a2 United States Patent

Sole Rojals et al.

US009124872B2

US 9,124,872 B2
Sep. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

@
(22)
(65)

(60)

(1)

(52)

COEFFICIENT GROUPS AND COEFFICIENT
CODING FOR COEFFICIENT SCANS

Applicant: QUALCOMM Incorporated, San
Diego, CA (US)

Inventors: Joel Sole Rojals, La Jolla, CA (US);

Rajan Laxman Joshi, San Diego, CA

(US); Marta Karczewicz, San Diego,

CA (US)

Assignee: QUALCOMM Incorporated, San

Diego, CA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 397 days.

Appl. No.: 13/832,909

Filed: Mar. 15,2013

Prior Publication Data

US 2013/0272378 Al Oct. 17, 2013

Related U.S. Application Data

Provisional application No. 61/625,039, filed on Apr.
16, 2012, provisional application No. 61/667,382,
filed on Jul. 2, 2012.

Int. Cl1.

HO4N 19/60 (2014.01)
HO4N 19/176 (2014.01)
HO4N 19/13 (2014.01)
HO4N 19/129 (2014.01)
HO4N 19/102 (2014.01)
HO4N 19/18 (2014.01)
HO4N 19/167 (2014.01)
HO3M 7/40 (2006.01)
U.S. CL

CPC HO4N 19/00775 (2013.01); HO3M 7/40

(2013.01); HO4N 19/102 (2014.11); HO4N

19/129 (2014.11); HO4N 19/13 (2014.11);
HO04N 19/167 (2014.11); HO4N 19/176
(2014.11); HO4N 19/18 (2014.11); HO4N 19/60
(2014.11); HO3M 7/4018 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

10/2013 Kim et al.
11/2013 Kim et al.
10/2014 Shiodera et al.

(Continued)

8,552,890 B2
8,581,753 B2
8,867,614 B2

FOREIGN PATENT DOCUMENTS

WO
WO

2011128268 Al 10/2011
2011128303 A2 10/2011

(Continued)
OTHER PUBLICATIONS

International Preliminary Report on Patentability from International
Application No. PCT/US2013/036640, dated Jun. 25, 2014, 10 pp.

(Continued)

Primary Examiner — Dave Czekaj
Assistant Examiner — Nam Pham
(74) Attorney, Agent, or Firm — Shumaker & Sieffert, P.A.

(57) ABSTRACT

Techniques are described for a video coder (e.g., video
encoder or video decoder) that is configured to select a con-
text pattern from a plurality of context patterns that are the
same for a plurality of scan types. Techniques are also
described for a video coder that is configured to select a
context pattern that is stored as a one-dimensional context
pattern and identifies contexts for two or more scan types.

51 Claims, 16 Drawing Sheets

1102

GENERATE SIGNIFICANCE
SYNTAX ELEMENTS

1

1104

SELECT A CONTEXT PATTERN
FROM PLUARLITY OF CONTEXT
PATTERNS

!

1108

ASSIGN CONTEXTS TO EACH
SIGNIFICANCE SYNTAX
ELEMNENT

I

1108

CABAC ENCODE THE
SIGNIFICANCE SYNTAX
ELEMENTS

!

OUTPUT ENCODED
SIGNIFICANCE SYNTAX
ELEMENTS

1110
s

US 9,124,872 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0084012 Al
2008/0123736 Al
2008/0123947 Al
2008/0123972 Al
2009/0123066 Al
2010/0195715 Al
2012/0082233 Al
2012/0082235 Al
2012/0140814 Al
2012/0207222 Al
2012/0207400 Al
2012/0229478 Al
2013/0003857 Al
2013/0051475 Al
2013/0188736 Al
2013/0235925 Al

4/2005 Hsu et al.
5/2008 Sekiguchi et al.
5/2008 Moriya et al.
5/2008 Sekiguchi et al.
5/2009 Moriya et al.
8/2010 Liu et al.
4/2012 Sze et al.
4/2012 Lou et al.
6/2012 Sole et al.
8/2012 Louetal.
8/2012 Sasai et al.
9/2012 Sze et al.
1/2013 Yu et al.
2/2013 Joshi et al.
7/2013 Kim et al.
9/2013 Nguyen et al.
2013/0272379 Al 10/2013 Sole et al.
2013/0272423 Al 10/2013 Chien et al.
2013/0343454 Al* 12/2013 Yeoetal. 375/240.03

FOREIGN PATENT DOCUMENTS

WO 2011142817 Al 112011
WO 2011128303 A3 2/2012
OTHER PUBLICATIONS

ITU-T H.265, Series H: Audiovisual and Multimedia Systems, Infra-
structure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter-
national Telecommunication Union. Apr. 2013, 317 pp.

Bross et al., “High efficiency video coding (HEVC) text specification
draft 10 (for FDIS & Last Call),” 12th Meeting: Geneva, CH, Jan.
14-23,2013, JCTVC-L1003_v34, 310 pp.

Bross et al., “High efficiency video coding (HEVC) text specification
draft 10 (for FDIS & Consent),” 12th Meeting: Geneva, CH, Jan.
14-23, 2013, JCTV-L1003_v29, 330 pp.

Bross et al., “High efficiency video coding (HEVC) text specification
draft 6,” 8th Meeting: San Jose, CA, USA, Feb. 1-10, 2012, JCTVC-
H1003, 259 pp.

Bross et al., “High efficiency video coding (HEVC) text specification
draft 7,” 9th Meeting: Geneva, CH, Apr. 27-May 7, 2012, JCTVC-
11003_d2, 290 pp.

Bross et al., “High efficiency video coding (HEVC) text specification
draft 7,” 9th Meeting: Geneva, CH, Apr. 27-May 7, 2012, JCTV-
11003 _d4, 297 pp.

Bross et al., “High efficiency video coding (HEVC) text specification
draft 8,” 10th Meeting: Stockholm, SE, Jul. 11-20, 2012, JCTVC-
J1003_4d7, 261 pp.

Bross et al., “High efficiency video coding (HEVC) text specification
draft 9,” 11th Meeting: Shanghai, CN, Oct. 10-19, 2012, JCTVC-
K1003_v7, 290 pp.

Bross et al., “WD4: Working Draft 4 of High-Efficiency Video Cod-
ing,” 6th Meeting: JCTVC-F803__d2, Torino, IT, Jul. 14-22, 2011,
226 pp.

Bross et al., “WDS: Working Draft 5 of High-Efficiency Video Cod-
ing,” 7th Meeting: Geneva, Switzerland, Nov. 21-30, 2011, JCTVC-
G1103_d2, 214 pp.

International Search Report and Written Opinion—PCT/US2013/
036640—ISA/EPO—Jun. 27, 2013, 13 pp.

ITU-T H.264, Series H: Audiovisual and Multimedia Systems, Infra-
structure of audiovisual services—Coding of moving video,
Advanced video coding for generic audiovisual services, The Inter-
national Telecommunication Union. Jun. 2011, 674 pp.

Kumakura et al., “Non-CE3: Simplified context derivation for sig-
nificance map”, JCT-VC Meeting; MPEG Meeting; Geneva; (Joint
Collaborative Team on Video Coding of ISO/IEC JTC1/SC29/WG11
and ITU-T SG.16); 9th Meeting: Geneva, CH, Apr. 27-May 7, 2012,
JCTVC-10296, 8 pp. XP030112059.

Marpe et al., “Context-based adaptive binary arithmetic coding in the
H.264/AVC video compression standard”, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 13, No. 7, Jul. 2003,
17 pp.

Panusopone et al., “Adaptive Scan for Large Blocks for HEVC,” Joint
Collaborative Team on Video Coding (JCTVC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WGl1 1, 6th Meeting: Torino, IT, Jul. 14-22,
2011, JCTVC-F569_12, 6 pp.

Rosewarne et al., “Non-CE11: Harmonisation of 8x8 TU Residual
Scan,” Joint Collaborative Team on Video Coding (JCT-VC) of
ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WGl1, 8th Meeting:
San Jose, California, Feb. 1-10, 2012, JCTVC-H0145, 11 pp.

Sole et al., “Removal of the 8x2 and 2x8 Coefficient Groups,” Joint
Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, 10th Meeting: Stockholm, SE, Jul.
11-20, 2012, JCTVC-J0256, 11 pp.

U.S. Appl. No. 61/509,926, by Yunfei Zheng, filed Jul. 20, 2011.
U.S. Appl. No. 61/554,292, by Yunfei Zheng, filed Nov. 1, 2011.
Wiegand et al., “WD2: Working Draft 2 of High-Efficiency Video
Coding,” JCTVC-D503, 4th Meeting: Daegu, KR, Jan. 20-28, 2011,
153 pp.

Wiegand et al., “WD3: Working Draft 3 of High-Efficiency Video
Coding,” Document JCTVC-E603, 5th Meeting: Geneva, CH, Mar.
16-23, 2011, 193 pp.

Wiegand et al., “WDI1: Working Draft 1 of High-Efficiency Video
Coding”, JCTVC-C403, 3rd Meeting: Guangzhou, CN, Oct. 7-15,
2010, 137 pp.

Zhu et al., “Binarization and context model selection of CABAC
based on the distribution of syntax element”, IEEE, 2012 Picture
Coding Symposium (PCS), May 7-9, 2012, 4 pp.

Second Written Opinion of international application No. PCT/
US2013/036640, mailed Mar. 24, 2014, 7 pp.

* cited by examiner

U.S. Patent Sep. 1, 2015 Sheet 1 of 16 US 9,124,872 B2

GROUP GROUP

GROUP GROUP
SUB-BLOCK DIAGONAL

FIG. 1

U.S. Patent

Sep. 1, 2015

Sheet 2 of 16

US 9,124,872 B2

FIG. 2B

- GROWP | |
S B ‘
N S
I G —
Y S S
Y) S (_.:.ROUP
N O

HORIZONTAL
FIG. 2A
GROUP | GROUP | GROUP | GROUP
Aalaialaialais
VERTICAL

U.S. Patent

Sep. 1, 2015

Sheet 3 of 16

A

US 9,124,872 B2

GROUP

GROUP

FIG. 3B

U.S. Patent Sep. 1, 2015 Sheet 4 of 16 US 9,124,872 B2

0 0 0 0 0 0 0 0

TRANSFORM COEFFICIENTS SIGNIFICANCE MAP

FIG. 4

U.S. Patent Sep. 1, 2015 Sheet 5 of 16 US 9,124,872 B2

CGF5 =0, CBFz =0 CGFg =0, CBFg = 1
1111 |o O I T A T
1 {1]ofo O I T A T
1101] 0|0 ol 0|00
ol o] o] o oo]| o] o0
FIG. 5A FIG. 5B
CGFg =1, CBFr =0 CGFg =1, CBFg = 1
1110 o0 2 | 2| 2| 2
111]0fo 2 | 2| 2| 2
111] 0o 2 | 2| 2| 1
111] 0o 2 | 2 | 1 | 1

U.S. Patent

Sep. 1, 2015

SOURCE DEVICE
12

VIDEO SOURCE
18

l

VIDEO
ENCODER
20

y

OUTPUT

Sheet 6 of 16

—— ———

[

| STORAGE |
DEVICE

|2 |

I—————I

10

US 9,124,872 B2

DESTINATION DEVICE

14

DISPLAY DEVICE

34

A

VIDEO
DECODER

30

T

INTERFACE
22

FIG. 6

vy

INPUT INTERFACE

28

US 9,124,872 B2

Sheet 7 of 16

Sep. 1, 2015

U.S. Patent

L 9ld

-_—_—Tr - ---------—--- - - __ - n_ V___-____n___ pn L

174 |

¥3A0IN3 O3AIA _

e = 29 I

1 95 09 $)201d 03dIA 75 |

LINN LINN LINN a3LONULSNODTY asoman |

oNIQooNa [€E™| ONISS300ud | ONISSIO0Nd + |

AdONLN3 NOILVZILNYND WMO4SNVYYL |syo01a % F4NLOId _

7 ISYIANI ASUIANI | ais3y LND 434 _

NOIH NOILDIG3Yd I

VHLINI I

— |

12 |

LINN |

NOILVSN3IdNO9 |

NOILOW |

A _

Y472 |

§ ¢ 1INN _

SININ3ITI XVYLINAS NOILYINILST < |

 —] NOILOW 5T "

F LINN _

LINN ONISSID0¥d 193713s |

NOILOIa3xd oow |,

— — 0S _

S1N3I9I44302 vm: Nm: _ _

WHO4ASNVYL 1IN ‘ 1IN :
vnaisay ONISS300¥d ONISSIO0Nd [+ + $0078 03aIA " viva
d3zZILNVNO NOILVZILNYND WNO4SNVYL wumww_m | ozan

US 9,124,872 B2

Sheet 8 of 16

Sep. 1, 2015

U.S. Patent

1INN
ONIGOIN3 AdO™LINT

208

1lINN -
NOILVZIYVNIgE

8 'Old
A
Wy3YLsLig

| 01S |

| L1INN ONIAOON3 |

_ JejnBoy ssedAg JILANHLIYY _

_ V/l\\ v|_ _

_ 805 0% _
pm—mmee - IANI9N3 ANI9N3 _
: ONIQOON3 ONIJOON3
m _ vINoay SSVdAS _
: |
mm_._m<_~_<> 1IX3ILNOD
: ‘anIvA NIg ssedAg
') P 4
: I
: 30C % aNTVA NIg
e 305 < /

L1INN ONIT3AON JeinBay
1X31NOD

SLNINTTI XVLNAS

U.S. Patent Sep. 1, 2015 Sheet 9 of 16 US 9,124,872 B2

CGFg =0, CBFr =0 CGFg = 0, CBFg = 1
2 |11]o 2 | 2| 2| 2
111 1]o0 11 1] 1
1111] o0 oo |o]fo
oo | oo oo | oo
FIG. 9A FIG. 9B
CGFg =1, CBFr =0 CGFg =1, CBFg = 1
2 |1 |ofo 2 | 2| 2| 2
2 |1 oo 2 | 2| 2| 2
2 |1 oo 2 | 2 | 2| 2
2 |1 oo 2 | 2| 2| 2

U.S. Patent Sep. 1, 2015 Sheet 10 of 16 US 9,124,872 B2

CGFg =X, CBFr=X

U.S. Patent

Sep. 1, 2015 Sheet 11 of 16

US 9,124,872 B2

—1102

GENERATE SIGNIFICANCE
SYNTAX ELEMENTS

v

SELECT A CONTEXT PATTERN
FROM PLUARLITY OF CONTEXT
PATTERNS

:

1106

ASSIGN CONTEXTS TO EACH
SIGNIFICANCE SYNTAX
ELEMNENT

I

1108

CABAC ENCODE THE
SIGNIFICANCE SYNTAX
ELEMENTS

:

OUTPUT ENCODED
SIGNIFICANCE SYNTAX
ELEMENTS

1110
/

FIG. 11

U.S. Patent

Sep. 1, 2015

Sheet 12 of 16

US 9,124,872 B2

GENERATE SIGNIFICANCE

SYNTAX ELEMENTS

—1202

v

/1204

SELECT CONTEXT PATTERN
THAT IS STORED AS ONE-

DIMENSIONAL PATTERN

:

1206

ASSIGN CONTEXTS TO

SIGNIFICANCE SYNTAX
ELEMENTS BASED ON
SELECTED CONTEXT

I

1208

CABAC ENCODE THE
SIGNIFICANCE SYNTAX
ELEMENTS

v

1210

OUTPUT ENCODED
SIGNIFICANCE SYNTAX
ELEMENTS

FIG. 12

US 9,124,872 B2

Sheet 13 of 16

Sep. 1, 2015

U.S. Patent

€l 9Old

[— —— 1
_ — 88 98 _
_ 6 1INN 1INN _

- _ AYOWIW —+ ONISSIDONd [«—| ONISSIOONd | |

oZam 3dnLoid S INYOASNVYL NOILVZILNVND | |
430@0o3a 43y 06 oy asuaaNi 3SYIANI
_ Ivnaisay _
_ A |
_ [
_ |
| 78 |
_ LINN _
_ NOILOIaIud ‘44309 _
_ VHLNI “ZILNVNO [
_ [
| Z8 08 _
| LINO 1INN |
_ — ™ | NOILYVSN3IdWO09D | [—
_ NOLLOWN SINIWI T3 XVLNAS ONIQ023d | Wv3dlsig
AdOYLNT I

| 8 _ a3adoodN3I
_ LINN ONISID0Nd _
_ NOILOIa3¥d (1] _
_ ¥30053d 03AIA

U.S. Patent Sep. 1, 2015 Sheet 14 of 16 US 9,124,872 B2

|
CONTEXT :
Regular MODELING UNIT

| 708 ey |
BITSTREAM x, == P
| ! x '
| Bypass § & CONTEXT : i
: ELEMENT i O
______________ N I
| Ir] | i
| : |l
| | | BYPASS DECODING REGULAR | i
| | ENGINE » DECODING ENGINE I |
N 704 706 I |
— |

I _— :
| : L o T | :

| Bypass Regular | i
|| ARTHIMERTIC | |
|| DECODING UNIT BIN VALUE | :

702 :
) ey 4 i
| o
b
| INVERSE b
| BINARIZATION | H
| UNIT |
: 710 |
| ENTROPY DECODING |
, UNIT I
| 0 '
___________________________ J

SYNTAX ELEMENTS
\

FIG. 14

U.S. Patent

Sep. 1, 2015 Sheet 15 of 16

US 9,124,872 B2

—1502

RECEIVE SIGNIFICANCE
SYNTAX ELEMENTS

!

1504

SELECT A CONTEXT PATTERN
FROM PLUARLITY OF CONTEXT
PATTERNS

A 4

1506

ASSIGN CONTEXTS TO EACH
SIGNIFICANCE SYNTAX
ELEMNENT

l

/1508

CABAC DECODE THE
SIGNIFICANCE SYNTAX
ELEMENTS

FIG. 15

U.S. Patent

Sep. 1, 2015 Sheet 16 of 16

US 9,124,872 B2

—1602

RECEIVE SIGNIFICANCE
SYNTAX ELEMENTS

!

1604

SELECT CONTEXT PATTERN
THAT IS STORED AS ONE-
DIMENSIONAL PATTERN

l

1606

ASSIGN CONTEXTS TO

SIGNIFICANCE SYNTAX
ELEMENTS BASED ON
SELECTED CONTEXT

l

/1608

CABAC DECODE THE
SIGNIFICANCE SYNTAX
ELEMENTS

FIG. 16

US 9,124,872 B2

1
COEFFICIENT GROUPS AND COEFFICIENT
CODING FOR COEFFICIENT SCANS

RELATED APPLICATIONS

This application claims the benefit of:

U.S. Provisional Application No. 61/625,039, filed Apr.
16,2012, and

U.S. Provisional Application No. 61/667,382, filed Jul. 2,
2012, the entire content each of which is incorporated by
reference herein.

TECHNICAL FIELD

This disclosure relates to video coding and more particu-
larly to techniques for coding syntax elements in video cod-
ing.

