

US 20050192610A1

(19) **United States**

(12) **Patent Application Publication** (10) **Pub. No.: US 2005/0192610 A1**

Houser et al.

(43) **Pub. Date:**

Sep. 1, 2005

(54) **ULTRASONIC SURGICAL SHEARS AND
TISSUE PAD FOR SAME**

Publication Classification

(76) Inventors: **Kevin L. Houser**, Springboro, OH (US); **Sarah A. Noschang**, Mason, OH (US); **Steven Neuenfeldt**, Cincinnati, OH (US); **Craig N. Faller**, Milford, OH (US); **Jeffrey J. Vaitekunas**, Lakeville, MN (US)

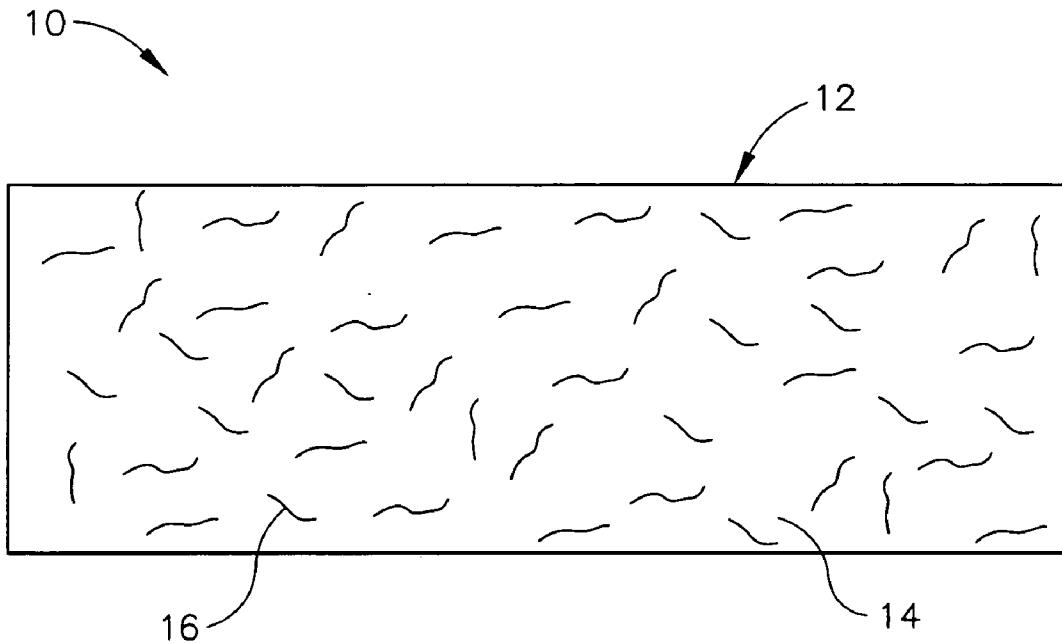
(51) **Int. Cl.⁷** **A61B 17/32**

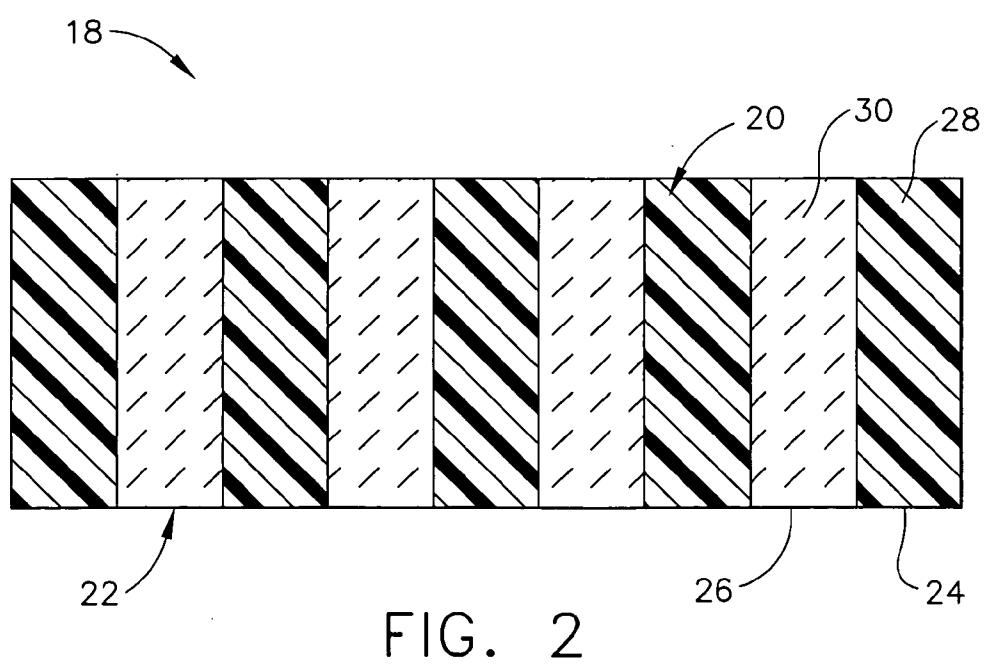
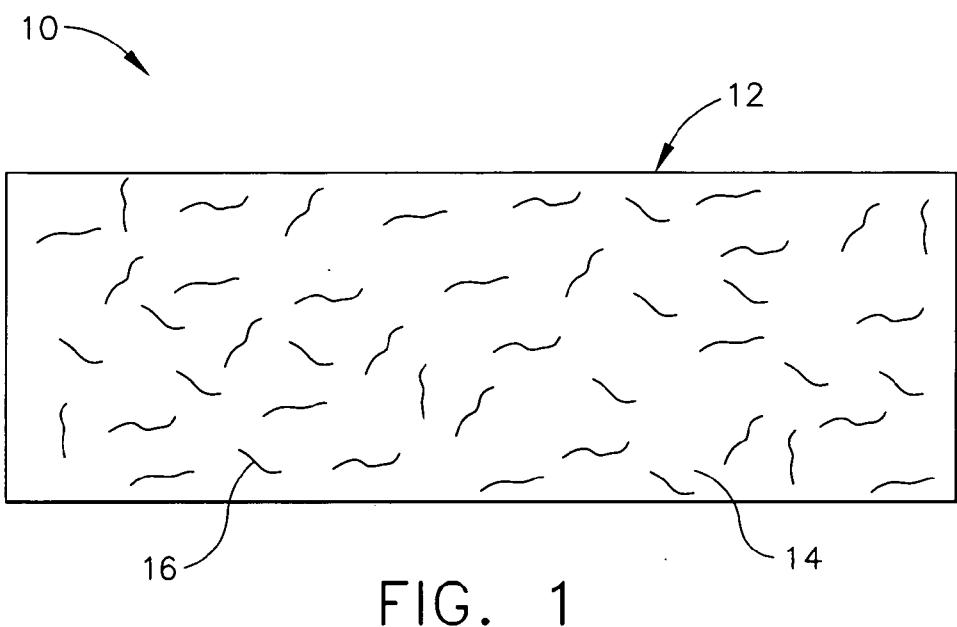
(52) **U.S. Cl.** **606/169**

