US 20180189352A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2018/0189352 Al

Ghafourifar

43) Pub. Date: Jul. 5, 2018

(54)

(71)
(72)

@

(22)

(1)

MIXED-GRAINED DETECTION AND
ANALYSIS OF USER LIFE EVENTS FOR
CONTEXT UNDERSTANDING

Applicant: Entefy Inc., Palo Alto, CA (US)

Alston Ghafourifar, Los Altos Hills,
CA (US)

Inventor:

Appl. No.: 15/396,485

Filed: Dec. 31, 2016

Publication Classification

(52) US.CL
CPC

GOGF 17/30477 (2013.01); HO4L 43/045
(2013.01); HO4L 67/306 (2013.01); GO6F
17/30598 (2013.01); GOGF 9/4443 (2013.01);
GOGF 17/30958 (2013.01); GOGF 3/167

(2013.01)

(57) ABSTRACT

Techniques for resolving multiple user requests from mul-
tiple user accounts by an interactive interface are described.
An interactive interface can obtain a first multi-dimensional
context graph for a first user account and a second context
graph for a second user account. Each graph comprises
correlated contexts related to the user account. The interface
can also receive a first user request associated with the first
user account and a second user request associated with the
second user account; determine, based on the first graph, a
first current context and one or more first previous contexts

Int. C1. for the first user request; determine, based on the second
GOG6F 17/30 (2006.01) graph, a second current context and one or more second
HO4L 12/26 (2006.01) previous contexts for the second user request; determine one
HO4L 29/08 (2006.01) or more interrelationships between the first and the second
GO6F 3/16 (2006.01) graphs; and resolve the user requests based on the contexts
GO6F 9/44 (2006.01) and the interrelationships.
¥ 00

f : MEMORY/DATA STORESY 66 ¢+

|

e } .

§ mii{gé)fiw ! ACQUIREDDATA | | MULTLDIMENSIONAL CONTEXT] | | :g@’i?;‘% :
i PR ()L‘\:’EDER"‘}) ! ASSOCIATED WITH MANAGEMENT GRAPH : N i |
i PROVIDERES) AUSER ACCOUNT | | (also cailed “CONTEXT GRAPH™) | | 1 PEVICES) —
i AND/OR ! 176 175 i {e.g., internet of things |
FCOMMUNICATION : _ - (10T} device(s), other |
i DEVICE(S) | ! similar programmable |
i 120 x PREDICTED DATA ASSOCIATED WITH P device(s) et} |
g : THE USER ACCOUNT 180 ; 193 i
wwwwwwwww ~t S

COMMUNICATION Y

1BMS))

INTERACTHY

CONTE

T GRAPH

7 S~
S
E INTERFACE e Rttt ;
SERVICE(S) 150 B e
| | PERIPHERAL(S)
P Neoresy | {e.g., laput and/or |
P RENSOR(S) t Output device(s), |
f 191 § :
i X efc.) i
c L 199 !
; P |
PV R 4

INTELLIGENT INTERACTIVE INTERFAC
(also called “INTELLIINTERFACE™)
199

£

v
«
o
v
Y FBIA
® 661
e {CADVAITINITTIALNG, POjIRD osje)
w HOVAGAINT HALLDVIGING LNADITTTHLN]
B L e e vee e o ovee v oy} v oee vre v o oo
S | B ;
i i
N m m]
= m e . w T
| (oo I M HAVED IXIINGD
| “jsomepnding | 4,
= w so/pun ndug <593 | {STIOSNAS M
S | (8rTvaandEd | ~ 091 AINUONIIO0T
— i w W i FIVATHINI HALLDVYHINI
{ S :]
w g) P ———— 0ET (SILIND DNISSAD0U
n .
= -
o
v
>
S
v
s
= i
iiiii ¥ NI, A
|] } i
g _ ¢ m G857 LNNODOY YIS JHL | u
= “ (30 (s ooiAap M HLIM G4LVIDOSSY VIVA daIDIasdd | o7t |
m { ciquuneiBont repans “ {SHDIAEQ W
= { oo {smmap (101 | — — NOLLVIDINCHANG D
Dn.... P go sovamng ©80) | .) .n.i, . o o mrw o _ MONY u
b monama F || WHIYED IXEHINGD., DRI OE)) INAOJOY 350 Y G e
m " GALYINNGD f HdV¥D INGIWADVYNYIN HIUA GELVEDOSSY i ’ \‘..M um ?/Zf }
o - P JE NP B4, 4 . i ST RIEY S TN TS RTTAT ey ; RS - I T e tW 0 T4 W 3k B i
m | EOMLAN m LXHINOO TYNOISNAWIG-LLINN VLIV N0V " ALUVI CHIEL
— e |] i {
m 9T (SIHH0LS VAVE/AIOWAN { {
LA[001 ///.i\&
=
L
~N
=
(-

US 2018/0189352 A1l

\\.s. — if//” "\\\\. — 7 Bid
4t s
AHOLISGIdHd LXAINGD AJOLISOdFY INTLINGD
— ST
P !i;;///w R iv HAVIOD IXAINGD
S — S &7 AR
P "
) S l\\ll\\\ ///!Il.l.. .2‘\\.\\\\
y—
[
(=] “
o
~Na)
72) MNTOT
" B .
= 907 \ ®
2, HWAo4G
P]
.Iu. W e
yy Ve Oid .
% {SINSINYHDEN

CDLLYDINANA

SN N ¢ | lMI<mom

e e M
A ALITVNOLLONGA N e

/ {d7IN) ONISSHDOUd) -
[e EE \mb\.m«zowb@v

AOVOONYT / (N
N vanavn S\ Houvas % A
™ v\&\\ . 00T
917 v

.

81¢

Patent Application Publication

£Bid

US 2018/0189352 A1l

W-d1i0¢
afppe L OMQS\M B
NEGE V106
MO m wﬁwu,mM .
= - — S
s ﬂ / q10¢ ,m%ﬂ. S aroe .\ \V
s ’ LA e
e / et Er.mk);,// {A// i (M\J o cﬁz,wb)/ /
g » \ \\ \]
m
»n
=]
e
(=
(g\]
v
_m.. Mo //////
K . 60¢ ;
. M . uonwipdg /S
.. S
coc ; e R
K033 y T -
gogrisdQy — uoyEad(‘ \
Loe
uoneiadoy

oog —*

Patent Application Publication

POl

US 2018/0189352 A1l

|
|

w

|

|

|

|

M

|

. |
" |

|

=]
o
— coY
< a0y REVTF
E) isaa1] 4xa4uon)
1 — N SR
2 r
- M 0y BOTRIAO
N it eeee emeel eee ems cee emee emee eee eees eees eees eeeei seees seees aees eeee sees seemiiieems mmee seee. seeer smems mees sees sees smeer semme mees sees seee seems sems mmme smee smee semms ceems eees seem
&
v NEVETY ~ _
_ ¢ i
E :s12141§u2p] A2y} N
iii /
e
[o o e T GOREISEG
| PLO[PUD WASY Ll Aprod Jouup s BUILIBAS AMOLIOWIOL -
! eI —
M)
| a0d sjuaipaibul jel of 4930 o selecodb pespuIng gag #Q@\xm

; .~ 10F vourdg

iy \»

anbyugos 1 jusedeusy e
INGIUOTY PAIaL],

Patent Application Publication

Patent Application Publication Jul. 5,2018 Sheet 5 of 16 US 2018/0189352 A1

B 500

RECEIVE ACQUIRED DATA ASSOCIATED WITH A USER ACCOUNT
502

¥
DETERMINE RELATIONSHIPS AND/OR PREDICTED DATA BASED ON
THE ACQUIRED DATA

CACHE AT LEAST SOME OF THE CONTEXT GRAPH FOR SERVICING
USER REQUESTS

FiG. §

Patent Application Publication Jul. 5,2018 Sheet 6 of 16 US 2018/0189352 A1

AN

RECEIVE MULTIPLE USER REGUESTS ASSOQCIATED WITH A USER
ACCGUNT
602

¥

DETERMINE, USING A CONTEXT GRAPH ASSOCIATED WITH THE USER
ACCOUNT, A CURRENT CONTEXT ASSOCIATED WITH EACH OF THE
USER REQUESTS
604

¥
DETERMINE, USING THE CONTEXT GRAPH, PREVIOUS CONTEXT(S)
ASSOCIATED WITH EACH OF THE CURRENT CONTEXTS
606

A4

GENERATE A CONTEXT TIER FOR EACH OF THE USER REQUESTS
608

i CACHE ONE OR MORE OF THE CURRENT CONTEXT(S), THE PREVIOUS
E CONTEXT(S), AND THE CONTEXT TIER(S) ’
f 610

RESOLVE EACH OF THE USER REQUESTS
(INCLUDING STORING/UPDATING THE CURRENT CONTEXTS AS PAST
CONTEXTS THAT INCLUDE INFORMATION ASSOCIATED WITH THE
RESOLVED REQUESTS)

FiG. 6

US 2018/0189352 A1l

S e

/G0
3! G

S “

T,
/o

 xemon

\\\x}/
sz
Pf l/ XSO fm
o e =~ \ﬁ.
e e \WJ\
s -7 . "
-m ..,V.A/ 1ABPEOTY \sz J/ H
3 Sk i
=
7))
)
Yo
=)
Q
v
= P y,
\\\il/ &

m ..VA cOL
.m KOOy [
.m //. \ .// k/ \
= e
= T— N \
~ T
g peayuey
2 \
<
om
= T TIRIL
«
~N—
=
&
<
A

<

S
o

|

Vi BiA

US 2018/0189352 A1l

Jul. 5,2018 Sheet 8 of 16

0L~ 4

Patent Application Publication

v\ [S17A /w
! /EBQQOMW&////
\ s N \//Lw\ AN l!lfii/!l//l/ 2N
mm./ﬂ B — e T N\
Jvéﬁmoo \4) \ ! ;t«(ﬂ: .,] XOWIOy vAI
f.a\k - o \ \ / \\\V//, \\\
N . # N = \/ﬁ\
// - N i s T

N\, R N \\./ -

// N o N .