BACKGROUND

Digital video capabilities can be incorporated into a wide
range of devices, including digital televisions, digital direct
broadcast systems, wireless broadcast systems, personal digi-
tal assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording
devices, digital media players, video gaming devices, video
game consoles, cellular or satellite radio telephones,
so-called “smart phones,” video teleconferencing devices,
video streaming devices, and the like. Digital video devices
implement video compression techniques defined according
to video coding standards. Digital video devices may trans-
mit, receive, encode, decode, and/or store digital video infor-
mation more efficiently by implementing such video com-
pression techniques. Video coding standards include ITU-T
H.261, ISO/IEC MPEG-1 Visual, ITU-T H.262 or ISO/IEC
MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and
ITU-T H.264 (also known as ISO/IEC MPEG-4 AV(C),
including its Scalable Video Coding (SVC) and Multiview
Video Coding (MVC) extensions. In addition, High-Effi-
ciency Video Coding (HEVC) is a video coding standard
being developed by the Joint Collaboration Team on Video
Coding (JCT-VC) of ITU-T Video Coding Experts Group
(VCEG) and ISO/IEC Motion Picture Experts Group
(MPEG).

Video compression techniques perform spatial (intra-pic-
ture) prediction and/or temporal (inter-picture) prediction to
reduce or remove redundancy inherent in video sequences.
For block-based video coding, a video slice (i.e., a video
frame or a portion of a video frame) may be partitioned into
video blocks, which may also be referred to as treeblocks,
coding units (CUs) and/or coding nodes. Video blocks in an
intra-coded (I) slice of a picture are encoded using spatial
prediction with respect to reference samples in neighboring
blocks in the same picture. Video blocks in an inter-coded (P
or B) slice of a picture may use spatial prediction with respect
to reference samples in neighboring blocks in the same pic-
ture or temporal prediction with respect to reference samples
in other reference pictures. Pictures may be referred to as
frames, and reference pictures may be referred to a reference
frames.

Spatial or temporal prediction results in a predictive block
for a block to be coded. Residual data represents pixel difter-
ences between the original block to be coded and the predic-
tive block. An inter-coded block is encoded according to a
motion vector that points to a block of reference samples
forming the predictive block, and the residual data indicating
the difference between the coded block and the predictive

20

25

30

35

40

45

50

55

60

65

2

block. An intra-coded block is encoded according to an intra-
coding mode and the residual data. For further compression,
the residual data may be transformed from the pixel domain to
a transform domain, resulting in residual transform coeffi-
cients, which then may be quantized. The quantized trans-
form coefficients, initially arranged in a two-dimensional
array, may be scanned in order to produce a one-dimensional
vector of transform coefficients, and entropy coding may be
applied to achieve even more compression.

SUMMARY

In general, this disclosure describes techniques for encod-
ing and decoding data representing significance of transform
coefficients, such as significant coefficient flags and coeffi-
cient group flags, in transform coefficient coding. Various
techniques for determining a context to be used for CABAC
(Context Adaptive Binary Arithmetic Coding) coding syntax
elements associated with transform coefficients are
described.

For example, in some techniques, a video encoder and a
video decoder select a context pattern from a same plurality of
context patterns for a scan type of a horizontal scan, a vertical
scan, and a diagonal scan. In other words, regardless of
whether a sub-block is scanned vertically, horizontally, or
diagonally, the video encoder and video decoder may select
the context pattern from the same context patterns for all three
scan types. The video encoder and the video decoder utilize
the contexts within the selected the context pattern to CABAC
encode or CABAC decode, respectively, significance syntax
elements of a transform block.

As another example, in some techniques, a video encoder
and a video decoder may select a context pattern that is stored
as a one-dimensional context pattern. In some examples, the
video encoder and video decoder utilize the selected context
pattern for two or more scan types of the sub-block. For
example, if the sub-block is scanned horizontally, the video
encoder and video decoder utilize the selected context pat-
tern, and if the sub-block is scanned vertically, the video
encoder and the video decoder utilize the selected context
pattern.

In one example, the disclosure describes a method for
decoding video data. The method comprising receiving, in a
bitstream, significance syntax elements for transform coeffi-
cients of a current sub-block of a block, selecting a context
pattern from a plurality of two-dimensional context patterns
for a plurality of scan types for the significance syntax ele-
ments of the transform coefficients of the current sub-block,
wherein the plurality of two-dimensional context patterns is
the same for each of the plurality of scan types, and wherein
each of the context patterns is associated with a condition of
whether one or more neighboring sub-blocks include any
non-zero transform coefficients, assigning contexts to each of
the significance syntax elements of the transform coefficients
based on the selected context pattern, and context adaptive
binary arithmetic coding (CABAC) decoding the significance
syntax elements of the transform coefficients of the current
sub-block based on the assigned contexts.

In another example, the disclosure describes a device for
decoding video data, the device comprising a video decoder
configured to receive, in a bitstream, significance syntax ele-
ments for transform coefficients of a current sub-block of a
block, select a context pattern from a plurality of two-dimen-
sional context patterns for a plurality of scan types for the
significance syntax elements of the transform coefficients of
the current sub-block, wherein the plurality of two-dimen-
sional context patterns is the same for each of the plurality of

US 9,124,872 B2

3

scan types, and wherein each of the context patterns is asso-
ciated with a condition of whether one or more neighboring
sub-blocks include any non-zero transform coefficients,
assign contexts to each of the significance syntax elements of
the transform coefficients based on the selected context pat-
tern, and context adaptive binary arithmetic coding (CABAC)
decode the significance syntax elements of the transform
coefficients of the current sub-block based on the assigned
contexts.

In another example, the disclosure describes a computer-
readable storage medium having instructions stored thereon
that when executed cause one or more processors of a device
for decoding video data to receive, in a bitstream, significance
syntax elements for transform coefficients of a current sub-
block of a block, select a context pattern from a plurality of
two-dimensional context patterns for a plurality of scan types
for the significance syntax elements of the transform coeffi-
cients of the current sub-block, wherein the plurality of two-
dimensional context patterns is the same for each of the
plurality of scan types, and wherein each of the context pat-
terns is associated with a condition of whether one or more
neighboring sub-blocks include any non-zero transform coef-
ficients, assign contexts to each of the significance syntax
elements of the transform coefficients based on the selected
context pattern, and context adaptive binary arithmetic cod-
ing (CABAC) decode the significance syntax elements of the
transform coefficients of the current sub-block based on the
assigned contexts.

In another example, the disclosure describes a method for
encoding video data. The method comprising generating sig-
nificance syntax elements for transform coefficients of a cur-
rent sub-block of a block, selecting a context pattern from a
plurality of two-dimensional context patterns for a plurality
of scan types for the significance syntax elements of the
transform coefficients of the current sub-block, wherein the
plurality of two-dimensional context patterns is the same for
each of the plurality of scan types, and wherein each of the
context patterns is associated with a condition of whether one
or more neighboring sub-blocks include any non-zero trans-
form coefficients, assigning contexts to each of the signifi-
cance syntax elements of the transform coefficients based on
the selected context pattern, context adaptive binary arith-
metic coding (CABAC) encoding the significance syntax ele-
ments of the transform coefficients of the current sub-block
based on the assigned contexts, and outputting the encoded
significance syntax elements.

In another example, the disclosure describes a device for
encoding video data, the device comprising a video encoder
configured to generate significance syntax elements for trans-
form coefficients of a current sub-block of a block, select a
context pattern from a plurality of two-dimensional context
patterns for a plurality of scan types for the significance
syntax elements of the transform coefficients of the current
sub-block, wherein the plurality of two-dimensional context
patterns is the same for each of the plurality of scan types, and
wherein each of the context patterns is associated with a
condition of whether one or more sub-blocks include any
non-zero transform coefficients, assign contexts to each of the
significance syntax elements of the transform coefficients
based on the selected context pattern, context adaptive binary
arithmetic coding (CABAC) encode the significance syntax
elements of the transform coefficients of the current sub-
block based on the assigned contexts, and output the encoded
significance syntax elements.

In another example, the disclosure describes a device for
encoding video data, the device comprising means for gener-
ating significance syntax elements for transform coefficients

20

25

30

35

40

45

50

55

60

65

4

of a current sub-block of a block, means for selecting a
context pattern from a plurality of two-dimensional context
patterns for a plurality of scan types for the significance
syntax elements of the transform coefficients of the current
sub-block, wherein the plurality of two-dimensional context
patterns is the same for each of the plurality of scan types, and
wherein each of the context patterns is associated with a
condition of whether one or more neighboring sub-block
include any non-zero transform coefficients, means for
assigning contexts to each of the significance syntax elements
of the transform coefficients based on the selected context
pattern, means for context adaptive binary arithmetic coding
(CABAC) encoding the significance syntax elements of the
transform coefficients of the current sub-block based on the
assigned contexts, and means for outputting the encoded sig-
nificance syntax elements.

In another example, the disclosure describes a method for
decoding video data. The method comprising receiving, in a
bitstream, significance syntax elements of transform coeffi-
cients for a current sub-block of a block, selecting a context
pattern that is stored as a one-dimensional context pattern,
wherein the context pattern identifies contexts for two or
more scan types of the current sub-block, assigning contexts
to the significance syntax elements of the transform coeffi-
cients for the current sub-block based on the selected context
pattern, and context adaptive binary arithmetic coding
(CABAC) decoding the significance syntax elements of the
transform coefficients of the current sub-block based on the
assigned contexts.

In another example, the disclosure describes a device for
decoding video data, the device comprising a video decoder
configured to receive, in a bitstream, significance syntax ele-
ments of transform coefficients for a current sub-block of a
block, select a context pattern that is stored as a one-dimen-
sional context pattern, wherein the context pattern identifies
contexts for two or more scan types of the current sub-block,
assign contexts to the significance syntax elements of the
transform coefficients for the current sub-block based on the
selected context pattern, and context adaptive binary arith-
metic coding (CABAC) decode the significance syntax ele-
ments of the transform coefficients of the current sub-block
based on the assigned contexts.

In another example, the disclosure describes a computer-
readable storage medium having instructions stored thereon
that when executed cause one or more processors of a device
for decoding video data to receive, in a bitstream, significance
syntax elements of transform coefficients for a current sub-
block of a block, select a context pattern that is stored as a
one-dimensional context pattern, wherein the context pattern
identifies contexts for two or more scan types of the current
sub-block, assign contexts to the significance syntax elements
of the transform coefficients for the current sub-block based
on the selected context pattern, and context adaptive binary
arithmetic coding (CABAC) decode the significance syntax
elements of the transform coefficients of the current sub-
block based on the assigned contexts.

In another example, the disclosure describes a method for
encoding video data. The method comprising generating sig-
nificance syntax elements of transform coefficients for a cur-
rent sub-block of a block, selecting a context pattern that is
stored as a one-dimensional context pattern, wherein the con-
text pattern identifies contexts for two or more scan types of
the current sub-block, assigning contexts to the significance
syntax elements of the transform coefficients for the current
sub-block based on the selected context pattern, context adap-
tive binary arithmetic coding (CABAC) encoding the signifi-
cance syntax elements of the transform coefficients of the

US 9,124,872 B2

5

current sub-block based on the assigned contexts, and output-
ting the encoded significance syntax elements.

In another example, the disclosure describes a device for
encoding video data, the device comprising a video encoder
configured to generate significance syntax elements of trans-
form coefficients for a current sub-block of a block, select a
context pattern that is stored as a one-dimensional context
pattern, wherein the context pattern identifies contexts for
two or more scan types of the current sub-block, assign con-
texts to the significance syntax elements of the transform
coefficients for the current sub-block based on the selected
context pattern, context adaptive binary arithmetic coding
(CABAC) encode the significance syntax elements of the
transform coefficients of the current sub-block based on the
assigned contexts, and output the encoded significance syntax
elements.

In another example, the disclosure describes a device for
encoding video data, the device comprising means for gener-
ating significance syntax elements of transform coefficients
for a current sub-block of a block, means for selecting a
context pattern that is stored as a one-dimensional context
pattern, wherein the context pattern identifies contexts for
two or more scan types of the current sub-block, means for
assigning contexts to the significance syntax elements of the
transform coefficients for the current sub-block based on the
selected context pattern, means for context adaptive binary
arithmetic coding (CABAC) encoding the significance syntax
elements of the transform coefficients of the current sub-
block based on the assigned contexts, and means for output-
ting the encoded significance syntax elements.

The details of one or more examples are set forth in the
accompanying drawings and the description below. Other
features, objects, and advantages will be apparent from the
description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a conceptual diagram that illustrates an example
of coeflicient groups and scans for a video block.

FIGS. 2A-2B are conceptual diagrams that illustrate
examples of coefficient groups and scans for a video block.

FIGS. 3A-3B are conceptual diagrams that illustrate
examples of coefficient groups and scans for a video block.

FIG. 4 is a conceptual diagram that illustrates a relation
between transform coefficients in a video block and a signifi-
cance map associated with the video block.

FIGS. 5A-5D are conceptual diagrams that illustrate an
example of patterns for context assignment for coefficients in
a sub-block.

FIG. 6 is a block diagram illustrating an example video
encoding and decoding system that may utilize the inter-
prediction techniques described in this disclosure.

FIG. 7 is a block diagram illustrating an example video
encoder that may implement the inter-prediction techniques
described in this disclosure.

FIG. 8 is a block diagram illustrating an example of an
entropy encoder that may implement techniques for entropy
encoding predictive syntax elements in accordance with this
disclosure.

FIGS. 9A-9D are conceptual diagrams that illustrate
examples of patterns for context assignment for coefficients
in a sub-block.

FIG. 10 is a conceptual diagram that illustrates an example
of a pattern for context assignment for coefficients in a sub-
block.

FIG. 11 is a flowchart illustrating encoding predictive syn-
tax elements according to the techniques of this disclosure.

20

25

30

35

40

45

50

55

60

65

6

FIG. 12 is a flowchart illustrating encoding predictive syn-
tax elements according to the techniques of this disclosure.

FIG. 13 is a block diagram illustrating an example video
decoder that may implement the inter-prediction techniques
described in this disclosure.

FIG. 14 is a block diagram illustrating an example of an
entropy decoder that may implement techniques for decoding
predictive syntax elements in accordance with this disclosure.

FIG. 15 is a flowchart illustrating decoding predictive syn-
tax elements according to the techniques of this disclosure.

FIG. 16 is a flowchart illustrating decoding predictive syn-
tax elements according to the techniques of this disclosure.

DETAILED DESCRIPTION

A video coder designed according to some examples, such
as that proposed in the working draft 7 (WD7) of the High
Efficiency Video Coding (HEVC) standard, referred to as
HEVC WD7 herein and available from http://phenix.it-sud-
paris.ew/jct/doc_end_user/documents/9_Geneva/wgl 1/
JCTVC-11003-v5.zip, may require a different data access for
non-square coefficient groups than a 4x4 sub-block coeffi-
cient group. This may impose additional hardware and soft-
ware complexity during implementation of the video coder.
The additional hardware and software complexity may be
reduced if the non-square coefficient groups are removed and
4x4 sub-block coefficients are scanned according to one of a
diagonal, vertical, or horizontal scan type. However, this
modification may reduce coding efficiency when the context
derivations defined according to HEVC WD?7 are used for
assigning contexts to syntax elements that indicate whether a
sub-block includes significant coefficients. Thus, this disclo-
sure describes technique for assigning contexts for syntax
elements that indicate whether a sub-block includes signifi-
cant coefficients which may provide for improved coding
efficiency.

For instance, in some of these other techniques (i.e., those
not necessarily in accordance with the techniques described
in this disclosure), context patterns are used for a subset of the
possible sizes for transform units (TUs or transform blocks)
for coding of syntax elements that indicate the significance of
transform coefficients of the transform units (referred to as
significance syntax elements). Also, these other techniques
used the context patterns for limited scan types. Accordingly,
computational resources are wasted by having to determine
the size of the TU so that a determination can be made about
whether context patterns can be used.

In the techniques described in this disclosure, the same
context patterns are used for a plurality of scan types (e.g., a
horizontal scan, a vertical scan, and a diagonal scan) for a
variety of different sized TUs. For instance, a video encoder
or a video decoder may select a context pattern from the same
plurality of context patterns for a 4x4 sub-block of an 8x8 TU
regardless of the scan type for the 4x4 sub-block (e.g., regard-
less of whether the 4x4 sub-block is horizontally scanned,
vertically scanned, or diagonally scanned). As described in
more detail, each of the plurality of context patterns is asso-
ciated with a condition of whether one or more neighboring
sub-blocks include any significant transform coefficients
(e.g., any non-zero transform coefficients). As also described
in more detail, this disclosure describes characteristics of the
plurality of context patterns from which the video encoder or
video decoder selects the context pattern. In this way, com-
putational efficiencies may be realized since the video
encoder and the video decoder can use the same context
patterns for determining contexts for significance syntax ele-
ments for a plurality of scan types (e.g., a horizontal scan,

US 9,124,872 B2

7

vertical scan, and diagonal scan) for the significance syntax
elements of the sub-block, including a 4x4 sub-block of an
8x8 block (i.e., 8x8 TU).

In the above examples, the context patterns may be two-
dimensional context patterns. However, aspects of this dis-
closure are not so limited. In some examples, the video
encoder and the video decoder select a context pattern that is
stored as a one-dimensional context pattern. For example,
some context patterns may be defined as two-dimensional
context patterns. It may be possible to pre-compute a one-
dimensional context pattern from the two-dimensional con-
text pattern. Pre-computing may speed up the encoding and
decoding process. For example, the transform coefficients
may be converted from a two-dimensional block into a one-
dimensional block. With the pre-computed one-dimensional
patterns, encoding and decoding efficiencies may be realized
if a one-dimensional pattern is used for encoding or decoding
the significance syntax elements because the transform coef-
ficients are converted to a one-dimensional block, as com-
pared to using the two-dimensional context pattern on a one-
dimensional block. It should be understood that pre-
computing the one-dimensional context pattern from the two-
dimensional context pattern is not required in every example,
and should not be considered as a limited way of determining
the one-dimensional context pattern.

There may be various ways in which the one-dimensional
context pattern may be computed. As one example, a two-
dimensional context pattern is diagonally scanned, horizon-
tally scanned, and vertically scanned to produce three one-
dimensional context patterns (e.g., one for each scan type). In
the techniques described in this disclosure, the two-dimen-
sional context patterns may comprise characteristics that
reduce the total number of one-dimensional context patterns
that are produced.

For example, if there are four two dimensional context
patterns that are each scanned horizontally, vertically, and
diagonally to produce one-dimensional context patterns, then
there would a total of 12 one-dimensional context patterns. In
some examples, the four two dimensional context patterns
may include contexts that are arranged in such a way that two
different scans result in the same one dimensional context
pattern.

For instance, one of the two-dimensional context patterns
may include contexts that if scanned horizontally or vertically
result in the same one-dimensional context pattern. As
another example, one of the two-dimensional context patterns
may include contexts that when scanned horizontally results
in a one-dimensional context pattern that is the same one-
dimensional vector that would result if another of the two-
dimensional context patterns were scanned vertically. As
another example, one of the two-dimensional context patterns
may include contexts that when scanned horizontally, verti-
cally, and diagonally result in the same one-dimensional con-
text pattern.

In this way, there may be overlap in the resulting one-
dimensional context patterns that result from the different
scanning of the context patterns, which reduces the total
number of one-dimensional context patterns that need to be
stored. This allows one context pattern to be used for two or
more scan types of the sub-block.