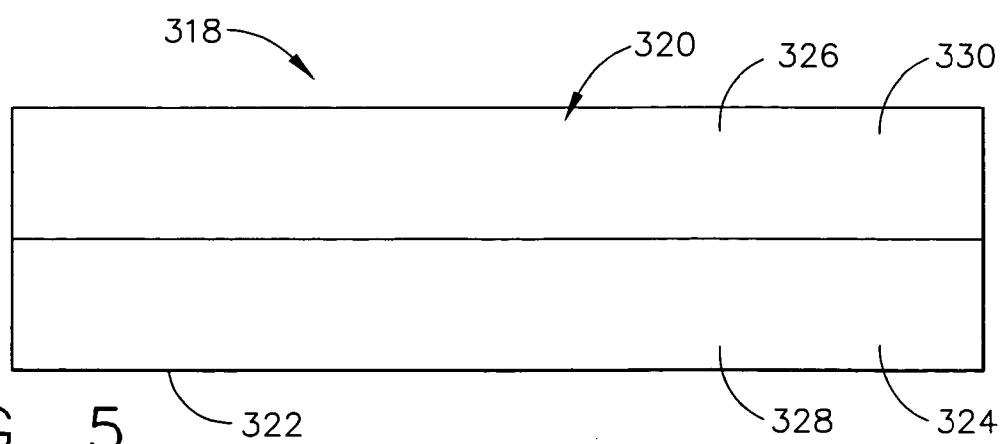
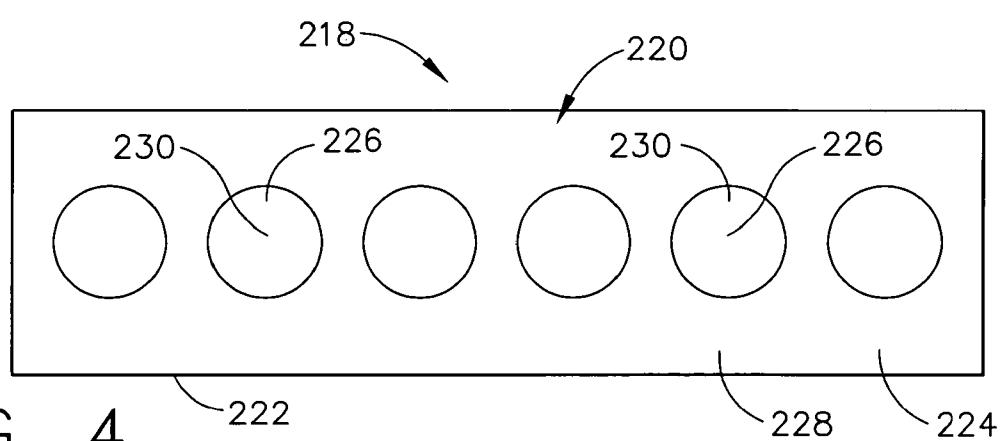
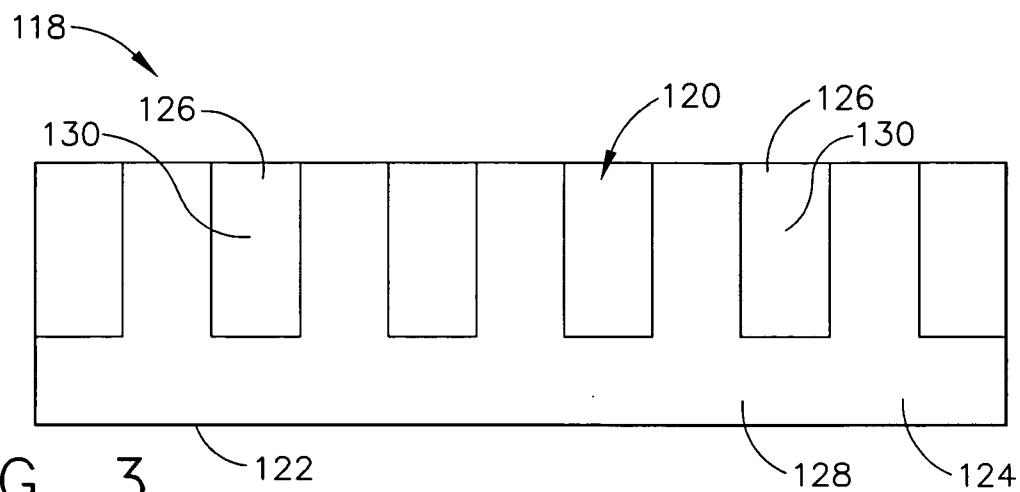
Correspondence Address:

**PHILIP S. JOHNSON
JOHNSON & JOHNSON
ONE JOHNSON & JOHNSON PLAZA
NEW BRUNSWICK, NJ 08933-7003 (US)**

(57) **ABSTRACT**


(21) Appl. No.: **11/065,378**



(22) Filed: **Feb. 24, 2005**




Related U.S. Application Data

(60) Provisional application No. 60/548,301, filed on Feb. 27, 2004. Provisional application No. 60/617,427, filed on Oct. 8, 2004.

An ultrasonic-surgical-shears tissue pad has a tissue-pad body including a base material and at least one filler material. An alternate ultrasonic-surgical-shears tissue pad has a tissue-pad body having adjoining first and second regions, wherein the first region includes a first material and wherein the second region includes a second material. An ultrasonic surgical shears includes an ultrasonic surgical blade and a clamping arm which is operable to open and close toward the blade and which has a transversely and resiliently flexible distal tip. An alternate ultrasonic surgical shears includes an ultrasonic surgical blade, a clamping arm operable to open and close toward the blade, and a tissue pad attached to the clamping arm and having a clamping surface, wherein at least a portion of the tissue pad is resiliently flexible in a direction substantially perpendicular to the clamping surface.

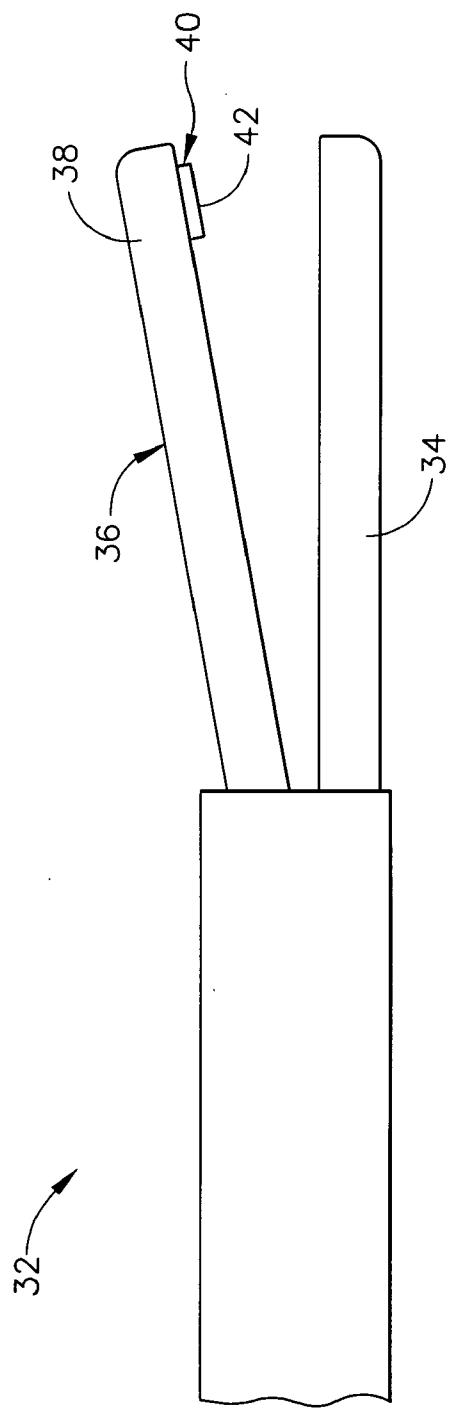


FIG. 6

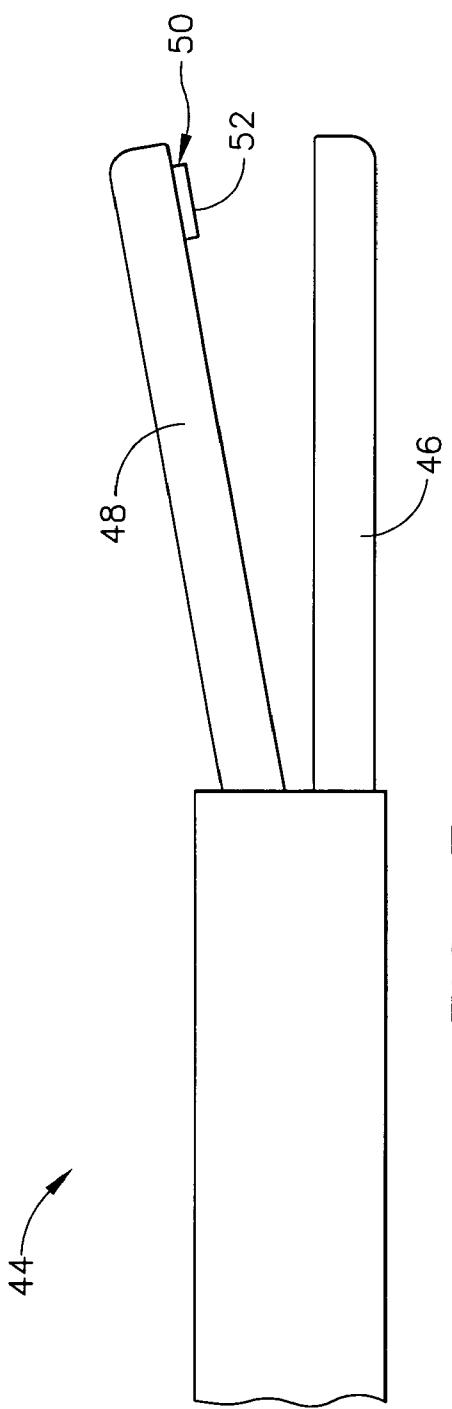


FIG. 7

ULTRASONIC SURGICAL SHEARS AND TISSUE PAD FOR SAME

REFERENCE TO RELATED APPLICATIONS

[0001] The present application claims the priority benefit of U.S. provisional patent application Ser. No. 60/548,301, filed on Feb. 27, 2004, the contents of which are incorporated herein by reference.

[0002] This application contains subject matter related to co-owned patent application No. 60/617,427, filed on Oct. 8, 2004, the contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0003] The present invention is related generally to surgical instruments, and more particularly to an ultrasonic surgical shears and to a tissue pad for an ultrasonic surgical shears.

BACKGROUND OF THE INVENTION