) J T~ T ™~ /
/N L < ™/
/ N r AN /.\ AN
4 7 ‘ “
/ -~ ~ N H \ T ~N
ol \R/ - N \ ~.
* i \\ TN T
...Y/ woe)y ¢ * / N 167
N A N\ . \< \ 3x03807)
- ////// / LW \ \\

T~/ WL /x |

L ke /

/\& ceeenemeneemmene cnmeneemne sonmneeonnmn oeonne oeene amene oo ¢

e

FARCIRY

qLDIA

3L DA

US 2018/0189352 A1l

s ™
[5Bl)
w T\ OO A
\\x./// \mw//!ww,\\ b /f/////// o
— ;v\ FOL - f.fz;l;w\\,.f.)ﬂ?f o wi\w?/
S | IXPHI03 FARN / i / XOHI0)) xim
w .//l!\.\ﬁ' //X\ M / JXW.\\\ w
5% / ~ . e
_m N, \ ™ ! N - \. m
7 0] N /// - e \
NS ™ - M
{ A L \.
- 2 < 4 |
S /N T M
-\w; \ \ N « o d //;//// \ \. / m
- Y
2 2 | N |
N e \ i / . /\»/ |
[Ar \ | / w -
, wxﬁmcu P N L \ {04 ,IL
/ i N * V \/)Eou
e NN /
//I//I'/» \J\\ // \
/////L 04)
U IX81807) \\
N “

vl HINEE
QOL~_

Patent Application Publication

US 2018/0189352 A1l

Jul. 5,2018 Sheet 10 of 16

Patent Application Publication

£18 ALINA W04 Y8 0L
[N
P LXALNOD
P YA \\\\ .w.z "
20 4 .
¥ 18 ALIIN > \hw\

s - A ;&/ £19 ALLLNA
\\} - ; /
\\.v)ll / i
P18 ALLING ¥ \ h}

POYBALSIYIO
IXAINOGD /

\\ \ \
\\ ///
4 / 8
\ \ / ALLLNG MO
] VT
. AXEINGD
| ~dr
\ s =y
v
S|] K,\ [T8 ALLING
ay L™ =1
18 AT s P

ALLNG 304 3
S08 WRLBOTD /

s

TXHINOD ry'e] LS JA
o / [T
g oot SNy d A\/ouo %R
Yol o N 3 \ - F
<19 ALILNA - f
M e 118 XN
- x\ e
S TN ALLING HOH
008 B e 108 WALSIYID
L HALL (050 7 380} ?m.ov EXHINOO

ANDIOIDY A4S
HOA HAVHD LX L..?O.u

q8 DIA

US 2018/0189352 A1l

Jul. 5,2018 Sheet 11 of 16

< b ANEL

Patent Application Publication

38 DId

US 2018/0189352 A1l

Jul. 5,2018 Sheet 12 of 16

L MALL

Patent Application Publication

a8 DiA

US 2018/0189352 A1l

~1s8

Jul. 5,2018 Sheet 13 of 16

PLAKEL

Patent Application Publication

US 2018/0189352 A1l

Jul. 5,2018 Sheet 14 of 16

Patent Application Publication

,—"’/'_M‘"-""\
T

SR \;//M

SLARWIL fﬂ/ 118 /

HY DA

Patent Application Publication Jul. 5,2018 Sheet 150f 16 US 2018/0189352 A1l

FT 000

RECEIVE MULTIPLE USER REQUESTS ASSOCIATED WITH A USER ACCOUNT

DETERMINE, USING A CONTEXT GRAPH COMPRISED OF OKNE OR MORE
CONTEXT CLUSTERS, ACURRENT CONTEXT ASSOCIATED WITH EACH OF THE
USER REQUESTS

S04

DETERMINE, FOR EACH CURRENT CONTEXT, ITS RESPECTIVE CONTEXT
CLUSTER IN THE CONTEXT GRAPH

9i4

k
DETERMINE, USING THE CONTEXT GRAPH, PREVIOUS CONTEXT(S)
ASSCGCIATED WITH EACH OF THE CURRENT CONTEXTS
DETERMINE, WITHIN A CURRENT CONTEXT'S CLUSTER, ONE OR MORE
FIRST PREVIOUS CONTEXT(S) ASSOCIATED WITH THE CURRENT CONTEXT

DETERMINE, USING OTHER CONTEXT CLUSTERS THAT DO NOT INCLUDE A
CURRENT CONTEXT, ONE OR MORE SECOND PREVIOUS CONTEXT(S}
ASSQCIATED WITH THE CURRENT CONTEXT

918
¥
GENERATE A CONTEXT TIER FOR EACH OF THE USER REQUESTS
W8

P TCACHE ONE OR MORE OF THE CURRENT CONTEXT(S), THE PREVIOUS |
CONTEXT{S), AND THE CONTEXT TIER(S) |
@MwMMMMMmmmwwwm%%wwmwmwwmmwwwmmj
RESOLVE BACH OF THE USER REQUESTS

912

FiG. 8

US 2018/0189352 A1l

Jul. 5,2018 Sheet 16 of 16

Patent Application Publication

(SMDAIQ 4DV AOLS

00T
WIUGHIN

ATEVIEVER-ERLOINOD

o1
HOIAHUNHISAS INODIVAINVIS

3801
FOVEHINGITIELNT

g1 Did

EOMLEN

\I\'}\/\l/f
A1 \w

r-Y _
2F) i Jm T ..,m ¥
FOVAUTLNI TTIAING M m M ;
| 00 b 0T ! iy
i SFIIABA w PSEDIARG (o) (SHATG
PogvNowaay | indnoaaans EOVAFRINT
i M ; M HAOMIAN
i i
STNURELEE N SR,
A -y
v ' N
GTOT LOANNODUAINI
Y & M
v \4 — o —— —— o —
H ﬂ:. m vvvvvvv J
T (SMOSHI0N m ot w
! a2y f1 Lip =
. . } Cas1Ada i
AGONHN b AV TSI SO/ANY
e pONTTIOWINDD
- m INarJ i
H8C01 . L o oo e e oo e e 3
A‘zm..udﬁmmm.hzmwﬁumwm??
HOVSEAINIT T TN pafeo OspE)
AOVAYF LN AALLODVHEINT
NADITTHLN
INHDITIRING ﬁ/t\\cccw

US 2018/0189352 Al

MIXED-GRAINED DETECTION AND
ANALYSIS OF USER LIFE EVENTS FOR
CONTEXT UNDERSTANDING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is related to the following appli-
cations: (i) U.S. Non-provisional patent application Ser. No.

, entitled “NATURAL LANGUAGE MESSAGE
INTERPRETATION ENGINE,” Docket No. 1275-
0030US1, filed Dec. 31, 2016; (iii) U.S. Non-provisional
patent application Ser. No. , entitled “CONTEXT
MANAGEMENT FOR REAL-TIME EVENT AWARE-
NESS,” Docket No. 1275-0031US1, filed Dec. 31, 2016;
and (iv) U.S. Non-provisional patent application Ser. No.

, entitled “DETECTION AND ANALYSIS OF
USER LIFE EVENTS IN A COMMUNICATION ECO-
SYSTEM,” Docket No. 1275-0031US2, filed Dec. 31, 2016.
Each of these related applications is incorporated by refer-
ence in its entirety.

FIELD

[0002] Embodiments described herein relate to interactive
interfaces (e.g., intelligent personal assistants (IPAs), virtual
assistants, knowledge navigators, chatbots, command-re-
sponse engines, other software/hardware agents capable of
performing actions on behalf of or for an entity, etc.). More
particularly, embodiments described herein relate to one or
more techniques of correlating clusters of contexts (context
clusters™) of a user account that corresponds to an entity for
use by an intelligent interactive interface (“intelli-interface”)
to perform actions on behalf of or for the user account.

BACKGROUND

[0003] Modern consumer electronics are capable of
enabling interactive interfaces (e.g., intelligent personal
assistants (IPAs), virtual assistants, knowledge navigators,
chatbots, command-response engines, other software/hard-
ware agents capable of performing actions on behalf of or
for an entity, etc.) to perform actions on behalf of or for user
accounts that correspond to entities. That is, these interfaces
can receive requests (in the form of inputs) from an entity
(e.g., a person, a service, a smart device, etc.) and respond
to the requests accordingly. For example, at least one cur-
rently available interactive interface can respond to a user’s
request received via input (e.g., text input, voice input,
gesture input, etc.) for nearby restaurants with a list of
establishments within a predetermined location of the user.
The output can be provided to the user as textual output,
image output (e.g., graphics, video, etc.), audio output,
haptic output, tactile output, any combination thereof, or any
other known output.

[0004] One problem associated with some interactive
interfaces is their inability to multi-task—that is, some
interactive interfaces cannot receive multiple user requests
that are ambiguous or contextually unrelated, manage the
multiple user requests concurrently, and resolve the multiple
user requests. For example, some typical interactive inter-
faces cannot receive a first request to “find nearby restau-
rants” and a second user request to “find nearby bookstores”,
manage the requests concurrently, and resolve both user
requests. In this example, none of the user requests are
resolved before the other one is received. Consequently,

Jul. 5, 2018

these types of interactive interfaces can only receive and
resolve a single request before being able to receive (and
resolve) another request. This leads to one-purpose-one-
action type of interactive interfaces that require users to
follow restrictive patterns of usage in order to migrate from
one task to another, which can contribute to or cause user
dissatisfaction.