For instance, as described above, one of the two-dimen-
sional context patterns includes contexts that when scanned
horizontally, vertically, and diagonally result in the same
one-dimensional context pattern. Accordingly, for this con-
text pattern only one one-dimensional context pattern is
stored because the one-dimensional context pattern is the
same for all three types of context pattern scans.

20

25

30

35

40

45

50

55

60

65

8

As another example, one of the two-dimensional context
patterns includes contexts that when scanned horizontally or
vertically result in the same one-dimensional context pattern.
In this case, the one-dimensional context pattern for the
diagonal scan is stored, and the one-dimensional context pat-
tern for either the horizontal scan or the vertical scan is stored,
but not both, because the one-dimensional context pattern
that results from the horizontal and vertical scan is the same.
In these examples, these one-dimensional context patterns
computed from the two-dimensional context patterns may be
pre-computed and stored, which may speed up the encoding
and decoding processes.

Moreover, in some examples, the one-dimensional context
pattern need not necessarily be computed from a two-dimen-
sional context pattern. Rather, the one-dimensional context
pattern may be preselected and stored, as a one-dimensional
context pattern. Even in these examples, the one-dimensional
context pattern may identify contexts for two or more scan
types of the current sub-block.

Digital video devices implement video compression tech-
niques to encode and decode digital video information more
efficiently. Video compression techniques may be defined
according to a video coding standard, such as the HEVC
standard currently under development by the JCT-VC. The
HEVC standardization efforts are based on a model ofa video
coding device referred to as the HEVC Test Model (HM). The
HM presumes improvements in the capabilities of video cod-
ing devices with respect to video coding devices available
during the development of previous video coding standards,
e.g., ITU-T H.264/AVC. For example, whereas H.264 pro-
vides nine intra-prediction encoding modes, HEVC provides
as many as thirty-five intra-prediction encoding modes. Fur-
ther, as part of the HEVC standardization efforts, the JCT-VC
has defined test conditions that may be used to evaluate how
individual modifications to drafts of the HEVC standard may
impact overall coding performance. One criteria used to
evaluate coding performance is the so-called BD-rate.

A recent working Draft (WD) of HEVC, referred to as
“HEVC Working Draft 7" or “WD?7.” is described in docu-
ment JCTVC-11003_d4, Bross et al., “High efficiency video
coding (HEVC) text specification draft 7,” Joint Collabora-
tive Team on Video Coding (JCT-VC) of ITU-T SG16 WP3
and ISO/IEC JTC1/SC29/WG11, 9th Meeting: Geneva,
Switzerland, April-May, 2012. Further, another recent work-
ing draft of HEVC, Working Draft 9 (WD9), is described in
document JCTVC-K1003_v7, Bross et al., “High Efficiency
Video Coding (HEVC) Text Specification Draft 9,” Joint Col-
laborative Team on Video Coding (JCT-VC) of ITU-T SG16
WP3 and ISO/IEC JITC1/SC29/WG11, 11th Meeting: Shang-
hai, CN, October, 2012. The latest version of WD9 is found
from http://phenix.int-evry.fr/jct/doc_end_user/documents/
12_Geneva/wgl1/JCTVC-L1003-v29.zip.

Although techniques of this disclosure are described with
respect to the ITU-T H.264 standard and the upcoming
HEVC standard, the techniques of this disclosure are gener-
ally applicable to any video coding standard. Coding accord-
ing to some of the presently proposed aspects of the develop-
ing HEVC standard will be described in this application for
purposes ofillustration. However, the techniques described in
this disclosure may also be useful for and applied to other
video coding processes, such as those defined according to
ITU-T H.264 or other standard or proprietary video coding
processes.

A video sequence typically includes a series of video
frames, also referred to as pictures. A group of pictures (GOP)
generally comprises a series of one or more of the video
frames. A GOP may include syntax data in a header of the

US 9,124,872 B2

9

GOP, a header of one or more of the pictures, or elsewhere,
that describes a number of pictures included in the GOP. Each
frame may include a plurality of slices. Each slice of a picture
may include slice syntax data that describes a coding mode
for the respective slice. Each slice may include a plurality of
video blocks or coding units. The video blocks may have
fixed or varying sizes, and may differ in size according to a
specified coding standard.

Video blocks may be encoded by applying spatial (intra-
frame) prediction and/or temporal (inter-frame) prediction
techniques to reduce or remove redundancy inherent in video
sequences. A spatial prediction may be referred to as an “intra
mode” (I-mode), and a temporal prediction may be referred to
as an “inter mode” (P-mode or B-mode). Prediction tech-
niques generate a predictive block of video data, which may
also be referred to as a block of reference samples. A block of
original video data to be coded is compared to the predictive
block. The difference between the original block of video data
and the predictive block may be referred to as residual data.
Residual data is typically an array of the difference between
pixel values of a predictive block and the original block of
video data.

A transform, e.g., a discrete cosine transform (DCT) or
conceptually similar transform, an integer transform, a wave-
let transform, or another type of transform, may be applied to
the residual data during the coding process to generate a
corresponding set of transform coefficients. Thus, the original
block of video can be reconstructed by performing an inverse
transform on the transform coefficients and adding the
residual data to the predictive block. Transform coefficients
may also be quantized. Quantization generally refers to a
process in which transform coefficients are quantized to pos-
sibly reduce the amount of data used to represent the coeffi-
cients, providing further compression. That is, the values of
the transform coefficients may be represented as a bit string
according to a defined bit-depth. For example, an n-bit value
may be rounded down to an m-bit value during quantization,
where m is less than n. In some cases, quantization may result
in the representation of low value transform coefficients as
zero. Quantized transform coefficients may be referred to as
transform coefficient levels.

Following quantization, the quantized transform coeffi-
cients may be entropy encoded according to an entropy cod-
ing methodology, such as, for example, content adaptive vari-
able length coding (CAVLC), context adaptive binary
arithmetic coding (CABAC), or probability interval partition-
ing entropy coding (PIPE). Syntax elements, such as a syntax
element defining a prediction mode, may also be entropy
coded. To perform CAVLC, a video encoder may select a
variable length code for a symbol to be transmitted. Code-
words in VL.C may be constructed such that relatively shorter
codes correspond to more probable symbols, while longer
codes correspond to less probable symbols. To perform
CABAC, a video encoder may assign a context within a
context model to a symbol to be transmitted.

For some entropy encoding techniques a predefined scan
order may be used to scan the quantized transform coeffi-
cients to produce a serialized vector of quantized transform
coefficients that can be entropy encoded. Thus, according to
predictive video coding residual values comprising pixel dif-
ference values may be transformed into transform coeffi-
cients, quantized, and scanned to produce serialized trans-
form coefficients for entropy coding.

For video coding, as one example, a video frame may be
partitioned into one or more slices, where a slice includes
consecutive integer number of coding units. A coding unit
(CU) generally refers to a rectangular image region that

20

25

30

35

40

45

50

55

60

65

10

serves as a basic unit to which various coding tools are applied
for video compression. In general, the techniques of this
disclosure relate to transforming, quantizing, scanning, and
entropy coding data of a CU. A CU is typically square, and
may be considered to be similar to a so-called “macroblock™
described in other video coding standards such as, for
example, [TU-T H.264. A CU may be considered an array of
video sample values. Video sample values may also be
referred to as picture elements, pixels, or pels. A CU usually
has a luminance component, denoted as Y, and two chroma
components, denoted as U and V. The two chroma compo-
nents may also be respectively denoted as C, and C, compo-
nents. The size of a CU may be defined according to a number
of horizontal and vertical samples. Thus, a CU may be
described as an NxN or NxM CU. In this disclosure, “NxN”
and “N by N” may be used interchangeably to refer to the
pixel dimensions of a video block in terms of vertical and
horizontal dimensions, e.g., 16x16 pixels or 16 by 16 pixels.
In general, a 16x16 block will have 16 pixels in a vertical
direction (y=16) and 16 pixels in a horizontal direction
(x=16). Likewise, an NxN block generally has N pixels in a
vertical direction and N pixels in a horizontal direction, where
N represents a nonnegative integer value. The pixels in a
block may be arranged in rows and columns. Moreover,
blocks need not necessarily have the same number of pixels in
the horizontal direction as in the vertical direction. For
example, blocks may comprise NxM pixels, where M is not
necessarily equal to N.

To achieve better coding efficiency, a CU may have vari-
able sizes depending on video content. According to HEVC,
syntax data within a bitstream may define a largest coding
unit (LCU), which is a largest CU for a frame or picture in
terms of the number of samples. Typically, an LCU includes
64x64 luma samples, but the size of an LCU may vary
depending on coding application. LCUs may also be referred
to as “coding tree units.” CUs of other dimensions may be
generated by recursively partitioning an LCU into sub-CUs.
The partitioning of LCUs into sub-CUs may be performed
using a quadtree structure known as “residual quad tree”
(RQT). Thus, LCUs may also be referred to as treeblocks.
According to quadtree partitioning, a root node of the
quadtree, such as an LCU, may be split into four smaller
nodes, and each child node may in turn be further split into
another four smaller nodes. Syntax data for a bitstream may
define a maximum number of times an LCU may be split,
referred to as CU depth. Accordingly, a bitstream may also
define a smallest coding unit (SCU). Typically, an SCU
includes 8x8 luma samples. Thus, in one example, four 32x32
CUs may be generated by partitioning a 64x64 L.CU into four
sub-CUs and each of the 32x32 CUs may be further parti-
tioned into sixteen 8x8 CUs.

A CU may include one or more associated prediction units
(PUs) and/or transform units (TUs). In general, a PU includes
data that is used to generate a predictive block of video data
for a CU. PUs may also be referred to as “prediction parti-
tions.” Syntax data associated with a CU may describe the
partitioning ofa CU into one or more PUs. A PU can be square
or non-square in shape. The type data included in a PU may
differ depending on whether a CU is skip or direct mode
encoded, intra-prediction mode encoded, or inter-prediction
mode encoded. For example, when the CU is to be intra-mode
encoded, a PU may include data describing an intra-predic-
tion mode and when the CU is to be inter-mode encoded, a PU
may include data defining a motion vector for the PU. The
data defining the motion vector for a PU may describe, for
example, a horizontal component of the motion vector, a
vertical component of the motion vector, a resolution for the

US 9,124,872 B2

11

motion vector (e.g., one-quarter pixel precision or one-eighth
pixel precision), a reference picture to which the motion
vector points, and/or a reference picture list for the motion
vector. Following the prediction using the PUs of a CU, a
video coder may calculate residual data a CU.

The HM supports prediction in various PU sizes. Assuming
that the size of a particular CU is 2Nx2N, the HM supports
intra-prediction in PU sizes of 2Nx2N or NxN, and inter-
prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N,
or NxN. The HM also supports asymmetric partitioning for
inter-prediction in PU sizes of 2NxnU, 2NxnD, n[.x2N, and
nRx2N. In asymmetric partitioning, one direction of a CU is
not partitioned, while the other direction is partitioned into
25% and 75%. The portion of the CU corresponding to the
25% partition is indicated by an “n” followed by an indication
of “Up”, “Down,” “Left,” or “Right.” Thus, for example,
“2NxnU” refers to a 2Nx2N CU that is partitioned horizon-
tally with a 2Nx0.5N PU on top and a 2Nx1.5N PU on
bottom.

As described above, a transform may be applied to residual
data to transform the residual data from a pixel domain to a
transform domain. The HEVC standard allows for transfor-
mations according to TUs, which may be different for differ-
ent CUs. The TUs are typically sized based on the size of PUs
within a given CU, although this may not always be the case.
The size of a TU may be the same as the size of a CU or a CU
may be partitioned into a plurality of TUs. TUs are typically
the same size or smaller than the PUs. In HEVC, syntax data
associated with a CU may describe partitioning of the CU into
one or more TUs according to a quadtree.

In general, a TU is used for in the process of transforming
residual data into transform coefficients. A TU can be square
or non-square in shape. For example, a block of 8x8 residual
values may be transformed into a set of 8x8 transform coef-
ficients. This set of transform coefficients may be more gen-
erally referred to as a transform block. For example, one
transform may be performed on the residual values associated
with the 16x16 array of samples or a transform may be per-
formed on each of four 8x8 arrays of samples. Larger TUs
generally provide more compression with more perceivable
“blockiness” in a reconstructed image, whereas smaller TUs
generally provide less compression with less perceivable
“blockiness.” The selection of TU sizes may be based on a
rate-distortion optimization analysis. Available TU sizes may
include 32x32, 16x16, and 8x8 TUs. It should be noted that
this disclosure typically uses the term “video block” to refer
to a coding node of a CU. In some specific cases, this disclo-
sure may also use the term “video block™ to refer to a tree-
block, i.e., LCU, or a CU, which includes a coding node and
PUs and TUs.

Conceptually, a transform block or TU may be a two-
dimensional (2D) matrix of transform coefficients. As
described above, a video coder may perform a quantization
operation on a transform block. A predefined scan order may
be used to scan the quantized transform coefficients to pro-
duce a serialized vector of quantized transform coefficients.
The serialized vector of quantized transform coefficient may
then be entropy encoded to provide further compression.

In some examples, for 16x16 and 32x32 TUs, a 4x4 sub-
block scan is used to produce a serialized vector of quantized
transform coefficients. For example, the sub-blocks are
scanned in the reverse direction using a top-right to bottom-
left scan. Within a sub-block the transform coefficients are
also scanned in the reverse direction a using a bottom-right to
top-left scan. This type of scan may be referred to as diagonal
4x4 sub-block scan. In some examples, 8x8 TUs may also use
the diagonal 4x4 sub-block scan as one possible scan. FIG. 1

10

20

25

30

35

40

45

50

55

60

65

12

is a conceptual diagram that illustrates an example of coeffi-
cient groups and scans for a video block. FIG. 1 illustrates an
8x8 video block divided into four 4x4 sub-blocks where a
diagonal scan is performed on each of the sub-blocks. A
sub-block may also be referred to as a coefficient group. In
FIG. 1, each coefficient group is identified and separated
using thicker interior lines. As illustrated in FIG. 1, there are
four coefficient groups and each coefficient group includes 16
coefficients. The scans within the sub-blocks in FIG. 1 are
shown using the directional arrows.

In addition to the diagonal 4x4 sub-block scan, mode
dependent coefficient scans allow for non-square horizontal
and vertical scans for some 8x8 intra prediction modes. For
non-square horizontal and vertical scans of an 8x8 TU, the
coefficient groups are defined as 8x2 rectangles for the non-
square horizontal scan (i.e., 16 consecutive coefficients in the
scan order). In a similar manner, coefficient groups are
defined as 2x8 rectangles for the non-square vertical scan.
FIGS. 2A-2B illustrate non-square coefficient groups with
horizontal and vertical scans of an 8x8 TU, respectively. In
FIGS. 2A-2B, each coefficient group is identified and sepa-
rated using thicker interior lines. As illustrated in FIGS.
2A-2B, there are four coefficient groups and each coefficient
group includes 16 coefficients. In FIG. 2A, the sub-blocks are
scanned using a right-to-left scan. As illustrated in FIG. 2B,
the sub-blocks are scanned using a bottom-to-top scan. The
scans within the sub-blocks in FIGS. 2A-2B are shown using
the directional arrows. It should be noted that a video coder
designed according to HEVC WD7 may require a different
data access for the non-square coefficient groups than the
regular 4x4 sub-block coefficient groups. This may impose
additional hardware and software complexity during imple-
mentation of the video coder.

Thus, in addition to the diagonal 4x4 sub-block scan and
the non-square horizontal and vertical scans, horizontal and
vertical sub-block scans have been also been proposed for
4x4 sub-blocks of an 8x8 TU as an alternative to the non-
square horizontal and vertical scans. Examples of sub-block
horizontal and vertical scans are described in: (1) Rosewarne,
C., Maeda, M. “Non-CE11: Harmonisation of 8x8 TU
residual scan” JCT-VC Contribution JCTVC-HO0145; (2) Yu,
Y., Panusopone, K., Lou, J., Wang, L.. “Adaptive Scan for
Large Blocks for HEVC; JCT-VC Contribution JCTVC-
F569; and (3) U.S. patent application Ser. No. 13/551,458,
filed Jul. 17, 2012, each of which is hereby incorporated by
reference. Two example horizontal and vertical 4x4 sub-
blocks scans which may be used for an 8x8 TU are illustrated
in FIGS. 3A-3B. In FIGS. 3A-3B, each coefficient group is
identified and separated using thicker interior lines. Similar to
the groups illustrated in FIG. 1, in FIGS. 3A-3B, there are
four 4x4 coefficient groups which are scanned in the reverse
direction using a top-right to bottom-left scan. The scans
within the sub-blocks are illustrated using directional arrows.

It should be noted that while using the horizontal 4x4
sub-block scan and the vertical 4x4 sub-block scan as alter-
natives to the non-square horizontal and vertical scans,
according to proposal JCTVC-H0145, using the set of the
diagonal 4x4 sub-block, the horizontal 4x4 sub-block scan,
and the vertical 4x4 sub-block scan as possible scans of an
8x8 TU resulted in a performance BD-rate loss of 0.3% for
the intra configuration when compared to using a set of the
diagonal 4x4 sub-block, the horizontal 8x2 rectangular scan,
and the vertical 2x8 rectangular scan as possible scans for 8x8
TU. That is, substituting the scans illustrated in FIGS. 2A-2B
with the scans illustrated in FIGS. 3A-3B decreased coding
performance by 0.3% in some test cases.

US 9,124,872 B2

13

Inexamples of video coding, each sub-blockis coded using
five coding passes, namely, (1) a significance pass, (2) a
greater than one pass, (3) a greater than two pass, (4) a sign
pass, and (5) a coefficient level remaining pass. Significance
coding refers to generating syntax eclements to indicate
whether any of the coefficients within a sub-block have a
value of one or greater. That is, a coefficient with a value of
one or greater is considered significant. The coding of signifi-
cance includes two parts. For the first part of significance
coding, a syntax element is coded or inferred for each coef-
ficient group (i.e., a 4x4 sub-block) that indicates whether
there are any non-zero coefficients in the sub-block. One
example of such a syntax element is referred to as a coefficient
group flag (CGF). In HEVC WD7, the CGF may be repre-
sented by syntax element significant_coeff_group_flag. In
HEVC WD9, the syntax element name of the coefficient
group flag has been changed from significant_coeff_group_
flag to coded_sub_block_flag (which may also be referred to
as CSBF since the coefficient groups are 4x4 sub-blocks).
This disclosure refers to a coefficient group flag as a CGF,
which may correspond to either of the significant_coeff
group_flag or coded_sub_block_flag syntax elements.

For the second part of significant coding, if CGF is 1 (i.e.,
there are non-zero coefficients in the sub-block), then syntax
elements are generated for each transform coefficient in the
coefficient group indicating whether the transform coefficient
is significant or not (i.e., a value of one or greater). Examples
of'such syntax elements are referred to as significance syntax
elements, examples of which are significant coefficient flags.
In HEVC WD7 and WD?9, significant coefficient flags are
represented by the syntax element significant_coefficient_
flag.