[0004] Ultrasonic surgical instruments are known which include an ultrasonic surgical shears having an ultrasonic surgical blade, a clamping arm operable to open and close toward the blade, and a polytetrafluoroethylene tissue pad which is attached to the clamping arm and which includes a clamping surface. The clamping arm exerts a clamping force on a blood vessel which is positioned between the clamping surface of the tissue pad and the blade. The result of the ultrasonically-vibrating ultrasonic surgical blade and the clamping force on the blood vessel is a coaptation of the blood vessel (a bringing together of the walls of the blood vessel), a transection (a cutting) of the coapted blood vessel, and a coagulation (a sealing) of the coapted cut ends of the blood vessel. At the completion of a tissue transection, the ultrasonically-vibrating ultrasonic surgical blade contacts and cuts away some of the polytetrafluoroethylene tissue pad because of the frictional abrasion and frictional heat generated by the blade vibrating against the tissue pad. Exemplary devices are described in U.S. Pat. Nos. 5,322,055 and 6,325,811, the contents of which are incorporated herein by reference.

[0005] Still, scientists and engineers continue to seek improved ultrasonic surgical shears and improved tissue pads for ultrasonic surgical shears.

SUMMARY OF THE INVENTION

[0006] A first embodiment of an ultrasonic-surgical-shears tissue pad of the invention includes an ultrasonic-surgical-shears tissue pad body having a base material and at least one filler material which is a different material from the base material.

[0007] A second embodiment of an ultrasonic-surgical-shears tissue pad of the invention includes an ultrasonic-surgical-shears tissue pad body having adjoining first and second regions, wherein the first region includes a first material and wherein the second region includes a second material which is a different material from the first material.

[0008] A first embodiment of an ultrasonic surgical shears of the invention includes an ultrasonic surgical blade and a clamping arm operable to open and close toward the blade and having a transversely and resiliently flexible distal tip.

[0009] A second embodiment of an ultrasonic surgical shears of the invention includes an ultrasonic surgical blade, a clamping arm operable to open and close toward the blade, and a tissue pad attached to the clamping arm and having a clamping surface. At least a portion of the tissue pad is resiliently flexible in a direction substantially perpendicular to the clamping surface.

