol) of this intermediate was coupled to **Core B** (30 mg, 0.10 mmol) using General Coupling Method A to give 32 mg (66%) of Example 9. MS found: (M+H)^+ = 506.
EXAMPLE 10

(a) Applying the method of Mazzocchi et al. (*Synth. Commun.* 1986, 309-312) a cuprate was prepared from 4-methoxyphenylmagnesium bromide (20 mmol, 40 mL of 0.5 M THF solution) and CuBr (574 mg, 2.0 mmol) in 50 mL anhydrous ether. The cuprate was treated with epichlorohydrin (1.94 g, 21 mmol) and stirred at -40 °C for 20 hr. The reaction was quenched with water, extracted 2 x Et2O, and the ethereal extracts were dried over MgSO4. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO2 using 25% EtOAc in hexanes to give 888 mg (22%) of the chlorohydrin 10a as a yellow oil. 1H-NMR (400 MHz, CDCl3): δ 7.18 (d, 2H), 6.88 (d, 2H), 4.0 (m, 1H), 3.82 (s, 3H), 3.65 (dd, 1H), 3.52 (dd, 1H), 2.83 (d, 2H).

(b) Following the procedure of Example (1b), 10a (888 mg, 4.44 mmol) was subjected to the same Dess-Martin oxidation to form 762 mg (86%) of chloromethylketone 10b which underwent the Hantzch cyclization using thiourea to give 208 mg (80%) of the aminothiazole 10c which is a yellow solid. MS found: (M+H)+ = 221.

(c) Aminothiazole 10c (39 mg, 0.18 mmol) was coupled to Core C (53 mg, 0.17 mmol) using General Coupling Method B. Obtained 52 mg (57%) of Example 10. MS found: (M+H)+ = 512.

EXAMPLE 11

[00204] 10c (73 mg, 0.33 mmol) was coupled to Core B (50 mg, 0.17 mmol) using General Coupling Method A in acetonitrile. Obtained 64 mg (73%) of Example 11. MS found: (M+H)+ = 492.
EXAMPLE 12

[00205] Following the procedure of Little and Webber (J. Org. Chem. 1994, 59, 7299-7305), a solution of N-acetylguanidine (470 mg, 4.6 mmol) was dissolved in 8 mL DMF and treated with compound 10b (460 mg, 2.3 mmol) in 2 mL DMF dropwise over 10 min. The reaction was stirred at rt overnight, concentrated in vacuo, treated with 10 mL 12 M HCl and heated to reflux for 2 hr. The reaction was cooled, filtered, and the supernatant was purified by HPLC to give 45 mg (11%) of the 2-aminoimidazole 12a. All of this intermediate was coupled to Core C (44 mg, 0.14 mmol) using General Coupling Method B. Obtained 16 mg (18%) of Example 12. MS found: (M+H)$^+$ = 495.

EXAMPLE 13

(a) Applying the method of Mazzocchi et al (Synth. Commun. 1986, 309-312) a cuprate was prepared from 3-methoxyphenylmagnesium bromide (20 mmol, 20 mL of 1.0 M THF solution) and CuBr (574 mg, 2.0 mmol) in 50 mL anhydrous ether. The cuprate was treated with epichlorohydrin (1.94 g, 21 mmol) and stirred at -78 C for 24 hr. The reaction was quenched with water, extracted 3 x Et$_2$O, and the ethereal extracts were dried over MgSO$_4$. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO$_2$ using 10% EtOAc in hexanes to give 476 mg (12%) of the chlorohydrin 13a as a yellow oil. 1H-NMR (400 MHz, CDCl$_3$): δ 7.10 (d, 1H), 6.68 (m, 3H), 3.91 (m, 1H), 3.65 (s, 3H), 3.47 (dd, 1H), 3.36 (dd, 1H), 2.71 (d, 2H), 2.05 (br s, 1H).

(b) Following the procedure of Example (1b), 13a (70 mg, 0.35 mmol) was subjected to the same Dess-Martin oxidation to form 68 mg (97%) of chloromethylketone 13b which underwent the Hantzch cyclization using thiourea to give 76 mg (100%) of the aminothiazole 13c. MS found: (M+H)$^+$ = 221.
(c) Aminothiazole 13c (39 mg, 0.18 mmol) was coupled to Core C (56 mg, 0.18 mmol) using General Coupling Method B. Obtained 16 mg (18%) of Example 13. MS found: (M+H)$^+$ = 512.

EXAMPLE 14

![Chemical structure of example 14](image)

(a) Applying the method of Lipshutz et al (J. Org. Chem. 1984, 49, 3928-3938) a cuprate was prepared from 2-methoxyphenylmagnesium bromide (20 mmol, 20 mL of 1.0 M THF solution) and CuCN (896 mg, 10 mmol) in 100 mL anhydrous THF. The cuprate was treated with epichlorohydrin (1.85 g, 20 mmol) and stirred at 78°C for 18 hr. The reaction was quenched with sat NH$_4$Cl, extracted 3 x EtOAc, and the organic extracts were dried over MgSO$_4$, filtered, and concentrated by rotary evaporator. The residue was chromatographed on SiO$_2$ using 25% EtOAc in hexanes to give 3.8 g (95%) of the chlorohydrin 14a. MS found: (M+H)$^+$ = 201.

(b) Following the procedure of Example (1b), 14a (1.7 g, 8.5 mmol) was subjected to the same Dess-Martin oxidation to give 1.4 g (27%) of chloromethylketone 14b which underwent the Hantzsch cyclization using thiourea to give 451 mg (41%) of the aminothiazole 14c. MS found: (M+H)$^+$ = 221.

(c) Aminothiazole 14c was coupled to Core C (50 mg, 0.16 mmol) using General Coupling Method B. Obtained 39 mg (48%) of Example 14. MS found: (M+H)$^+$ = 512.

EXAMPLE 15

![Chemical structure of example 15](image)

(a) To a solution of 3-methyluracil (25 mg, 0.2 mmol) in 0.2 mL DMSO was added NaH (8 mg 60% oil dispersed, 0.2 mmol). After H$_2$ evolution ceased, 2-amino-4-(chloromethyl)thiazole hydrochloride (15 mg, 0.08 mmol, prepared according to Sprague et al J. Am. Chem. Soc. 1946, 2155; 2158) in 0.2 mL DMSO was added and the reaction was stirred for 3 hr at rt. The reaction was purified...
directly by HPLC to give 16 mg (84%) of the N-substituted uracil 15a. MS found:
(M+H)^+ = 239.

(b) Compound 15a (40 mg, 0.17 mmol) was coupled to Core B (32 mg,
0.11 mmol) using General Coupling Method A. Obtained 10 mg (18%) of Example

EXAMPLE 16

(a) To a solution of 1-methyluracil (105 mg, 0.83 mmol) in 1.2 mL DMSO
was added NaH (33 mg 60% oil dispersed, 0.83 mmol). After H$_2$ evolution ceased, 2-
amino-4-(chloromethyl)thiazole hydrochloride (62 mg, 0.33 mmol, prepared
according to Sprague et al J. Am. Chem. Soc. 1946, 2155; 2158) was added and the
reaction was stirred at rt overnight. The reaction was diluted with 4 mL water, treated
with 0.5 mL TFA, and purified by HPLC to give 15 mg (19%) of the N-substituted
uracil 16a. MS found: (M+H)^+ = 239.

(b) Compound 16a (15 mg, 0.06 mmol) was coupled to Core B (20 mg,
0.68 mmol) using General Coupling Method A. Obtained 7 mg (22%) of Example

EXAMPLE 17

(a) To a solution of 4-benzyloxy-2-(1H)-pyridone (217 mg, 1.08 mmol)
and Cs$_2$CO$_3$ (704 mg, 2.16 mmol) in 2 mL DMF was added a solution of 2-amino-4-
(chloromethyl)thiazole hydrochloride (200 mg, 1.08 mmol, prepared according to
Sprague et al J. Am. Chem. Soc. 1946, 2155; 2158) in 2 mL DMF dropwise over 5
min. The reaction was stirred at rt overnight, acidified with TFA, and purified by
HPLC to give 51 mg (15%) of the N-substituted pyridone 17a that was contaminated
with a small amount of the O-alkylated pyridone. MS found: (M+H)^+ = 314.
(b) Compound 17a (35 mg, 0.11 mmol) was coupled to Core B (35 mg, 0.12 mmol) using General Coupling Method A. Obtained 51 mg (79%) of Example 17. 1H-NMR (400 MHz, DMSO): δ 12.4 (s, 1H), 7.2-7.7 (m, 14H), 6.85 (s, 1H), 6.10 (dd, 1H), 5.95 (d, 1H), 5.10 (d, 4H), 5.05 (d, 1H), 3.20 (d, 1H), 1.78 (d, 1H), 1.14 (s, 3H).

EXAMPLE 18

![Chemical structure of example 18](image)

(a) 3(2H)-pyridazinone (104 mg, 1.08 mmol) and 2-amino-4-(chloromethyl)thiazole hydrochloride (200 mg, 1.08 mmol, prepared according to Sprague et al. *J. Am. Chem. Soc.* 1946, 2155; 2158) were coupled using the same procedure as used for 17a to give 26 mg (12%) of the N-substituted pyridone 18a that was contaminated with a small amount of the O-alkylated pyridone. MS found: (M+H)+ = 209.

(b) Compound 18a (24 mg, 0.11 mmol) was coupled to Core B (36 mg, 0.12 mmol) using General Coupling Method A. Obtained 32 mg (56%) of Example 18. MS found: (M+H)+ = 480.

EXAMPLE 19

![Chemical structure of example 19](image)

(a) 1-benzylpiperazin-2-one (100 mg, 0.53 mmol) and 2-amino-4-(chloromethyl)thiazole hydrochloride (98 mg, 0.53 mmol, prepared according to Sprague et al. *J. Am. Chem. Soc.* 1946, 2155; 2158) were coupled using the same procedure as used for 17a except that K2CO3 (88 mg, 0.64 mmol) was used in place of Cs2CO3 to give 52 mg (24%) of the N-substituted piperazinone 19a as a TFA salt. MS found: (M+H)+ = 303.

(b) Compound 19a (24 mg, 0.11 mmol) was coupled to Core B (36 mg, 0.12 mmol) using General Coupling Method A. Obtained 19 mg (32%) of Example 19. MS found: (M+H)+ = 574.
EXAMPLE 20

(a) 4-phenyl-2-1H-pyridone (200 mg, 1.17 mmol, prepared according to J. Org. Chem. 2002, 67, 4304-4308) and 2-amino-4-(chloromethyl)thiazole hydrochloride (217 mg, 1.17 mmol, prepared according to Sprague et al J. Am. Chem. Soc. 1946, 2155; 2158) were coupled using the same procedure as used for 17a to give 300 mg (91%) of the N-substituted piperazinone 20a. MS found: (M+H)^+ = 284.

(b) Compound 20a (33 mg, 0.11 mmol) was coupled to Core B (36 mg, 0.12 mmol) using General Coupling Method A. Obtained 17 mg (26%) of Example 20. MS found: (M+H)^+ = 555.

EXAMPLE 21

(a) Following the procedure of Nugent et al (J. Org. Chem. 2004, 69, 1629-1633) trimethylsulfoxonium iodide (7.04g, 32 mmol) was suspended in 62 mL dry THF and treated with potassium tert-butoxide (32 mL 1.0 M, 32 mmol). The solution was refluxed under N_2 for 2 hr, cooled to rt, and treated with methyl thiophene-3-acetate (2.0 g, 12.8 mmol) and stirred for 48 hr. The reaction was quenched with water and extracted 3 x EtOAc, the organic layers were dried over MgSO_4, filtered, and concentrated by rotary evaporator. The oily residue was taken up in 25 mL EtOAc and 5 mL hexane and after 2 hr, 1.1 g of yellow crystalline ylide 21a was isolated by filtration. MS found: (M+H)^+ = 217.

(b) Thiourea (183 mg, 2.3 mmol) was dissolved in 10 mL warm EtOH followed by ylide 21a (500 mg, 2.3 mmol), and finally HCl in dioxane (0.52 mL of 4.0 M, 2.08 mmol) dropwise over 10 min. The reaction was refluxed under N_2 for 5 min and then concentrated to a dark brown oil 21b. MS found: (M+H)^+ = 197.
(c) Compound 21b (25 mg, 0.13 mmol) was coupled to Core B (40 mg, 0.14 mmol) using General Coupling Method A. Obtained 15 mg (23%) of Example 21. MS found: (M+H)$^+$ = 468.