[0005] Another problem associated with some interactive
interfaces is their relative inability to provide relevant pre-
dictive and reactive solutions to a user’s requests based on
the user’s context. This may be because traditional tech-
niques of context derivation are not precise enough. For
example, at least one typical context derivation technique
relies on time-based principles. Generally, these time-based
approaches can be based on temporal locality principles or
spatial locality principles. Stated differently, at least one
typical context derivation technique bases its context deter-
minations exclusively on time-based data, such as recent
locations or recent interactions, as a way of developing an
insight into a user’s context. Such a technique can yield
inaccurate predictions, which can cause interactive inter-
faces relying on this context derivation technique to generate
irrelevant solutions to user requests. Irrelevant solutions can
contribute to or cause user dissatisfaction.

[0006] Yet another problem associated with some interac-
tive interfaces is their inability to partition knowledge used
for servicing user requests into manageable data sets. This is
exemplified when user context determinations are consid-
ered at either a fine-grained context level (e.g., the user is
currently at a location with a latitude and longitude of
48.86971, 2.307909, etc.) or a more broadly defined level
(e.g., the user is currently on planet Earth, etc.). An incorrect
context determination can limit the functionality of an
interactive interface that is designed to provide relevant
predictive and reactive solutions to a user’s requests. Too
fine-grained or narrow a context and the interactive interface
will lack enough data to provide relevant and/or reliable
solutions to a user’s requests. Too broadly defined or high
level a context and the interactive interface will also lack
enough data to accurately provide relevant and/or reliable
solutions to a user’s requests. For example, if a user asks his
interactive interface to suggest items to buy during a trip to
a local grocery store and the user has provided the assistant
with the following data: underwear, paper towels, and a
flashlight. Without a technique for determining the user’s
proper context and feeding the determined technique to the
interactive interface, irrelevant suggestions may be output to
the user by the interactive interface.

[0007] The problems discussed above can cause an inter-
active interface to operate inefficiently because it has to
perform multiple attempts in order to resolve a single user
request. This inefficient operation can, in turn, result in
wasted computational resources. For example, computa-
tional resources that would otherwise not be necessary may
be needed by an interactive assistant to service a single user
request due to errors. Waste includes, but is not limited to,
processing power for performing and/or repeating the per-
formance of queries or transactions associated with resolv-
ing user requests and storage memory space for storing data
about the incorrect or improper resolutions of user requests.

[0008] For at least the reasons set forth in this section of
the present disclosure, some interactive interfaces remain
sub-optimal.

US 2018/0189352 Al

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Embodiments described herein are illustrated by
examples and not limitations in the accompanying drawings,
in which like references indicate similar features. Further-
more, in the drawings some conventional details have been
omitted so as not to obscure the inventive concepts
described herein.

[0010] FIG. 1 illustrates, in block diagram form, an exem-
plary architecture that includes electronic components for
servicing user requests by an intelligent interactive interface
(“intelli-interface”) in accordance one or more embodi-
ments.

[0011] FIG. 2 illustrates an exemplary central communi-
cations server infrastructure, according to one or more
embodiments disclosed herein. The infrastructure in FIG. 2
can be part of an intelli-interface as described herein.
[0012] FIG. 3 illustrates a two-dimensional (“2D”) graphi-
cal approximation of a multi-dimensional context manage-
ment graph (“context graph”) in accordance with one or
more embodiments. The context graph in FIG. 3 can be
similar to or the same as any of the context graphs described
in connection with FIGS. 1-2.

[0013] FIG. 4 illustrates a tiered context management
technique in accordance with one or more embodiments.
[0014] FIG. 5 illustrates, in flowchart form, a technique to
generate an exemplary multi-dimensional context graph in
accordance with an embodiment.

[0015] FIG. 6 illustrates, in flowchart form, a technique to
service multiple user requests associated with a user account
by an intelli-interface in accordance with an embodiment.
[0016] FIGS. 7A-7C illustrate, in block diagram form, a
2D graphical approximation of an exemplary multi-dimen-
sional context graph comprising a cluster of contexts (“con-
text cluster”) in accordance with one embodiment. The
exemplary context graph illustrated in FIGS. 7A-7C can be
generated and/or used by the embodiments of an intelli-
interface described herein.

[0017] FIGS. 8A-8E illustrate, in block diagram form, a
2D graphical approximation of an exemplary a multi-dimen-
sional context graph comprised of multiple context clusters
in accordance with one embodiment. The exemplary context
graph illustrated in FIGS. 8A-8E can be generated and/or
used by the embodiments of an intelli-interface described
herein.

[0018] FIG. 9 illustrates, in flowchart form, a technique to
service multiple user requests by an intelli-interface in
accordance with another embodiment.

[0019] FIG. 10 illustrates an exemplary processing system
in accordance with one or more embodiments described
herein.

DETAILED DESCRIPTION

[0020] Methods, apparatuses, computer readable media,
and systems for one or more techniques of correlating
clusters of contexts (context clusters™) of a user account that
corresponds to an entity for use by an intelligent interactive
interface (“intelli-interface”) to perform actions on behalf of
or for the user account are described. Such embodiments
can, among others, enable an intelli-interface to service or
resolve user requests based on holistic task intent and
fulfillment criteria.

[0021] As used herein, an “intelligent interactive inter-

[TINT3d

face,” “intelli-interface,” and their variations refer to an

Jul. 5, 2018

intelligent user interface that employs artificial intelligence
to enable interaction between a user and one or more
computer systems in accordance with the embodiments
described herein. At least one embodiment of an intelligent
interactive interface as described herein receives one or
more user requests in the form of input (e.g., text, audio,
touch, gesture, environs from a sensor, any type of known
input, etc.) and interacts with one or more computer systems
to service or resolve the user requests. The embodiments of
an intelli-interface described herein have advantages over
some currently available interactive interfaces. These advan-
tages include, but are not limited to, assisting with multi-
tasking (e.g., receiving multiple user requests, managing the
multiple user requests concurrently, and resolving the mul-
tiple user requests, etc.); assisting with providing relevant
predictive and reactive solutions to a user’s requests (e.g.,
based on one or more context management graphs that
include information about the user, etc.); and assisting with
partitioning knowledge used for servicing user requests into
manageable data sets (e.g., by use of context clusters, by use
of a context tier, by caching a context tier, etc.). An intelli-
interface, therefore, can represent improvements to com-
puter functionality. For example, the advantages of an
intelli-interface described herein can assist with enabling an
intelli-interface to perform fewer attempts than some cur-
rently available interactive interfaces in order to resolve a
single user request. This reduction in the number attempts
shows that an intelli-interface can operate more efficiently
than some currently available interactive interfaces. That is,
an intelli-interface can assist with reducing wasted compu-
tational resources (e.g., computational resources that would
otherwise not be necessary due to errors associated with
servicing a single user request, etc.). An intelligent interac-
tive interface can include one or more of the many different
types of interactive interfaces, including, among others,
graphical user interfaces (GUIs), conversational interfaces,
natural language interfaces, zero-input interfaces, holo-
graphic user interfaces, any other type of user interface
capable of enabling interactions between a user and one or
more computer systems. As described in further detail
below, at least one embodiment of an intelligent interactive
interface can be implemented using software, hardware, or
a combination thereof.

[0022] As used herein, “servicing user requests,” “resolv-
ing user requests,” and their variations refer to an intelli-
interface’s performance of one or more actions in response
to inputs received by the interface. The inputs can be
received by the intelli-interface from one or more users, one
or more sensors, and/or one or more peripherals. Performed
actions are presented as outputs and can be presented in any
output form (e.g., text, audio, graphics, image, video, haptic,
a combination thereof, any other type of known output, etc.).
An example of a serviced user request would be an intelli-
interface performing all of the necessary actions required for
sending an email in response to one or more inputs received
by the intelli-interface. These actions include, but are not
limited to, directing the user device’s interface to open an
email message window, pre-populate the To: field of the
email message with contact information, pre-populate the
Subject: field of the email message, etc.), as well as, tracking
all pieces of data that may related to this particular task (e.g.,
search for contact information, communications with APIs
and servers required for composing a message, etc.).
Another example of a resolved request would be an intelli-

2 <

US 2018/0189352 Al

interface presenting, via any known output form, a sugges-
tion to a user in response to one or more inputs received by
the interface. Other examples are possible and will be
evident from the accompanying description below and the
drawings.

[0023] As used herein, an “entity” refers to a person (e.g.,
a user, another user, etc.), an organization (e.g., a corpora-
tion, a non-profit company, etc.), a service (e.g., a ride
sharing service, a word processing service, a messaging
service, any other type of known service, etc.), or a network-
connected device (e.g., an internet of things (“IoT”) device,
a smart device, etc.).

[0024] As used herein, a “user account” refers to a col-
lection of data about a user of an intelli-interface. This
collection of data includes, but is not limited to, data about
the user’s relationships with one or more entities, data about
the user’s habits, data about the user’s communications or
interactions with one or more entities, data about the user’s
preferences, data about the user’s credentials for accessing
or communicating with one or entities, etc.

[0025] FIG. 1 illustrates, in block diagram form, an exem-
plary architecture 100 that includes electronic components
for servicing user requests by an intelli-interface in accor-
dance with one or more embodiments. Components in the
architecture 100 can be spatially separated and implemented
on separate computing systems that are connected to or
coupled to each other via the communication mechanism(s)
110, as described in further detail below. Alternatively, two
or more components of the architecture 100 can be housed
in single computing system, such as a desktop computer
system, a laptop computer system, a tablet computer system,
a server computer system, a mobile phone, a media player,
a personal digital assistant (PDA), a personal communicator,
a gaming device, a network router or hub, a wired or
wireless access point (AP) or repeater, a set-top box, a
wearable computing system, a vehicle, a network-connected
device, a combination thereof, etc.