[0010] Several benefits and advantages are obtained from one or more of the embodiments of the invention. Having a tissue pad with a base material and at-least-one filler material allows the base material and the at-least-one filler material to be chosen with a different hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and/or melt temperature to improve the wearability of the tissue pad which is important when high clamping forces are employed because tissue pads wear faster at higher clamping forces than at lower clamping forces. Applicants found, in one experiment, that a 15% graphite-filled polytetrafluoroethylene tissue pad showed substantially the same wear with a 7 pound clamping force as a 100% polytetrafluoroethylene tissue pad showed with a 1.5 pound clamping force. Having a flexible clamping arm and/or a flexible tissue pad should also improve the wearability of the tissue pad due to the ability of the flexible member to more evenly distribute the load across the entire surface of the tissue pad.

[0011] The present invention has, without limitation, application in straight or curved ultrasonic surgical blades as disclosed in the patents incorporated by reference and further in hand-activated instruments as well as in robotic-assisted instruments.

BRIEF DESCRIPTION OF THE FIGURES

[0012] FIG. 1 is a cross-sectional view of a portion of a first embodiment of an ultrasonic-surgical-shears tissue pad of the invention;

[0013] FIG. 2 is a cross-sectional view of a portion of a second embodiment of an ultrasonic-surgical-shears tissue pad of the invention;

[0014] FIG. 3 is a side-elevational view of a first alternate embodiment of the tissue pad of FIG. 2;

[0015] FIG. 4 is a side-elevational view of a second alternate embodiment of the tissue pad of FIG. 2;

[0016] FIG. 5 is a side-elevational view of a third additional alternate embodiment of the tissue pad of FIG. 2;

[0017] FIG. 6 is a schematic side elevational view of a portion of an embodiment of an ultrasonic surgical shears of the invention;

[0018] FIG. 7 is a schematic side elevational view of a portion of an alternate embodiment of an ultrasonic surgical shears of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0019] Before explaining the present invention in detail, it should be noted that the invention is not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments of the invention

may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. Furthermore, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments of the present invention for the convenience of the reader and are not for the purpose of limiting the invention.

[0020] It is understood that any one or more of the following-described embodiments, examples, etc. can be combined with any one or more of the other following described embodiments, examples, etc.

[0021] Referring now to the Figures, in which like numerals indicate like elements, **FIG. 1** illustrates a first embodiment of an ultrasonic-surgical-shears tissue pad **10** of the invention. The ultrasonic-surgical-shears tissue pad **10** has an ultrasonic-surgical-shears tissue pad body **12** including a base material **14** and at least one filler material **16** which is a different material from the base material **14**.

[0022] In one example of the embodiment of the ultrasonic-surgical-shears tissue pad **10** of **FIG. 1**, the at-least-one filler material **16** has at least one property which has a different value from that of the at-least-one property of the base material **14**, wherein the at-least-one property is chosen from the group consisting of: hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and melt temperature. In one variation, at least two or more or all of the properties have different values for the base material **14** and the at-least-one filler material **16**.

[0023] In one illustration of the ultrasonic-surgical-shears tissue pad **10** of **FIG. 1**, the base material **14** has a heat deflection temperature greater than 500 degrees Farenheight. In the same or a different illustration, the base material **14** has a melt temperature greater than 700 degrees Farenheight. In the same or a different illustration, the base material **14** has a dynamic coefficient of friction less than 0.3 at pressure-velocity values greater than 30,000 pounds per foot-second. In one choice of materials of the ultrasonic-surgical-shears tissue pad **10** of **FIG. 1**, the base material **14** consists essentially of a thermoset plastic material. In one variation, the base material **14** consists essentially of a polyimide material.

[0024] In one enablement of the invention, the at-least-one filler material **16** has a hardness which is different than that of the base material **14**. In the same or a different enablement, the at-least-one filler material **16** has a stiffness which is different than that of the base material **14**. In the same or a different enablement, the at-least-one filler material **16** has a lubricity which is different than that of the base material **14**. In the same or a different enablement, the at-least-one filler material **16** has a dynamic coefficient of friction which is different than that of the base material **14**. In the same or a different enablement, the at-least-one filler material **16** has a heat transfer coefficient which is different than that of the base material **14**. In the same or a different enablement, the at-least-one filler material **16** has an abradability which is different than that of the base material **14**. In the same or a different enablement, the at-least-one filler material **16** has a heat deflection temperature which is different than that of the base material **14**. In the same or a different enablement, the at-least-one filler material **16** has a melt temperature which is different than that of the base material **14**.

[0025] In one example of the invention, the at-least-one filler material **16** is chosen from the group consisting of glass, carbon fiber, graphite, metal particles, molybdenum disulfide, a liquid lubricant, a solid material that changes to a more lubricous powder at an increased temperature, a solid that changes to a liquid at an increased temperature, carbon nanotubes, polyphenylene sulfone, polyphenylene sulfide, sumifine powder, boron nitride, polytetrafluoroethylene powder, silicone oil, and an aerogel.