EXAMPLE 22

![Chemical Structure](image)

(a) Followed the exact procedure as used for Example 21. Starting with 2-(2-phenyl-1,3-thiazol-4-yl) acetic acid methyl ester (2.0 g, 8.58 mmol) and dimethylsulfoxonium methylide (32 mmol) to give the ylide 22a. MS found: (M+H)$^+$ = 294.

(b) Followed the same procedure as used for Example 21. Starting with 22a (500 mg, 1.71 mmol) and thiourea (135 mg, 1.73 mmol), and HCl in dioxane (0.38 mL of 4M, 1.52 mmol). The product was purified by HPLC to give 150 mg (32%) of aminothiazole 22b. MS found: (M+H)$^+$ = 274.

(c) Compound 22b (35 mg, 0.13 mmol) was coupled to Core B (40 mg, 0.14 mmol) using General Coupling Method A. Obtained 18 mg (24%) of Example 22. MS found: (M+H)$^+$ = 468.

EXAMPLE 23

![Chemical Structure](image)

(a) Followed the exact procedure as used for Example 21. Starting with 3-methyl-5-isoxazole acetic acid methyl ester (2.5 g, 16.1 mmol) and dimethylsulfoxonium methylide (32 mmol) to give 1.17 g (34%) the ylide 23a. MS found: (M+H)$^+$ = 216.

(b) Followed the same procedure as used for Example 21 starting with 23a (500 mg, 2.56 mmol) and thiourea (200 mg, 2.56 mmol), and HCl in dioxane (0.58 mL of 4M, 2.3 mmol). The product was purified by HPLC to give aminothiazole 23b. MS found: (M+H)$^+$ = 196.
EXAMPLE 24

![Chemical Structure](image)

(a) Following the general method of Example 14, a cuprate was formed from 2-naphthyl magnesium bromide (20 mL of 0.5 M, 10 mmol) and CuCN (448 mg, 5.0 mmol) at -78 °C and then treated with epichlorohydrin (1.85 g, 20 mmol) at -40 °C and allowed to warm to rt overnight. The reaction was quenched with sat NH₄Cl, extracted 3 x EtOAc, and the organic extracts were dried over MgSO₄, filtered, and concentrated by rotary evaporator. The residue was chromatographed on SiO₂ using 25% EtOAc in hexanes to give 1.05 g (48%) of the chlorohydrin 24a. MS found: (M+H)⁺ = 221.

(b) Following the procedure of Example (1b), 24a (263 mg, 1.0 mmol) was subjected to the same Dess-Martin oxidation to give 245 mg (93%) of chloromethylketone 24b which underwent the Hantzsch cyclization using thiourea to give 225 mg (100%) of the aminothiazole 14c. MS found: (M+H)⁺ = 241.

(c) Aminothiazole 24c (77 mg, 0.32 mmol) was coupled to Core D (50 mg, 0.16 mmol) using General Coupling Method A. Obtained 44 mg (52%) of Example 24. MS found: (M+H)⁺ = 532.

EXAMPLE 25

![Chemical Structure](image)

(a) Following the general method of Example 14, a cuprate was formed from 4-phenoxyphenyl magnesium bromide (10 mL of 0.5 M in THF, 5 mmol) and CuCN (224 mg, 2.5 mmol) at -78 °C and then treated with epichlorohydrin (694 mg, 7.5 mmol) at -40 °C and allowed to warm to rt overnight. The reaction was quenched with sat NH₄Cl, extracted 3 x EtOAc, and the organic extracts were dried over...
MgSO₄, filtered, and concentrated by rotary evaporator. The residue was chromatographed on SiO₂ using 25% EtOAc in hexanes to give 650 mg (50%) of the chlorohydrin 25a. MS found: (M+H)⁺ = 263.

(b) Following the procedure of Example (1b), 25a (150 mg, 0.68 mmol) was subjected to the same Dess-Martin oxidation to give chloromethylketone 25b which underwent the Hantzch cyclization using thiourea to give the aminothiazole 25c which was used without further purification. MS found: (M+H)⁺ = 283.

(c) Aminothiazole 25c (90 mg, 0.32 mmol) was coupled to Core D (50 mg, 0.16 mmol) using General Coupling Method A. Obtained 36 mg (39%) of Example 25. MS found: (M+H)⁺ = 574.

![Diagram](image)

EXAMPLE 26

[00206] 25c (60 mg, 0.25 mmol) was coupled to Core A (37 mg, 0.13 mmol) using General Coupling Method B in DMF. Obtained 31 mg (48%) of Example 26. MS found: (M+H)⁺ = 512.

EXAMPLE 27

(a) To a solution of 1-bromonaphthalene (2.7 g, 13 mmol) in dry THF (120 mL) and cooled to -78 C was added n-BuLi (4 mL of 2.5 M, 10 mmol) dropwise. After stirring 30 min, epichlorohydrin (1.0 g, 13 mmol) was added all at once and the reaction was warmed to 0 C and stirred for 2 hr. The reaction was quenched with water, extracted 2 x EtOAc, the combined organic layers were dried over MgSO₄, filtered, and concentrated by rotary evaporator. The residue was chromatographed on SiO₂ using 10% EtOAc in hexanes to give 1.08 g (42%) of the chlorohydrin 27a. ¹H-NMR (400 MHz, CDCl₃): δ 7.99 (d, 1H), 7.81 (d, 1H), 7.70 (d, 1H), 7.44-7.49 (m, 2H), 7.31-7.37 (m, 2H), 4.13 (m, 1H), 3.43-3.55 (m, 2H), 3.22-3.28 (m, 2H).
Following the procedure of Example (1b), 27a (350 mg, 1.33 mmol) was subjected to the same Dess-Martin oxidation to give chloromethylketone 27b (MS found: (M+H)\(^+\) = 219) which underwent the Hantzch cyclization using thiourea (114 mg, 1.5 mmol) to give 310 mg (97%) of the aminothiazole 27c. MS found: (M+H)\(^+\) = 283.

Aminothiazole 27c (50 mg, 0.21 mmol) was coupled to Core D (30 mg, 0.096 mmol) using General Coupling Method A. Obtained 49 mg (96%) of Example 27. MS found: (M+H)\(^+\) = 532.

EXAMPLE 28

Following the general method of Example 14, a cuprate was formed from 3,4-(methylenedioxy)phenyl magnesium bromide (10 mL of 1.0 M in THF, 10 mmol) and CuCN (448 mg, 5.0 mmol) at -40 °C and after 1 h, treated with epichlorohydrin (1.39 mg, 15 mmol) at -40 °C and allowed to warm to rt overnight. The reaction was quenched with sat NH\(_4\)Cl, extracted 3 x EtOAc, and the organic extracts were dried over MgSO\(_4\), filtered, and concentrated by rotary evaporator. The residue was chromatographed on SiO\(_2\) using 90% EtOAc in hexanes to give 2.0 g (62%) of the chlorohydrin 28a. MS found: (M+H)\(^+\) = 215.

Following the procedure of Example (1b), 28a (500 mg, 2.33 mmol) was subjected to the same Dess-Martin oxidation to give chloromethylketone 28b which underwent the Hantzch cyclization using thiourea to give 240 mg (44%) of the aminothiazole 28c. MS found: (M+H)\(^+\) = 235.

Aminothiazole 28c (46 mg, 0.20 mmol) was coupled to Core D (30 mg, 0.096 mmol) using General Coupling Method A. Obtained 30 mg (59%) of Example 28. MS found: (M+H)\(^+\) = 526.
EXAMPLE 29

(a) To a solution of commercially available phenylacetone (13.2 g, 98.6 mmol) in 30 mL of acetic acid and 15 mL of 48% HBr was added a solution of bromine (34.7 g, 217 mmol) in 50 mL of acetic acid dropwise. After 4 hr, acetone (150 mL) was added and the reaction mixture was stirred for 3 d. The reaction was concentrated by rotary evaporator, diluted with brine, and extracted 2 x DCM. The DCM extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO₂ using DCM to give 20.8 g (98%) of a dark oil 29a. ¹H-NMR (400 MHz, CDCl₃): δ 7.08-7.25 (m, 5H), 3.82 (s, 2H), 3.78 (s, 2H).

(b) To a solution of 29a (2.2 g, 10 mmol) in 100 mL of EtOH was added thiourea (1.0 g, 13 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was concentrated by rotary evaporator and the crude residue was purified on SiO₂ using 5% MeOH in EtOAc to give 1.8 g (95%) of pure 29b. MS found: (M+H)⁺ = 191.

(c) 29b (38 mg, 0.2 mmol) was coupled with Core C (50 mg, 0.16 mmol) using General Coupling Method B. The product was purified by HPLC to give 48 mg (50%) of the desired product 29. MS found: (M+H)⁺ = 482.

EXAMPLE 30

(a) A solution of 29a (5.0 g, 23.5 mmol) in 20 mL of DMF was added dropwise to a solution of commercially available acetylguanidine (4.8 g, 47 mmol) in 30 mL of DMF at 0 C. The reaction was allowed to slowly warm to rt and stirred for 24 hr. The reaction was diluted with brine and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary...
evaporator, and the residue was triturated with EtOAc/hexanes. The resulting solid was collected to give 320 mg (6%) of pure 30a. MS found: (M+H)^+ = 216.

(b) 30a (32 mg, 0.15 mmol) was heated at 80 °C in a solution of 1 mL of conc HCl and 2 mL of MeOH for 1 hr. The reaction mixture was concentrated by rotary evaporator to give a quantitative yield of 30b as the HCl salt.

(c) 30b (0.15 mmol) was coupled with Core C (50 mg, 0.16 mmol) using General Coupling Method B. The product was purified by HPLC to give 51 mg (73%) of the desired product 30. MS found: (M+H)^+ = 445.

EXAMPLE 31

(a) To a solution of commercially available 1-phenyl-1,2-propanedione (3.3 g, 27.3 mmol) in 30 mL of MeOH was added a solution of bromine (34.7 g, 217 mmol) in 5 mL of CHCl₃ dropwise. The reaction was heated at reflux for 12 hr. The reaction was diluted with water and extracted 2 x CHCl₃. The CHCl₃ extracts were dried over MgSO₄, filtered, and concentrated by rotary evaporator to give 5.0 g (100%) of a dark solid 52a. ¹H-NMR (400 MHz, CDCl₃): δ 8.03 (d, 2H), 7.68 (t, 1H), 7.53 (dd, 2H), 4.4 (s, 2H).

(b) To a solution of 31a (1.5 g, 6.6 mmol) in 25 mL of EtOH was added thiourea (0.55 g, 7.2 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was diluted with water and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄, filtered, and concentrated by rotary evaporator to give 1.28 g (89%) of 31b. MS found: (M+H)^+ = 205.

(c) 31b (38 mg, 0.2 mmol) was coupled with Core C (50 mg, 0.16 mmol) using General Coupling Method B. The product was purified by HPLC to give 48 mg (50%) of the desired product 31. MS found: (M+H)^+ = 496.

EXAMPLE 32
(a) A solution of 31a (1.0 g, 4.4 mmol) in 10 mL of DMF was added dropwise to a solution of commercially available acetylguanidine (0.89 g, 8.8 mmol) in 10 mL of DMF at 0 C. The reaction was allowed to slowly warm to rt and stirred for 24 hr. The reaction was diluted with brine and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO4. The solution was filtered, concentrated by rotary evaporator, and the residue was triturated with EtOAc/hexanes. The resulting solid was collected to give 60 mg (6%) of 32a. MS found: (M+H)+ = 230.

(b) 32a (57 mg, 0.25 mmol) was heated at 80 C in a solution of 1 mL of conc HCl and 2 mL of MeOH for 1 hr. The reaction mixture was concentrated by rotary evaporator to give a quantitative yield of 32b as the HCl salt.

(c) 32b (0.15 mmol) was coupled with Core C (50 mg, 0.16 mmol) using General Coupling Method B. The product was purified by HPLC to give 9 mg (12%) of the desired product 32. MS found: (M+H)+ = 479.

EXAMPLE 33

[00207] 29b (38 mg, 0.2 mmol) was coupled with Core A (50 mg, 0.17 mmol) using General Coupling Method B. The product was purified by HPLC to give 48 mg (50%) of the desired product 33. MS found: (M+H)+ = 462.

EXAMPLE 34

(a) 30a (43 mg, 0.2 mmol) was heated at 80 C in a solution of 1 mL of conc HCl and 2 mL of MeOH for 1 hr. The reaction mixture was concentrated by rotary evaporator to give a quantitative yield of 34a as the HCl salt.