In other words, for coding of significance of coefficients,
two types of syntax elements are coded. A first syntax element
(e.g., CGF) is coded for each coding group (i.e., a sub-block)
that indicates whether there any non-zero coefficients in the
coding group. Ifthe first syntax element indicates that there is
at least one non-zero coefficient in the coding group, then a
second syntax element (e.g., significance syntax element or
significant_coefficient_flag) is coded for each coefficient in
the coding group that indicates whether a coefficient is zero or
a non-zero coefficient.

A greater than one pass generates syntax elements to indi-
cate whether the absolute value of a significant coefficient is
larger than one. In one example, a syntax element referred to
as coeff_abs_level_greaterl_flag (abbreviated “grlFlag”)
provides an indication as to whether a significant coefficient
has an absolute value greater than one. In a similar manner,
the greater than two pass generates syntax elements to indi-
cate whether the absolute value of a greater than one coeffi-
cient is larger than two. In one example, a syntax element
referred to as coeff_abs_level_greater2_flag (abbreviated
“gr2Flag”) provides an indication as to whether a greater than
one coefficient has an absolute value greater than two.

A sign pass generates syntax elements to indicate the sign
information for significant coefficients. In one example, a
syntax element referred to as coeff_sign_flag (abbreviated
“signFlag”) may indicate the sign information for a signifi-
cant coefficient. For example, a value of 0 for the signFlag
may indicate a positive sign, while a value of 1 may indicate
a negative sign. A coefficient level remaining pass generates
syntax elements that indicate the remaining absolute value of
a transform coefficient level (e.g., the remainder value). In
one example, a syntax element referred to as coeff_abs_lev-
el_remain (abbreviated “levelRem”) may provide this indi-
cation. The levelRem syntax element may not be signaled
unless the gr2Flag is present for any given coefficient, as one

20

25

30

35

40

45

50

55

60

65

14

example, although such a limitation is not always required. In
one example, a coefficient with a value of level may be coded
as (abs(level)—x), where the value of x depends on the pres-
ence of gr1Flag and gr2Flag. For example, x may be equal to
3 if a gr2Flag is present. In some examples, the value of level
may be coded as (abs(level)-3) for any coefficient for which
there is a remainder. It should be noted that the five pass
approach is just one example technique that may be used for
coding transform coefficient and the techniques described
herein may be equally applicable to other techniques.

Further, in addition to the syntax elements described
above, a position of a last significant coefficient within a TU
may be signaled in the bitstream. The position of the last
significant coefficient in the TU depends on a scan order
associated with the TU. The scan order for purposes of iden-
tifying a last significant coefficient may be any of the scan
orders described above or another predetermined scan order.
In HEVC WD7, the position of the last significant coefficient
within a block is indicated by specifying an x-coordinate
value and a y-coordinate value. The x-coordinate value may
be indicated using the last_significant_coeft_x_prefix and
last_significant_coeff_x_suffix syntax elements. The y-coor-
dinate value may be indicated using the last_significant_co-
eff_y_prefix and last_significant_coeff y_suffix syntax ele-
ments.

In this manner, the syntax elements described above can be
used to signal a so-called significance map of transform coef-
ficients where a significance map illustrated the position of
significant coefficients with a TU. FIG. 4 is a conceptual
diagram that illustrates a relation between transform coeffi-
cients in a transform block and a significance map associated
with the transform map. As illustrated in FIG. 4, the signifi-
cance map includes a “1” to indicate each instance of a sig-
nificant coefficient value, i.e., a value greater than zero, in the
transform block. Also, in this example, the value of the CFG
is “1” to indicate that there is at least one non-zero coefficient
in the coding group (i.e., the sub-block).

For example, the sub-block on the left, in FIG. 4, illustrates
example transform coefficients (e.g., quantized transform
coefficients). As illustrated, there is at least one non-zero
coefficient in the sub-block, hence the CFG is 1. Also, the
significance map on the right, in FIG. 4, includes the signifi-
cance syntax element (e.g., the significant coefficient flag) for
each transform coefficient in the sub-block. For example, the
significant coefficient flag value 1 for all corresponding trans-
form coefficients indicates that the value of these transform
coefficients is not zero (i.e., a non-zero transform coefficient),
and value O for all corresponding transform coefficients indi-
cates that the value of these transform coefficients is zero.

In HEVC, syntax elements related to quantized transform
coefficients, such as the significant_coeff_group_flag and
significant_coefficient_flag described above and other syntax
elements may be entropy coded using CABAC (Context
Adaptive Binary Arithmetic Coding). To apply CABAC cod-
ing to a syntax element, binarization may be applied to a
syntax element to form a series of one or more bits, which are
referred to as “bins.” In addition, a coding context may be
associated with a bin of the syntax element. The coding con-
text may identify probabilities of coding bins having particu-
lar values. For instance, a coding context may indicate a 0.7
probability of coding a O-valued bin (representing an
example of a “most probable symbol,” in this instance) and a
0.3 probability of coding a 1-valued bin. After identifying the
coding context, a bin may be arithmetically coded based on
the context. In some cases, contexts associated with a particu-
lar syntax element or bins thereof may be dependent on other
syntax elements or coding parameters.

US 9,124,872 B2

15

For example, the CGF context derivation depends on the
scan order of the corresponding coefficient group. For
example, for a coefficient group scanned according to the
diagonal 4x4 sub-block scan (e.g., in the cases of 16x16 and
32x32 TUs and some 8x8 TUs), the CGF context (i.e., the
context of syntax element significant_coeff group_flag)
depends on the CGF of the sub-block to the right of (CGFy)
and below (CGFj) the coefficient group. For the non-square
horizontal and vertical scans illustrated in FIG. 2A-2B (e.g.,
in that case of an 8x8 TU), the CGF context of the coefficient
group depends only on the CGF of the previously coded
coefficient group. For the horizontal scan, the previous coded
coefficient group refers to the coded coefficient group below
the coefficient group. For the vertical scan, the previous coef-
ficient group refers to the coefficient group to the right of the
coefficient group.

It should be noted that in HEVC WD7, because the context
derivation of a CGF is different for the diagonal 4x4 sub-
block scan (i.e., depends on CGFy and CGFy) and the non-
square horizontal and vertical scans (i.e., depends only on
previous CGF), a different logic path is required for the CGF
context derivation for the 4x4 diagonal sub-block coefficient
group and the CGF context derivation for the non-square
horizontal and vertical scans, which may also impose hard-
ware and software complexity.

In HEVC WD7, the contexts assigned to the significant_
coefficient_flag syntax element are dependent on (1) the posi-
tion of the transform coefficient within the 4x4 sub-block, (2)
the CGFs of the sub-block to the right (CGFy) and below
(CGFj) the current sub-block, and (3) whether the sub-block
contains the DC coefficient. Kumakura, T., Fukushima, S.
“Non-CE3: Simplified context derivation for significant
map” JCT-VC Contribution JCTVC-10296, which is hereby
incorporated by reference in its entirety, provides one
example where coefficients within a 4x4 sub-block are
assigned contexts depending on the values of CGF; and
CGFj and the position of a coefficient within a sub-block.

FIGS. 5A-5D illustrate four different patterns for context
assignments of significant coefficient flags of a 4x4 sub-block
depending on CGF, and CGFj. It should be noted that in
FIGS. 5A-5D, although the context numbering starts with O,
this is for illustration purposes and does not reflect the actual
context numbers used in HEVC WD7, but only relative con-
text numbering. As illustrated in FIGS. 5A-5D, each context
pattern includes 16 context values, where each context value
corresponds to the coefficient located in the respective posi-
tion. Further, as illustrated in FIGS. 5A-5D, a context pattern
is determined based on values of CGF, and CGFj. In this
manner, the patterns in FIGS. 5A-5D illustrate an example
where contexts are assigned to significant coefficient flags
based on the position of the transform coefficient within the
4x4 sub-block and the values of CGF and CGFy. Itshould be
noted that context assignments illustrated in FIGS. 5A-5D are
not optimal for horizontal or vertical sub-block scans illus-
trated in FIGS. 3A-3B based on the probable location of
significant coefficients within a vector generated using the
scans.

Further, in one example, the values of contexts within a
context pattern may be modified based on whether the corre-
sponding sub-block includes the DC coefficient. The DC
coefficient may be the first coefficient of the transform and
may generally indicate the average amount energy in the
entire block, as one example. For luma transform coefficients,
if a4x4 sub-block does not contain a DC coefficient, a context
offset may be applied. In some examples, a context offset of
3 is applied. As an example, if a 4x4 sub-block does not
contain DC coefficient, and a context assignment derived

20

25

30

35

40

45

50

55

60

65

16

from a context pattern is 2, the actual context used may be 5.
In other words, the context derivation process may be exactly
the same in both cases (i.e., a pattern is selected from a set of
patterns based on the values of CGF and CGFj), but differ-
ent sets of contexts are used for DC and non-DC sub-blocks.
That is, DC and non-DC blocks do not share the same con-
texts.

This disclosure uses the term “DC sub-block™ to refer to a
sub-block of a block (e.g., a TU) that includes a DC coeffi-
cient of the block. For example, assuming the DC coefficient
of'a TU is an upper-left-most coefficient, an upper-left-most
sub-block of the TU including the DC coefficient may be
referred to as a DC sub-block. Further, in one example, for
chroma transform coefficients, the context offset determina-
tion based on whether the 4x4 sub-block contains the DC
coefficient is not applied. That is, the contexts are shared for
DC sub-blocks and non-DC sub-blocks for chroma transform
coefficients. Thus, in some cases only three contexts are used
for transform coefficients associates with the chroma compo-
nents. Further, in some cases, a DC coefficient may always
use a separate context, which is shared for all TU sizes.
Further, in HEVC WD7, significance map context derivation
for an 8x8 TU uses a scaled 8x8 table for the context assign-
ment and, as such, the significance map coding for an 8x8 TU
is not unified with the significance map context derivation for
16x16 and 32x32 TUs.

This disclosure describes several techniques for coding the
syntax elements associated with transform coefficients
included in a transform block, such as the coding group flag
syntax element (i.e., significant_coeff_group_flag or coded_
sub_block_flag) and the significant coefficient syntax ele-
ments (i.e., significant_coefficient_flag). In particular, this
disclosure describes techniques where the scanning orders in
FIGS. 3A-3B may be used as an alternative to non-square
coefficient groups illustrated in FIGS. 2A-2B. Further, this
disclosure describes context derivation techniques for the
syntax elements associated with transform coefficients
wherein the techniques are based on the characteristics of the
sub-block scans illustrated in FIGS. 3A-3B. In one example,
the context derivation techniques may mitigate the BD-rate
performance loss, as described above, when the scans illus-
trated in FIGS. 3A-3B are used instead of the scans illustrated
in FIGS. 2A-2B.

FIG. 6 is a block diagram illustrating an example video
encoding and decoding system 10 that may be configured to
assign contexts utilizing the techniques described in this dis-
closure. As shown in FIG. 6, system 10 includes a source
device 12 that generates encoded video data to be decoded at
a later time by a destination device 14. Source device 12 and
destination device 14 may comprise any of a wide range of
devices, including desktop computers, notebook (i.e., laptop)
computers, tablet computers, set-top boxes, telephone hand-
sets such as so-called “smart” phones, so-called “smart” pads,
televisions, cameras, display devices, digital media players,
video gaming consoles, video streaming device, or the like. In
some cases, source device 12 and destination device 14 may
be equipped for wireless communication. However, the tech-
niques of this disclosure are not necessarily limited to wire-
less applications or environments. The techniques may be
applied to video coding in support of any of a variety of
multimedia applications, such as over-the-air television
broadcasts, cable television transmissions, satellite television
transmissions, streaming video transmissions, e.g., via the
Internet, encoding of digital video for storage on a data stor-
age medium, decoding of digital video stored on a data stor-
age medium, or other applications. In some examples, system
10 may be configured to support one-way or two-way video

US 9,124,872 B2

17

transmission to support applications such as video streaming,
video playback, video broadcasting, and/or video telephony.

In the example of FIG. 6, source device 12 includes a video
source 18, video encoder 20, and an output interface 22. In
some cases, output interface 22 may include a modulator/
demodulator (modem) and/or a transmitter. In source device
12, video source 18 may include a source such as a video
capture device, e.g., a video camera, a video archive contain-
ing previously captured video, a video feed interface to
receive video from a video content provider, and/or a com-
puter graphics system for generating computer graphics data
as the source video, or a combination of such sources. As one
example, if video source 18 is a video camera, source device
12 and destination device 14 may form so-called camera
phones or video phones. However, the techniques described
in this disclosure may be applicable to video coding in gen-
eral, and may be applied to wireless and/or wired applica-
tions. The captured, pre-captured, or computer-generated
video may be encoded by video encoder 12. The encoded
video data may be transmitted directly to destination device
14 via output interface 22 of source device 20 via link 16. The
encoded video data may also (or alternatively) be stored onto
storage device 32 for later access by destination device 14 or
other devices, for decoding and/or playback.

Link 16 may comprise any type of medium or device
capable of transporting the encoded video data from source
device 12 to destination device 14. In one example, link 16
may comprise a communication medium to enable source
device 12 to transmit encoded video data directly to destina-
tion device 14 in real-time. The encoded video data may be
modulated according to a communication standard, such as a
wireless communication protocol, and transmitted to desti-
nation device 14. The communication medium may comprise
any wireless or wired communication medium, such as a
radio frequency (RF) spectrum or one or more physical trans-
mission lines. The communication medium may form part of
a packet-based network, such as a local area network, a wide-
area network, or a global network such as the Internet. The
communication medium may include routers, switches, base
stations, or any other equipment that may be useful to facili-
tate communication from source device 12 to destination
device 14.

Storage device 32 may include any of a variety of distrib-
uted or locally accessed data storage media such as a hard
drive, Blu-ray discs, DVDs, CD-ROMs, flash memory, vola-
tile or non-volatile memory, or any other suitable digital
storage media for storing encoded video data. In a further
example, storage device 32 may correspond to a file server or
another intermediate storage device that may hold the
encoded video generated by source device 12. Destination
device 14 may access stored video data from storage device
32 via streaming or download. A file server may be any type
of' server capable of storing encoded video data and transmit-
ting the encoded video data to the destination device 14.
Example file servers include a web server (e.g., for a website),
an FTP server, network attached storage (NAS) devices, or a
local disk drive. Destination device 14 may access the
encoded video data through any standard data connection,
including an Internet connection. This may include a wireless
channel (e.g., a Wi-Fi connection), a wired connection (e.g.,
DSL, cable modem, etc.), or a combination of both that is
suitable for accessing encoded video data stored on a file
server.

In the example of FIG. 6, destination device 14 includes an
input interface 28, a video decoder 30, and a display device
34. In some cases, input interface 28 may include a receiver
and/or a modem. Input interface 28 of destination device 14

20

25

30

35

40

45

50

55

60

65

18

receives the encoded video data over link 16 or from storage
device 32. The encoded video data communicated over link
16, or provided on storage device 32, may include a variety of
syntax elements generated by video encoder 20 for use by a
video decoder, such as video decoder 30, in decoding the
video data. Such syntax elements may be included with the
encoded video data transmitted on a communication medium,
stored on a storage medium, or stored a file server.

Display device 34 may be integrated with, or external to,
destination device 14. In some examples, destination device
14 may include an integrated display device and may also be
configured to interface with an external display device. In
other examples, destination device 14 may be a display
device. Display device 34 displays the decoded video data to
a user, and may comprise any of a variety of display devices
such as a liquid crystal display (LCD), a plasma display, an
organic light emitting diode (OLED) display, or another type
of display device.

Video encoder 20 and video decoder 30 may operate
according to a video compression standard, such as the
HEVC standard presently under development, as described
above, and may generally conform to the HEVC Test Model
(HM). Alternatively, video encoder 20 and video decoder 30
may operate according to other proprietary or industry stan-
dards, such as the ITU-T H.264 standard or extensions of such
standards. The techniques of this disclosure, however, are not
limited to any particular coding standard. Further, video
encoder 20 and video decoder 30 may operate according to a
video compression standard that is modified to incorporate
the techniques described herein.

Although not shown in FIG. 6, in some aspects, video
encoder 20 and video decoder 30 may each be integrated with
an audio encoder and decoder, and may include appropriate
MUX-DEMUX units, or other hardware and software, to
handle encoding of both audio and video in a common data
stream or separate data streams. If applicable, in some
examples, MUX-DEMUX units may conform to the ITU
H.223 multiplexer protocol, or other protocols such as the
user datagram protocol (UDP).

Video encoder 20 and video decoder 30 each may be imple-
mented as any of a variety of suitable encoder circuitry, such
as one or more microprocessors, digital signal processors
(DSPs), application specific integrated circuits (ASICs), field
programmable gate arrays (FPGAs), discrete logic, software,
hardware, firmware or any combinations thereof. When the
techniques are implemented partially in software, a device
may store instructions for the software in a suitable, non-
transitory computer-readable medium and execute the
instructions in hardware using one or more processors to
perform the techniques of this disclosure. Each of video
encoder 20 and video decoder 30 may be included in one or
more encoders or decoders, either of which may be integrated
as part of a combined encoder/decoder (CODEC) in a respec-
tive device.

FIG. 7 is a block diagram illustrating an example video
encoder 20 that may implement the techniques described in
this disclosure. In the example of FIG. 8, video encoder 20
includes a mode select unit 35, prediction processing unit 41,
reference picture memory 64, summer 50, transform process-
ing unit 52, quantization processing unit 54, and entropy
encoding unit 56. Prediction processing unit 41 includes
motion estimation unit 42, motion compensation unit 44, and
intra prediction module 46. For video block reconstruction,
video encoder 20 also includes inverse quantization process-
ing unit 58, inverse transform module 60, and summer 62. A
deblocking filter (not shown in FIG. 7) may also be included
to filter block boundaries to remove blockiness artifacts from

US 9,124,872 B2

19

reconstructed video. If desired, the deblocking filter would
typically filter the output of summer 62. Additional loop
filters (in loop or post loop) may also be used in addition to the
deblocking filter. It should be noted that prediction processing
unit 41 and transform processing unit 52 should not be con-
fused with PUs and TUs as described above.

As shown in FIG. 7, video encoder 20 receives video data,
and mode select unit 35 partitions the data into video blocks.
This partitioning may also include partitioning into slices,
tiles, or other larger units, as well as video block partitioning,
e.g., according to a quadtree structure of LCUs and CUs.
Video encoder 20 generally illustrates the components that
encode video blocks within a video slice to be encoded. A
slice may be divided into multiple video blocks (and possibly
into sets of video blocks referred to as tiles). Prediction pro-
cessing unit 41 may select one of a plurality of possible
coding modes, such as one of a plurality of intra coding
modes or one of a plurality of inter coding modes, for the
current video block based on error results (e.g., coding rate
and the level of distortion). Prediction processing unit 41 may
provide the resulting intra- or inter-coded block to summer 50
to generate residual block data and to summer 62 to recon-
struct the encoded block for use as a reference picture.

Intra prediction unit 46 within prediction processing unit
41 may perform intra-predictive coding of the current video
block relative to one or more neighboring blocks in the same
frame or slice as the current block to be coded to provide
spatial compression. Motion estimation unit 42 and motion
compensation unit 44 within prediction processing unit 41
perform inter-predictive coding of the current video block
relative to one or more predictive blocks in one or more
reference pictures to provide temporal compression.