[0026] In the same or another example of the invention, the base material **14** is chosen from the group consisting of a plastic, a porous ceramic, a polished ceramic, a self-constructing nanocomposite (a material that is a combination of two or more materials that, when cured, structures itself into a predetermined matrix), a highly crosslinked polytetrafluoroethylene, a metal having a hardness at least as low as tantalum, a fluorinated polyimide, a clay-filled nanocomposite-forming polymer (these are materials that are filled with small amounts of clay material where the clay material combines with the polymer molecule to yield a material with superior properties to the original polymer material such as a clay-filled nylon that exhibits a heat deflection temperature of at least 100 degrees Fahrenheit higher than that of the regular nylon material), and a polyimide material. In one variation, the plastic is chosen from the group consisting of a polytetrafluoroethylene and a polyimide. In one modification, substantially 85% of the ultrasonic-surgical-blade tissue pad body **12** consists essentially of the base material **14** and substantially 15% of the ultrasonic-surgical-blade tissue pad body **12** consists essentially of the at-least-one filler material **16**, wherein the base material **14** consists essentially of polytetrafluoroethylene, and wherein the at-least-one filler material **16** consists essentially of graphite.

[0027] In one expression of the invention, the ultrasonic-surgical-shears tissue pad body **12** includes a base material **14** and at least one filler material **16**, wherein the base material **14** is chosen from the group consisting of a plastic, a porous ceramic, a polished ceramic, a self-constructing nanocomposite, a highly crosslinked polytetrafluoroethylene, a metal having a hardness at least as low as tantalum, a fluorinated polyimide, a clay-filled nanocomposite-forming polymer, and a polyimide material.

[0028] In one configuration of the invention, not shown, the ultrasonic-surgical-shears tissue pad body consists essentially of a material chosen from the group consisting of a porous ceramic, a polished ceramic, a self-constructing nanocomposite, a highly crosslinked polytetrafluoroethylene, a metal having a hardness at least as low as tantalum, a fluorinated polyimide, a clay-filled nanocomposite-forming polymer, and a polyimide.

[0029] In one deployment of the invention, the ultrasonic-surgical-shears tissue pad body **12** includes a base material **14** and at least one filler material **16**, wherein the base material **14** consists essentially of a porous polymer, and wherein the at-least-one filler material **16** is chosen from the group consisting essentially of a solid lubricant, a liquid lubricant, and a solid lubricant which changes to a liquid lubricant at an increased temperature.

[0030] In one arrangement of the invention, not shown, the ultrasonic-surgical-shears tissue pad body consists essentially of a porous wicking material which upon contact

wicks patient body fluids into the ultrasonic-surgical-shears tissue pad body or absorbs water when immersed in a water containing solution such as saline. These materials improve the temperature performance of the tissue pad body by absorbing some of the heat energy to evaporate the water entrapped in the tissue pad body.

[0031] **FIG. 2** illustrates a second embodiment of an ultrasonic-surgical-shears tissue pad **18** of the invention. The ultrasonic-surgical-shears tissue pad **18** has an ultrasonic-surgical-shears tissue pad body **20** having adjoining first and second regions **24** and **26**, wherein the first region **24** includes a first material **28** and wherein the second region **26** includes a second material **30** which is a different material from the first material **28**. The above description of the tissue pad **18** of **FIG. 2** is equally applicable to the tissue pads of **FIGS. 3-5**, as can be appreciated by the artisan from the below discussion of the tissue pads of **FIGS. 3-5**. In one variation of the tissue pad **18** of **FIG. 2**, the first region **24** consists essentially of the first material **28** and the second region **26** consists essentially of the second material **30**. In another variation, the first region **24** includes a base material and at least one filler material, wherein the base material is the first material **28**. In the same or a different variation, the second region **26** includes a base material and at least one filler material, wherein the base material is the second material **30**.

[0032] In one construction of the tissue pad **18** of **FIG. 2**, the interface between the first and second regions **24** and **26** of the tissue pad body **20** is substantially perpendicular to the clamping surface **22** of the tissue pad body **20** as shown in the figure. In another construction, not shown, the interface between the first and second regions is substantially parallel to the clamping surface (this can be visualized by rotating the tissue pad **18** in **FIG. 2** by ninety degrees. In an additional construction, not shown, the interface is slanted with respect to the clamping surface at an angle between substantially 1 and 89 degrees, as can be appreciated by the artisan.

[0033] It is noted that the examples, illustrations, choices of materials, etc. described for the embodiment of the ultrasonic-surgical-shears tissue pad **10** of **FIG. 1** are equally applicable to the embodiment of the ultrasonic-surgical-shears tissue pad **18** of **FIG. 2** with the phrase “first material **28**” replacing the phrase “base material **14**” and with the phrase “second material **30**” replacing the phrase “at-least-one filler material **16**”.

[0034] **FIG. 3** is an exterior side-elevational view of a tissue pad **118** which is a first alternate embodiment to the tissue pad **18** of **FIG. 2**. Tissue pad **118** includes tissue pad body **120** having adjoining first and second regions **124** and **126** as shown in the figure. First region **124** includes a first material **128**, and second region **126** includes a second material **130** which is a different material from the first material. In one variation, the clamping surface **122** of the tissue pad body **120** consists essentially of the first material **128** which extends away from the clamping surface **122** toward the second regions **126**. In one enablement, the material transversely between the second regions **126** is the first material **128** of the first region **124**. In another enablement, not shown, a third region with a third material is disposed transversely between the second regions.