(b) 34a (0.2 mmol) was coupled with Core C (50 mg, 0.16 mmol) using General Coupling Method B. The product was purified by HPLC to give 10 mg (13%) of the desired product 34. MS found: (M+H)+ = 445.
EXAMPLE 35

(a) 31b (41 mg, 0.2 mmol) was coupled with Core C (50 mg, 0.16 mmol) using General Coupling Method B. The product was purified by HPLC to give 72 mg (72%) of the desired product 35a. MS found: (M+H)+ = 496.

(b) 35a was dissolved in 5 mL of MeOH and NaBH4 (0.2 mmol) was added in one portion. Stirred for 1 hr then purified by HPLC to give 65 mg (90%) of desired product 35. MS found: (M+H)+ = 498.

EXAMPLE 36

[00208] 29b (36 mg, 0.19 mmol) was coupled with 9,10-dihydro-11-methyl-9,10-ethanoanthracene-11-carboxylic acid (50 mg, 0.19 mmol) using General Coupling Method B. The product was purified by HPLC to give 60 mg (73%) of the desired product 36. MS found: (M+H)+ = 437.

EXAMPLE 37

(a) To a solution of commercially available 4-bromophenylacetone (25 g, 117 mmol) in 30 mL of acetic acid and 15 mL of 48% HBr was added a solution of bromine (40 g, 217 mmol) in 50 mL of acetic acid. After 4 hr, acetone (150 mL) was added and the reaction mixture was stirred for 3 d. The reaction was concentrated by rotary evaporator, diluted with brine, and extracted 2 x DCM. The DCM extracts were dried over MgSO4. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO2 using DCM to give 20.8 g (98%) of a dark oil 37a. 1H-NMR (400 MHz, CDCl3): δ 7.49 (d, 2H), 7.12 (d, 2H), 3.94 (s, 2H), 3.92 (s, 2H).
(b) To a solution of 37a (116 mmol) in 200 mL of EtOH was added thiourea (9.0 g, 118 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was concentrated by rotary evaporator and the crude residue was dissolved in EtOAc and extracted 3 x 1N HCl. The aqueous extracts were basified with 1N NaOH and then extracted 2 x EtOAC. EtOAc extracts were dried over MgSO₄ and solid was triturated in 10% hexanes in EtOAc. Solid was collected and dried in vacuo to give 18 g (57%) of pure 37b. MS found: (M+H)⁺ = 270.

(c) 37b (107 mg, 0.4 mmol) was coupled with Core D (60 mg, 0.2 mmol) using General Coupling Method A. The product was chromatographed on SiO₂ using DCM to give 85 mg (76%) of a white solid 37. MS found: (M+H)⁺ = 561.

EXAMPLE 38

(a) A solution of 37a (50 mmol) in 50 mL of DMF was added dropwise to a solution of commercially available acetylguanidine (10.0 g, 47 mmol) in 100 mL of DMF at 0 C. The reaction was allowed to slowly warm to rt and stirred for 24 hr. The reaction was diluted with brine and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator, and the residue was triturated with EtOAc/hexanes. The resulting solid was collected to give 2.5 g (17%) of pure 38a. MS found: (M)⁺ = 294.

(b) 38a (500 mg, 1.7 mmol) was heated at 80 C in a solution of 1 mL of conc HCl and 2 mL of MeOH for 1 hr. The reaction mixture was concentrated by rotary evaporator to give a quantitative yield of 38b as the HCl salt. MS found: (M)⁺ = 252.

(c) 38b (31 mg, 0.10 mmol) was coupled with Core C (58 mg, 0.20 mmol) using General Coupling Method B. The product was purified by HPLC to give 28 mg (52%) of the desired product 38. MS found: (M+H)⁺ = 544.

EXAMPLE 39
(a) To a solution of commercially available 4-nitrophenylacetone (5.0 g, 27.9 mmol) in 10 mL of acetic acid and 5 mL of 48% HBr was added a solution of bromine (8.95 g, 56 mmol) in 8 mL of acetic acid. After 4 hr, acetone (50 mL) was added and the reaction mixture was stirred for 1 d. The reaction was concentrated by rotary evaporator, diluted with brine, and extracted 2 x DCM. The DCM extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO₂ using 50% hexanes in DCM to give 2.7 g (38%) of 39a. ¹H-NMR (400 MHz, CDCl₃): δ 8.13 (d, 2H), 7.33 (d, 2H), 3.88 (s, 2H), 3.78 (s, 2H).

(b) To a solution of 39a (103 mg, 0.4 mmol) in 10 mL of EtOH was added thiourea (30 mg, 0.4 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was concentrated by rotary evaporator to give 120 mg (95%) of pure 39b as the HBr salt. MS found: (M+H)⁺ = 236.

(c) 39b (96 mg, 0.3 mmol) was coupled with Core C (62 mg, 0.20 mmol) using General Coupling Method B. The product was purified by HPLC to give 45 mg (43%) of the desired product 39. MS found: (M+H)⁺ = 527.

EXAMPLE 40

(a) To a solution of commercially available 3-bromophenylacetone (10.0 g, 47 mmol) in 15 mL of acetic acid and 8 mL of 48% HBr was added a solution of bromine (16 g, 100 mmol) in 15 mL of acetic acid dropwise. After 4 hr, acetone (100 mL) was added and the reaction mixture was stirred for 1 d. The reaction was concentrated by rotary evaporator, diluted with brine, and extracted 2 x DCM. The DCM extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO₂ using 50% hexanes in DCM to give
40a. 1H-NMR (400 MHz, CDCl$_3$): δ 7.39-7.42 (m, 2H), 7.20-7.23 (m, 2H), 3.94 (s, 2H), 3.92 (s, 2H).

(b) To a solution of 40a (47 mmol) in 100 mL of EtOH was added thiourea (3.57 g, 47 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was diluted with EtOAc and washed with sat NaHCO$_3$. The EtOAc extracts were dried over MgSO$_4$ and concentrated by rotary evaporator to give 6.7g (53%) of pure 40b. MS found: (M+H)$^+$ = 270.

(c) 40b (96 mg, 0.3 mmol) was coupled with Core D (62 mg, 0.20 mmol) using General Coupling Method A. The product was purified by HPLC to give 45 mg (43%) of the desired product 40. MS found: (M+H)$^+$ = 527.

EXAMPLE 41

(a) To a solution of commercially available 3,4-dichlorophenylacetone (0.8 g, 3.94 mmol) in 10 mL of acetic acid and 5 mL of 48%HBr was added a solution of bromine (1.39 g, 8.7 mmol) in 5 mL of acetic acid dropwise. After 4 hr, acetone (50 mL) was added and the reaction mixture was stirred for 1 d. The reaction was concentrated by rotary evaporator, diluted with brine, and extracted 2 x DCM. The DCM extracts were dried over MgSO$_4$. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO$_2$ using 50% hexanes in DCM to give 41a. 1H-NMR (400 MHz, CDCl$_3$): δ 7.42 (d, 1H), 7.33 (d, 1H), 7.10 (m,1H), 3.92 (s, 2H), 3.89 (s, 2H).

(b) To a solution of 41a (3.9 mmol) in 20 mL of EtOH was added thiourea (304 mg, 4.0 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was diluted with EtOAc and washed with sat NaHCO$_3$. The EtOAc extracts were dried over MgSO$_4$ and concentrated by rotary evaporator to give 439 mg (43%) of pure 41b. MS found: (M+H)$^+$ = 260.

(c) 41b (83 mg, 0.32 mmol) was coupled with Core D (50 mg, 0.16 mmol) using General Coupling Method A. The product was purified by HPLC to give 53 mg (60%) of the desired product 41. MS found: (M+H)$^+$ = 551.
EXAMPLE 42

(a) To a solution of ethyl 2-[(tert-butoxycarbonyl)amino]thiazole-4-carboxylate (27.3 g, 100 mmol) prepared by the method of Kim and Kahn (Synlett, 1999, 8, 1239-1240) in 500 mL of THF at 0 C was added a solution of Red-Al in toluene (80 mL of 65 wt% solution) dropwise. The reaction mixture was stirred for 1 d and then quenched with water and 1N HCl. Extracted 2 x EtOAc and the EtOAc extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO₂ using 33% hexanes in EtOAC to give 20.5 g (89%) of 2-[(tert-butoxycarbonyl)amino]4-hydroxymethylthiazole 42a. ¹H-NMR (400 MHz, CDCl₃): δ 6.98 (s, 1H), 4.81 (s, 2H), 1.81 (s, 9H).

(b) To a solution of 42a (10 g, 43.4 mmol) in 500 mL of DCM was added Dess Martin periodinane (30 g, 70.7 mmol) all at once. After 2 h, the reaction was concentrated by rotary evaporator, diluted with 1N NaOH, and extracted 3 x EtOAc. The EtOAc extracts were dried over MgSO₄. The solution was filtered and concentrated by rotary evaporator to give 7.4 g (75%) of the yellow solid 2-[(tert-butoxycarbonyl)amino]thiazole-4-carboxaldehyde 42b. ¹H-NMR (400 MHz, CDCl₃): δ 9.81 (s, 1H), 9.80 (bs, 1H), 7.73 (s, 1H), 1.47 (s, 9H).

(c) To a solution commercially available 3-iodopyridine (1.13 g, 5.5 mmol) in 15 mL of THF at 0 C was added a 2M solution of EtMgCl in THF (2.8 mL, 5.6 mmol) dropwise. After 1 h, added a solution of 42b (500 mg, 2.2 mmol) in 5 mL of THF. The reaction was allowed to warm to rt and stirred at for 1 hr. The reaction was quenched with water and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄, concentrated by rotary evaporator, and chromatographed on SiO₂ using 50% hexanes in EtOAc then pure EtOAC to give 336 mg (50%) of 42c. MS found: (M+H)+ = 308.

(d) 42c (60 mg, 0.20 mmol) was treated with 1 mL of 50% TFA in DCM for 1h. The reaction was concentrated by rotary evaporator and then coupled with Core C 60 mg, 0.20 mmol) using General Coupling Method B. The product was
purified by HPLC to give 33 mg (33%) of the desired product 42. MS found: (M+H)^+ = 499.

EXAMPLE 43

(a) To a solution commercially available 4-iodopyridine (0.82 g, 4.0 mmol) in 10 mL of THF at 0°C was added a 2M solution of EtMgCl in THF (2.0 mL, 4.0 mmol) dropwise. After 1 h, added a solution of 42b (456 mg, 2.0 mmol) in 5 mL of THF. The reaction was allowed to warm to rt and stirred at for 1 hr. The reaction was quenched with water and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO4, concentrated by rotary evaporator, and chromatographed on SiO2 using 50% hexanes in EtOAc then pure EtOAc to give 138 mg (22%) of 43a. MS found: (M+H)^+ = 308.

(b) 43a (60 mg, 0.20 mmol) was treated with 1 mL of 50% TFA in DCM for 1h. The reaction was concentrated by rotary evaporator and then coupled with Core C (60 mg, 0.20 mmol) using General Coupling Method B. The product was purified by HPLC to give 43 mg (43%) of the desired product 43. MS found: (M+H)^+ = 499.

EXAMPLE 44

(a) To a solution of 42c (230 mg, 1.0 mmol) in 10 mL of THF and 5 mL of 1N HCl was added 10% Pd/C (3.0 g) all at once. The mixture was hydrogenated using a Parr apparatus at 50 psi of hydrogen overnight. Added more Pd/C (1.0 g) and repeated. The reaction mixture was filtered and concentrated by rotary evaporator. The residue was dissolved in EtOAc and washed with sat NaHCO3. The EtOAc extracts were dried over MgSO4, filtered, concentrated by rotary evaporator, and chromatographed on SiO2 using 50% hexanes in EtOAc then pure EtOAc to give 20 mg (7%) of 44a. MS found: (M+H)^+ = 292.
(b) 42c (20 mg, 0.07 mmol) was treated with 1 mL of 50% TFA in DCM for 1h. The reaction was concentrated by rotary evaporator and then coupled with Core C (37 mg, 0.12 mmol) using General Coupling Method B. The product was purified by HPLC to give 22 mg (54%) of the desired product 44. MS found: (M+H)^+ = 483.

EXAMPLE 45

(a) To a solution of 1-chloro-3-(pyridine-2-yl)propan-2-one (200 mg, 1.18 mmol, prepared as detailed in Chem. Heterocyclic Compounds, 1986, 22, 633-639) in 10 mL of EtOH was added thiourea (90 mg, 1.18 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was diluted with EtOAc and washed with sat NaHCO₃. The EtOAc extracts were dried over MgSO₄ and concentrated by rotary evaporator to give 190 g (84%) of pure aminothiazole 45a. MS found: (M+H)^+ = 192.