Motion estimation unit 42 may be configured to determine
the inter-prediction mode for a video slice according to a
predetermined pattern for a video sequence. The predeter-
mined pattern may designate video slices in the sequence as P
slices or B slices. Motion estimation unit 42 and motion
compensation unit 44 may be highly integrated, but are illus-
trated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of
generating motion vectors, which estimate motion for video
blocks. A motion vector, for example, may indicate the dis-
placement of a PU of a video block within a current video
frame or picture relative to a predictive block within a refer-
ence picture.

A predictive block is a block that is found to closely match
the PU of the video block to be coded in terms of pixel
difference, which may be determined by sum of absolute
difference (SAD), sum of square difference (SSD), or other
difference metrics. In some examples, video encoder 20 may
calculate values for sub-integer pixel positions of reference
pictures stored in reference picture memory 64. For example,
video encoder 20 may interpolate values of one-quarter pixel
positions, one-eighth pixel positions, or other fractional pixel
positions of the reference picture. Therefore, motion estima-
tion unit 42 may perform a motion search relative to the full
pixel positions and fractional pixel positions and output a
motion vector with fractional pixel precision.

Motion estimation unit 42 calculates a motion vector for a
PU of a video block in an inter-coded slice by comparing the
position of the PU to the position of a predictive block of a
reference picture. The reference picture may be selected from
a first reference picture list (List 0) or a second reference
picture list (List 1), each of which identify one or more
reference pictures stored in reference picture memory 64.

20

25

30

35

40

45

50

55

60

65

20

Motion estimation unit 42 sends the calculated motion vector
to entropy encoding unit 56 and motion compensation unit
44.

Motion compensation, performed by motion compensa-
tion unit 44, may involve fetching or generating the predictive
block based on the motion vector determined by motion esti-
mation, possibly performing interpolations to sub-pixel pre-
cision. Upon receiving the motion vector for the PU of the
current video block, motion compensation unit 44 may locate
the predictive block to which the motion vector points in one
of the reference picture lists. Video encoder 20 forms a
residual video block by subtracting pixel values of the pre-
dictive block from the pixel values of the current video block
being coded, forming pixel difference values. The pixel dif-
ference values form residual data for the block, and may
include both luma and chroma difference components. Sum-
mer 50 represents the component or components that perform
this subtraction operation. Motion compensation unit 44 may
also generate syntax elements associated with the video
blocks and the video slice for use by video decoder 30 in
decoding the video blocks of the video slice.

Intra-prediction unit 46 may intra-predict a current block,
as an alternative to the inter-prediction performed by motion
estimation unit 42 and motion compensation unit 44, as
described above. In particular, intra-prediction unit 46 may
determine an intra-prediction mode to use to encode a current
block. In some examples, intra-prediction unit 46 may encode
a current block using various intra-prediction modes, e.g.,
during separate encoding passes, and intra-prediction unit 46
(or mode select unit 35, in some examples) may select an
appropriate intra-prediction mode to use from the tested
modes. For example, intra-prediction unit 46 may calculate
rate-distortion values using a rate-distortion analysis for the
various tested intra-prediction modes, and select the intra-
prediction mode having the best rate-distortion characteris-
tics among the tested modes. Rate-distortion analysis gener-
ally determines an amount of distortion (or error) between an
encoded block and an original, unencoded block that was
encoded to produce the encoded block, as well as a bit rate
(that is, a number of bits) used to produce the encoded block.
Intra-prediction unit 46 may calculate ratios from the distor-
tions and rates for the various encoded blocks to determine
which intra-prediction mode exhibits the best rate-distortion
value for the block.

In any case, after selecting an intra-prediction mode for a
block, intra-prediction unit 46 may provide information
indicative of the selected intra-prediction mode for the block
to entropy encoding unit 56. Entropy encoding unit 56 may
encode the information indicating the selected intra-predic-
tion mode in accordance with the entropy techniques
described herein. Video encoder 20 may include in the trans-
mitted bitstream configuration data, which may include a
plurality of intra-prediction mode index tables and a plurality
of modified intra-prediction mode index tables (also referred
to as codeword mapping tables), definitions of encoding con-
texts for various blocks, and indications of a most probable
intra-prediction mode, an intra-prediction mode index table,
and a modified intra-prediction mode index table to use for
each of the contexts.

After prediction processing unit 41 generates the predictive
block for the current video block via either inter-prediction or
intra-prediction, video encoder 20 forms a residual video
block by subtracting the predictive block from the current
video block. The residual video data in the residual block may
be included in one or more TUs and applied to transform
processing unit 52. Transform processing unit 52 may trans-
form the residual video data into residual transform coeffi-

US 9,124,872 B2

21

cients using a transform, such as a discrete cosine transform
(DCT) or a conceptually similar transform. Transform pro-
cessing unit 52 may convert the residual video data from a
pixel domain to a transform domain, such as a frequency
domain. In some cases, transform processing unit 52 may
apply a 2-dimensional (2-D) transform (in both the horizontal
and vertical direction) to the residual data in the TUs. In some
examples, transform processing unit 52 may instead apply a
horizontal 1-D transform, a vertical 1-D transform, or no
transform to the residual data in each of the TUs.

Transform processing unit 52 may send the resulting trans-
form coefficients to quantization processing unit 54. Quanti-
zation processing unit 54 quantizes the transform coefficients
to further reduce the bit rate. The quantization process may
reduce the bit depth associated with some or all of the coef-
ficients. The degree of quantization may be modified by
adjusting a quantization parameter. In some examples, quan-
tization processing unit 54 may then perform a scan of the
matrix including the quantized transform coefficients. Alter-
natively, entropy encoding unit 56 may perform the scan.

As described above, the scan performed on a transform
block may be based on the size of the transform block. Quan-
tization processing unit 54 and/or entropy encoding unit 56
may scan 8x8, 16x16, and 32x32 transform blocks using any
combination of the sub-block scans described above with
respect to FIG. 1, FIGS. 2A-2B, and FIGS. 3A-3B. In one
example, 32x32 transform blocks and 16x16 transform
blocks may be scanned using the 4x4 diagonal sub-block scan
described above with respect to FIG. 1 and 8x8 transform
blocks may be scanned using the 4x4 sub-block scans
described above with respect to FIG. 1 and FIGS. 3A-3B.
When more one than one scan is available for a transform
block, entropy encoding unit 56 may select a scan based on a
coding parameter associated with the transform block, such
as a prediction mode associated with a prediction unit corre-
sponding to the transform block. Further details with respect
to entropy encoding unit 56 are described below with respect
to FIG. 8.

Inverse quantization processing unit 58 and inverse trans-
form processing unit 60 apply inverse quantization and
inverse transformation, respectively, to reconstruct the
residual block in the pixel domain for later use as a reference
block of a reference picture. Motion compensation unit 44
may calculate a reference block by adding the residual block
to a predictive block of one of the reference pictures within
one of the reference picture lists. Motion compensation unit
44 may also apply one or more interpolation filters to the
reconstructed residual block to calculate sub-integer pixel
values for use in motion estimation. Summer 62 adds the
reconstructed residual block to the motion compensated pre-
diction block produced by motion compensation unit 44 to
produce a reference block for storage in reference picture
memory 64. The reference block may be used by motion
estimation unit 42 and motion compensation unit 44 as a
reference block to inter-predict a block in a subsequent video
frame or picture.

Following quantization, entropy encoding unit 56 entropy
encodes the quantized transform coefficients. For example,
entropy encoding unit 56 may perform context adaptive vari-
able length coding (CAVLC), context adaptive binary arith-
metic coding (CABAC), syntax-based context-adaptive
binary arithmetic coding (SBAC), probability interval parti-
tioning entropy (PIPE) coding or another entropy encoding
methodology or technique. Following the entropy encoding
by entropy encoding unit 56, the encoded bitstream may be
transmitted to video decoder 30, or archived for later trans-
mission or retrieval by video decoder 30. Entropy encoding

20

25

30

35

40

45

50

55

60

65

22

unit 56 may also entropy encode the motion vectors and the
other syntax elements for the current video slice being coded.
Entropy encoding unit 56 may entropy encode syntax ele-
ments such as the significant_coeff_group_flag, significant_
coefficient_flag, coeff abs_level_remain,
coeff_abs_level_greater]_flag,
coeff_abs_level_greater2_flag, and coeff_sign_flag, syntax
elements described above using CABAC.

FIG. 8 is a block diagram that illustrates an example
entropy encoding unit 56 that may implement the techniques
described in this disclosure. The entropy encoding unit 56
illustrated in FIG. 8 may be a CABAC encoder. The example
entropy encoding unit 56 may include a binarization unit 502,
an arithmetic encoding unit 510, which includes a bypass
encoding engine 504 and a regular encoding engine 508, and
a context modeling unit 506.

Entropy encoding unit 56 may receive one or more syntax
elements, such as the either of the significant_coeff_group_
flag or coded_sub_block_flag syntax elements described
above and the significant_coefficient_flag,
coeff_abs_level_greater]_flag,
coeff_abs_level_greater2_flag, coeff sign_flag, and the
coeff_abs_level_remain syntax elements. Binarization unit
502 receives a syntax element and produces a bin string (i.e.,
binary string). Binarization unit 502 may use, for example,
any one or combination of the following techniques to pro-
duce a bin string: fixed length coding, unary coding, truncated
unary coding, truncated Rice coding, Golomb coding, expo-
nential Golomb coding, and Golomb-Rice coding. Further, in
some cases, binarization unit 502 may receive a syntax ele-
ment as a binary string and simply pass-through the bin val-
ues. In one example, binarization unit 502 receives syntax
element significant_coeft_group_flag and produces a bin
string.

Arithmetic encoding unit 510 is configured to receive a bin
string from binarization unit 502 and perform arithmetic
encoding on the bin string. As shown in FIG. 8, arithmetic
encoding unit 510 may receive bin values from a bypass path
or the regular coding path. Bin values that follow the bypass
path may be bins values identified as bypass coded and bin
values that follow the regular encoding path may be identified
as CABAC-coded. Consistent with the CABAC process
described above, in the case where arithmetic encoding unit
510 receives bin values from a bypass path, bypass encoding
engine 504 may perform arithmetic encoding on bin values
without utilizing an adaptive context assigned to a bin value.
In one example, bypass encoding engine 504 may assume
equal probabilities for possible values of a bin.

In the case where arithmetic encoding unit 510 receives bin
values through the regular path, context modeling unit 506
may provide a context variable (e.g., a context state), such that
regular encoding engine 508 may perform arithmetic encod-
ing based on the context assignments provided by context
modeling unit 506. The context assignments may be defined
according to a video coding standard, such as the upcoming
HEVC standard. Further, in one example context modeling
unit 506 and/or entropy encoding unit 56 may be configured
to assign contexts to bins of the significant_coeff_group_flag
and the significant_coefficient_flag syntax elements based on
techniques described herein. The techniques may be incorpo-
rated into HEVC or another video coding standard. The con-
text models may be stored in memory. Context modeling unit
506 may include a series of indexed tables and/or utilize
mapping functions to determine a context and a context vari-
able for a particular bin. After encoding a bin value, regular
encoding engine 508 may update a context based on the actual
bin values.

US 9,124,872 B2

23

As described above, the context assignments illustrated in
FIGS. 5A-5D are not optimal for horizontal or vertical 4x4
sub-block scans illustrated in FIGS. 3A-3B. For example, the
patterns illustrated in FIG. 5A and FIG. 5D have context
assignment regions divided along a diagonal line. These
regions do not correspond with the expected location of sig-
nificant coefficients when a horizontal or vertical 4x4 sub-
block scan is applied. Also, the first row of a horizontal 4x4
sub-block scan has a much higher probability of being sig-
nificant than the second row. In a similar manner, the first
column of a vertical 4x4 sub-block scan has a much high
probability of being significant than a second column. There-
fore, the context patterns illustrated in FIGS. 5A-5D may be
modified to provide more optimal content assignments for
significant coefficient flags that have been scanned according
to a horizontal 4x4 sub-block scan or a vertical 4x4 sub-block
scan. Thus, in addition to performing arithmetic encoding
based on the context assignments defined according to HEVC
WD7, regular encoding engine 508 may be configured to
perform arithmetic encoding based on contexts derived
according to the techniques disclosed herein.

FIGS. 9A-9D illustrate context patterns that are based on
expected positions of significant coefficients with respect to a
horizontal 4x4 sub-block scan or a vertical 4x4 sub-block
scan. It should be noted that in FIGS. 9A-9D, as with the
context patterns illustrated in FIGS. 5A-5D, although the
context numbering starts with 0, this is for illustration pur-
poses and does not reflect the actual context numbers, but
only relative context numbering. FIGS. 9A-9D illustrate four
different patterns that may be used for context assignments of
significant coefficient flags of a 4x4 sub-block depending on
CGFy and CGF 5, where CGF refers to the context group flag
for the right coding group (i.e., right sub-block), and CGFy
refers to the context group flag for the below coding group
(i.e., below sub-block). Again, the context group flag syntax
element indicates whether any of the transform coefficients of
a coding group are non-zero.

In accordance with the techniques described in this disclo-
sure, video encoder 20 selects a context pattern for encoding
significance syntax elements, and video decoder 30 selects a
context pattern for decoding significance syntax elements.
FIGS. 9A-9D illustrate examples of a plurality of two-dimen-
sional context pattern from which video encoder 20 and video
decoder 30 may select a context pattern for encoding and
decoding. In some examples, video encoder 20 and video
decoder 30 may select a context pattern from the same context
patterns (e.g., those illustrated in FIGS. 9A-9D) for a plurality
of scan types. For example, for a horizontal scan, video
encoder 20 and video decoder 30 may select from the same
context patterns. For a vertical scan, video encoder 20 and
video decoder 30 may select from the same context patterns
as those for the horizontal scan. For a diagonal scan, video
encoder 20 and video decoder 30 may select from the same
context patterns as those for the horizontal scan and the ver-
tical scan.

In general the context patterns illustrated in FIGS. 9A-9D
can be said to have less diagonal assignment behavior and
more row/column-wise assignment behavior when compared
to the respective patterns illustrated in FIGS. 5A-5D. Entropy
encoding unit 56 may be configured to assign contexts to the
significant_coefficient_flag syntax elements based on the
context patterns illustrated in FIGS. 9A-9D.

As illustrated in FIGS. 9A-9D, each context pattern
includes 16 context values, where each context value corre-
sponds to the coefficient located in the respective position. It
should be noted that the context pattern in FIG. 9D (i.e., for
CGFz=1, CGFz=1) is uniform for all the positions (i.e., con-

20

25

30

35

40

45

50

55

60

65

24

text=2). FIG. 9D can be contrasted with FIG. 5D, where the
context pattern is not uniform. Further, the context patterns
for CGFz=0, CGF =1, illustrated in FIG. 9B, and CGFz=1,
CGF =0, illustrated in FIG. 9C, give more importance to the
first row and column, respectively, than the context patterns
illustrated in FIG. 5B and FIG. 5C. Also, the context pattern
for CGF z=0, CGF =0, illustrated in F1G. 9A, is more square-
shaped and gives more importance to the top-left coefficient
in comparison to the context pattern illustrated in FIG. 5A.

In one example, entropy encoding unit 56 may be config-
ured to assign contexts to the significant_coefficient_flag syn-
tax elements based on the context patterns illustrated in FIGS.
9A-9D for the horizontal and vertical 4x4 sub-block scans
and assign contexts to the significant_coefficient_flag syntax
elements based on the context patterns illustrated in FIGS.
5A-5D for the diagonal 4x4 sub-block scan. In another
example, in order to limit the total number of context patterns,
entropy encoding unit 56 may be configured to assign con-
texts to the significant_coefficient_flag syntax elements
based on the context patterns illustrated in FIGS. 9A-9D for
the all of the diagonal, horizontal, and vertical 4x4 sub-block
scans.

Further, combinations of the context patterns illustrated in
FIGS. 5A-5D and 9A-9D may be used to assign contexts for
the significant_coefficient_flag syntax elements. For
example, horizontal 4x4 sub-block scans may use the context
patterns illustrated in FIG. 5A, FIG. 9B, FIGS. 5C, and 9D for
respective values of CGFy and CBF. In this example, the
horizontal 4x4 sub-block scan does not use a pattern with
vertical characteristics (i.e., the pattern illustrated in FIG.
9C). This may improve coding, because the statistics of a
horizontal scan usually do not match the distribution illus-
trated in FIG. 9C. In another example, for the horizontal 4x4
sub-block scan instead of using the pattern illustrated in FIG.
9C for the case where the case (CGFz=1, CBF;z=0), the
pattern illustrated in FIG. 9D may be used for both the case
(CGFz=1, CBFz=0) and the case (CGF z3=1, CBF ;=1). In this
example, there is pattern sharing for different CGF configu-
rations for a give scan. Such pattern sharing may also be
applied to the other scan types.

As described above, in one example, quantization process-
ing unit 54 and/or entropy encoding unit 56 may scan 32x32
transform blocks and 16x16 transform blocks using the 4x4
diagonal sub-block scan described above with respect to
FIGS. 1 and 8x8 transform blocks may be scanned using the
4x4 sub-block scans described above with respect to FIG. 1
and FIGS. 3A and 3B. In one example, entropy encoding unit
56 may be configured to assign contexts to the significant_
coefficient_flag syntax elements for 32x32 and 16x16 trans-
form blocks based on the context patterns used for assigning
context to the significant_coefficient_flag syntax elements
based on the context patterns used for the 8x8 transform
blocks.

In one example, entropy encoding unit 56 may use the
context patterns illustrated in FIGS. 9A-9D to derive contexts
for each of the 32x32, 16x16, and 8x8 transforms blocks. In
another example, entropy encoding unit 56 may use the a set
of context patterns, such as those illustrated in FIGS. 5A-5B,
to derive contexts for 32x32, 16x16, and 8x8 transforms
blocks when the 4x4 diagonal sub-block scan is applied and
use a different set of context patterns, such as those illustrated
in FIGS. 9A-9D, to derive the contexts for an 8x8 transform
block when either of the 4x4 horizontal or vertical sub-block
scan is applied. In this example, the derivation of contexts
may be shared for TUs of varying sizes and may depend on
the scan type.

US 9,124,872 B2

25

Further, in a matter similar to the case on deriving and
assigning contexts to DC and non-DC sub-blocks, although
context derivation may be shared for each of 32x32, 16x16,
and 8x8 transforms blocks, the actual contexts may defer for
each size transform block. For example, each of the actual
contexts used for 32x32, 16x16, and 8x8 transform blocks
may be based on the context patterns illustrated in FIGS.
5A-5B, but an offset may be applied to the each of the context
patterns based on the size of the TU. In this example, each of
the 32x32, 16x16, and 8x8 transform blocks would share a
context derivation, but not actual contexts. In another
example, the context derivation may be the same for all sub-
blocks regardless of TUs size or scan type (e.g., the patterns
illustrated in FIGS. 9A-9D may be used for all cases), but
there may be three sets of actual contexts, one set of contexts
for the large TUs (16x16 and 32x32), one set of contexts for
the 8x8 TU with diagonal scan, and one set of contexts for the
8x8 TU when using the horizontal or vertical scan. The sets
may be defines by applying different offsets to a set of context
patterns. Thus, context modeling unit 506 and/or entropy
encoding unit 56 may be configured to assign contexts to the
significant_coefficient_flag using a unified context derivation
for all scanning orders.