[0026] For one embodiment, the architecture 100 may
include processing unit(s) 130, memory or data store(s) 160,
third (3"%) party service provider(s) and/or communication
device(s) 120, sensor(s) 191, peripheral(s) 190, and net-
work-connected device(s) 193. For one embodiment, one or
more components in the architecture 100 may be imple-
mented as one or more integrated circuits (ICs). For
example, at least one of the processing unit(s) 130, the
communication mechanism(s) 110, the 3rd party service(s)/
device(s) 120, the peripheral(s) 190, the sensor(s) 191, the
network-connected device(s) 193, or the memory 160 can be
implemented as a system-on-a-chip (SoC) IC, a three-
dimensional (3D) IC, any other known IC, or any known IC
combination. For another embodiment, two or more com-
ponents in the architecture 100 are implemented together as
one or more ICs. Each component of architecture 100 is
described below.

[0027] The processing unit(s) 130 can include, but are not
limited to, central processing units (CPUs), graphical pro-
cessing units (GPUs), other integrated circuits (ICs),
memory, and/or other electronic circuitry. For one embodi-
ment, the processing unit(s) 130 manipulates and/or pro-
cesses data (e.g., data associated with user accounts, data
comprising contexts and events, data associated with pro-
cessing operations/algorithms/techniques, etc.). The pro-
cessing unit(s) 130 may include an interactive interface
module/logic 140 for servicing user requests in accordance

Jul. 5, 2018

with one or more embodiments, as described herein. For one
embodiment, the interactive interface module/logic 140 is
implemented as hardware (e.g., electronic circuitry associ-
ated with the processing unit(s) 130, circuitry, dedicated
logic, etc.), software (e.g., one or more instructions associ-
ated with a computer program executed by the processing
unit(s) 130, software run on a general-purpose computer
system or a dedicated machine, etc.), or a combination
thereof.

[0028] The interactive interface module/logic 140 can be
employed in cooperation with one or more interactive inter-
face service(s) 150 and a context management graph 175 to
perform tasks on behalf of users. Collectively, the interactive
interface module/logic 140, interactive interface service(s)
150, and the context management graph 175 are referred to
herein as an intelli-interface 199.

[0029] The module/logic 140 may be part of a computing
system (e.g., a laptop, a wearable, a vehicle, a programmable
device, any other type of computing system, etc.) capable of
presenting an interface to a user. The presented interface can
include a graphical user interface or any other known user
interface (e.g., a multi-modal user interface, etc.). User
requests can be provided to the architecture 100 in the form
of'user inputs via peripheral(s) 190 and/or environs captured
by sensor(s) 191, which are described in further detail below.
User inputs may be provided in a conversational manner,
which the interactive interface module/logic 140 can also
respond in a conversational manner. For example, in
response to a query from the user 106 to “find the nearest
bookstore,” the interactive interface module/logic 140 can
respond to the query by providing information through an
interface presented via an output device 190 that identifies
one or more closely located bookstores. As shown by the
preceding example, a user can communicate with the inter-
active interface module/logic 140 in a natural language
format. For one embodiment, the interactive interface mod-
ule/logic 140 is configured for multi-modal input/output
(e.g., receive and/or respond in audio or speech, text, touch,
gesture, etc.), multi-language communication (e.g., receive
and/or respond according to any type of human language),
multi-channel communication (e.g., carry out conversations
through a variety of computing devices), and other types of
input/output or communication. This form of communica-
tion can be implemented via peripheral(s) 190 and/or sensor
(s) 191, which are described below.

[0030] For one embodiment, the service(s) 150 include
computing systems 151A-N, which manage access to and/or
functionality associated with the interactive interface mod-
ule/logic 140. As the interactive interface module/logic 140
performs tasks in cooperation with service(s) 150, the inter-
active interface module/logic 140 may communicate, via the
communication mechanism(s) 110, with at least one of: (i)
one or more 3’7 party service provider(s) and/or communi-
cation device(s) 120; (ii) network-connected device(s) 193;
(iii) memory/data store(s) 160; (iv) sensor(s) 191; or periph-
eral(s) 190.

[0031] For one embodiment, the intelli-interface 199
enables generation and use of a multi-dimensional context
management graph (hereinafter “multi-dimensional context
graph” or “context graph™) 175. The context graph 175 can
be established as the knowledge based system that includes
a knowledge base and/or an inference engine for training
and/or querying of a neural network. Consequently, the
intelli-interface 199 can receive multiple user requests and

US 2018/0189352 Al

resolve these requests based on the context graph 175. More
details about generation and use of the context graph 175 by
the interactive interface module/logic 140 are described
below.

[0032] The intelli-interface 199 can obtain or receive any
type of data associated with servicing user requests by an
interactive interface. This data includes digitalized data
representing one or more activities associated with a user
account. The data can, for example, also include data stored
in memory/data store(s) 160. For one embodiment, and as
shown in FIG. 1, this data can include acquired data 170
and/or predicted data 180. As used herein, “acquired data”
refers to historical and current data about activities being
performed or that were previously performed on behalf of a
user account. The data can optionally also include predicted
data 180, which refers to data resulting from processing
acquired data. For yet another embodiment, the data
includes information from one or more of provider(s)/device
(s) 120, network-connected device(s) 193, sensor(s) 191,
and peripheral(s) 190.

[0033] One difference between acquired data 170 and
predicted data 180 is that the acquired data 170 represents
“hard data.” That is, the data 170 is known with a high
degree of certainty, such as records of past activities or a
record of current activity. Acquired data 170 can refer to any
or all attributes of activities associated with a user account.
Exemplary data 170 includes, but is not limited to, the
following: a predetermined time interval; an event scheduled
to occur in a predetermined time interval; a geolocation to be
visited in a predetermined time interval; one or more iden-
tified persons associated with a predetermined time; an event
scheduled for a predetermined time, or a geolocation to be
visited at predetermined time; weather metadata describing
weather associated with a particular period in time (e.g.,
rain, snow, sun, temperature, etc.); season metadata describ-
ing a season associated with capture of the image. For some
embodiments, the acquired data 170 can be obtained from
37 party service provider(s) and/or device(s) 120, a social
networking service, a weather reporting service, a calendar
service, an address book service, any other type of service,
or from any type of data store accessible via a wired or
wireless network (e.g., the Internet, a private intranet, etc.).
[0034] On the other hand, predicted data 180 is “soft
data.” That is, predicted data 180 is data about future
activities associated a user. For one embodiment, predicted
data 180 is the result of performing at least one of the
following: (i) data mining the acquired data 170; (ii) ana-
lyzing the acquired data 170; (iii) applying logical rules to
the acquired data 170; or (iv) any other known methods used
to infer new information from provided or acquired infor-
mation. For example, acquired data 170 may include a user’s
interactions with a ride sharing service, while predicted data
180 may include predictions about a location that the user
might use the ride sharing service to travel to. For this
example, the data about the user’s interactions with the ride
sharing service may be combined with other acquired data
170 (e.g., calendar appointments, known frequent locations,
etc.) and processed to make the prediction.

[0035] Referring again to FIG. 1, the intelli-interface 199
uses the acquired data 170 and/or the predicted data 180 to
generate the context graph 175. As shown in FIG. 1, all or
some of the context graph 175 can be stored in the process-
ing unit(s) 130, the memory 160, and/or the service(s) 150.
As used herein, a “multi-dimensional context graph,” a

Jul. 5, 2018

“context graph” and their variations refer to a multi-dimen-
sional, dynamically organized collection of data used by the
intelli-interface 199 for deductive reasoning. For one
embodiment, a context graph acts as a knowledge based
system that includes a knowledge base and/or an inference
engine for a neural network. Consequently, the context
graph is a dynamic resource that has the capacity to “learn”
as new information (e.g., data 170, data 180, etc.) is added
to it. A context graph, as a knowledge based system of a
neural network, enables more than accessing information
and extrapolating data for inferring or determining addi-
tional data—it can also be used for classification (e.g.,
pattern and sequence recognition, novelty detection, sequen-
tial decision making, etc.); and data processing (e.g., filter-
ing, clustering, blind source separation and compression,
etc.). As used herein, a “dimension” refers to an aspect upon
which contexts may be related, classified, or organized. A
dimension can be based on time, location, event, or entity.

[0036] The context graph 175 may include multiple nodes
and edges. Each node can represent one or more units of data
(e.g., the acquired data 170, the predicted data 180, a
combination thereof, a context, an event, etc.). Each edge
(which may or may not be weighted) can represent relation-
ships or correlations between the nodes.

[0037] For one embodiment, each node represents a con-
text. As used herein, the term “context” and its variations
refer to a category of one or more events. Events are
described below. Conceptually, a context can be thought of
as a container that holds one or more events such that each
container includes only similar or related events. Contexts
can have varying levels of granularity. Contexts may be
differentiated based on their varying levels of granularity.
For one embodiment, there are at least two distinct types of
contexts that can be identified based on granularity levels—
(1) a macro context; and (ii) a micro context. For example,
macro contexts include broadly defined categories (e.g.,
restaurants visited by user A, grocery stores where user A
shops, etc.), while micro contexts include more narrowly
defined categories (e.g., a type of item purchased by User A
on a specific date at a specific location, etc.). Consequently,
a macro context can include one or more micro contexts. For
example, a macro context, which represents all of user A’s
interactions with restaurants in California, USA can include
micro context that represents all of user A’s interactions with
restaurants in Palo Alto, Calif., USA. Context may also be
differentiated based on their temporal properties. For one
embodiment, there are at least two distinct types of contexts
that can be identified based on temporal properties—(i) a
current context (also referred to herein as “an open con-
text”); and (i) a previous context (also referred to herein as
“a closed context”). Open contexts are on-going contexts
that have not been resolved or closed because one or more
future events can be included as part of the category. An
open context can, for example, include events that User A
performs every day habitually, events that User A will
perform at some future date, etc. Closed contexts are con-
texts that have been resolved. Examples of a closed context
include a single visit to the doctor for surgery that happened
on a specific day last year, a particular communication (e.g.,
text, phone call, email, etc.) that was received yesterday, etc.
Furthermore, two or more contexts may include the same
event—this is because a single event can categorized under
multiple categories. In addition, contexts can be contingent
upon one another. Consequently, and for one embodiment,

US 2018/0189352 Al

each node in context graph 175 represents a category of one
or more events associated with a user account serviced by an
interactive interface. These categories are used organize the
data 170 and/or 180 into manageable sets. Contexts can be
perpetually created on an on-going basis. For one embodi-
ment, contexts are never deleted. Instead, and for this
embodiment, contexts are maintained as nodes in the graph
175 and can be retrieved by the intelli-interface 199 on an
as-needed basis.