(b) 45a (61 mg, 0.32 mmol) was coupled with Core C (50 mg, 0.16 mmol) using General Coupling Method B. The product was purified by HPLC to give 35 mg (18%) of the desired product 45. MS found: (M+H)^+ = 483.

EXAMPLE 46

(a) A solution of 1-chloro-3-(pyridine-2-yl)propan-2-one (500 mg, 2.95 mmol, prepared as detailed in Chem. Heterocyclic Compounds, 1986, 22, 633-639) in 5 mL of DMF was added dropwise to a solution of commercially available acetylguanidine (606 mg, 6.0 mmol) in 5 mL of DMF at 0 C. The reaction was allowed to slowly warm to rt and stirred for 24 hr. The reaction was diluted with brine and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator, and the residue was purified by HPLC to give 77 mg (12%) of 46a. MS found: (M+H)^+ = 217.
(b) 46a (32 mg, 0.15 mmol) was heated at 80°C in a solution of 1 mL of conc HCl and 2 mL of MeOH for 1 hr. The reaction mixture was concentrated by rotary evaporator to give a quantitative yield of 45b as the HCl salt. MS found: (M+H)⁺ = 175.

(c) 46b (35 mg, 0.16 mmol) was coupled with Core C (50 mg, 0.16 mmol) using General Coupling Method B. The product was purified by HPLC to give 1.1 mg (1.1%) of the desired product 46. MS found: (M+H)⁺ = 445.

EXAMPLE 47

![Diagram](image)

[00209] A Smith Process vial was charged with 37 (60 mg, 0.107 mmol), phenylboronic acid (26 mg, 0.21 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.01 mmol), 0.2 mL of 2M K₂CO₃, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150°C. The reaction was cooled, filtered and purified by HPLC to give 6 mg of 47. MS found: (M+H)⁺ = 558.

EXAMPLE 48

![Diagram](image)

[00210] 37b (2.0 g, 7.2 mmol) was coupled with Core B (2.1 mg, 7.4 mmol) using General Coupling Method A. The product was chromatographed on SiO₂ using 20% hexanes in DCM to give 1.8 g (46%) of 48. MS found: (M+H)⁺ = 541.

EXAMPLE 49

![Diagram](image)

[00211] A Smith Process vial was charged with 48 (100 mg, 0.178 mmol), 4-pyridineboronic acid (72 mg, 0.35 mmol), tetrakis(triphenylphosphine)palladium(0) (21 mg, 0.018 mmol), 0.2 mL of 2M K₂CO₃, and 2.5 mL of DMF. The reaction
mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 6 mg of 49. MS found: (M+H)^+ = 539.

EXAMPLE 50

![Chemical structure](image)

[00212] A Smith Process vial was charged with 48 (100 mg, 0.178 mmol), naphthalen-2-ylboronic acid (60 mg, 0.35 mmol), tetrakis(triphenylphosphine)palladium(0) (21 mg, 0.018 mmol), 0.2 mL of 2M K_2CO_3, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 47 mg (45%) of 50. MS found: (M+H)^+ = 588.

EXAMPLE 51

![Chemical structure](image)

[00213] A Smith Process vial was charged with 48 (100 mg, 0.178 mmol), 4-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol (48 mg, 0.25 mmol), tetrakis(triphenylphosphine)palladium(0) (21 mg, 0.018 mmol), 0.2 mL of 2M K_2CO_3, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 48 mg (42%) of 51. MS found: (M+H)^+ = 528.

EXAMPLE 52

![Chemical structure](image)
A Smith Process vial was charged with 48 (100 mg, 0.178 mmol), 2-oxo-1,2-dihydropyrimidin-5-ylboronic acid (49 mg, 0.35 mmol), tetrakis(triphenylphosphine)palladium(0) (21 mg, 0.018 mmol), 0.2 mL of 2M K$_2$CO$_3$, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 44 mg (44%) of 52. MS found: (M+H)$^+$ = 556.

EXAMPLE 53

A Smith Process vial was charged with 48 (100 mg, 0.178 mmol), naphthalen-1-ylboronic acid (60 mg, 0.35 mmol), tetrakis(triphenylphosphine)palladium(0) (21 mg, 0.018 mmol), 0.2 mL of 2M K$_2$CO$_3$, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 58 mg (56%) of 53. MS found: (M+H)$^+$ = 588.

EXAMPLE 54

A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 3-pyridineboronic acid (25 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K$_2$CO$_3$, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 9 mg (17%) of 54. MS found: (M+H)$^+$ = 539.
EXAMPLE 55

A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), pyrimidin-5-ylboronic acid (25 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K₂CO₃, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 18 mg (33%) of 55. MS found: (M+H)⁺ = 540.

EXAMPLE 56

A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 3,5-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoxazole (28 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K₂CO₃, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 35 mg (63%) of 56. MS found: (M+H)⁺ = 557.

EXAMPLE 57

A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (42 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K₂CO₃, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at
150°C. The reaction was cooled, filtered and purified by HPLC to give 18 mg (33%) of 57. MS found: (M+H)^+ = 542.

EXAMPLE 58

A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-(triisopropylsilyl)-1H-pyrrole (53 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K$_2$CO$_3$, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150°C. The reaction was cooled, filtered and purified by HPLC to give 17 mg (32%) of 58. MS found: (M+H)^+ = 527.

EXAMPLE 59

A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 1-(tert-butoxycarbonyl)-1H-pyrrol-2-ylboration acid (42 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K$_2$CO$_3$, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150°C. The reaction was cooled, filtered and purified by HPLC to give 9 mg (17%) of 59. MS found: (M+H)^+ = 527.

EXAMPLE 60

A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 4-methoxypyridin-3-ylboration acid (30 mg, 0.20 mmol),
tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K$_2$CO$_3$, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 C. The reaction was cooled, filtered and purified by HPLC to give 6 mg (10%) of 60. MS found: (M+H)$^+$ = 569.

EXAMPLE 61

[00223] A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), phenylboronic acid (25 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K$_2$CO$_3$, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 C. The reaction was cooled, filtered and purified by HPLC to give 23 mg (43%) of 61. MS found: (M+H)$^+$ = 538.

EXAMPLE 62

[00224] A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 2-methoxypyridin-3-ylboronic acid (30 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K$_2$CO$_3$, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 C. The reaction was cooled, filtered and purified by HPLC to give 18 mg (33%) of 62. MS found: (M+H)$^+$ = 569.

EXAMPLE 63
A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 4-(6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-3-yl)morpholine (58 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K$_2$CO$_3$, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 30 mg (50%) of 63. MS found: (M+H)$^+$ = 624.

EXAMPLE 64

A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 6-methoxypyridin-3-ylboronic acid (30 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K$_2$CO$_3$, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 35 mg (51%) of 64. MS found: (M+H)$^+$ = 569.

EXAMPLE 65

A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 1-benzyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (57 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M
K₂CO₃, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 26 mg (42%) of 65. MS found: (M+H)⁺ = 618.

EXAMPLE 66

[00228] A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), 35-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridin-2-amine (44 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K₂CO₃, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 6 mg (9%) of 66. MS found: (M+H)⁺ = 554.

EXAMPLE 67

(a) 40b (560 mg, 2.1 mmol) was coupled with Core A (579 mg, 2.0 mmol) using General Coupling Method B. The reaction was diluted with brine, and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO₂ using 25% EtOAc in hexanes to give 682 mg (61%) of 67a. MS found: (M+H)⁺ = 561.

(b) A Smith Process vial was charged with 67a (54 mg, 0.10 mmol), 4-pyridineboronic acid (25 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K₂CO₃, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled,
filtered and purified by HPLC to give 26 mg (49%) of 67. MS found: (M+H)^+ = 539.

EXAMPLE 68

[Chemical structure image]

A Smith Process vial was charged with 67a (54 mg, 0.10 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazol (38 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K_2CO_3, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 26 mg (50%) of 68. MS found: (M+H)^+ = 528.

EXAMPLE 69

(a) Charged a flask with 37b (8.07 g, 30 mmol), 4-pyridineboronic acid (6.1 g, 50 mmol), tetrakis(triphenylphosphine)palladium(0) (3.5 g, 3.0 mmol), 30 mL of 2M K_2CO_3, and 200 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min then heated at 100 °C overnight. The reaction mixture was diluted in EtOAc and extracted 3 x 1N HCl. The aqueous extracts were basified with 1N NaOH and then allowed to stand in refrigerator for 2 hr. Solid was collected and dried in vacuo to give 5.4 g (68%) of pure 69a. MS found: (M+H)^+ = 268.

(b) 69a (30 mg, 0.11 mmol) was coupled with Core C (50 mg, 0.16 mmol) using General Coupling Method B. The product was chromatographed on SiO_2 using 50% hexanes in EtOAC to give 16 mg (29%) of 69. MS found: (M+H)^+ = 559.
EXAMPLE 70

(a) Charged a flask with 38b (85 mg, 0.30 mmol), 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine (92 mg, 0.45 mmol), tetrakis(triphenylphosphine)palladium(0) (35 mg, 0.030 mmol), 0.2 mL of 2M K₂CO₃, and 3 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 53 mg (49%) of 70a. MS found: (M+H)⁺ = 251.

(b) 70a (53 mg, 0.15 mmol) was coupled with Core B (50 mg, 0.17 mmol) using General Coupling Method A. The product was purified by HPLC to give 8 mg (1%) of 70. MS found: (M+H)⁺ = 522.

EXAMPLE 71

(a) Charged a flask with 37b (3.0 g, 11.1 mmol), zinc cyanide (870 mg, 7.4 mmol), zinc (121 mg, 1.85 mmol), tris(dibenzylideneacetone)dipalladium(0) (257 mg, 0.28 mmol), 1,1'-bis(diphenylphosphino)ferrocene (310 mg, 0.56 mmol), and 50 mL of DMA. The reaction mixture was heated overnight at 150 °C. The reaction mixture was heated overnight at 150 °C. The reaction mixture was heated overnight at 150 °C. The reaction mixture was heated overnight at 150 °C. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO₂ using EtOAc to give 1.3 g (54%) of 71a. MS found: (M+H)⁺ = 216.

(b) 71a (57 mg, 0.17 mmol) was coupled with Core B (50 mg, 0.17 mmol) using General Coupling Method A. The product was purified by HPLC to give 25 mg (30%) of 71. MS found: (M+H)⁺ = 487.
EXAMPLE 72

(a) 37b (5.2 g, 19.3 mmol) was heated in 20 mL of acetic anhydride for 2 h at 100 °C. The reaction mixture was concentrated by rotary evaporator, and the residue was triturated in EtOAc/hexanes. The resulting solid was collected and dried in vacuo give 3.38 g (49%) of the acetylthiazole 72a. MS found: (M+H)^+ = 312.

(b) Charged a flask with 72a (257 mg, 0.83 mmol), zinc cyanide (58 mg, 0.50 mmol), zinc (7 mg, 0.1 mmol), tris(dibenzylideneacetone)dipalladium(0) (16 mg, 0.017 mmol), 1,1'-bis(diphenylphosphino)ferrocene (19 mg, 0.034 mmol), and 2 mL of DMF. The reaction mixture was heated overnight at 150 °C. The reaction was diluted with brine, and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO4. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO2 using 50% hexanes in EtOAc to give 93 mg (44%) of 72b. MS found: (M+H)^+ = 258.

(c) 72b (93 mg, 0.36 mmol) was heated at reflux in 10 mL of 6N HCl for 18 hr. The reaction mixture was concentrated by rotary evaporator. The crude residue was dissolved in 10 mL of MeOH and HCl gas was bubbled through for 15 min. The reaction was stirred for 1 hr at rt. The reaction mixture was concentrated by rotary evaporator to give 72c in quantitative yield. MS found: (M+H)^+ = 249.

(d) 72c (102 mg, 0.36 mmol) was coupled with Core B (50 mg, 0.17 mmol) using General Coupling Method A. The product was purified on SiO2 using 66% hexanes in EtOAc to give 177 mg (95%) of 72. MS found: (M+H)^+ = 520.

EXAMPLE 73

[00230] A solution of 72 (177 mg, 0.34 mmol) in 2 mL of MeOH and 1 mL of 1N NaOH was stirred at rt for 12 hr. The reaction mixture was diluted with water and
acidified with conc HCl. The resulting solid was collected and dried in vacuo give
152 mg (88%) of 73. MS found: (M+H)^+ = 506.