As described above, a different set of contexts may be
assigned to the significant_coefficient_flag for the DC sub-
block than for non-DC sub-blocks. That is, offsets may be
applied to context patterns when determining the actual con-
texts. The reason for this is that the statistics for the DC
sub-block are typically much different than the statistics for
non-DC sub-blocks when a 4x4 diagonal sub-block scan is
used. However, when sub-blocks are scanned using a 4x4
horizontal or vertical sub-block scan, the statistics for the DC
sub-block and a non-DC sub-block may be similar. For
example, for an 8x8 TU thatuses a horizontal sub-block scan,
the sub-block to the right of the DC sub-block may have
statistics that are more similar to the DC sub-block than to the
other non-DC sub-blocks. Similarly, for the vertical scan, the
sub-block below the DC sub-block may have statistics that
are more similar to the DC sub-block than to the other non-
DC sub-blocks.

In order to compensate for the fact that one of the non-DC
sub-blocks may have statistics that are similar to the DC
sub-block, context modeling unit 506 and/or entropy encod-
ing unit 56 may be configured to use a first set of contexts for
the DC sub-block and an adjacent non-DC sub-block, and a
second set of contexts may be used to assign contexts for the
other non-DC sub-blocks. For example, when a horizontal
4x4 sub-block scan is used for an 8x8 TU, context modeling
unit 506 and/or entropy encoding unit 56 may be configured
to use a first set of contexts to assign contexts to the first row
of sub-blocks and a second set of contexts to assign contexts
to the second row of the sub-blocks. For example, context
modeling unit 506 and/or entropy encoding unit 56 may be
configured to use the context patterns illustrated in FIGS.
5A-5D and the context patterns illustrated in FIGS. 9A-9D
for the second row. Further, offsets may still be applied for the
non-DC sub-blocks, such that the DC sub-block may still
have a unique context set. In a similar manner, for a vertical
sub-block scan type context patterns may be assigned on a
column basis. Further, this concept can be extended to larger
TU with more than two columns or rows. The technique of
deriving and assigning context based on the row or column of
sub-block may be applied for TUs of all sizes. Thus, context
modeling unit 506 and/or entropy encoding unit 56 may be
configured to assign contexts to the significant_coefficient_
flag based on a sub-block scan type and the location of a
sub-block within a transform block.

20

25

30

35

40

45

50

55

60

65

26

As described above, FIGS. 9A-9D illustrate example con-
text patterns that video encoder 20 selects for determining the
contexts for encoding significance syntax elements of trans-
form coefficients of a sub-block of a transform block. In some
examples, for a plurality of scan types of a sub-block (i.e., if
the sub-block is to be scanned horizontally, vertically, or
diagonally), video encoder 20 may select the context pattern
from one of the context patterns illustrated in FIGS. 9A-9D.
In other words, the context patterns from which video
encoder 20 may select a context pattern may be the same for
a plurality of scan types (e.g., a horizontal scan, a vertical
scan, and a diagonal scan).

Furthermore, as illustrated in FIGS. 9A-9D, each of the
context patterns is associated with a condition of whether one
or more neighboring sub-blocks include any non-zero trans-
form coefficients. For example, the one or more neighboring
sub-blocks include a first neighboring sub-block and a second
neighboring sub-block. In some examples, each of the context
patterns is associated with a condition of whether the first
neighboring sub-block (e.g., a below sub-block that is below
the current sub-block) includes any non-zero transform coef-
ficients and whether the second neighboring sub-block (e.g.,
a right sub-block that is right of the current sub-block)
includes any non-zero transform coefficients. As described
above, the CGF; indicates whether a below sub-block
includes any non-zero transform coefficients and the CGF,
indicates whether a right sub-block includes any non-zero
transform coefficients.

Video encoder 20 may select one of the context patterns
illustrated in FIGS. 9A-9D based on various factors, as
described below. In any event, video encoder 20 may assign
contexts to each of the significance syntax elements of the
transform coeflicients based on the selected context pattern.

For example, if video encoder 20 selected the context pat-
tern associated with the condition that the first neighboring
sub-block does not include any non-zero transform coeffi-
cients and the second neighboring sub-block includes at least
one non-zero transform coefficient (i.e., CGFz equals 0 and
CGFy equals 1), then video encoder 20 may assign a context
to a first row of the significance syntax elements of the trans-
form coefficients for the current sub-block that is different
than contexts for other rows of the significance elements of
the transform coefficients for the current sub-block. For
instance, if CGFy equals 0 and CGF; equals 1, FIG. 9B
illustrates that the first row of transform block is assigned the
context of 2 (or 5 assuming an offset of 3) for encoding
significance syntax elements of the first row of the sub-block,
which is different than the context for any other row of the
sub-block.

Video decoder 30 may function in a substantially similar
way. For example, if video decoder 30 selects the context
pattern illustrated in FIG. 9B (e.g., the condition that CGF
equals 0 and CGFy equals 1), then video decoder 30 assigns
contexts to the significance syntax elements of a sub-block of
atransform block, accordingly. For instance, similar to video
encoder 20, video decoder 30 assigns a context to a first row
of the significance syntax elements of the transform coeffi-
cients for the current sub-block that is different than contexts
for other rows of the significance syntax elements of the
transform coefficients for the current sub-block.

As another example, if video encoder 20 selected the con-
text pattern associated with the condition that the first neigh-
boring sub-block includes at least one non-zero transform
coefficient and the second neighboring sub-block does not
include any non-zero transform coefficients (i.e., CGFz
equals 1 and CGFj equals 0), then video encoder 20 may
assign a context to a first column of the significance syntax

US 9,124,872 B2

27

elements of the transform coefficients for the current sub-
block that is different than contexts for other columns of the
significance syntax elements of the transform coefficients for
the current sub-block. For instance, if CGFy equals 1 and
CGFy equals 0, FIG. 9C illustrates that the first column of
transform block is assigned the context of 2 (or 5 assuming an
offset of 3) for encoding significance syntax elements of the
first column of the sub-block, which is different than the
context for any other column of the sub-block.

Video decoder 30 may function in a substantially similar
way. For example, if video decoder 30 selects the context
pattern illustrated in FIG. 9C (e.g., the condition that CGF
equals 1 and CGFy equals 0), then video decoder 30 assigns
contexts to the significance syntax elements of a sub-block of
atransform block, accordingly. For instance, similar to video
encoder 20, video decoder 30 assigns a context to a first
column of the significance syntax elements of the transform
coefficients for the current sub-block that is different than
contexts for other columns of'the significance elements of the
transform coefficients for the current sub-block.

As another example, if video encoder 20 selected the con-
text pattern associated with the condition that the first neigh-
boring sub-block includes at least one non-zero transform
coefficient and the second neighboring sub-block includes at
least one non-zero transform coefficient (i.e., CGFy equals 1
and CGF equals 1), then video encoder 20 may assign a same
context to the significance syntax elements of the transform
coefficients for the current sub-block. For instance, if CGFy
equals 1 and CGFy equals 1, FIG. 9D illustrates that all the
contexts are the same for the significance syntax element (i.e.,
2).

Video decoder 30 may function in a substantially similar
way. For example, if video decoder 30 selects the context
pattern illustrated in FIG. 9D (e.g., the condition that CGF
equals 1 and CGFj equals 1), then video decoder 30 assigns
contexts to the significance syntax elements of a sub-block of
atransform block, accordingly. For instance, similar to video
encoder 20, video decoder 30 assigns a same context to the
significance elements of the transform coefficients for the
current sub-block.

IfCGF z equals 0 and CGF ; equals 0, video encoder 20 may
select the context pattern illustrated in FIG. 9A, and assign
contexts to the significance syntax elements of a sub-block of
a transform block, accordingly. Video decoder 30 may func-
tion in a substantially similar manner if CGF equals 0 and
CGFy equals 0.

Furthermore, the context patterns illustrated in FIGS.
9A-9D may include characteristics in addition to those
described above. For example, one of the characteristics of
the context pattern (e.g., when CGFj equals 0 and CGF,
equals 0) is that the context pattern includes contexts that if
scanned horizontally or vertically result in a same one-dimen-
sional vector.

For instance, if the context pattern illustrated in FIG. 9A is
scanned horizontally from the bottom-right to the top-left, the
resulting one-dimensional vectoris: [0000011101110
11 2]. If the context pattern illustrated in FIG. 9A is scanned
vertically from the bottom-right to the top-left, the resulting
one-dimensional vectoris: [0000011101110112].As
can be seen, these two one-dimensional vectors are the same.

As another example of the characteristics of the context
patterns, two of the context patterns are transposes of one
another such that a horizontal scan of one of the context
patterns and a vertical scan of another one of the context
patterns results in the same one-dimensional vector. For
example, a horizontal scan of the context pattern illustrated in
FIG. 9B from bottom-right to top-left results in the one-

20

25

30

35

40

45

50

55

60

65

28
dimensional vector: [0000000011112222]. Avertical
scan of the context pattern illustrated in FIG. 9C from bottom-
right to top-left results in the one-dimensional vector: [00 00
00001111222 2].As can be seen, these two one-
dimensional vectors are the same.

As another example of the characteristics of the context
patterns, one of the context patterns includes contexts that if
scanned horizontally, vertically, and diagonally result in the
same one-dimensional vector. For example, a horizontal scan,
a vertical scan, or a diagonal scan of the contexts of the
context pattern illustrated in FIG. 9D result in the same one-
dimensional vector: [2222222222222222].

As described above, video encoder 20 selects one of the
context patterns illustrated in FIGS. 9A-9D based on various
factors. As one example, video encoder 20 selects the context
pattern based on the CGF of the below and right sub-blocks.
However, there may be additional factors as well. For
instance, video encoder 20 may select the context pattern
based onascan type. Ifthe scan type is a horizontal scan of the
sub-block, then video encoder 20 may select the context
pattern illustrated in FIG. 9B. If the scan type is a vertical scan
of the sub-block, then video encoder 20 may select the con-
text pattern illustrated in FIG. 9C. Video decoder 30 may
function in similar manner.

In some examples, as described above, video encoder 20
may exclude context patterns from the content patterns that
video encoder 20 evaluates to determine which context pat-
tern to select. For instance, if the scan type of the sub-block is
horizontal, then video encoder 20 may determine that the
context pattern illustrated in FIG. 9C cannot be selected as the
context pattern even if the CGFj is equal to 1 and the CGF is
equal 0. In this case, video encoder 20 may select the context
pattern illustrated in FIG. 9D. For example, if the scan type of
the sub-block is horizontal, then video encoder 20 may
exclude the context pattern illustrated in FIG. 9C. From the
remaining context patterns, video encoder 20 may select the
context pattern illustrated in FIG. 9D. In this case, there may
be context pattern sharing for different values of CGFz and
CGFy. For example, for the horizontal scan, video encoder 20
may select the context pattern illustrated in FIG. 9D if CGFy
equals 0 and CGFj equals 1 or if CGFy equals 1 and CGF,
equals 1.

For a scan type of a vertical scan, video encoder 20 may
function in a similar way, except video encoder 20 may
exclude the context pattern illustrated in FIG. 9B even if
CGFj equals 0 and CGFj equals 1. In this example, video
encoder 20 selects the context pattern from the remaining
plurality of context patterns. Video decoder 30 functions in a
similar way.

For example, video encoder 20 and video decoder 30 deter-
mine the scan type of the current sub-block, and determine at
least one context pattern from the plurality of context patterns
that cannot be selected as the context pattern based on the
determined scan type of the current sub-block. Video encoder
20 and video decoder 30 select the context pattern based on
the plurality of context patterns excluding the determined at
least one context pattern. In some examples, video encoder 20
and video decoder 30 select the context pattern based on the
plurality of context patterns excluding the determined at least
one context pattern regardless of whether the below neigh-
boring sub-block includes any non-zero transform coeffi-
cients and whether the right neighboring sub-block includes
any non-zero transform coefficients.

In FIGS. 5A-5D and FIGS. 9A-9D, context patterns are
illustrated and defined as 2-D blocks. However, in some prac-
tical implementations, a video encoder, such as video encoder
20, might represent a 2-D block as a 1-D vector according to

US 9,124,872 B2

29

the selected sub-block scan type and store the 1-D vector in
order to speed up the context assignment process. In this
situation, even if the same 2-D context pattern is used to
assign contexts for sub-blocks that used different sub-block
scan types, different 1-D vectors may be obtained based on
the selected sub-block scan type. For example, 1-D vector of
the context pattern illustrated in FIG. 9C scanned according
to a horizontal scan would have the following 1-D vector
representation:

Scan Pattern=[2100210021002100]
whereas the context pattern illustrated in FIG. 9C scanned
according to a vertical scan would have the following 1-D
vector representation:

Scan Pattern=[2222111100000000]

In this case, if a video encoder, such as video encoder 20,
stores context patterns as 1-D vectors (i.e., one-dimensional
context patterns), there may be several vectors for each con-
text pattern. One way to overcome the storage of several
different 1-D vectors for each context pattern is by defining
the context patterns directly as 1-D vectors (i.e., one-dimen-
sional context patterns) and using the same vector for two or
more sub-block scan types. For example, context patterns
with a constant value (i.e., all 2’s) provide the same scan 1-D
regardless of scan type. In this example, a 1-D vector may
specify a same context (e.g., 2) or all of the significance
syntax elements. The 1-D vector may be represented as fol-
lows:

Scan Pattern=[2222222222222222]

In another example, the one-dimensional context pattern
defines a first context for a first significance syntax element in
a scan order, defines a second context for a second and a third
significance syntax element in the scan order, and defines a
third context for remaining significance syntax elements in
the scan order. For instance, a 1-D vector may specify a
context of 2 for the first significant coefficient flag, specify a
context of 1 for the second and third assignments, and specify
a context of 0 for remaining assignments and may be repre-
sented as follows:

Scan Pattern=[21 1000000000000 0]

Another possible context pattern is Scan Pattern=[1 0000
0000000000O0]. In this example, the context pattern
defines a first context (e.g., 1) for a first significance syntax
element in a scan order, and defines a second context (e.g., 0)
for remaining significance syntax elements in the scan order.
FIG. 10 is a conceptual diagram that illustrates an example of
a pattern for context assignment for coefficients in a sub-
block. The resulting scan pattern for the context pattern illus-
trated in FIG. 10, is the same for the diagonal, horizontal and
vertical 4x4 sub-block scans as defined above. Context mod-
eling unit 506 and/or entropy encoding unit 56 may be con-
figured to store context patterns as 1-D vectors (i.e., one-
dimensional context patterns). In one example, the same
stored scan pattern may be used to assign contexts to the
significant_coefficient_flag for a plurality of sub-block scan
types, such as, the diagonal, horizontal and vertical 4x4 sub-
block scans.

In some examples, the one-dimensional context patterns
may be pre-computed from two-dimensional context patterns
such as those illustrated in FIGS. 9A-9D. For example, the
context patterns illustrated in FIGS. 9A-9D may be horizon-
tally, vertically, and diagonally scanned to produce the one-
dimensional context patterns. Accordingly, in this example,
there may be up to 12 one-dimensional context patterns.
However, the characteristics of the context patterns illustrated
in FIGS. 9A-9D may be such that less than 12 one-dimen-
sional context patterns are pre-computed and stored.

20

25

30

35

40

45

50

55

60

65

30

For example, as described above, the horizontal scan and
vertical scan of the context pattern illustrated in FIG. 9A
results in the same one-dimensional vector. Accordingly, the
horizontal, vertical, and diagonal scan of the context pattern
illustrated in FIG. 9A results in two unique one-dimensional
context patterns, instead of three.

Also, for the context patterns illustrated in FIGS. 9B and
9C, for one of them there may be three unique one-dimen-
sional context patterns (i.e., one for each scan type). However,
for the other, there may be only two unique one-dimensional
context patterns. This is because the horizontal scan of the
context pattern illustrated in FIG. 9B and the vertical scan of
the context pattern illustrated in FIG. 9C results in the same
one-dimensional context pattern. Accordingly, there are a
total of five unique one-dimensional context patterns between
the context patterns illustrated in FIGS. 9B and 9C. In other
words, the one of the plurality of one-dimensional context
patterns is pre-computed from the context pattern illustrated
in FIG. 9B (e.g., a first two-dimensional context pattern). The
first two-dimensional context pattern includes contexts that if
scanned horizontally result in a same one-dimensional con-
text pattern when a second two-dimensional context pattern is
scanned vertically. One example of the second two-dimen-
sional context pattern, when the first two-dimensional pattern
is illustrated in FIG. 9B, is the two-dimensional context pat-
tern illustrated in FIG. 9C.

For the context pattern illustrated in FIG. 9D, there is only
one unique one-dimensional context pattern (i.e., the diago-
nal, horizontal, and vertical scans all results in the same
one-dimensional context pattern). For example, when the
context pattern illustrated in FIG. 9D is used to pre-compute
aone-dimensional pattern, the resulting one-dimensional pat-
tern (whether scanned vertically, horizontally, or diagonally)
results in a context pattern that defines a same context (e.g., 2)
for all of the significance syntax elements of transform coef-
ficients of a sub-block. Therefore, the characteristics of the
context patterns illustrated in FIGS. 9A-9D result in a total of
eight one-dimensional context patterns (i.e., two from FIG.
9A, five from FIGS. 9B and 9C, and one from FIG. 9D),
which is less than the 12 one-dimensional context patterns
that would have been needed to be stored if the context pat-
terns did not comprise the characteristics of the context pat-
terns illustrated in FIGS. 9A-9D.

As described above, in addition to assigning contexts to the
significant_coefficient_flag syntax elements in one example
context modeling unit 506 and/or entropy encoding unit 56
may be configured to assign contexts to the significant_coef-
f_group_flag. As describe above, in HEVC WD7 the context
derivation of significant_coeff_group_flag depends on the
scan order (i.e., whether a diagonal 4x4, a non-square hori-
zontal, or vertical scan is applied). In the case, where the
non-square scans are replaced with the scans illustrated in
FIGS. 3A-3B, the context derivation of significant_coeff
group_flag may be modified from the context derivation
described in HEVC WD7. In one example, context modeling
unit 506 and/or entropy encoding unit 56 may be configured
to assign contexts to the significant_coeft_group_flag using
the same context derivation for all of the sub-blocks regard-
less of the scan type and the size of the TUs associated with
the sub-block. However, in one example, the actual context
assigned to the significant_coeff_group_flag may differ
based on whether a sub-block is scanned using the diagonal,
horizontal and vertical 4x4 sub-block scans. In one example,
a first set of contexts may be used for assigning context to
significant_coeff_group_flag when the 4x4 diagonal scan is
applied and second set of contexts may be used for assigning
contexts to significant_coeff_group_flag when the horizontal

US 9,124,872 B2

31

or vertical 4x4 sub-block scans are applied. In one example,
the second set of contexts may be derived by adding an offset
may to the first context set.

Thus, there are several techniques that context modeling
unit 506 and/or entropy encoding unit 56 used to assign
contexts to the significant_coeff_group_flag and significant_
coefficient_flag syntax elements. Entropy encoding unit 56
may be configured to assign contexts to the significant_coef-
f_group_flag and significant_coefficient_flag syntax ele-
ments using any combination of the techniques described
above.