[0038] As used herein, the term “event,” “user life event,”
and their variations refer to any data and/or changes in data
associated with a user. Exemplary events include, but are not
limited to, one or more activities performed by the user, one
or more activities associated with a relationship between the
user and one or more entities, and one or more changes in
status of a relationship between the user and one or more
entities. Conceptually, events may take the form, for
example, of a user attending a wedding, a particular com-
munication (e.g., text, phone call, email, etc.) associated
with a user, an appointment associated with a user, a location
associated a user, a preference associated with a user, a
familial relationship between the user and another person, an
interaction between the user and an IoT device, an interac-
tion between the user and an online merchant, etc. Events
can be determined by analyzing data associated with a user
account (e.g., data 170, data 180, etc.). Furthermore, rela-
tionships between the data 170 itself, the data 180 itself, and
a combination of the data 170 and the data 180 can be
determined by analysis and/or processing techniques (e.g.,
data mining techniques, data analysis and analytics tech-
niques, etc.). Events and the relationships between the
events can be perpetually created on an on-going basis. For
one embodiment, events and their corresponding relation-
ships are never deleted. Instead, and for this embodiment,
events and their corresponding relationships are stored away
in the memory/data stores 160 and can be retrieved by the
intelli-interface 199 on an as-needed basis. In some sce-
narios, each event can comprise one or more events. For
example, within a major user life event (e.g., a friendship
between A and B spanning 10 years, etc.), there can be
multiple minor user life events (e.g., a work relationship
between A and B that spanned 1 year and was within their
friendship of 10 years, a party that both A and B attended on
a particular day within their friendship of 10 years, etc.). An
event can be a “hard event,” which is an event that is based
on acquired data (e.g., acquired data 170, etc.). An event
may also be a “soft event,” which is an event that is based
on predicted data (e.g., predicted data 180, etc.). As is
known, predicted data always carries some probability of
existence, so it may or may not come into actual existence.
An event includes, but is not limited to the following: a
gathering of one or more persons to perform an activity (e.g.,
a holiday, a vacation, a birthday, a dinner, a project, a
work-out session, etc.); a sporting event (e.g., an athletic
competition, etc.); a ceremony (e.g., a ritual of cultural
significance that is performed on a special occasion, etc.); a
meeting (e.g., a gathering of individuals engaged in some
common interest, etc.); a festival (e.g., a gathering to cel-
ebrate some aspect in a community, etc.); a concert (e.g., an
artistic performance, etc.); a media event (e.g., an event
created for publicity, etc.); and a party (e.g., a large social or
recreational gathering, etc.). In short, an event can be any
data associated with servicing a user’s requests by an
intelli-interface 199.

29

Jul. 5, 2018

[0039] For one embodiment of the context graph 175, the
edges between nodes represent relationships or correlations
between the nodes. More specifically, a relationship or
correlation between two contexts (which are represented as
nodes) could be data (e.g., acquired data 170, predicted data
170, an event, etc.) that is common to both contexts. For one
embodiment, the intelli-interface 199 uses the “hard data” to
generate correlations or relationships between nodes (e.g.,
by generating a new edge between a pair of contexts
represented as nodes in the graph 175, etc.). For a further
embodiment, the intelli-interface 199 uses the “soft data” to
augment the generated correlations or relationships between
nodes (e.g., by weighting previously generated edges
between a pair of contexts represented as nodes in the graph
175, etc.). For a first example, a first context could be all
persons that User A worked with at Company B, while a
second context could be all persons User A has known for
over ten years. For this first example, the two contexts could
be correlated with each other using “hard data” when one or
more of the persons in the first context overlap with one or
more persons in the second context. For a second example,
a first context could be all persons that User A worked with
at Company C in the year 2010, while a second context
could be all persons that went to university with User A
during the years of 2005-2009. For this second example, a
previously determined correlation between User A and a
person that went to University with User A may be weighted
(to show a stronger correlation between User A and the
person) using “soft data.” The soft data, in this second
example, could be data that indicating a person that went to
school with User A and graduated with the same degree as
User A more likely than not ended up working for Company
C.

[0040] The architecture 100 can include memory/data
stores 160 for storing and/or retrieving acquired data 170,
predicted data 180, and/or context network 175. Memory/
data stores 160 can include any type of memory known (e.g.,
volatile memory, non-volatile memory, etc.). Each of data
170, 180, and 175 can be generated, processed, and/or
captured by the other components in the architecture 100.
For example, the acquired data 170, the predicted data 180,
and/or the context network 175 includes data generated by,
captured by, processed by, or associated with one or more
peripherals 190, the provider(s)/device(s) 120, the service(s)
150, the sensor(s) 191, the processing unit(s) 130, etc. The
architecture 100 can also include a memory controller (not
shown), which includes at least one electronic circuit that
manages data flowing to and/or from the memory 160. The
memory controller can be a separate processing unit or
integrated in processing unit(s) 130.

[0041] The architecture 100 can include 3" party service
provider(s) and/or communication device(s) 120 (hereinaf-
ter “provider(s)/device(s) 120”). The provider(s)/device(s)
120 is illustrated with a dashed box to show that it is an
optional component of the architecture 100. Nevertheless,
the provider(s)/device(s) 120 is not always an optional
component of the architecture 100—some embodiments of
the architecture 100 may require the provider(s)/device(s)
120. For one embodiment, the provider(s)/device(s) 120
include any number of computing devices that enable an end
user to request one or more 3’ party services via comniu-
nication mechanism(s) 110. The provider(s)/device(s) 120
can, for example, include email servers such as a
GOOGLE® or YAHOO! ® email server (GOOGLE is a

US 2018/0189352 Al

registered service mark of Google Inc. YAHOO! is a regis-
tered service mark of Yahoo! Inc.), third party instant
message servers such as a YAHOO! ® Messenger or AOL®
Instant Messaging server (AOL is a registered service mark
of AOL Inc.), third party social network servers such as a
FACEBOOK® or TWITTER® server (FACEBOOK is a
registered trademark of Facebook, Inc. TWITTER is a
registered service mark of Twitter, Inc.), cellular service
provider servers that enable the sending and receiving of
messages such as email messages, short message service
(SMYS) text messages, multimedia message service (MMS)
messages, or any other device that enables individuals to
communicate using any protocol and/or format.

[0042] The architecture 100 can also include peripheral(s)
190. For one embodiment, the peripheral(s) 190 can include
at least one of the following: (i) one or more input devices
that interact with or send data to one or more components in
the architecture 100 (e.g., mouse, keyboards, touch screen
devices, gesture input devices, audio input devices, etc.); (ii)
one or more output devices that provide output from one or
more components in the architecture 100 (e.g., monitors,
printers, display devices, haptic output devices, audio output
devices, etc.); or (iii) one or more storage devices that store
data in addition to the memory 160. Peripheral(s) 190 is
illustrated with a dashed box to show that it is an optional
component of the architecture 100. Nevertheless, the periph-
eral(s) 190 is not always an optional component of the
architecture 100—some embodiments of the architecture
100 may require the peripheral(s) 190 (e.g., a smartphone
with media recording and playback capabilities, etc.). The
peripheral(s) 190 may also refer to a single component or
device that can be used both as an input and output device
(e.g., a touch screen, etc.). The architecture 100 may include
at least one peripheral control circuit (not shown) for the
peripheral(s) 190. The peripheral control circuit can be a
controller (e.g., a chip, an expansion card, or a stand-alone
device, etc.) that interfaces with and is used to direct
operation(s) performed by the peripheral(s) 190. The periph-
eral(s) controller can be a separate processing unit or inte-
grated in processing unit(s) 130. The peripheral(s) 190 can
also be referred to as input/output (I/O) devices 190 through-
out this document.

[0043] The architecture 100 can also include one or more
sensors 191, which are illustrated with a dashed box to show
that the sensor(s) can be optional components of the archi-
tecture 100. Nevertheless, the sensor(s) 191 are not always
optional components of the architecture 100—some
embodiments of the architecture 100 may require the sensor
(s) 191 (e.g., a camera that includes an imaging sensor, a
microphone, an accelerometer, a global positioning system
(GPS), etc.). For one embodiment, the sensor(s) 191 can
detect a characteristic of one or more environs. Examples of
a sensor include, but are not limited to, a light sensor, an
imaging sensor, an accelerometer, a location sensor, a sound
sensor, a barometric sensor, a proximity sensor, a vibration
Sensor, a gyroscopic sensor, a compass, a barometer, a heat
sensor, a rotation sensor, a velocity sensor, and an inclinom-
eter.

[0044] The architecture 100 can include network-con-
nected devices 193, which may include any number of
hardware devices that communicate via any of the computer
mechanism(s) 110 and are capable of being controlled via
network communication. Examples of devices 193 include,
but are not limited to, IoT devices, laptop computers,

Jul. 5, 2018

desktop computers, wearables, servers, vehicles, and any
type of programmable device or computing system.