EXAMPLE 74

![Chemical structure image]

5 **[00231]** 73 (30 mg, 0.060 mmol) was coupled with methylamine hydrochloride (7
mg, 0.10 mmol) using EDC, HOBr, Et$_3$N conditions similar to those used in General
Coupling Method B. The product was purified by HPLC to give 18 mg (58%) of 74.
MS found: (M+H)^+ = 519.

EXAMPLE 75

![Chemical structure image]

10 **[00232]** 73 (30 mg, 0.060 mmol) was coupled with conc ammonium hydroxide (0.5
mL) using EDC, HOBr, Et$_3$N conditions similar to those used in General Coupling
Method B. The product was purified by HPLC to give 8 mg (27%) of 75. MS found:
(M+H)^+ = 505.

EXAMPLE 76

![Chemical structure image]

15 **[00233]** 73 (30 mg, 0.060 mmol) was coupled with 2M dimethylamine in THF
(0.05 mL, 0.10 mmol) using EDC, HOBr, Et$_3$N conditions similar to those used in
General Coupling Method B. The product was purified by HPLC to give 17 mg
20 (53%) of 76. MS found: (M+H)^+ = 533.

EXAMPLE 77

![Chemical structure image]
(a) 2-(2-(tert-butoxycarbonyl)thiazol-4-yl)acetic acid (824 mg, 3.2 mmol) which was prepared according to the method of Kim et al. (Synlett, 1999, 8, 1239-1240) was coupled with 1,2-phenylenediamine (345 mg, 3.2 mmol) using General Coupling Method B. The product was purified on SiO$_2$ using 33% hexanes in EtOAc to give 335 mg (30%) of 77a. MS found: \((M+H)^+ = 349\).

(b) 77a (330 mg, 0.95 mmol) was heated in 5 mL of glacial acetic acid for 2 h at 100 °C. The reaction mixture was cooled and concentrated by rotary evaporator. The residue was diluted with sat NaHCO$_3$ and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO$_4$, the solution was filtered, and concentrated by rotary evaporator to give 330 mg of 77b. MS found: \((M+H)^+ = 331\).

(c) 77b (52 mg, 0.16 mmol) was treated with a solution of 1 mL TFA and 1 mL DCM for 1 hr. The reaction mixture was concentrated by rotary evaporator and then coupled with Core A (50 mg, 0.16 mmol) using General Coupling Method B. The product was purified by HPLC to give 39 mg (49%) of 77. MS found: \((M+H)^+ = 502\).

EXAMPLE 78

(a) 2-(thiophen-2-yl)acetyl chloride (391 mg, 2.4 mmol) was added to a freshly distilled solution of diazomethane in diethyl ether (~8 mmol, prepared from diazald) at 0 °C. The reaction mixture was stirred for 30 min at 0 °C then 2 mL of conc HCl was added. After stirred 30 min at 0 °C, the reaction was allowed to warm to rt and stirred 1 hr. Quenched excess diazomethane with acetic acid. Diluted with EtOAc and washed with water and sat NaHCO$_3$. The EtOAc extracts were dried over MgSO$_4$ then solution was filtered and concentrated by rotary evaporator to give 78a which was taken to the next step without further purification.

(b) To a solution of 78a in 10 mL of EtOH was added thiourea (228 mg, 3.0 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was diluted with water and extracted 2 x EtOAc. The EtOAc extracts were dried over
MgSO₄, filtered, and concentrated by rotary evaporator to give 460 mg (96%) of a 78b. MS found: (M+H)⁺ = 197.

(c) 78b (48 mg, 0.25 mmol) was coupled with Core B (70 mg, 0.24 mmol) using General Coupling Method A. The product was purified by HPLC to give 52 mg (46%) of 78. MS found: (M+H)⁺ = 468.

EXAMPLE 79

(a) 2-[4-(methylsulfonyl)phenyl]acetic acid (650 mg, 3.0 mmol) was heated at reflux in 5 mL of thionyl chloride for 1 hr. The reaction mixture was cooled and concentrated by rotary evaporator. The crude residue was dissolved in 10 mL of THF and then added to a freshly distilled solution of diazomethane in diethyl ether (~10 mmol, prepared from diazald) at 0 C. The reaction mixture was stirred for 30 min at 0 C then 2 mL of conc HCl was added. After stirring 30 min at 0 C, the reaction was allowed to warm to rt and stirred 1 hr. Quenched excess diazomethane with acetic acid. Diluted with EtOAc and washed with water and sat NaHCO₃. The EtOAc extracts were dried over MgSO₄ then solution was filtered and concentrated by rotary evaporator to give 79a which was taken to the next step without further purification.

(b) To a solution of 79a in 10 mL of EtOH was added thiourea (228 mg, 3.0 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was diluted with water and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄, filtered, and concentrated by rotary evaporator to give 630 mg (78%) of a 79b. MS found: (M+H)⁺ = 269.

(c) 79b (27 mg, 0.10 mmol) was coupled with Core B (30 mg, 0.10 mmol) using General Coupling Method A. The product was purified by HPLC to give 36 mg (67%) of 79. MS found: (M+H)⁺ = 540.
EXAMPLE 80

(a) To a solution of 4-bromophenylacetone in 20 mL of pyridine was added selenium dioxide and the reaction mixture was heated at 110 °C for 1 hr. The reaction was cooled to 90 °C and maintained at this temperature for 12 hr. The reaction mixture was diluted with EtOAc and filtered through a plug of Celite washing well with EtOAc. The filtrate was washed with 1N HCl. The EtOAc layer was separated and then extracted with 2 x 1N NaOH. The aqueous layer was acidified with conc HCl then extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄ then solution was filtered and concentrated by rotary evaporator to give 1.9 g of 80a.

(b) To a solution of 80a (1.9 g, 8.3 mmol) in 10 mL of DCM was added a solution of 2M oxalyl chloride in DCM (4.5 mL, 9 mmol) followed by 2 drops of DMF. The reaction was stirred for 1 hr. The reaction mixture was concentrated by rotary evaporator. The crude residue was dissolved in 10 mL of THF and then added to a freshly distilled solution of diazomethane in diethyl ether (~20 mmol, prepared from diazald) at 0 °C. The reaction mixture was stirred for 30 min at 0 °C then 2 mL of conc HCl was added. After stirred 30 min at 0 °C, the reaction was allowed to warm to rt and stirred 1 hr. Quenched excess diazomethane with acetic acid. Diluted with EtOAc and washed with water and sat NaHCO₃. The EtOAc extracts were dried over MgSO₄ then solution was filtered and concentrated by rotary evaporator to give 80b which was taken to the next step without further purification.

(c) To a solution of 80b in 10 mL of EtOH was added thiourea (684 mg, 9.0 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was diluted with water and extracted 2 x EtOAC. The EtOAC extracts were dried over MgSO₄, filtered, and concentrated by rotary evaporator. The product was purified on SiO₂ using 50% hexanes in EtOAc to give 410 mg (17%) of 80c. MS found: (M+H)⁺ = 284.
(d) 80c (115 mg, 0.41 mmol) was coupled with **Core B** (122 mg, 0.42 mmol) using General Coupling Method A. The product was purified on SiO2 using 75% hexanes in EtOAc to give 182 mg (80%) of **80d**. MS found: (M+H)+ = 555.

(e) A Smith Process vial was charged with **80d** (56 mg, 0.10 mmol), 4-pyridineboronic acid (25 mg, 0.20 mmol), tetrakis(triphenylphosphine)palladium(0) (12 mg, 0.010 mmol), 0.1 mL of 2M K2CO3, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150°C. The reaction was cooled, filtered and purified by HPLC to give 8 mg (14%) of **80**. MS found: (M+H)+ = 553.

EXAMPLE 81

![Example 81](image)

(a) A solution of **80a** (3.5 g, 17.6 mmol) in 10 mL of THF was added to a freshly distilled solution of diazomethane in diethyl ether (~20 mmol, prepared from diazald) at 0°C. The reaction was allowed to warm to rt and stirred 1 hr. Quenched excess diazomethane with acetic acid. Diluted with diethyl ether and washed with water and 1N NaOH. The ether extracts were dried over MgSO4 then solution was filtered and concentrated by rotary evaporator to give 1.8 g **81a**. MS found: (M+H)+ + 244.

(b) To a solution of **81a** (1.8 g, 7.4 mmol) in 10 mL of DCM was added DeoxoFluor™ (4.0 mL, 9 mmol) all at once. The reaction was stirred at rt for 12 hr. The reaction was diluted with DCM and washed with 1N HCl. The DCM extracts were dried over MgSO4, filtered, and concentrated by rotary evaporator. The crude product was treated with 40 mL of 1:1 1N NaOH/MeOH for 2 hr. The reaction mixture was diluted with water and washed with EtOAc. The aqueous layer was acidified with conc HCl and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO4, filtered, and concentrated by rotary evaporator to give 1.6 g of **81b**. MS found: (M+H)+ + 252.

(c) **81b** (1.6 g, 6.37 mmol) was heated at reflux in 20 mL of thionyl chloride for 1 hr. The reaction mixture was cooled and concentrated by rotary
evaporator. The crude residue was dissolved in 10 mL of THF and then added to a freshly distilled solution of diazomethane in diethyl ether (~15 mmol, prepared from diazald) at 0 C. The reaction mixture was stirred for 30 min at 0 C then 2 mL of conc HCl was added. After stirred 30 min at 0 C, the reaction was allowed to warm to rt and stirred 1 hr. Quenched excess diazomethane with acetic acid. Diluted with EtOAc and washed with water and sat NaHCO₃. The EtOAc extracts were dried over MgSO₄ then solution was filtered and concentrated by rotary evaporator to give 81c which was taken to the next step without further purification.

(d) To a solution of 81c in 20 mL of EtOH was added thiourea (532 mg, 7.0 mmol) all at once. The reaction was heated at reflux for 4 hr. The reaction was diluted with water and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄, filtered, and concentrated by rotary evaporator. To remove unwanted methyl ester the residue was treated with 10 mL of 1:1 1N NaOH/MeOH for 2hr. The reaction mixture was diluted with water and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄ then solution was filtered and concentrated by rotary evaporator to give 390 mg (21%) of a 81d. MS found: (M+H)⁺ = 306.

(e) 81d (390 mg, 1.28 mmol) was coupled with Core A (430 mg, 1.48 mmol) using General Coupling Method B. The product was purified on SiO₂ using 90% hexanes in EtOAc to give 140 mg (19%) of 81e. MS found: (M+H)⁺ = 577.

(f) A Smith Process vial was charged with 81e (140 mg, 0.24 mmol), 4-pyridineboronic acid (122 mg, 0.48 mmol), tetrakis(triphenylphosphine)palladium(0) (28 mg, 0.024 mmol), 0.24 mL of 2M K₂CO₃, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 30 min at 150 C. The reaction was cooled, filtered and purified by HPLC to give 10 mg (6%) of 81. MS found: (M+H)⁺ = 575.

EXAMPLE 82

![Chemical structure](image)

[00234] A Smith Process vial was charged with 48 (54 mg, 0.10 mmol), morpholine (35 mg, 0.40 mmol), palladium(II) acetate (2.3 mg, 0.010 mmol), 2-(di-t-
butylphosphino)biphenyl (6 mg, 0.02 mmol), 0.1 mL of 2M K₂CO₃, and 2.5 mL of DMF. The reaction mixture was degassed by bubbling nitrogen through for 15 min, then sealed and exposed to microwave irradiation for 1 hr at 150 °C. The reaction was cooled, filtered and purified by HPLC to give 7 mg (13%) of 82. MS found:

\[(M+H)^+ = 547.\]

EXAMPLE 83

```
\begin{center}
\includegraphics[width=0.2\textwidth]{example83.png}
\end{center}
```

(a) 39b (500 mg, 2.2 mmol) was coupled with Core B (619 mg, 2.12 mmol) using General Coupling Method A. The reaction was diluted with brine, and extracted 2 x EtOAc. The EtOAc extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator, and chromatographed on SiO₂ using 66% hexanes in EtOAc to give 791 mg (71%) of **83a**. MS found: \[(M+H)^+ = 258.\]

(b) To a solution of **83a** (790 mg, 1.56 mmol) in 20 mL of EtOH was added tin(II) chloride (1.14 g, 6.0 mmol) all at once. The reaction was heated at reflux for 18 hr. The reaction was diluted with EtOAc and washed with 2 x dilute aq. KF solution. Concentrated EtOAc extracts were dried over MgSO₄. The solution was filtered, concentrated by rotary evaporator, and 50 mg of the crude residue were purified by HPLC to give 24 mg of **83**. MS found: \[(M+H)^+ = 477.\]

EXAMPLE 84

```
\begin{center}
\includegraphics[width=0.2\textwidth]{example84.png}
\end{center}
```

[00235] To a solution of **83** (40 mg, 0.3 mmol) in 5 mL of DCM was added 0.5 mL of acetic anhydride. The reaction mixture was heated at reflux for 15 min. The reaction was concentrated by rotary evaporator, and the product was purified by HPLC to give 35 mg (81%) of the desired product **84**. MS found: \[(M+H)^+ = 519.\]
EXAMPLE 85

[00236] 83 (48 mg, 0.10 mmol) was coupled with 2,2-dimethylcyclopropanecarboxylic acid (14 mg, 0.12 mmol) using EDC, HOBT, Et3N conditions similar to those used in General Coupling Method B. The product was purified by HPLC to give 35 mg (61%) of 85. MS found: (M+H)+ = 573.