FIG. 11 is a flowchart illustrating an example of encoding
video data according to the techniques of this disclosure.
Although the process in FIG. 11 is described below as gen-
erally being performed by video encoder 20, the process may
be performed by any combination of video encoder 20,
entropy encoding unit 56, and/or context modeling unit 506.

As illustrated in FIG. 11, video encoder 20 generates sig-
nificance syntax elements for transform coefficients of a cur-
rent sub-block of a block (1102). The significance syntax
element (e.g., significance coefficient flag) of a transform
coefficient indicates whether the value of the transform coef-
ficient is zero (i.e., a zero transform coefficient) or non-zero
(i.e., a non-zero transform coefficient). In some examples, the
sub-block is a 4x4 sub-block, and the block is an 8x8 trans-
form block.

Video encoder 20 selects a context pattern from a same
plurality of two-dimensional context patterns for a plurality
of scan types (e.g., a horizontal scan, a vertical scan, and a
diagonal scan) for the significance syntax elements of the
transform coefficients of the current sub-block (1104).
Examples of the context patterns include the context patterns
illustrated in FIGS. 9A-9D. In the techniques described in this
disclosure, video encoder 20 may select from the same plu-
rality of two-dimensional context patterns if the sub-block is
scanned horizontally, vertically, or diagonally. In other
words, the scan type is horizontal or vertical, video encoder
20 selects from among the same plurality of two-dimensional
context patterns that video encoder 20 selects from if the scan
type is diagonal.

Also, as described above, each of the context patterns is
associated with a condition of whether one or more neighbor-
ing sub-blocks include any non-zero transform coefficients.
For example, the one or more neighboring sub-blocks include
a first neighboring sub-block and a second neighboring sub-
block, and each of the context patterns may be associated with
a condition of whether the first neighboring sub-block
includes any non-zero transform coefficients and whether the
second neighboring sub-block includes any non-zero trans-
form coefficients (i.e., each context is associated with a con-
dition of whether the value of CGF; and CGFy is 1 or 0).

Video encoder 20 assigns contexts to each of the signifi-
cance syntax elements of the transform coefficient based on
the selected context pattern (1106). For example, as described
above, if video encoder 20 selects the context pattern associ-
ated with the condition that CGF; equals 0 and CGF equals
1 (i.e., the below sub-block does not include any non-zero
transform coefficients and the right block includes at least one
non-zero transform coefficient), then video encoder 20
assigns a context (e.g., context 2 or 5 with offset of 3) to a first
row of the significance syntax elements of the sub-block that
is different than the context for the other rows.

If video encoder 20 selects the context pattern associated
with the condition that CGFy equals 1 and CGFy equals 0
(i.e., thebelow sub-block includes at least one non-zero trans-
form coefficient and the right block does not include any
non-zero transform coefficients), then video encoder 20

20

25

30

35

40

45

50

55

60

65

32

assigns a context (e.g., context 2 or 5 with offset of 3) to a
column of the significance syntax elements of the sub-block
that is different than the context for the other columns. If
video encoder 20 selects the context pattern associated with
the condition that CGF; equals 1 and CGF equals 1 (i.e., the
below sub-block includes at least non-zero transform coeffi-
cient and the right block includes at least one non-zero trans-
form coefficient), then video encoder 20 assigns a same con-
text (e.g., context 2 or 5 with offset of 3) to the significance
syntax elements of the current sub-block.

Video encoder 20 CABAC encodes the significance syntax
elements based on the assigned contexts (1108). Video
encoder 20 outputs the encoded significance syntax elements
as part of the encoded bitstream (1110).

FIG. 12 is a flowchart illustrating an example of encoding
video data according to the techniques of this disclosure.
Although the process in FIG. 12 is described below as gen-
erally being performed by video encoder 20, the process may
be performed by any combination of video encoder 20,
entropy encoding unit 56, and/or context modeling unit 506.

As illustrated in FIG. 12, video encoder 20 generates sig-
nificance syntax elements for transform coefficients of a cur-
rent sub-block of a block (1202). The significance syntax
element (e.g., significance coefficient flag) of a transform
coefficient indicates whether the value of the transform coef-
ficient is zero (i.e., a zero transform coefficient) or non-zero
(i.e., anon-zero transform coefficient). In some examples, the
sub-block is a 4x4 sub-block, and the block is an 8x8 trans-
form block.

Video encoder 20 selects a context pattern that is stored as
a one-dimensional context pattern (1204). In some examples,
the context pattern identifies contexts for two or more scan
types of the current sub-block. For instance, the selected
context pattern is for a scan type of a horizontal scan, a
vertical scan, and a diagonal scan.

As one example, the selected context pattern defines a first
context for a first significance syntax element in a scan order,
defines a second context for a second and a third significance
syntax element in the scan order, and defines a third context
for remaining significance syntax elements in the scan order.
As another example, the selected context pattern defines a
first context for a first significance syntax element in a scan
order, and defines a second context for remaining significance
syntax elements in the scan order. As another example, the
selected context pattern defines a same context for all of the
significance syntax elements.

In some examples, the selected context pattern is selected
from a plurality of context patterns that are stored as one-
dimensional context patterns. For example, the plurality of
context patterns are pre-computed and stored from the two-
dimensional context patterns illustrated in FIGS. 9A-9D. As
one example, one of the plurality of contexts patterns is pre-
computed from a two-dimensional context pattern that
includes contexts that if scanned horizontally or vertically
results in a same one-dimensional context pattern. One
example of such a two-dimensional context pattern is the
context pattern illustrated in FIG. 9A. As another example,
one of the plurality of contexts patterns is pre-computed from
a two-dimensional context pattern that includes contexts that
if scanned horizontally, vertically, or diagonally all result in
the same one-dimensional context pattern. One example of
such a two-dimensional context pattern is the context pattern
illustrated in FIG. 9D.

As another example, one of the plurality of context patterns
is pre-computed from a first two-dimensional context pattern
that includes contexts that if scanned horizontally result in a
same one-dimensional context pattern as when a second two-

US 9,124,872 B2

33

dimensional context pattern is scanned vertically. One
example of the first two-dimensional context pattern is the
context pattern illustrated in FIG. 9B. One example of the
second two-dimensional context patter is the context pattern
illustrated in FIG. 9C.

Video encoder 20 assigns contexts to significance syntax
elements based on the selected context (1206). Video encoder
20 CABAC encodes the significance syntax elements based
onthe assigned contexts (1208). Video encoder 20 outputs the
encoded significance syntax elements as part of the encoded
bitstream (1210).

FIG. 13 is a block diagram illustrating an example video
decoder 30 that may implement the techniques described in
this disclosure. In the example of FIG. 13, video decoder 30
includes an entropy decoding unit 80, prediction processing
unit 81, inverse quantization processing unit 86, inverse trans-
form processing unit 88, summer 90, and reference picture
memory 92. Prediction processing unit 81 includes motion
compensation unit 82 and intra prediction module 84. Video
decoder 30 may, in some examples, perform a decoding pass
generally reciprocal to the encoding pass described with
respect to video encoder 20 from FIG. 7.

During the decoding process, video decoder 30 receives an
encoded video bitstream that represents video blocks of an
encoded video slice and associated syntax elements from
video encoder 20. Entropy decoding unit 80 of video decoder
30 entropy decodes the bitstream to generate quantized coef-
ficients, motion vectors, and other syntax elements. Entropy
decoding unit 80 forwards the motion vectors and other syn-
tax elements to prediction module 81. Video decoder 30 may
receive the syntax elements at the video slice level and/or the
video block level.

FIG. 14 is a block diagram that illustrates an example
entropy decoding unit 70 that may implement the techniques
described in this disclosure. Entropy decoding unit 70
receives an entropy encoded bitstream and decodes syntax
elements from the bitstream. Syntax elements may include
the syntax elements significant_coeff group_flag, signifi-
cant_coefficient_flag, coeff_abs_level_remain,
coeff_abs_level_greater]_flag,
coeff_abs_level_greater2_flag, and coeff_sign_flag, syntax
elements described above. The example entropy decoding
unit 70 in FIG. 14 includes an arithmetic decoding unit 702,
which may include a bypass decoding engine 704 and a
regular decoding engine 706. The example entropy decoding
unit 70 also includes context modeling unit 708 and inverse
binarization unit 710. The example entropy decoding unit 70
may perform the reciprocal functions of the example entropy
encoding unit 56 described with respect to FIG. 8. In this
manner, entropy decoding unit 70 may perform entropy
decoding based on the techniques described herein.

Arithmetic decoding unit 702 receives an encoded bit
stream. As shown in FIG. 14, arithmetic decoding unit 702
may process encoded bin values according to a bypass path or
the regular coding path. An indication whether an encoded
bin value should be processed according to a bypass path or a
regular pass may be signaled in the bitstream with higher level
syntax. Consistent with the CABAC process described above,
in the case where arithmetic decoding unit 702 receives bin
values from a bypass path, bypass decoding engine 704 may
perform arithmetic encoding on bin values without utilizing a
context assigned to a bin value. In one example, bypass
decoding engine 704 may assume equal probabilities for pos-
sible values of a bin.

In the case where arithmetic decoding unit 702 receives bin
values through the regular path, context modeling unit 708
may provide a context variable, such that regular decoding

5

10

20

25

30

35

40

45

50

55

60

34

engine 706 may perform arithmetic encoding based on the
context assignments provided by context modeling unit 708.
The context assignments may be defined according to a video
coding standard, such as HEVC. The context models may be
stored in memory. Context modeling unit 708 may include a
series of indexed tables and/or utilize mapping functions to
determine a context and a context variable portion of an
encoded bitstream. Further, in one example context modeling
unit 506 and/or entropy encoding unit 56 may be configured
to assign contexts to bins of the significant_coeff_group_flag
and the significant_coefficient_flag syntax elements based on
techniques described herein. After decoding a bin value, regu-
lar coding engine 706, may update a context based on the
decoded bin values. Further, inverse binarization unit 710
may perform an inverse binarization on a bin value and use a
bin matching function to determine if a bin value is valid. The
inverse binarization unit 710 may also update the context
modeling unit based on the matching determination. Thus,
the inverse binarization unit 710 outputs syntax elements
according to a context adaptive decoding technique.

When the video slice is coded as an intra-coded (I) slice,
intra prediction module 84 of prediction module 81 may
generate prediction data for a video block of the current video
slice based on a signaled intra prediction mode and data from
previously decoded blocks of the current frame or picture.
When the video frame is coded as an inter-coded (i.e., B or P)
slice, motion compensation unit 82 of prediction module 81
produces predictive blocks for a video block of the current
video slice based on the motion vectors and other syntax
elements received from entropy decoding unit 80. The pre-
dictive blocks may be produced from one of the reference
pictures within one of the reference picture lists. Video
decoder 30 may construct the reference frame lists, List 0 and
List 1, using default construction techniques based on refer-
ence pictures stored in reference picture memory 92.

Motion compensation unit 82 determines prediction infor-
mation for a video block of the current video slice by parsing
the motion vectors and other syntax elements, and uses the
prediction information to produce the predictive blocks for
the current video block being decoded. For example, motion
compensation unit 82 uses some of the received syntax ele-
ments to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an
inter-prediction slice type (e.g., B slice or P slice), construc-
tion information for one or more of the reference picture lists
for the slice, motion vectors for each inter-encoded video
block of the slice, inter-prediction status for each inter-coded
video block of the slice, and other information to decode the
video blocks in the current video slice.

Motion compensation unit 82 may also perform interpola-
tion based on interpolation filters. Motion compensation unit
82 may use interpolation filters as used by video encoder 20
during encoding of the video blocks to calculate interpolated
values for sub-integer pixels of reference blocks. In this case,
motion compensation unit 82 may determine the interpola-
tion filters used by video encoder 20 from the received syntax
elements and use the interpolation filters to produce predic-
tive blocks.

Inverse quantization processing unit 86 inverse quantizes,
i.e., de-quantizes, the quantized transform coefficients pro-
vided in the bitstream and decoded by entropy decoding unit
80. The inverse quantization process may include use of a
quantization parameter calculated by video encoder 20 for
each video block in the video slice to determine a degree of
quantization and, likewise, a degree of inverse quantization
that should be applied. Inverse transform processing unit 88
applies an inverse transform, e.g., an inverse DCT, an inverse

US 9,124,872 B2

35

integer transform, or a conceptually similar inverse transform
process, to the transform coefficients in order to produce
residual blocks in the pixel domain.

In some cases, inverse transform processing unit 88 may
apply a 2-dimensional (2-D) inverse transform (in both the
horizontal and vertical direction) to the coefficients. Accord-
ing to the techniques of this disclosure, inverse transform
processing unit 88 may instead apply a horizontal 1-D inverse
transform, a vertical 1-D inverse transform, or no transform to
the residual data in each of the TUs. The type of transform
applied to the residual data at video encoder 20 may be
signaled to video decoder 30 to apply an appropriate type of
inverse transform to the transform coefficients.

After motion compensation unit 82 generates the predic-
tive block for the current video block based on the motion
vectors and other syntax elements, video decoder 30 forms a
decoded video block by summing the residual blocks from
inverse transform processing unit 88 with the corresponding
predictive blocks generated by motion compensation unit 82.
Summer 90 represents the component or components that
perform this summation operation. If desired, a deblocking
filter may also be applied to filter the decoded blocks in order
to remove blockiness artifacts. Other loop filters (either in the
coding loop or after the coding loop) may also be used to
smooth pixel transitions, or otherwise improve the video
quality. The decoded video blocks in a given frame or picture
are then stored in reference picture memory 92, which stores
reference pictures used for subsequent motion compensation.
Reference picture memory 92 also stores decoded video for
later presentation on a display device, such as display device
34 of FIG. 6.

FIG. 15 is a flowchart illustrating an example of decoding
video data according to the techniques of this disclosure.
Although the process in FIG. 15 is described below as gen-
erally being performed by video decoder 30, the process may
be performed by any combination of video decoder 30,
entropy decoding unit 56, and/or context modeling unit 708.

As illustrated in FIG. 15, video decoder 30 receives, in an
entropy encoded bitstream, significance syntax elements of
transform coefficients for a current sub-block of a block
(1502). The sub-block may be a 4x4 sub-block, and the block
may be an 8x8 transform block. Similar to video encoder 20
(e.g., block 1104 of FIG. 11), video decoder 30 selects a
context pattern from a same plurality of context patterns of
two-dimensional context patterns for a plurality of scan types
(e.g., a horizontal scan, a vertical scan, and a diagonal scan)
for the significance syntax elements of the transform coeffi-
cients of the current sub-block (1504). In this example, each
of the context patterns is associated with a condition of
whether one or more neighboring blocks (e.g., a first neigh-
boring sub-block and a second neighboring block) include
any non-zero transform coefficients.

Video decoder 30, in a manner similar to that described
above with respect to video encoder 20 (e.g., block 1106 of
FIG. 11), assigns contexts to each of the significance syntax
elements of the transform coefficients based on the selected
context pattern (1506). For example, if the context pattern
associated with the condition that CGFy equals 0 and CGF,
equals 1 is selected, then video decoder 30 assigns a context
to a first row that is different than the contexts for the other
rows. If the context pattern associated with the condition that
CGFj equals 1 and CGFy equals 0 is selected, then video
decoder 30 assigns a context to a first column that is different
than the contexts for the other columns. If the context pattern
associated with the condition that CGFy equals 1 and CGF,
equals 1 is selected, then video decoder 30 assigns a same

20

25

30

35

40

45

50

55

60

65

36

context to the significance syntax elements. Video decoder 30
CABAC decodes the significance syntax elements based on
the assigned contexts (1508).

FIG. 16 is a flowchart illustrating an example of decoding
video data according to the techniques of this disclosure.
Although the process in FIG. 16 is described below as gen-
erally being performed by video decoder 30, the process may
be performed by any combination of video decoder 30,
entropy decoding unit 70, and/or context modeling unit 708.

As illustrated in FIG. 16, video decoder 30 receives, in an
entropy encoded bitstream, significance syntax elements of
transform coefficients for a current sub-block of a block
(1602). The sub-block may be a 4x4 sub-block, and the block
may be an 8x8 transform block. Similar to video encoder 20
(e.g., block 1204 of FIG. 12), video decoder 30 selects a
context pattern that is stored as a one-dimensional context
pattern (1604). The context pattern may be for two or more
scan types (e.g., the horizontal, diagonal, and vertical scan
types).

As one example, as described above, the selected context
pattern defines a first context for a first significance syntax
element in a scan order, defines a second context for a second
and a third significance syntax element in the scan order, and
defines a third context for remaining significance syntax ele-
ments in the scan order. As another example, as described
above, the selected context pattern defines a first context for a
first significance syntax element in a scan order, and defines a
second context for remaining significance syntax elements in
the scan order. As another example, the selected context pat-
tern defines a same context for all of the significance syntax
elements.

In some examples, the selected context pattern is selected
from a plurality of context patterns that are stored as one-
dimensional context patterns. For example, the plurality of
context patterns are pre-computed and stored from the two-
dimensional context patterns illustrated in FIGS. 9A-9D. As
one example, one of the plurality of contexts patterns is pre-
computed from a two-dimensional context pattern that
includes contexts that if scanned horizontally or vertically
results in a same one-dimensional context pattern. One
example of such a two-dimensional context pattern is the
context pattern illustrated in FIG. 9A. As another example,
one of the plurality of contexts patterns is pre-computed from
a two-dimensional context pattern that includes contexts that
if scanned horizontally, vertically, or diagonally all result in
the same one-dimensional context pattern. One example of
such a two-dimensional context patter is the context pattern
illustrated in FIG. 9D.

As another example, one of the plurality of context patterns
is pre-computed from a first two-dimensional context pattern
that includes contexts that if scanned horizontally result in a
same one-dimensional context pattern as when a second two-
dimensional context pattern is scanned vertically. One
example of the first two-dimensional context pattern is the
context pattern illustrated in FIG. 9B. One example of the
second two-dimensional context patter is the context pattern
illustrated in FIG. 9C.

Video decoder 30 assigns contexts to significance syntax
elements based on the selected context (1606). Video decoder
20 CABAC decodes the significance syntax elements based
on the assigned contexts (1608).

In one or more examples, the functions described may be
implemented in hardware, software, firmware, or any combi-
nation thereof. If implemented in software, the functions may
be stored on or transmitted over, as one or more instructions
or code, a computer-readable medium and executed by a
hardware-based processing unit. Computer-readable media

US 9,124,872 B2

37

may include computer-readable storage media, which corre-
sponds to a tangible medium such as data storage media, or
communication media including any medium that facilitates
transfer of a computer program from one place to another,
e.g., according to a communication protocol. In this manner,
computer-readable media generally may correspond to (1)
tangible computer-readable storage media which is non-tran-
sitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media
that can be accessed by one or more computers or one or more
processors to retrieve instructions, code and/or data structures
for implementation of the techniques described in this disclo-
sure. A computer program product may include a computer-
readable medium.