[0045] For one embodiment, the architecture 100 includes
communication mechanism(s) 110. The communication
mechanism(s) 110 can include a bus, a network, or a switch.
When the mechanism(s) 110 includes a bus, the mechanism
(s) 110 include a communication system that transfers data
between components in architecture 100, or between com-
ponents in architecture 100 and other components associated
with other systems (not shown). As a bus, the mechanism(s)
110 includes all related hardware components (wire, optical
fiber, etc.) and/or software, including communication pro-
tocols. For one embodiment, the mechanism(s) 110 can
include an internal bus and/or an external bus. Moreover, the
mechanism(s) 110 can include a control bus, an address bus,
and/or a data bus for communications associated with the
architecture 100. For one embodiment, the mechanism(s)
110 can be a network or a switch. As a network, the
mechanism(s) 110 may be any network such as a local area
network (LAN), a wide area network (WAN) such as the
Internet, a fiber network, a storage network, or a combina-
tion thereof, wired or wireless. When the mechanism(s) 110
is a network, the components in the architecture 100 do not
have to be physically co-located. When the mechanism(s)
110 is a switch (e.g., a “cross-bar” switch), separate com-
ponents in architecture 100 may be linked directly over a
network even though these components may not be physi-
cally located next to each other. For example, two or more
of the processing unit(s) 130, the communication mecha-
nism(s) 110, the memory 160, the peripheral(s) 190, the
sensor(s) 191, and the provider(s)/device(s) 120 are in
distinct physical locations from each other and are commu-
nicatively coupled via the communication mechanism(s)
110, which is a network or a switch that directly links these
components over a network.

[0046] Referring again to the intelli-interface 199 of archi-
tecture 100, which can receive and resolve multiple user
requests unlike some conventional interactive interfaces that
operate in a restrictive one-purpose-one-action manner. For
brevity, this disclosure will refer to multiple user requests as
a first user request and a second user request. It is to be
appreciated that multiple user requests includes two or more
user requests.

[0047] For one embodiment, resolution of the first and/or
second user requests includes proactive suggestion of infor-
mation as well as reactive responses based on knowledge
understanding. For example, and for one embodiment, the
intelli-interface 199 (via the interactive interface module/
logic 140) receives a first user request and a second user
request. For one embodiment, none of the first and second
user requests is resolved prior to receipt of any other request.
In response to receiving the requests, the intelli-interface
199 determines a current context associated with each of the
first and second requests. Here, the intelli-interface 199
traverses the context graph 175 to determine whether a
current context exists for each of the first and second user
requests. Alternatively, or additionally, the intelli-interface
199 can create a current context for one or more of the first
and second user requests in the context graph 175. For
example, in response to determining that there is no current
context associated with the first user request, the intelli-
interface 199 can create a current context for the first user
request in the context graph 175.

US 2018/0189352 Al

[0048] The determined context for each of the first and
second user requests is a current context or an open context,
as described above. For simplicity, the following description
of a current context will focus on the first user request. It is
to be appreciated that the actions performed with respect to
the first user request are also applicable to the second user
request. That is, resolution of the first and second user
requests can occur in parallel. Alternatively, resolution of the
first and second user requests can occur in sequentially. For
at least one embodiment, the two requests may be dependent
on each other such that resolution of one of the two requests
requires resolution of the other request.

[0049] Referring again to the immediately preceding
example, when the intelli-interface 199 determines a current
context for the first user request in the context graph 175,
then the intelli-interface 199 may determine all other con-
texts (i.e., current and/or previous contexts) associated with
the identified current context for the first user request. These
determination operations can be achieved using the corre-
lations (i.e., edges within the context graph 175) between the
identified context (i.e., a node in the context graph 175) and
other related contexts (i.e., other correlated nodes in the
context graph 175). Next, the intelli-interface 199 monitors
the contexts until resolution of the first user request is
possible. When the request is satisfied, all contexts associ-
ated with the first user request are deemed by the intelli-
interface 199 to be previous contexts and are stored in the
memory/data stores 160.

[0050] FIG. 2 illustrates an exemplary central communi-
cations server infrastructure 200, according to one or more
embodiments disclosed herein. The infrastructure 200 may
be part of the infrastructure 100. For example, the infra-
structure 200 may be part of one or more of the interface 199
and the memory 160, as described above in connection with
FIG. 1.

[0051] According to some embodiments, the central com-
munications server infrastructure 200 may be responsible for
storing, indexing, managing, searching, relating, and/or
retrieving content (including communications messages and
data files of all types) for the various users of the commu-
nication system. The exemplary infrastructure 200 may be
accessed by any of the devices 202A-N. For example, and
for one embodiment, the infrastructure 200 can be accessed
by any of the devices 202A-N that includes the interactive
interface logic/module 140 and/or the service(s) 150, as
described above in connection with FIG. 1.

[0052] Access to the infrastructure 200 can be via one or
more communication mechanism(s) 210, which are similar
to the mechanism(s) 110 of FIG. 1 (described above). For
one embodiment, the communication mechanism(s) 210
include many different types of computer networks available
today, such as the Internet, a corporate network, a Local Area
Network (LAN), or any other known communication net-
work. Each of these networks can contain wired or wireless
devices and operate using any number of network protocols
(e.g., TCP/IP). The communication mechanism(s) 210 may
be connected to various gateways and routers, connecting
various machines to one another, represented, e.g., by cen-
tral communications server 208, and various end user
devices, including devices 202A-N (e.g., a mobile phone, a
laptop computer, a tablet, a wearable, an IoT device, a
programmable device, a vehicle, a server, etc.).

[0053] For one embodiment, the infrastructure 200
includes a central communications server 208. The server

Jul. 5, 2018

208, in connection with one or more databases, repositories,
subsystems, Application Programming Interfaces (APIs),
etc., may serve as the central “brain” for the embodiments
described herein. In particular, a “Doer” 206 may be imple-
mented as an activity manager program running on the
central communications server that takes the various actions
that the communications server 208 determines need to be
performed, e.g., sending a message, storing a message,
storing content, tagging content, indexing content, storing
and relating contexts, etc. For one embodiment, the Doer
206 can comprise one or more of a program, a thread, an
activity manager, or any software/hardware component
capable of implementing one or more actions as described
herein.

[0054] For some embodiments, data may be classified and
stored, at various levels of detail and granularity, in what is
known as “contexts.” The contexts may be stored in a
context repository 212, which is accessible by Doer 206.
Context repository 212 may be implemented as a running
activity log, i.e., a running list of all relevant “things™ that
have happened, either directly or indirectly, to a given user
via their use of the communications system.

[0055] For some embodiments, the Doer 206 is respon-
sible for characterizing, relating, and tagging all information
that gets stored in the context repository 212. The various
contexts and their relationships to other contexts may inform
the system (and thus, the Doer 206) as to actions that should
be taken (or suggested) to a user when that user faces a
certain situation or scenario (i.e., when the user is in a certain
context). For example, if the context repository 212 has
stored a context that relates to a user’s search for “cars,” the
next time the user is near a car dealership that sells cars of
the type that the user had been searching for, the infrastruc-
ture 200 may offer the user a notification that cars he has
shown interest in are being offered for sale nearby or even
present the search results from the last time the user searched
for those cars. For some embodiments, the context reposi-
tory 212 may employ probabilistic computations to deter-
mine what actions, things, events, etc. are likely to be related
to one another.

[0056] For some embodiments, the Doer 206 is also in
communication with a content repository 214. Unlike the
context repository 212, which is effectively a log of all
stored activities, the content repository 214 may be imple-
mented as a unique (i.e., per-user) repository of all content
related to a given user. The design of a particular user’s
context repository 212 may, for example, be based on the
user’s patterns of behavior and communication and several
other parameters relating to the user’s preferences. Such
patterns and parameters may take into account, e.g., who a
user communicates with, where those parties are located,
what smart devices and/or other connected services a user
interacts with, etc. Because the design and makeup of the
content repository 214 is a unique (i.e., per-user) structure
that is driven by each individual’s personal interactions with
the communication system, the system scales on a per-user
basis, rather than on a per-network basis, as in traditional
distributed systems or social graphs involving characteris-
tics of multiple inter-related users.

[0057] In summary, the content repository 214 orches-
trates and decides on behaviors for the system to take on
behalf of a user (e.g., “the system should open an email
message to Dave about cars.”); the Doer 206 actually
implements or affects those decision to happen (e.g., direct-

US 2018/0189352 Al

ing the communication system’s user interface to open an
email message window, pre-populate the To: field of the
email message with Dave’s contact information, pre-popu-
late the Subject: field of the email message with “Cars,”
etc.); and the context repository 212 tracks all pieces of data
that may related to this particular task (e.g., search for
Dave’s contact info, search for cars, compose a message to
Dave, compose a message about cars, use Dave’s email
address to communicate with him, etc.).

[0058] The Doer 206 may also leverage various function-
alities provided by the central communication system, such
as a multi-protocol, multi-format search functionality 216
that, e.g., is capable of searching across some or all of a
user’s contexts, messages, and content, or across the Internet
to provide relevant search results to a task that the user is
currently trying to accomplish. The Doer 206 may also, e.g.,
leverage a Natural Language Processing (NLP) functionality
218 that is capable of intelligently analyzing and interpreting
spoken or written textual commands for content, semantic
meaning, emotional character, etc. With the knowledge
gained from NLP functionality 218, the central communi-
cations server may, e.g., be able to suggest more appropriate
responses, give more appropriate search results, suggest
more appropriate communications formats and/or protocols,
etc. In some embodiments, the Doer 206 may also synchro-
nize data between the context repository 212 and the various
sub-systems (e.g. search system 216 or NLP system 218), so
that the context repository 212 may constantly be improving
its understanding of which stored contexts may be relevant
to the contexts that the user is now participating in (or may
in the future participate in).

[0059] For one embodiment, the Doer 206 communicates
with a context graph 275 (that is similar to or the same as the
context graph 175 described above in connection with FIG.
1) together with the repositories 212, 214 and the function-
alities 216, 218 to service multiple user requests that are
associated with a user account. At least one example of
servicing multiple requests is described above in connection
with FIG. 1.

[0060] FIG. 3 illustrates a two-dimensional (2D) graphical
approximation of a multi-dimensional context graph 300 in
accordance with one or more embodiments. The graph 300
can be similar to or the same as the graph 175 or the graph
275, each of which is described above in FIGS. 1-2.