EXAMPLE 86

Core E Example 86

[00237] Following the general coupling method B, to a solution of the acid, Core E (34 mg, 0.114 mmol) in acetonitrile (2 ml) were added 1-hydroxybenzo-triazole (23 mg, 0.17 mmol), and 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide hydrochloride (33 mg, 0.17 mmol). After stirring for 10 minutes, (4-(4-methoxybenzyl)thiazol-2-amine (25 mg, 0.114 mmol) was added followed by addition of diisopropylethylamine (44 mg, 0.663 ml, 0.342 mmol). The reaction was heated at 85 °C for 16 hr. The product mixture was concentrated and purified by HPLC to give the title compound of Example 86 as a white solid (33.8 mg, 0.068 mmol, 59% yield). LC/MS m/z 501.24 (M+H)+; HPLC (Column: Shimadzu VP-0DS, C-18 Ballistic; 4.6 x 50 mm, 4.0 mL/min. flow rate, 220 nm detection wavelength; 10-90% aq CH3OH /0.1% H3PO4, 4.0 min. gradient w/1min. hold, same for compounds described below unless noted) Rf: 4.353 min. 100% purity.

EXAMPLES 87 TO 91

[00238] In a similar manner to Example 86, Examples 87 - 91 were prepared via the coupling reactions of the appropriate acids (Cores F, G and H) and (4-(4-methoxybenzyl)thiazol-2-amine (in Example 10) or 4-(4-(pyridin-4-yl)benzyl)thiazol-2-amine (in Example 49).
EXAMPLE 92

To a solution of the acid Core C (250 mg, 0.808 mmol) in ethanol (15 ml) was added zinc dust (423 mg, 6.47 mmol) under nitrogen. The reaction mixture was cooled to 0°C, and 1 ml of concentrated hydrochloric acid was added. The reaction was allowed to warm to room temperature and stirred for 12 hours. The product mixture was concentrated and was purified by HPLC to afford the acid Core I as a white solid (115 mg, 36% yield). LC/MS m/z 280.26 (M+H)⁺; HPLC Rt: 1.887 min.

100% purity.
[00240] Following the general coupling method B, the coupling reaction of the acid Core I (28 mg, 0.007 mmol) and (4-(4-methoxybenzyl)thiazol-2-amine (20 mg, 0.091 mmol) afforded the title compound of Example 92 as a white solid (14 mg, mmol, 34% yield). LC/MS m/z 482.27 (M+H)^+; HPLC Rt: 2.933 min. 99% purity.

EXEMPLARY 93

[00241] In a similar manner to Example 91, the title compound of Examples 93 was prepared via the coupling reaction of the acid Core I and 4-(4-(pyridin-4-yl)benzyl)thiazol-2-amine.

<table>
<thead>
<tr>
<th>Example No.</th>
<th>Structure</th>
<th>HPLC Rt Minutes</th>
<th>MS m/z [M+1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td></td>
<td>2.112</td>
<td>529.4</td>
</tr>
</tbody>
</table>

EXAMPLE 94

(a) Preparation of 4-((4-phenylpiperazin-1-yl)methyl)thiazol-2-amine (94a)

[00242] N-(4-(chloromethyl)thiazol-2-yl)acetamide was prepared following a literature procedure (Silberg, A. Frenkel, Z.; Bull. Soc. Chim. Fr.; 1967; 2235-2238). A suspension of 1-acetylthiourea (3.55 g, 0.03 mol), 1,3-dichloropropan-2-one (3.8 g, 0.03 mol) and pyridine (1.96 g, 2 ml, 0.025 mol) in acetone (10 ml) was heated at 100°C in an oil bath for 20 minutes. A flocculent white solid formed. After cooling to room temperature, the reaction mixture was filtered to collect the white solid. The filtrate was evaporated, and the resulting residue was taken into water resulted in a white suspension which was stirred for a couple of minutes.
suspension was filtered. The collected solid was washed with water, dried under vacuum and combined with the above-mentioned white solid to give 2.89 g (51 % yield) of N-(4-(chloromethyl)thiazol-2-yl)acetamide. LC/MS m/z 191.05, 193.05 (M+H)+; HPLC Rt: 1.71 min.

5 [00243] A microwave seal tube was charged with N-(4-(chloromethyl)thiazol-2-yl)acetamide (20 mg, 0.105 mmol), 1-phenylpiperazine (17 mg, 0.105 mmol) and triethylamine (32 mg, 0.044 ml, 0.315 mmol) in 1 ml ethanol. The reaction mixture was heated at 100 C under microwave irradiation for 5 minutes. The product mixture was concentrated and purified by HPLC to give N-(4-((4-phenylpiperazin-1-yl)methyl) thiazol-2-yl)acetamide as a TFA (trifluoroacetic acid) salt, 20 mg (45 % yield). LC/MS m/z 317.29 (M+H)+; HPLC Rt: 1.42 min.

10 [00244] To a solution of N-(4-((4-phenylpiperazin-1-yl)methyl) thiazol-2-yl)acetamide TFA salt (30 mg, 0.07 mmol) in THF (2 ml) was added 6N hydrochloric acid (2 ml). The reaction was heated at reflux for 2.5 hours, and then stirred at room temperature overnight. The reaction mixture was concentrated under vacuum to give the hydrochloride salt of 4-((4-phenylpiperazin-1-yl)methyl)thiazol-2-amine 94a as a tan solid, 20 mg (92% yield). LC/MS m/z 275.24 (M+H)+; HPLC Rt: 0.77 min.

(b) Following the general coupling method B, the coupling reaction of the acid Core C (22 mg, 0.071 mmol) and 4-((4-phenylpiperazin-1-yl)methyl)thiazol-2-amine 94a (17 mg, 0.055 mmol) afforded the title compound (TFA salt) of Example 93 as a white solid (11 mg, 0.019 mmol, 29 % yield). LC/MS m/z 566.18 (M+H)+; HPLC Rt: 3.24 min. 99% purity.

EXAMPLES 95 TO 97

[00245] In a similar manner to 94a, 4-((4-(pyridin-2-yl)piperazin-1-yl)methyl)thiazol-2-amine and 4-(morpholinomethyl)thiazol-2-amine were prepared from N-(4-(chloromethyl)thiazol-2-yl)acetamide. Following the procedure described in Example 86, Examples 95 - 97 were prepared via the coupling reactions of the appropriate acids (Cores A and C) and 4-((4-(pyridin-2-yl)piperazin-1-yl)methyl)thiazol-2-amine or 4-(morpholinomethyl)thiazol-2-amine.
EXAMPLE 98

Step a

5-(4-methoxybenzyl)-1H-1,2,4-triazol-3-amine

To a stirred mixture of N-aminoguanidine nitrate (5.50 g, 40 mmol) and anhydrous methanol (50 mL) cooled to 0 °C was added sodium methoxide solution (25% in methanol, 9.2 mL, 40 mmol) dropwise. The resulting mixture was stirred at 0°C for 10 min before methyl 2-(4-methoxyphenyl)acetate (1.6 mL, 10 mmol) was added. The mixture was then stirred at 0°C for 10 min, RT for 10 min, and 75 °C for 27 hr. The reaction mixture was cooled and diluted with 20 mL of water. Methanol was removed under vacuum and the aqueous solution was acidified to pH = 3-4 with
3 N aqueous HCl solution. The solid obtained was filtered, washed with water, and recrystallized in ethanol-water to give 1.65 g (81% yield) of 5-(4-methoxybenzyl)-1H-1,2,4-triazol-3-amine as a white solid. (M+H)^+ = 205.22

Step b

To a stirred solution of 15-methyl-8-nitrotetracyclo[6.6.2.0^2,7.0^9,14]hexadeca-2,4,6,9,11,13-hexaene-15-carboxylic acid (25 mg, 0.08 mmol, prepared according to WO04009017), 1-hydroxybenzotriazole (16 mg, 0.12 mmol), and N-ethyl-N,N-diisopropylamine (0.1 mL) in anhydrous acetonitrile (1 mL) was added EDCI (38 mg, 0.2 mmol) at RT under argon. After the mixture was stirred at RT for 5 min, 5-(4-methoxybenzyl)-1H-1,2,4-triazol-3-amine (21 mg, 0.1 mmol) was added. The reaction mixture was stirred at RT overnight and at 80 °C for 1 h. After the solvents were removed, the residue was partitioned between methylene chloride and saturated aqueous sodium bicarbonate solution. The aqueous solution was extracted with methylene chloride. The combined organic solutions were dried (Na_2SO_4), concentrated and purified by silica gel chromatography to give 35 mg (87% yield) of the title compound as a white solid. (M+H)^+ = 496.20

Step c

N-[3-(4-methoxybenzyl)-1H-1,2,4-triazol-5-yl]-15-methyl-8-nitrotetracyclo[6.6.2.0^2,7.0^9,14]hexadeca-2,4,6,9,11,13-hexaene-15-carboxamide

To a solution of 3-(4-methoxybenzyl)-1-[(15-methyl-8-nitrotetracyclo[6.6.2.0^2,7.0^9,14]hexadeca-2,4,6,9,11,13-hexaene-15-yl)carbonyl]-1H-1,2,4-triazol-5-amine (33 mg, 0.067 mmol) in anhydrous THF (3 mL) was added sodium hydride (60% dispersion in mineral oil, 25 mg, 0.63 mmol) at 0°C. The mixture was stirred at 0°C for 25 min and RT for 30 min. The reaction mixture was quenched by the addition of saturated aqueous ammonium hydrochloride solution and
extracted into ethyl acetate. The ethyl acetate layer was dried (Na₂SO₄) and concentrated. Silica gel flash chromatography purification afforded 6 mg (18% yield) of Example 98. (M+H)⁺ = 496.18. ¹H-NMR (400 MHz, CD₂COCD₃): δ 12.09 (s, 1H), 10.46 (s, 1H), 7.54-7.58 (m, 1H), 7.34-7.40 (m, 3H), 7.15-7.27 (m, 6H), 6.87 (d, J = 8Hz, 2H), 5.08 (s, 1H), 3.85 (s, 2H), 3.78 (s, 3H), 3.60 (d, J = 12Hz, 1H), 2.04 (d, J = 12Hz, 1H), 1.28 (s, 3H).

EXAMPLE 99

\[
\begin{align*}
N-(3\text{-benzyl-1H-1,2,4-triazol-5-yl)-15-methyl-8-nitrotetraacyclo[6.6.2.0^{2,7}.0^{9,14}]hexadeca-2,4,6,9,11,13-hexaene-15-carboxamide}
\end{align*}
\]

3-benzyl-1-[(15-methyl-8-nitrotetraacyclo[6.6.2.0^{2,7}.0^{9,14}]hexadeca-2,4,6,9,11,13-hexaen-15-yl)carbonyl]-1H-1,2,4-triazol-5-amine, prepared according to procedure (b) as in Example 1, (13 mg, 0.028 mmol) was treated with 3-pyridinesulfonic acid (3 mg, 0.019 mmol), dimethylsulfone (66 mg), and heated at 130°C for 2 hr and at 140°C for 2 hr under argon. Saturated aqueous sodium bicarbonate solution was added and the mixture was extracted with methylene chloride. The combined methylene chloride solutions were dried and concentrated. Silica gel flash chromatography purification gave 7 mg (54% yield) of Example 99 as a white solid. (M+H)⁺ = 466.15. ¹H-NMR (400 MHz, CD₂COCD₃): δ 12.08 (s, 1H), 10.36 (s, 1H), 7.39-7.43 (m, 1H), 7.13-7.25 (m, 7H), 7.00-7.12 (m, 5H), 4.92 (s, 1H), 3.78 (s, 2H), 3.46 (d, J = 12 Hz, 1H), 1.89 (d, J = 12 Hz, 1H), 1.13 (s, 3H).