[0035] **FIG. 4** is an exterior side-elevational view of a tissue pad **218** which is a second alternate embodiment to the

tissue pad **18** of **FIG. 2**. Tissue pad **218** includes tissue pad body **220** having adjoining first and second regions **224** and **226** as shown in the figure. First region **224** includes a first material **228**, and second region **226** includes a second material **230** which is a different material from the first material. In one variation, the clamping surface **222** of the tissue pad body **220** consists essentially of the first material **228** which extends away from the clamping surface **222** toward the second regions **226**. In one enablement, the material transversely between the second regions **226** is the first material **228** of the first region **224**. In another enablement, not shown, a third region with a third material is disposed transversely between the second regions.

[0036] **FIG. 5** is an exterior side-elevational view of a tissue pad **318** which is a third alternate embodiment to the tissue pad **18** of **FIG. 2**. Tissue pad **318** includes tissue pad body **320** having adjoining first and second regions **324** and **326** as shown in the figure. First region **324** includes a first material **328**, and second region **326** includes a second material **330** which is a different material from the first material. In one variation, the clamping surface **322** of the tissue pad body **320** consists essentially of the first material **328** which extends away from the clamping surface **322** toward the second regions **326**. In one application, tissue pad **318** improves pad life by the first region **324** being sacrificial and being abraded or melted relatively quickly but having certain properties, such as lubricity, that are desirable. The ultrasonic surgical blade, not shown in **FIG. 5**, moves through the first material **318** and then comes into contact with the second material **330**. The second material **330** is selected for properties that make it abrade or melt less than the first material **318**.

[0037] It is noted that the examples, illustrations, choices of materials, etc. described for the embodiment of the tissue pad **18** of **FIG. 2** are equally applicable to the embodiments of the tissue pad **118**, **218** and **318** of **FIGS. 3-5**. Other alternate embodiments to the tissue pad **18** are left to the artisan.

[0038] **FIG. 6** illustrates a first embodiment of an ultrasonic surgical shears **32** of the invention. The ultrasonic-surgical-shears **32** includes an ultrasonic surgical blade **34** and a clamping arm **36** operable to open and close toward the blade **34** and having a transversely and resiliently flexible distal tip **38**. By “resiliently flexible distal tip” is meant that the distal tip **38** resiliently flexes during clamping of the clamping arm **36** such as when the ultrasonic-surgical-shears **32** is used to transect and seal a blood vessel, disposed between the clamping surface **42** and the ultrasonic surgical blade **34**, whose walls have been coapted by a clamping force applied via the clamping arm **36**. In one implementation of the first expression, the ultrasonic surgical shears **32** also includes a tissue pad **40** attached to the clamping arm **36** and having a clamping surface **42**, wherein the tissue pad **40** is resiliently flexible in a direction substantially perpendicular to the clamping surface **42**. In one illustration of the embodiment of the ultrasonic-surgical-shears **32**, the tissue pad **40** includes a base material and at least one filler material as previously described for the tissue pad **10** of **FIG. 1**. In another illustration of the ultrasonic-surgical-shears **32**, the tissue pad **40** includes a first material and a second material as previously described for the tissue pad **18**, **118**, **218** or **318** of **FIGS. 2-5**.

[0039] **FIG. 7** illustrates a second embodiment of an ultrasonic surgical shears **44** of the invention. The ultrasonic-surgical-shears **44** includes an ultrasonic surgical blade **46**, a clamping arm **48** operable to open and close toward the blade **46**, and a tissue pad **50**. The tissue pad **50** is attached to the clamping arm **48** and has a clamping surface **52**. At least a portion of the tissue pad **50** is resiliently flexible in a direction substantially perpendicular to the clamping surface **52**. By "resiliently flexible" is meant that the tissue pad **50** resiliently flexes during clamping of the clamping arm **48** such as when the ultrasonic-surgical-shears **44** is used to transect and seal a blood vessel, disposed between the clamping surface **52** and the ultrasonic surgical blade **46**, whose walls have been coapted by a clamping force applied via the clamping arm **48**. In one illustration of the embodiment of the ultrasonic-surgical-shears **44**, the tissue pad **50** includes a base material and at least one filler material as previously described for the tissue pad **10** of **FIG. 1**. In another illustration of the ultrasonic-surgical-shears **44**, the tissue pad **40** includes a first material and a second material as previously described for the tissue pad **18, 118, 218 or 318** of **FIGS. 2-5**.

[0040] Several benefits and advantages are obtained from one or more of the embodiments of the invention. Having a tissue pad with a base material and at-least-one filler material allows the base material and the at-least-one filler material to be chosen with a different hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and/or melt temperature to improve the wearability of the tissue pad which is important when high clamping forces are employed because tissue pads wear faster at higher clamping forces than at lower clamping forces. Applicants found, in one experiment, that a 15% graphite-filled polytetrafluoroethylene tissue pad showed substantially the same wear with a 7 pound clamping force as a 100% polytetrafluoroethylene tissue pad showed with a 1.5 pound clamping force. Having a flexible clamping arm and/or a flexible tissue pad should also improve the wearability of the tissue pad due to the ability of the flexible member to more evenly distribute the load across the entire surface of the tissue pad.