[0061] The 2D graphical approximation of the context
graph 300 is used to show how an intelli-interface (e.g., the
intelli-interface 199 of FIG. 1, etc.) identifies related con-
texts for the purpose of servicing user requests. For one
embodiment, the 2D graphical approximation of graph 300
is illustrated in FIG. 3 temporally in order to avoid obscuring
the inventive concepts described herein. It is to be appreci-
ated that, as a knowledge based system of a neural network,
the context graph 300 may be comprise one or more net-
works that are organized in layers. Here, each layer may be
made up of a number of interconnected nodes (i.e., contexts)
which contain an activation function. Patterns are presented
to the context graph 300 via an input layer, which commu-
nicates to one or more hidden layers where the actual
processing is done via a system of weighted connections.
The hidden layers then link to an output layer where the
answer is output. In the context of an intelli-interface as
described herein, the patterns presented via an input layer
represent the user requests to be resolved, the hidden layer
includes algorithms, mechanisms, and other components

Jul. 5, 2018

used to traverse the context graph (e.g., graph 175, 275, etc.)
to determine connections between nodes, and the output
layer represents the action performed by a Doer, for
example, to service a user request.

[0062] Referring again to FIG. 3, the 2D graphical
approximation of the context graph 300 shows a plurality of
contexts associated with a user account over a predeter-
mined period of time that begins sometime in the past at
T 301A and ends at the current time T,,,, 301N. As

start now

shown in FIG. 3, the time between T,,,,,. 301A and T,,,,
301N includes multiple time designations T,,; ;.. 301B-M.
For one embodiment, each of the times 301 A-N corresponds
to a context. Furthermore, each of the contexts has a unique
context identifier (“context ID”). Thus, T,,,,, 301A corre-
sponds to a context with its unique context ID, each of
T, a1 301B-M corresponds to a context with its unique
context ID, and T,,,,, 301N corresponds to a context with its
unique context ID. Each of the contexts associated with
Ty 301A, T, 30IN,andT,,, . 301B-M may be an open
or closed context. For a specific embodiment, the context
associated with T, 301N is an open context, while each of
the contexts associated with T, ,,, 301N and T, ;,,. 301B-M
is an open context or a closed context.

[0063] In response to an intelli-interface receiving a user
request at or near the current time T, 301N, the intelli-
interface may identify a context 301N at the present time.
Furthermore, the intelli-interface can determine contexts
from the past (i.e., T,,,,, 301A and T,,, ;. 301B-M) that are
related to the context associated with the T, , 30IN. As
explained above, these relationships are used for servicing
the user request. For an embodiment, determining the related
contexts includes operations 303-309. One advantage of
intelli-interface is its ability to assist with providing a much
richer array of connected events via the context graph, which
can be used to train a system (e.g., a neural network, etc.) to
handle ambiguity and prediction. In other words, in order to
better predict in the future, an intelli-interface can allow for
understanding one or more past events via a context graph.
Critical to understanding past event, is not just connecting
current events via current contexts to past events via previ-
ous contexts, but to infuse that information into the contexts
identifying past events in a context graph such that the
intelli-interface can continually re-process and re-train with
improved knowledge. An example of this is: a user performs
an action X, for a reason which an intelli-interface cannot
ascertain from the context graph. A year later, the intelli-
interface learns via the context graph that the user had a
child and the reason for doing action X was to improve the
child’s life. For this example, the intelli-interface can now
take that information and infuse that back into the data for
Action X that exists in the context graph so that resolving
user requests associated with Action X or the user’s child
can be resolved intelligently regardless of any ambiguity or
incomplete/missing data about contexts. In this way, an
intelli-interface can learn from new knowledge about past
events to improve judgement (i.e., resolution of one or more
user events).

[0064] With regard to operation 303, an intelli-interface
can determine that a context associated with T,,,,, 301N is
related to a context associated with T,,,, . 4 301E. Here, the
determination can be based on the two contexts having at
least some data (e.g., acquired data, predicted data, at least
one event, etc.) in common. For example, if the context

corresponding to T,,.,, 301N includes a user request for

US 2018/0189352 Al

bookstores, and the context corresponding to T,,, ;7. 4 301E
includes group of bookstores spatially located within five
miles of User A’s home, then an intelli-interface can deter-
mine that the context associated with T, ,, 301N is related to
the context associated with T, ;. 4+ 301E. By the same
rationale, an intelli-interface can determine that the contexts
associated with operations 305-309 are related to the context
corresponding to T, ., 30IN. Here, each of the contexts
associated with operations 305-309 includes some informa-
tion about bookstores. For example, the context associated
with operation 305 includes information about bookstores
that are spatially within 10 miles of User A’s current
location, the context associated with operation 307 includes
information about bookstores that were previously visited by
User A, and the context associated with operation 309
includes information about bookstores that are spatially
close to other locations frequented by User A. As shown in
FIG. 3, contexts can be directly or indirectly correlated with
each other. Contexts are directly related to each other when
there is no intervening context between them, and contexts
are indirectly related to each other when there is at least one
intervening context between them. For example, the context
associated with T, ,, 301N is directly related to the context
associated with T,,, ;.. 4 301E and indirectly related to the
contexts associated with T, ;. 5 301D, T, .. » 301C, and
Tmidd1971 301B. - -

[0065] Each of the contexts associated with the times
301-N can be a macro-context or a micro-context. For an
embodiment, macro-contexts may temporally occur before
micro-context. For one or more embodiments, micro-con-
texts may temporally occur before macro-context.

[0066] FIG. 4 illustrates a tiered context management
technique 400 in accordance with one or more embodi-
ments. The technique 400 can be performed by an intelli-
interface (e.g., the intelli-interface 199 described above in
connection with FIG. 1, etc.). Technique 400 begins at
operation 401, where an event 413 is received by an intelli-
interface. The event 413 can be any activity associated with
a user (e.g., user Bob shown in FIG. 4, etc.). For one
embodiment, the intelli-interface receives the event 413 at
operation 401 as a statement or a request. For one embodi-
ment, the event 413 can be provided to the intelli-interface
via user inputs (as a user request) or may be contextually
determined (as a statement) based on inputs from sensors
and/or predicted or forecasted behavior associated with user
Bob. For one embodiment, operation 401 may include the
intelli-interface pre-processing the event 413 to convert the
event 413 into a format that is usable by the intelli-interface.
For example, the intelli-interface can format the event 413
into a data structure that is similar to the data structure used
for organizing a user’s contexts in a context graph.

[0067] Technique 400 proceeds to operation 402. Here, the
intelli-interface can process the event 413 to determine one
or more key identifiers 415A-N associated with the event
413. These key identifiers can be parsed and ascertained via
natural language principles and/or machine learning tech-
niques implemented by the intelli-interface. As shown in
FIG. 4, the key identifiers 415A-N are encompassed by the
rounded squares.

[0068] Next, technique 400 proceeds to operation 403.
Here, the intelli-interface determines whether one or more of
the key identifiers 415A-N is associated with a context. For
example, each of the key identifiers 415A-N may be asso-
ciated with a context that is represented as a node in a

Jul. 5, 2018

context graph, such that identification of the key identifier
triggers identification of the corresponding context 417A-N
within the context graph. For a first example, and for one
embodiment, the key identifier “Bob” can trigger identifi-
cation of a context 405 associated with all activities per-
formed by the user Bob in a context graph. For a second
example, and for one embodiment, the key identifier “pur-
chased” can trigger identification of a context 407 associated
with all activities associated with purchasing items and/or
services performed by the user Bob in the context graph. For
a third example, and for one embodiment, the key identifier
“groceries” can trigger identification of a context 409 asso-
ciated with all activities associated with purchasing or
selling groceries performed by the user Bob in the context
graph. For a fourth example, and for one embodiment, the
key identifier “Market A” can trigger identification of a
context 411 associated with all activities associated with
user Bob’s physical and/or virtual interactions with Market
A in the context graph.

[0069] For one embodiment, the intelli-interface organizes
the identified contexts 405, 407, 409, and 411 into a hier-
archical context tier based on relative granularity levels of
the contexts when compared to each other. Here, the intelli-
interface can cache the at least some of the identified
contexts and/or the generated context tier to retrieve or
access the information without having traverse the context
graph. This can, in some embodiments, assist with efficient
utilization of computing resources and improve the accuracy
associated with proper resolution of user requests. This can
also assist with intelligently responding to user requests in a
more efficient and accurate manner than was previously
available to restrictive one-purpose-one-action type interac-
tive interfaces. For example, and as illustrated in FIG. 4, the
intelli-interface can arrange the identified contexts in a tier
such that the contexts are traversed in a sequential order.
Conceptually, a context tier will include the more narrowly
defined micro-contexts being stacked on top of the more
broadly defined macro-contexts. As shown, the foundation
tier is context 405, which includes all activities associated
with user Bob. The penultimate level is the context 407,
which includes all purchase activities associated with user
Bob. The level above the penultimate level is context 409,
which includes all purchase activities associated with gro-
ceries as those activities relate to user Bob. The top-most
level is context 411, which includes all purchases activities
performed by user Bob in Market A. The ellipsis 499 in FIG.
4 shows that the intelli-interface can arrange any number of
the contexts associated with the event 413 into a context tier.

[0070] For some embodiments, the context tier is not
hierarchical. That is each context is related to all other
contexts.