EXAMPLE 100

Step a

5-[1-(4-bromophenyl)-1-methylethyl]-1H-1,2,4-triazol-3-amine

[00250] To a stirred mixture of N-aminoguanidine nitrate (2.1 g, 15 mmol) and anhydrous methanol (18 mL) cooled to 0 °C was added sodium methoxide solution (25% in methanol, 3.4 mL, 15 mmol) dropwise. The resulting mixture was stirred at 0 °C for 10 min before methyl 2-(4-bromophenyl)-2-methylpropanoate (1.0 g, 3.9 mmol) was added. The mixture was then stirred at 0 °C for 10 min, RT for 10 min, and 75 °C for 6 days. The reaction mixture was cooled and diluted with 20 mL of water. Methanol was removed under vacuum and the aqueous solution was acidified to pH = 3-4 with 3 N aqueous HCl solution and extracted with ethyl acetate. The ethyl acetate layer was dried (Na₂SO₄) and concentrated. Silica gel flash chromatography purification gave 330 mg (31% yield) of the title compound as a yellow solid. (M+H)⁺ = 281.14

Step b

3-[1-(4-bromophenyl)-1-methylethyl]-1-[(15-methyl-8-nitrotetracyclo[6.6.2.0²⁷.0⁸¹⁴]hexadeca-2,4,6,9,11,13-hexaen-15-yl)carbonyl]-1H-1,2,4-triazol-5-amine

[00251] To a stirred solution of 15-methyl-8-nitrotetracyclo[6.6.2.0²⁷.0⁸¹⁴]hexadeca-2,4,6,9,11,13-hexaene-15-carboxylic acid (31 mg, 0.10 mmol, prepared according to WO04009017), 1-hydroxybenzotriazole (20 mg, 0.15 mmol), and N-ethyl-N,N-diisopropylamine (0.15 mL) in anhydrous acetonitrile (1.5 mL) was added EDCI (39 mg, 0.2 mmol) at RT under argon. After the mixture was stirred at RT for 5 min, 5-[1-(4-bromophenyl)-1-methylethyl]-1H-
1,2,4-triazol-3-amine (28 mg, 0.1 mmol) was added. The reaction mixture was stirred at RT for 2 h and at 80°C for 1 h. After the solvents were removed, the residue was partitioned between methylene chloride and saturated aqueous sodium bicarbonate solution. The aqueous solution was extracted with methylene chloride. The combined organic solutions were dried (Na₂SO₄), concentrated and purified by silica gel chromatography to give 53 mg (93% yield) of the title compound as a white solid which was used as such for the subsequent step without further purification.

Step c

\[
N\rightarrow\{3-\{1-(4-bromophenyl)-1-methylethyl\}-1H-1,2,4-triazol-5-yl\}-15-methyl-8-nitrotetracyclo[6.6.2.0^{2,7}.0^{9,14}]hexadeca-2,4,6,9,11,13-hexaene-15-carboxamide
\]

3-[1-(4-bromophenyl)-1-methylethyl]-1-[(15-methyl-8-nitrotetracyclo[6.6.2.0^{2,7}.0^{9,14}]hexadeca-2,4,6,9,11,13-hexaen-15-yl)carbonyl]-1H-1,2,4-triazol-5-amine (53 mg, 0.093 mmol) was treated with 3-pyridinesulfonic acid (15 mg, 0.093 mmol) and dimethylsulfone (250 mg), and then heated at 145°C for 2.5 hr and 160°C for 2 hr under argon. The mixture was dissolved in methanol. HPLC purification (YMC S5 ODS column 20x100 mm, 10-90% aqueous methanol over 10 minutes containing 0.1% trifluoroacetic acid, 20 mL/min, monitoring at 220 nm) gave 18 mg (34% yield) of Example 100 as a white solid. (M+H)⁺ = 572.10. ¹H-NMR (400 MHz, CDCl₃): δ 7.40-7.44 (m, 3H), 7.15-7.33 (m, 9H), 4.46 (s, 1H), 3.32 (d, J = 12 Hz, 1H), 2.09 (d, J = 12 Hz, 1H), 1.73 (d J = 8Hz, 6H), 1.16 (s, 3H).

EXAMPLE 101

![Diagram](image)

Core H

[00253] The title compound was prepared from homochiral Core H (S enantiomer) in the same manner as described for the preparation of 69. MS found: (M+H)⁺ = 514.
EXAMPLE 102

[00254] The title compound was prepared from homochiral Core I (R enantiomer) in the same manner as described for the preparation of 69. MS found: (M+H)^+ = 514.

EXAMPLE 103

[00255] The title compound was prepared from homochiral Core I (R enantiomer) and 10c in the same manner as described for the preparation of 11. MS found:

\[(M+H)^+ = 467. \]

EXAMPLE 104

[00256] The title compound was prepared from homochiral Core H (S enantiomer) and 10c in the same manner as described for the preparation of 11. MS found:

\[(M+H)^+ = 467. \]
WHAT IS CLAIMED IS:

1. A compound having a structure of formula (I):

```
      R1
      |   
      R2 
     /   
    O---R3 
     |   |  
    R4---R5---R6
    |        |  
   X---Y---Z
```

or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:

- X is selected from N, NH, O, and S;
- Y is N, NH, or CR₆;
- R is hydrogen, cyano, hydroxy, alkyl, alkenyl, alkylnyl, alkoxy, aryl, arylalkyl, aryloxy, heteroaryl, cycloheteroalkyl, heteroarylalkyl, cycloheteroalkylalkyl, cycloalkyl, cycloalkylalkyl, cyanoalkyl, aminoalkyl, hydroxyalkyl, arylxoyalkyl, or hydroxyaryl;
- Z is a cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, or heteroaryl ring;
- R¹ is hydrogen or C₁₋₄ alkyl;
- R² and R³ are independently at each occurrence hydrogen, halogen, hydroxy, alkyl, alkenyl, alkylnyl, alkoxy, cyano, nitro, NR⁶R⁷, or CHO, provided that if Y is CR₆ and X is S, then R² and R³ are not both methyl;
- or R² and R³ combine to form =O or a double bond, wherein the double bond is substituted by hydrogen, aryl, alkyl, alkenyl, alkylnyl, alkoxy, amino, substituted amino, alkoxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, heteroaryl, cycloheteroalkyl, heteroarylalkyl, cycloheteroalkylalkyl, cycloalkyl, or cycloalkylalkyl;
- R⁴ and R⁵ are independently at each occurrence hydrogen, alkyl, aryl, cycloalkyl, heteroaryl, or cycloheteroalkyl;
- R⁶ is hydrogen, halogen, hydroxy, alkyl, alkenyl, alkylnyl, alkoxy, aryl, arylxoy, heteroaryl, cycloheteroalkyl, heteroarylalkyl, cycloheteroalkylalkyl, cyano, heteroarylaminocarboy, cycloheteroalkylcarboxyl, cyanoalkyl, alkylaminoalkyl, hydroxyalkyl, hydroxyaryl, arylxoyalkyl, nitro, NR⁶R⁷, CHO, CO₂alkyl, alkoxyalkyl,
CONR²R, CH₂NR²R, CO₂H, CH₂OH, CH₂NH(O)R²R, NHCOR², NHCONR²R, NHSO₃R, -SO₂NR²R, NR²SO₂NR²R, or NR²SO₃R;

R² and R³ are independently selected from hydrogen, halogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, aryl, aryleoxy, heteroaryl, cyclohexatalkyl, heteroarylalkyl, cyclohexetalkylalkyl, cyano, heteroarylamino, carbonyl, cyclohexatalkylcarbonyl, cyanoalkyl, alkylaminoalkyl, hydroxyalkyl, hydroxyaryl, arilhdroxyalkyl, alkoxyalkyl, nitro, NR²R, CHO, CO₂alkyl, CONR²R, CH₂NR²R, CO₂H, CH₂OH, CH₂NR²R, NHCOR², NHCONR²R, and NHSO₃R;

R⁴ and R⁵ are independently selected from hydrogen, alkyl, alkenyl, alkynyl, alkoxy, NR²R, aryl, hydroxy, aryleoxy, heteroaryl, cyclohexatalkyl, heteroarylalkyl, cyclohexetalkylalkyl, hydroxyaryl, and arlyoxyalkyl;

R⁶ and R⁷ are independently at each occurrence selected from hydrogen, aryl, alkyl, alkenyl, alkynyl, alkoxy, amino, substituted amino, alkoxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, heteroaryl, cyclohexatalkyl, heteroarylalkyl, cyclohexetalkylalkyl, cycloalkyl, and cycloalkylalkyl, provided R⁶ and R⁷ are not both alkoxy or amino;

or R⁶ and R⁷ at each occurrence can be taken together with the nitrogen to which they are attached to form a 5-, 6- or 7-membered heteroaryl or cyclohexetalkyl ring which contains 1, 2 or 3 hetero atoms which can be N, O or S;

R⁸ and R⁹ independently at each occurrence are selected from hydrogen, aryl, alkyl, alkenyl, alkynyl, alkoxy, amino, substituted amino, alkoxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, heteroaryl, cyclohexatalkyl, heteroarylalkyl, cyclohexetalkylalkyl, cycloalkyl, and cycloalkylalkyl;

p is 0, 1 or 2;

r is 0, 1 or 2; and

s is 0, 1 or 2.

2. A compound as defined in Claim 1, or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:

Z is a cycloalkyl, cycloalkenyl, heterocycloalkyl, aryl, or heteroaryl ring where each ring is substituted by 0-4 R⁷ and 0-1 R⁸;

- 114 -
R^6 is hydrogen, halogen, hydroxy, C_{1-4}alkyl, trifluoromethyl, C_{1-4}alkoxy, -C(O)NR^eR^f, nitro, or cyano;

R^7 and R^8 are independently at each occurrence hydrogen, halogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, aryl, ariloxyl, heteroaryl, cyclohexylalkyl, heteroaryllalkyl, cyclohexylalkylalkyl, cyano, heteroarylamino, carbonyl, cyclohexylalkylalkyl, cyanoalkyl, alkylaminoalkyl, hydroxyalkyl, hydroxyaryl, aryloxalkyl, alkoxyalkyl, nitro, oxo, -O(CH_2)_nR^h, NR^eR^f, CHO, CO_2alkyl, CONR^eR^f, CH_2NR^eR^f, CO_2H, CH_2OH, CH_2NH(C)R^eR^f, NR^eCOR^i, NR^eCONR^eR^f, NR^eSO_2R^i, NR^eSO_2NR^eR^f, or NR^eSO_2R^i;

or R^7 and R^8 located on adjacent atoms can be taken together to form an optionally substituted cycloalkyl, aryl, heteroaryl, or cyclohexylalkyl ring;

R^h is selected from aminocarbonyl, O(CH_2)_nO(CH_2)_nR^i, alkylamino, heterocycloalkyl, heteroaryl, and aryl; and

v, y and z are independently at each occurrence selected from 0, 1 and 2.

3. A compound as defined in Claim 1 having the structure

or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:

R is H or alkyl;

R^e and R^f are independently selected from H, C_{1-4}alkyl, OH, CN, NO_2, NH_2, CHO, CO_2alkyl, CONR^eR^f, and CH_2NR^eR^f; and

R^e and R^f are independently selected from H, halogen, OH, CN, NO_2, NH_2, CHO, CO_2alkyl, CONR^eR^f and CH_2NR^eR^f.

4. A compound as defined in Claim 3, or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:
R is H or C_{14}alkyl; and
R^5 and R^6 are both H.

5. A compound as defined in Claim 3, or a stereoisomer thereof, or a
 tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:
 R^8 is selected from H and NO_2; and
 R^9 is selected from H, CH_3, Cl, Br, NH_2, CN, and NO_2.

6. A compound as defined in Claim 3, or a stereoisomer thereof, or a
 tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein X is NH or S.

7. A compound as defined in Claim 3, or a stereoisomer thereof, or a
 tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein Z is a
 heterocycloalkyl, aryl, or heteroaryl ring, each ring substituted by 0-4 R^7 and 0-1 R^8.