By way of example, and not limitation, such computer-
readable storage media can comprise RAM, ROM,
EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash
memory, or any other medium that can be used to store
desired program code in the form of instructions or data
structures and that can be accessed by a computer. Also, any
connection is properly termed a computer-readable medium.
For example, if instructions are transmitted from a website,
server, or other remote source using a coaxial cable, fiber
optic cable, twisted pair, digital subscriber line (DSL), or
wireless technologies such as infrared, radio, and microwave,
then the coaxial cable, fiber optic cable, twisted pair, DSL, or
wireless technologies such as infrared, radio, and microwave
are included in the definition of medium. It should be under-
stood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves,
signals, or other transient media, but are instead directed to
non-transient, tangible storage media. Disk and disc, as used
herein, includes compact disc (CD), laser disc, optical disc,
digital versatile disc (DVD), floppy disk and Blu-ray disc,
where disks usually reproduce data magnetically, while discs
reproduce data optically with lasers. Combinations of the
above should also be included within the scope of computer-
readable media.

Instructions may be executed by one or more processors,
such as one or more digital signal processors (DSPs), general
purpose microprocessors, application specific integrated cir-
cuits (ASICs), field programmable logic arrays (FPGAs), or
other equivalent integrated or discrete logic circuitry. Accord-
ingly, the term “processor,” as used herein may refer to any of
the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addi-
tion, in some aspects, the functionality described herein may
be provided within dedicated hardware and/or software mod-
ules configured for encoding and decoding, or incorporated in
a combined codec. Also, the techniques could be fully imple-
mented in one or more circuits or logic elements.

The techniques of this disclosure may be implemented in a
wide variety of devices or apparatuses, including a wireless
handset, an integrated circuit (IC) or a set of ICs (e.g., a chip
set). Various components, modules, or units are described in
this disclosure to emphasize functional aspects of devices
configured to perform the disclosed techniques, but do not
necessarily require realization by different hardware units.
Rather, as described above, various units may be combined in
a codec hardware unit or provided by a collection of interop-
erative hardware units, including one or more processors as
described above, in conjunction with suitable software and/or
firmware.

Various examples have been described. These and other
examples are within the scope of the following claims.

20

25

30

35

40

45

50

55

60

38

What is claimed is:
1. A method for decoding video data, the method compris-
ing:
receiving, in a bitstream, significance syntax elements
indicating whether each corresponding transform coef-
ficient of transform coefficients of a current sub-block of
a block is a non-zero transform coefficient;

selecting a context pattern, which includes context values
that correspond to the transform coefficients located in
respective positions of the sub-block, from a plurality of
two-dimensional context patterns for a plurality of scan
types for the significance syntax elements of the trans-
form coefficients of the current sub-block, wherein the
plurality of two-dimensional context patterns is the
same for each of'the plurality of scan types, and wherein
each of the context patterns is associated with a condi-
tion of whether one or more neighboring sub-blocks of
the current sub-block include any non-zero transform
coefficients;

assigning context values of the selected context pattern to

each ofthe significance syntax elements of the transform
coefficients based on positions of the context values in
the selected context pattern and positions of the trans-
form coefficients to corresponding significance syntax
elements; and

context adaptive binary arithmetic coding (CABAC)

decoding the significance syntax elements of the trans-
form coefficients of the current sub-block utilizing
respective assigned context values.

2. The method of claim 1, wherein the plurality of scan
types comprise a horizontal scan, a vertical scan, and a diago-
nal scan.

3. The method of claim 1,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block does not include any non-zero transform coeffi-
cients and the second neighboring sub-block includes at
least one non-zero transform coefficient, assigning con-
text values comprises assigning a context value to a first
row of the significance syntax elements of the transform
coefficients for the current sub-block that is different
than context values for other rows of the significance
elements of the transform coefficients for the current
sub-block.

4. The method of claim 1,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block does not
include any non-zero transform coefficients, assigning
context values comprises assigning a context value to a
first column of the significance syntax elements of the
transform coefficients of the current sub-block that is
different than context values for other columns of the
significance elements of the transform coefficients of the
current sub-block.

5. The method of claim 1,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

US 9,124,872 B2

39

wherein, based on the selected context pattern being asso-
ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block includes at
least one non-zero transform coefficients, assigning con-
text values comprises assigning a same context value to
the significance syntax elements of the transform coef-
ficients of the current sub-block.

6. The method of claim 1, wherein the current sub-block
comprises a 4x4 sub-block, and the block comprises an 8x8
block.

7. The method of claim 1,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block,

wherein the first neighboring sub-block comprises a below

sub-block that is below the current sub-block, and

wherein the second neighboring sub-block comprises a

right sub-block that is right of the current sub-block.

8. The method of claim 1, further comprising:

determining a scan type of the current sub-block from the

plurality of scan types,

wherein selecting the context pattern comprises selecting

the context pattern based on determined scan type.
9. The method of claim 1, wherein one of the plurality of
two-dimensional context patterns comprises context values
that if scanned horizontally or vertically result in a same
one-dimensional vector.
10. The method of claim 1, wherein one of the plurality of
two-dimensional context patterns comprises context values
that if scanned diagonally, horizontally, and vertically result
in a same one-dimensional vector.
11. A device for decoding video data, the device compris-
ing a video decoder configured to:
receive, in a bitstream, significance syntax elements indi-
cating whether each corresponding transform coeffi-
cient of transform coefficients of a current sub-block of
a block is a non-zero transform coefficient;

select a context pattern, which includes context values that
correspond to the transform coefficients located in
respective positions of the sub-block, from a plurality of
two-dimensional context patterns for a plurality of scan
types for the significance syntax elements of the trans-
form coefficients of the current sub-block, wherein the
plurality of two-dimensional context patterns is the
same for each of the plurality of scan types, and wherein
each of the context patterns is associated with a condi-
tion of whether one or more neighboring sub-blocks of
the current sub-block include any non-zero transform
coefficients;

assign context values of the selected context pattern to each

of the significance syntax elements of the transform
coefficients based on positions of the context values in
the selected context pattern and positions of the trans-
form coefficients to corresponding significance syntax
elements; and

context adaptive binary arithmetic coding (CABAC)

decode the significance syntax elements of the transform
coefficients of the current sub-block utilizing respective
assigned context values.

12. The device of claim 11, wherein the plurality of scan
types comprise a horizontal scan, a vertical scan, and a diago-
nal scan.

13. The device of claim 11,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

20

25

30

35

40

45

50

55

60

65

40

wherein, based on the selected context pattern being asso-
ciated with the condition that the first neighboring sub-
block does not include any non-zero transform coeffi-
cients and the second neighboring sub-block includes at
least one non-zero transform coefficient, to assign con-
text values, the video decoder is configured to assign a
context value to a first row of the significance syntax
elements of the transform coefficients for the current
sub-block that is different than context values for other
rows of the significance elements of the transform coef-
ficients for the current sub-block.

14. The device of claim 11,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block does not
include any non-zero transform coefficients, to assign
context values, the video decoder is configured to assign
a context value to a first column of the significance
syntax elements of the transform coefficients of the cur-
rent sub-block that is different than context values for
other columns of the significance elements of the trans-
form coefficients of the current sub-block.

15. The device of claim 11,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block includes at
least one non-zero transform coefficients, to assign con-
text values, the video decoder is configured to assign a
same context value to the significance syntax elements
of the transform coefficients of the current sub-block.

16. The device of claim 11, wherein the current sub-block
comprises a 4x4 sub-block, and the block comprises an 8x8
block.

17. The device of claim 11,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block,

wherein the first neighboring sub-block comprises a below

sub-block that is below the current sub-block, and

wherein the second neighboring sub-block comprises a

right sub-block that is right of the current sub-block.

18. The device of claim 11, wherein the video decoder is
configured to:

determine a scan type of the current sub-block from the

plurality of scan types,

wherein, to select the context pattern, the video decoder is

configured to:

select the context pattern based on the determined scan

type.

19. The device of claim 11, wherein one of the plurality of
two-dimensional context patterns comprises context values
that if scanned horizontally or vertically result in a same
one-dimensional vector.

20. The device of claim 11, wherein one of the plurality of
two-dimensional context patterns comprises context values
that if scanned diagonally, horizontally, and vertically result
in a same one-dimensional vector.

US 9,124,872 B2

41

21. The device of claim 11, wherein the device comprises

one of:

an integrated circuit;

a microprocessor;

a wireless communication device that includes the video
decoder.

22. A non-transitory computer-readable storage medium

having instructions stored thereon that when executed cause

one or more processors of a device for decoding video data to:

receive, in a bitstream, significance syntax elements indi-
cating whether each corresponding transform coeffi-
cient of transform coefficients of a current sub-block of
a block is a non-zero transform coefficient;

select a context pattern, which includes context values that
correspond to the transform coefficients located in
respective positions of the sub-block, from a plurality of
two-dimensional context patterns for a plurality of scan
types for the significance syntax elements of the trans-
form coefficients of the current sub-block, wherein the
plurality of two-dimensional context patterns is the
same for each of the plurality of scan types, and wherein
each of the context patterns is associated with a condi-
tion of whether one or more neighboring sub-blocks of
the current sub-block include any non-zero transform
coefficients;

assign context values of the selected context pattern to each
of the significance syntax elements of the transform
coefficients based on positions of the context values in
the selected context pattern and positions of the trans-
form coefficients to corresponding significance syntax
elements; and

context adaptive binary arithmetic coding (CABAC)
decode the significance syntax elements of the transform
coefficients of the current sub-block utilizing respective
assigned context values.

23. The computer-readable storage medium of claim 22,

wherein the plurality of scan types comprise a horizontal

scan, a vertical scan, and a diagonal scan.

24. The computer-readable storage medium of claim 22,

wherein the one or more neighboring sub-blocks comprise
a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based the selected context pattern being associ-
ated with the condition that the first neighboring sub-
block does not include any non-zero transform coeffi-
cients and the second neighboring sub-block includes at
least one non-zero transform coefficient, the instructions
that cause the one or more processors to assign context
values comprise instructions that cause the one or more
processors to assign a context value to a first row of the
significance syntax elements of the transform coeffi-
cients for the current sub-block that is different than
context values for other rows of the significance ele-
ments of the transform coefficients for the current sub-
block.

25. The computer-readable storage medium of claim 22,

wherein the one or more neighboring sub-blocks comprise
a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-
ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block does not
include any non-zero transform coefficients, the instruc-
tions that cause the one or more processors to assign
context values comprise instructions that cause the one
or more processors to assign a context value to a first

20

25

30

35

45

50

42

column of the significance syntax elements of the trans-
form coefficients of the current sub-block that is differ-
ent than context values for other columns of the signifi-
cance elements of the transform coefficients of the
current sub-block.

26. The computer-readable storage medium of claim 22,

wherein the one or more neighboring sub-blocks comprise
a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-
ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block includes at
least one non-zero transform coefficients, the instruc-
tions that cause the one or more processors to assign
context values comprise instructions that cause the one
or more processors to assign a same context value to the
significance syntax elements of the transform coeffi-
cients of the current sub-block.

27. A method for encoding video data, the method com-

prising:

generating significance syntax elements indicating
whether each corresponding transform coefficient of
transform coefficients of a current sub-block of a block
is a non-zero transform coefficient;

selecting a context pattern, which includes context values
that correspond to the transform coefficients located in
respective positions of the sub-block, from a plurality of
two-dimensional context patterns for a plurality of scan
types for the significance syntax elements of the trans-
form coefficients of the current sub-block, wherein the
plurality of two-dimensional context patterns is the
same for each of'the plurality of scan types, and wherein
each of the context patterns is associated with a condi-
tion of whether one or more neighboring sub-blocks of
the current sub-block include any non-zero transform
coefficients;

assigning context values of the selected context pattern to
each ofthe significance syntax elements of the transform
coefficients based on positions of the context values in
the selected context pattern and positions of the trans-
form coefficients from which the significance syntax
elements are generated;

context adaptive binary arithmetic coding (CABAC)
encoding the significance syntax elements of the trans-
form coefficients of the current sub-block utilizing
respective assigned context values; and

outputting the encoded significance syntax elements.

28. The method of claim 27, wherein the plurality of scan

types comprise a horizontal scan, a vertical scan, and a diago-
nal scan.

29. The method of claim 27,

wherein the one or more neighboring sub-blocks comprise
a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-
ciated with the condition that the first neighboring sub-
block does not include any non-zero transform coeffi-
cients and the second neighboring sub-block includes at
least one non-zero transform coefficient, assigning con-
text values comprises assigning a context value to a first
row of the significance syntax elements of the transform
coefficients for the current sub-block that is different
than context values for other rows of the significance
elements of the transform coefficients for the current
sub-block.

US 9,124,872 B2

43
30. The method of claim 27,
wherein the one or more neighboring sub-blocks comprise
a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block does not
include any non-zero transform coefficients, assigning
context values comprises assigning a context value to a
first column of the significance syntax elements of the
transform coefficients of the current sub-block that is
different than context values for other columns of the
significance elements of the transform coefficients of the
current sub-block.

31. The method of claim 27,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block includes at
least one non-zero transform coefficients, assigning con-
text values comprises assigning a same context value to
the significance syntax elements of the transform coef-
ficients of the current sub-block.

32. The method of claim 27, wherein the current sub-block
comprises a 4x4 sub-block, and the block comprises an 8x8
block.

33. The method of claim 27,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block,

wherein the first neighboring sub-block comprises a below

sub-block that is below the current sub-block, and

wherein the second neighboring sub-block comprises a

right sub-block that is right of the current sub-block.

34. The method of claim 27, further comprising:

determining a scan type of the current sub-block from the

plurality of scan types,

wherein selecting the context pattern comprises selecting

the context pattern based on the determined scan type.

35. The method of claim 27, wherein one of the plurality of
two-dimensional context patterns comprises context values
that if scanned horizontally or vertically result in a same
one-dimensional vector.

36. The method of claim 27, wherein one of the plurality of
two-dimensional context patterns comprises context values
that if scanned diagonally, horizontally, and vertically result
in a same one-dimensional vector.

37. A device for encoding video data, the device compris-
ing a video encoder configured to:

generate significance syntax elements indicating whether

each corresponding transform coefficient of transform
coefficients of a current sub-block of a block is a non-
zero transform coefficient;

select a context pattern, which includes context values that

correspond to the transform coefficients located in
respective positions of the sub-block, from a plurality of
two-dimensional context patterns for a plurality of scan
types for the significance syntax elements of the trans-
form coefficients of the current sub-block, wherein the
plurality of two-dimensional context patterns is the
same for each of the plurality of scan types, and wherein
each of the context patterns is associated with a condi-

25

30

40

45

50

55

44

tion of whether one or more sub-blocks of the current
sub-block include any non-zero transform coefficients;

assign context values of the selected context patternto each

of the significance syntax elements of the transform
coefficients based on positions of the context values in
the selected context pattern and positions of the trans-
form coefficients from which the significance syntax
elements are generated;

context adaptive binary arithmetic coding (CABAC)

encode the significance syntax elements of the transform
coefficients of the current sub-block utilizing respective
assigned context values; and

output the encoded significance syntax elements.

38. The device of claim 37, wherein the plurality of scan
types comprises a horizontal scan, a vertical scan, and a
diagonal scan.

39. The device of claim 37,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block does not include any non-zero transform coeffi-
cients and the second neighboring sub-block includes at
least one non-zero transform coefficient, to assign con-
text values, the video encoder is configured to assign a
context value to a first row of the significance syntax
elements of the transform coefficients for the current
sub-block that is different than context values for other
rows of the significance elements of the transform coef-
ficients for the current sub-block.

40. The device of claim 37,
wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block does not
include any non-zero transform coefficients, to assign
context values, the video encoder is configured to assign
a context value to a first column of the significance
syntax elements of the transform coefficients of the cur-
rent sub-block that is different than context values for
other columns of the significance elements of the trans-
form coefficients of the current sub-block.

41. The device of claim 37,
wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block includes at
least one non-zero transform coefficients, to assign con-
text values, the video encoder is configured to assign a
same context value to the significance syntax elements
of the transform coefficients of the current sub-block.

42. The device of claim 37, wherein the current sub-block

60 comprises a 4x4 sub-block, and the block comprises an 8x8

65

block.
43. The device of claim 37,
wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block,

wherein the first neighboring sub-block comprises a below

sub-block that is below the current sub-block, and

US 9,124,872 B2

45

wherein the second neighboring sub-block comprises a

right sub-block that is right of the current sub-block.

44. The device of claim 37, wherein the video encoder is
configured to:

determine a scan type of the current sub-block from the

plurality of scan types,

wherein to select the context pattern, the video encoder is

configured to:
select the context pattern based on the determined scan
type.

45. The device of claim 37, wherein one of the plurality of
two-dimensional context patterns comprises context values
that if scanned horizontally or vertically result in a same
one-dimensional vector.

46. The device of claim 37, wherein one of the plurality of
two-dimensional context patterns comprises context values
that if scanned diagonally, horizontally, and vertically result
in a same one-dimensional vector.

47. A device for encoding video data, the device compris-
ing:

means for generating significance syntax elements indicat-

ing whether each corresponding transform coefficient of
transform coefficients of a current sub-block of a block
is a non-zero transform coefficient;

means for selecting a context pattern, which includes con-

text values that correspond to the transform coefficients
located in respective positions of the sub-block, from a
plurality of two-dimensional context patterns for a plu-
rality of scan types for the significance syntax elements
of the transform coefficients of the current sub-block,
wherein the plurality of two-dimensional context pat-
terns is the same for each of the plurality of scan types,
and wherein each of the context patterns is associated
with a condition of whether one or more neighboring
sub-blocks of the current sub-block include any non-
zero transform coefficients;

means for assigning context values of the selected context

pattern to each of the significance syntax elements of the
transform coefficients based on positions of the context
values in the selected context pattern and positions of the
transform coefficients from which the significance syn-
tax elements are generated;

means for context adaptive binary arithmetic coding

(CABAC) encoding the significance syntax elements of
the transform coefficients of the current sub-block uti-
lizing respective assigned context values; and

means for outputting the encoded significance syntax ele-

ments.

w

25

30

35

40

45

46

48. The device of claim 47, wherein the plurality of scan
types comprise a horizontal scan, a vertical scan, and a diago-
nal scan.

49. The device of claim 47,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block does not include any non-zero transform coeffi-
cients and the second neighboring sub-block includes at
least one non-zero transform coefficient, the means for
assigning context values comprises means for assigning
a context value to a first row of the significance syntax
elements of the transform coefficients for the current
sub-block that is different than context values for other
rows of the significance elements of the transform coef-
ficients for the current sub-block.

50. The device of claim 47,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block does not
include any non-zero transform coefficients, means for
assigning context values comprises means for assigning
a context value to a first column of the significance
syntax elements of the transform coefficients of the cur-
rent sub-block that is different than context values for
other columns of the significance elements of the trans-
form coefficients of the current sub-block.

51. The device of claim 47,

wherein the one or more neighboring sub-blocks comprise

a first neighboring sub-block and a second neighboring
sub-block, and

wherein, based on the selected context pattern being asso-

ciated with the condition that the first neighboring sub-
block includes at least one non-zero transform coeffi-
cient and the second neighboring sub-block includes at
least one non-zero transform coefficients, the means for
assigning context values comprises means for assigning
a same context value to the significance syntax elements
of the transform coefficients of the current sub-block.

#* #* #* #* #*