[0041] While the present invention has been illustrated by a description of several embodiments, it is not the intention of the applicants to restrict or limit the spirit and scope of the appended claims to such detail. Numerous other variations, changes, and substitutions will occur to those skilled in the art without departing from the scope of the invention. For instance, the ultrasonic surgical shears and the tissue pad of the invention have application in robotic assisted surgery taking into account the obvious modifications of such systems, components and methods to be compatible with such a robotic system. It will be understood that the foregoing description is provided by way of example, and that other modifications may occur to those skilled in the art without departing from the scope and spirit of the appended Claims.

What is claimed is:

1. An ultrasonic-surgical-shears tissue pad comprising: an ultrasonic-surgical-shears tissue pad body including a base material and at least one filler material which is a different material from the base material.
2. The ultrasonic-surgical-shears tissue pad of claim 1, wherein the at-least-one filler material has at least one property which has a different value from that of the

at-least-one property of the base material, and wherein the at-least-one property is chosen from the group consisting of: hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and melt temperature.

3. The ultrasonic-surgical-shears tissue pad of claim 1, wherein the base material has a heat deflection temperature greater than 500 degrees Farenheight.

4. The ultrasonic-surgical-shears tissue pad of claim 1, wherein the base material has a melt temperature greater than 700 degrees Farenheight.

5. The ultrasonic-surgical-shears tissue pad of claim 1, wherein the base material has a dynamic coefficient of friction less than 0.3 at pressure-velocity values greater than 30,000 pounds per foot-second.

6. The ultrasonic-surgical-shears tissue pad of claim 1, wherein the base material consists essentially of a thermoset plastic material.

7. The ultrasonic-surgical-shears tissue pad of claim 6, wherein the base material consists essentially of a polyimide material.

8. An ultrasonic-surgical-shears tissue pad comprising: an ultrasonic-surgical-shears tissue pad body having adjoining first and second regions, wherein the first region includes a first material and wherein the second region includes a second material which is a different material from the first material.

9. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first region consists essentially of the first material and wherein the second region consists essentially of the second material.

10. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first material has at least one property which has a different value from that of the second material, and wherein the at-least-one property is chosen from the group consisting of: hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and melt temperature.

11. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first material has a heat deflection temperature greater than 500 degrees Farenheight.

12. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first material has a melt temperature greater than 700 degrees Farenheight.

13. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first material has a dynamic coefficient of friction less than 0.3 at pressure-velocity values greater than 30,000 pounds per foot-second.

14. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first material consists essentially of a thermoset plastic material.

15. The ultrasonic-surgical-shears tissue pad of claim 14, wherein the base material consists essentially of a polyimide material.

16. The ultrasonic-surgical-shears tissue pad of claim 8, wherein the first region includes a base material and at least one filler material, and wherein the base material is the first material.

17. An ultrasonic surgical shears comprising:

- a) an ultrasonic surgical blade; and
- b) a clamping arm operable to open and close toward the blade and having a transversely and resiliently flexible distal tip.

18. The ultrasonic surgical shears of claim 17, also including:

c) a tissue pad attached to the clamping arm and having a clamping surface, wherein at least a portion of the tissue pad is resiliently flexible in a direction substantially perpendicular to the clamping surface.

18. The ultrasonic surgical shears of claim 17, wherein the tissue pad comprises a tissue pad body including a base material and at least one filler material, wherein the at-least-one filler material has at least one property which has a different value from that of the at-least-one property of the base material, and wherein the at-least-one property is chosen from the group consisting of: hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and melt temperature.

19. The ultrasonic surgical shears of claim 17, wherein the tissue pad comprises a tissue pad body having adjoining first and second regions, wherein the first region includes a first material and wherein the second region includes a second material which is a different material from the first material.

20. An ultrasonic surgical shears comprising:

- a) an ultrasonic surgical blade;
- b) a clamping arm operable to open and close toward the blade; and
- c) a tissue pad attached to the clamping arm and having a clamping surface, wherein at least a portion of the tissue pad is resiliently flexible in a direction substantially perpendicular to the clamping surface.

21. The ultrasonic surgical shears of claim 20, wherein the tissue pad comprises a tissue pad body including a base material and at least one filler material, wherein the at-least-one filler material has at least one property which has a different value from that of the at-least-one property of the base material, and wherein the at-least-one property is chosen from the group consisting of: hardness, stiffness, lubricity, dynamic coefficient of friction, heat transfer coefficient, abradability, heat deflection temperature, and melt temperature.

22. The ultrasonic surgical shears of claim 20, wherein the tissue pad comprises a tissue pad body having adjoining first and second regions, wherein the first region includes a first material and wherein the second region includes a second material which is a different material from the first material.

* * * * *