8. A compound as defined in Claim 7 or a stereoisomer thereof, or a
 tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:
 Z is a phenyl, naphthyl, pyrimidyl, pyridinyl, pyrazinyl, piperazinyl,
 thiophenyl, thiazolyl, isoxazolyl, or imidazolyl ring;
 R^6 is hydrogen;
 R^7 and R^8 are independently at each occurrence:
 (a) hydrogen, bromo, chloro, fluoro, C_{14}alkyl, arylalkyl, OR^{11},
 oxo, NO_2, cyano, NH_2, -NH(C_{14}alkyl), -N(C_{14}alkyl)_2, SO_2C_{14}alkyl,
 -NHC(O)C_{14}alkyl, -C(O)NH(C_{14}alkyl), -C(O)NH_2,
 CO_2H, -CO_2(C_{14}alkyl), or arylalkyl; or
 (b) a phenyl, naphthyl, pyrazolyl, pyrimidinyl, pyridinyl,
 isoxazolyl, indolyl, or morpholinyl ring; each of which is optionally further
 substituted by 1-3 R^{13}; or
 (c) R^7 and R^8 located on adjacent atoms can be taken together to
 form a dioxole or phenyl ring, where each ring is optionally further
 substituted;
R^{11} at each occurrence is selected from hydrogen, C_{1-4}alkyl, (CH_{2})_{2}C(O)NH_{2}, (CH_{2})_{3}heteroaryl, (CH_{2})_{3}O(CH_{2})_{2}O(CH_{2})_{2}OR^{12}, (CH_{2})_{3}N(C_{1-4}alkyl)_{2}, (CH_{2})_{3}heterocycloalkyl, and (CH_{2})_{3}phenyl;

R^{12} is hydrogen or C_{1-4}alkyl; and

R^{13} is halogen, oxo, NH_{2}, hydroxy, C_{1-4}alkyl, C_{1-4}alkoxy, -(CH_{2})_{3}aryl, or heterocycloalkyl.

9. The compound as defined in Claim 8, or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein Z is selected from:
10. A compound as defined in Claim 1, or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:

R² is hydrogen, halogen, or hydroxy; and

R³ is hydrogen, halogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, cyano, nitro, NR³R⁵, or CHO;

or R² and R³ combine to form =O or a double bond, wherein the double bond is substituted by hydrogen, aryl, alkyl, alkenyl, alkynyl, alkoxy, amino, substituted amino, alkoxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, heteroaryl, heterocycloalkyl, heteroarylalkyl, heterocycloalkylalkyl, cycloalkyl, or cycloalkylalkyl.

11. A compound as defined in Claim 10, or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:

R² and R³ are independently hydrogen, halogen, or hydroxy;

or R² and R³ combine to form =O.
12. A compound as defined in Claim 6 having the formula:

or a stereoisomer thereof, or a tautomer thereof, or a pharmaceutically acceptable salt thereof, wherein:

R is C₁₋₄-alkyl;

R⁸ is C₁₋₄-alkoxy; halogen, pyrimidine, isoxazole, pyrazole, or pyridine, where the C₁₋₄-alkoxy; halogen, pyrimidine, isoxazole, pyrazole, or pyridine, groups are substituted by hydrogen, morpholino, C₁₋₄-alkoxy, or C₁₋₄-alkyl; and

R⁸ is selected from H, CH₃, Cl, Br, and CN.

13. A compound as defined in Claim 6, having the formula:

including all stereoisomers thereof, or a pharmaceutically acceptable salt thereof, wherein:

R is C₁₋₄-alkyl;

R² and R³ are independently hydrogen, halogen, hydroxy, alkyl, alkenyl, alkynyl, alkoxy, cyano, nitro, NR⁷R⁸, or CHO;

or R² and R³ combine to form =O or a double bond, wherein the double bond is substituted by hydrogen, aryl, alkyl, alkenyl, alkynyl, alkoxy, amino, substituted amino, alkoxyalkyl, alkylaminoalkyl, dialkylaminoalkyl, heteroaryl, heterocycloalkyl, heteroarylalkyl, heterocycloalkylalkyl, cycloalkyl, or cycloalkylalkyl; and

R⁸ is selected from H, CH₃, Cl, Br, NO₂, and CN.

14. A compound selected from:
(ii) a stereoisomer, tautomer, or a pharmaceutically acceptable salt of (i) thereof.

15. A method of treating a disease or disorder which is associated with the expression product of a gene whose transcription is stimulated or repressed by glucocorticoid receptors, or a method of treating a disease or disorder associated with AP-1- and/or NF-κB-induced transcription, or a method for treating a disease or disorder associated with AP-1 and/or NF-κB dependent gene expression, wherein the disease or disorder is associated with the expression of a gene under the regulatory control of AP-1 and/or NF-κB, the method comprises administering to a patient in need of treatment a therapeutically effective amount of a compound as defined in claim 1.

16. A method as defined in claim 15 wherein the disease or disorder is an inflammatory or autoimmune disease selected from transplant rejection of kidney, liver, heart, lung, pancreas, bone marrow, cornea, small bowel, skin allografts, skin homografts, heart valve xenograft, serum sickness, and graft vs. host disease, rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, Type I and Type II diabetes, juvenile diabetes, obesity, asthma, inflammatory bowel disease, Crohn’s disease, ulcerative colitis, pyoderma gangrenum, systemic lupus erythematosis, myasthenia gravis, psoriasis, dermatitis, dermatomyositis; eczema, seborrheoa, pulmonary inflammation, eye uveitis, hepatitis, Grave’s disease, Hashimoto’s thyroiditis, autoimmune thyroiditis, Behcet’s or Sjorgen’s syndrome, pernicious or immunohaemolytic anaemia, atherosclerosis, Addison’s disease, idiopathic adrenal insufficiency, autoimmune polyglandular disease, glomerulonephritis, scleroderma, morphea, lichen planus, viteligo, alopecia areata, autoimmune alopecia, autoimmune hypopituatarism, Guillain-Barre syndrome, and alveolitis; contact hypersensitivity,
delayed-type hypersensitivity, contact dermatitis, urticaria, skin allergies, respiratory allergies, hayfever, allergic rhinitis and gluten-sensitive enteropathy, osteoarthritis, acute pancreatitis, chronic pancreatitis, acute respiratory distress syndrome, Sezary’s syndrome, restenosis, stenosis and atherosclerosis, congenital adrenal hyperplasia, non-suppurative thyroiditis, hypercalcemia associated with cancer, juvenile rheumatoid arthritis, Ankylosing spondylitis, acute and subacute bursitis, acute non-specific tenosynovitis, acute gouty arthritis, post-traumatic ostearthritis, synovitis of osteoarthritis, epicondylitis, acute rheumatic carditis, pemphigus, bullous dermatitis herpetiformis, severe erythema multiforme, exfoliative dermatitis, psoriasis, seborrheic dermatitis, seasonal or perennial allergic rhinitis, bronchial asthma, contact dermatitis, atop dermatitis, drug hypersensitivity reactions, allergic conjunctivitis, keratitis, herpes zoster ophthalmicus, iritis and iridocyclitis, chorioretinitis, optic neuritis, symptomatic sarcoidosis, fulminating or disseminated pulmonary tuberculosis chemotherapy, idiopathic thrombocytopenic purpura in adults, secondary thrombocytopenia in adults, acquired (autoimmune) hemolytic anemia, leukemias and lymphomas in adults, acute leukemia of childhood, ulcerative colitis, regional enteritis, Crohn’s disease, Sjogren’s syndrome, autoimmune vasculitis, multiple sclerosis, myasthenia gravis, sepsis, and chronic obstructive pulmonary disease.

17. The method as defined in claim 16 wherein the disease or disorder is selected from transplant rejection, rheumatoid arthritis, psoriatic arthritis, multiple sclerosis, Type I diabetes, asthma, inflammatory bowel disease, systemic lupus erythematosus, psoriasis and chronic pulmonary disease.

18. A pharmaceutical composition comprising a compound as defined in claim 1 and a pharmaceutically acceptable carrier therefor.

19. A pharmaceutical combination comprising a compound as defined in claim 1 and an immunosuppressant, an anticancer agent, an anti-viral agent, an anti-inflammatory agent, an anti-fungal agent, an anti-biotic, an anti-vascular hyperproliferation agent, an anti-depressant agent, a lipid-lowering agent, a lipid modulating agent, an antidiabetic agent, an anti-obesity agent, an antihypertensive
agent, a platelet aggregation inhibitor, and/or an antiosteoporosis agent, wherein the antidiabetic agent is 1, 2, 3 or more of a biguanide, a sulfonyl urea, a glucosidase inhibitor, a PPAR γ agonist, a PPAR α/γ dual agonist, an SGLT2 inhibitor, a DP4 inhibitor, an aP2 inhibitor, an insulin sensitizer, a glucagon-like peptide-1 (GLP-1), insulin and/or a meglitinide, wherein the anti-obesity agent is a beta 3 adrenergic agonist, a lipase inhibitor, a serotonin (and dopamine) reuptake inhibitor, a thyroid receptor agonist, an aP2 inhibitor and/or an anorectic agent, wherein the lipid lowering agent is an MTP inhibitor, an HMG CoA reductase inhibitor, a squalene synthetase inhibitor, a fibrin acid derivative, an upregulator of LDL receptor activity, a lipoxygenase inhibitor, or an ACAT inhibitor, wherein the antihypertensive agent is an ACE inhibitor, angiotensin II receptor antagonist, NEP/ACE inhibitor, calcium channel blocker and/or β-adrenergic blocker.

20. The combination as defined in Claim 19 wherein the antidiabetic agent is 1, 2, 3 or more of metformin, glyburide, glimepiride, glipizide, chlorpropamide, gliclazide, acarbose, miglitol, pioglitazone, troglitazone, rosiglitazone, insulin, Gl-262570, isaglitazone, JTT-501, NN-2344, L895645, YM-440, R-119702, AJ9677, repaglinide, nateglinide, KAD1129, AR-HO39242, GW-409544, KRP297, AC2993, LY315902, P32/98 and/or NVP-DPP-728A, wherein the anti-obesity agent is orlistat, ATL-962, AJ9677, L750355, CP331648, sibutramine, topiramate, axokine, dexamphetamine, phentermine, phenylpropanolamine, and/or mazindol, wherein the lipid lowering agent is pravastatin, lovastatin, simvastatin, atorvastatin, cerivastatin, fluvastatin, itavastatin, visastatin, fenofibrate, gemfibrozil, clofibrate, avasimibe, TS-962, MD-700, cholestagel, niacin and/or LY295427,

25 wherein the antihypertensive agent is an ACE inhibitor which is captopril, fosinopril, enalapril, lisinopril, quinapril, benazepril, fentiapril, ramipril or moexipril; an NEP/ACE inhibitor which is omapatrilat, [S[(R*,R*)]-hexahydro-6-[(2-mercapto-1-oxo-3-phenylpropyl)amino]-2,2-dimethyl-7-oxo-1H-azepine-1-acetic acid (gemopatrilat) or CGS 30440;

30 an angiotensin II receptor antagonist which is irbesartan, losartan or valsartan;
amlodipine besylate, prazosin HCl, verapamil, nifedipine, nadolol, propranolol, carvedilol, or clonidine HCl, wherein the platelet aggregation inhibitor is aspirin, clopidogrel, ticlopidine, dipyridamole or ifetroban;

the immunosuppressant is a cyclosporin, mycophenolate, interferon-beta,

deoxyergusolin, FK-506 or Ant.-IL-2;

the anti-cancer agent is azathioprine, 5-fluorouracil, cyclophosphamide, cisplatin, methotrexate, thiopeta, or carboplatin;

the anti-viral agent is abacavir, aciclovir, ganciclovir, zidanocin, or vidarabine;

and

the antiinflammatory drug is ibuprofen, celecoxib, rofecoxib, aspirin, naproxen, ketoprofen, diclofenac sodium, indomethacin, piroxicam, prednisone, dexamethasone, hydrocortisone, or triamcinolone diacetate.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C07D277/46 C07D233/91 C07D417/06 A61K31/427 A61P29/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO–Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

- Further documents are listed in the continuation of Box C.

- * Special categories of cited documents:

 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

 - "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 - "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 - "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 - "Z" document member of the same patent family

Date of the actual completion of the international search

2 May 2006

Date of mailing of the international search report

12/05/2006

**Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentilaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax (+31–70) 340–3016

Authorized officer

Lauro, P
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2004009017 A</td>
<td>29-01-2004</td>
<td>AU 2003251970 A1</td>
<td>09-02-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1534273 A2</td>
<td>01-06-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006508042 T</td>
<td>09-03-2006</td>
</tr>
<tr>
<td>WO 2005072729 A</td>
<td>11-08-2005</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>