[0071] FIG. 5 illustrates, in flowchart form, a technique
500 to generate an exemplary context graph in accordance
with an embodiment. Technique 500 can be performed by an
intelli-interface (e.g., the intelli-interface 199, etc.). For one
embodiment, technique 500 begins at operation 502, where
acquired data associated with a user account is received by
an intelli-interface. Acquired data is described above in
connection with at least FIG. 1. Next, technique 500 moves
to operation 504. Here, the intelli-interface processes the
acquired data using data mining, data analytics, and/or
machine learning techniques to determine relationships and/
or predicted data based on the acquired data. Relationships
and predicted data are described above in connection with at

US 2018/0189352 Al

least FIG. 1. At operation 506, the intelli-interface perform-
ing technique 500 generates a context graph using the
acquired data, the determined relationships, and/or the deter-
mined predicted data. For some embodiments of technique
500, the intelli-interface can optionally cache some of the
data in the context graph for servicing user requests. For
example, at least some of the context graph can be cached
in memory associated with an intelli-interface (e.g., memory
of a device that includes the interactive interface logic/
module 140 of FIG. 1, memory of a device that includes the
interactive interface service(s) 150 of FIG. 1, memory/data
stores 160 of FIG. 1, etc.).

[0072] FIG. 6 illustrates, in flowchart form, a technique
600 to service multiple user requests associated with a user
account by an intelli-interface in accordance with an
embodiment. Technique 600 can be performed by an intelli-
interface (e.g., the intelli-interface 199, etc.). Technique 600
begins at operation 602 when an intelli-interface receives
multiple user requests from a user account. For one embodi-
ment, each of these requests is unrelated to each other such
that resolution of one of the requests does not affect reso-
Iution of the other. For example, a first request can be to
“send John Doe an email” and a second request can be to
“schedule a ride to the airport for me tomorrow at 2:30 P.M.”
For an alternate embodiment, each of these requests is
dependent on each other such that resolution of one of the
requests cannot be performed without resolution of at least
one of the other requests. For example, a first request can be
to “send John Doe an email with document X" and a second
request can be to “send an email to Jane Doe with an updated
version of document X after John Doe responds to my
email.” For one embodiment, operation 602 includes the
intelli-interface storing each received request.

[0073] Next, at operation 604, the intelli-interface deter-
mines a current context associated with each of the user
requests. For example, the intelli-interface determines
whether a current context already exists for any of the newly
received requests or whether a new context needs to be
created for servicing the user request. Operation 605 is
performed by the intelli-interface traversing the context
graph (e.g., graph 175, 200, 300, etc.) to determine whether
the current context exists. If the current context exists in the
graph, then technique 500 proceeds to operation 606. On the
other hand, if the current context fails to exist in the context
graph, then the intelli-interface generates the current context
in the context graph. For one embodiment, the interactive
interface logic/module 140 that resides on the device asso-
ciated with the user account (i.e., the device that receives the
requests) determines the current context and transmits the
determined current context to a context graph residing in the
intelli-interface service(s) 150 for further processing.

[0074] Technique 600 proceeds to operation 606. Here, the
intelli-interface receives the determined current context and
further determines previous contexts within the context
graph that are related to the current context. For one embodi-
ment, the service(s) 150 perform the determination or pre-
vious contexts. Determining relationships between contexts
is described above in connection with at least FIG. 3. Next,
at operation 608, the intelli-interface generates a context tier
for each of the user requests. Context tiers are described
above in connection with at least FIG. 4. Optionally, and as
shown in operation 610, each of contexts that make up a
context tier are cached to enable improved retrieval and use
of the contexts. Consequently, the cache can assist with a

Jul. 5, 2018

more efficient utilization of computational resources than
was previously available. For one embodiment, the cache
can reside in one or more of the processing unit(s) 130, the
servers 151A-N, the memory/data store(s) 160, the network-
connected device(s) 193, the 3" party service provider(s)/
device(s) 120, the sensor(s) 191, and the peripheral(s) 190.
Each of these components is described above in connection
with FIG. 1.

[0075] Referring again to FIG. 6, technique 600 proceeds
to operation 612. Here, the intelli-interface resolves each of
the multiple user requests based on its determined context
tier. This operation also includes, for each request, storing or
updating the current context in the context graph as a
previous (i.e., closed) context that includes information
about the resolved user request. For a first example, if a first
request is to “send John Doe an email” and a second request
is to “schedule a ride to the airport for me tomorrow at 2:30
PM.,” the intelli-interface can perform technique 600 to
resolve each of these requests. As will be appreciated, these
requests can be resolved independently of each other. For
this example, the intelli-interface will also update the current
context in the context graph by converting the current
context (i.e., an open context) into a previous context with
information about the resolved request (i.e., a closed con-
text). In this way, the intelli-interface updates the context
graph, as user requests are resolved. For a second example,
if a first request is to “send John Doe an email with
document X and a second request is to “send an email to
Jane Doe with an updated version of document X after John
Doe responds to my email,” the intelli-interface can perform
technique 600 to resolve each of these requests. As will be
appreciated, these requests cannot be resolved indepen-
dently of each other because resolution of the second request
depends on resolution of the first request. Consequently, for
this example, the intelli-interface will maintain two current
contexts (i.e., open contexts) for the requests. After the
intelli-interface resolves the first request of this second
example and updates its status in the context graph, then the
intelli-interface can resolve the second request and update its
status in the context graph.

[0076] For one embodiment, and with regard to the two
examples above, each of the first and/or second requests can
be maintained as a current context (i.e., an open context) for
as long as is necessary (e.g., seconds, minutes, hours, years,
decades, etc.) until resolution. For a further embodiment, the
interactive interface can request confirmation from the user
to complete one or more of the multiple requests when a
predetermined amount of time has elapsed after receiving
the requests.

[0077] FIGS. 7A-7C illustrate, in block diagram form, a
2D graphical approximation of an exemplary multi-dimen-
sional context graph 700 at three different times T1, T2, and
T3 in accordance with one embodiment. Here, T3 occurs
after T2 and T1, and T2 occurs after T1. The exemplary
context graph 700 in FIGS. 7A-7C can be generated and/or
used by the embodiments of an intelli-interface described
herein (e.g., the intelli-interface described above in connec-
tion with FIGS. 1-6, etc.)

[0078] With specific regard now to FIG. 7A, a 2D graphi-
cal approximation of an exemplary context graph 700 asso-
ciated with a single user account at time T1 is illustrated. As
shown, the context graph 700 includes one cluster of context
(“context cluster”) comprised of six contexts 701-706. As
used herein, a “context cluster,” a “cluster of contexts,” and

US 2018/0189352 Al

their variations refers to a group of one or more contexts that
is based on a relationship between the user account being
serviced and an entity. In FIG. 7A, each of the contexts
701-706 in the context cluster of graph 700 is based on a
relationship between User A (i.e., the user account being
serviced) and an entity (e.g., User A himself, a friend of User
A, aloT device, a ride sharing service, a corporation, etc.).
It is to be appreciated that there can be any number of
contexts (i.e., at least one context) in the context graph 700
and that the context cluster in graph 700 can include any
number of contexts.

[0079] The context graph 700 shown in FIG. 7A includes
several edges between the nodes representing contexts 701-
706. Each of these edges represents a correlation between its
pair of nodes. Furthermore, there can be different types of
edges based on a degree of correlation between a pair of
nodes (i.e., a pair of contexts). Additionally, each of the
edges can be weighted to show a degree of correlation
between its pair of nodes. As above explained in connection
with FIGS. 1-6, correlations between the contexts 701-706
(i.e., the nodes 701-706) in the graph 700 can be based on
acquired data, relationships, and/or predicted data. For one
embodiment, one or more of acquired data, relationships,
and/or predicted data is valued and combined to form the
edge weight. For example, and as illustrated in FIG. 7A, the
edges between one or more pairs of the contexts having
differing thicknesses to show that the weighting of the
correlations can be different. Note that the differing edge
weights are not shown in FIGS. 7A-8E to avoid obscuring
one or more of the inventive concepts described herein.

[0080] Referring now to FIG. 7B, the graph 700 is illus-
trated at time T2, which occurs after time T1. As time moves
from T1 to T2, the data associated with the user account
evolves (i.e., changes, increases, reduces, etc.). As shown in
FIG. 7B, three edges are now represented using dotted lines
at time T2 (as opposed to being represented using solid lines
at time T1) while all other edges are illustrated using solid
lines at time T2. In FIG. 7A, the edges represented by the
dotted lines are different from the edges represented by the
solid lines. For a first example, a first pair of nodes that is
linked using a dotted line (e.g., nodes 701 and 702, etc.) is
less correlated than a second pair of nodes that is linked
using a solid line (e.g., nodes 701 and 703, etc.). For a
second example, a first pair of nodes that is linked using a
dotted line (e.g., nodes 701 and 702, etc.) is more correlated
than a second pair of nodes that is linked using a solid line
(e.g., nodes 701 and 703, etc.). For a third example, a first
pair of nodes that is linked using a dotted line (e.g., nodes
701 and 704, etc.) is not correlated, while a second pair of
nodes that is linked using a solid line (e.g., nodes 703 and
706, etc.) is correlated. For a fourth example, a first pair of
nodes that is linked using a dotted line (e.g., nodes 701 and
704, etc.) is correlated, while a second pair of nodes that is
linked using a solid line (e.g., nodes 703 and 706, etc.) is not
correlated. A combination of one or more the immediately
preceding examples is possible.

[0081] With regard now to FIG. 7C, the graph 700 is
illustrated at time T3. Time T3 occurs after T2 such that the
data associated with the user account evolves (i.e., changes,
increases, reduces, etc.) as time proceeds from T1 to T3. As
shown in FIG. 7C, only two edges are now represented using
dotted lines at time T3 (as opposed to three edges being
represented using dotted lines at time T2) while all other
edges are illustrated using solid lines at time T3. As

Jul. 5, 2018

explained above, the dotted and solid lines show that the
differing relationships between pairs of nodes in the graph
700. For a first example, and with regard to FIGS. 7B-7C,
the correlation between the context 701 and the context 706
at time T2 is different from the correlation between the
context 701 and the context 706 at time T3. In addition, the
other one of the two dotted lines indicates that the context
702 is no longer correlated with the context 704. For a
second example, and with regard to FIGS. 7B-7C, the
correlation between the context 702 and the context 704 at
time T2 is different from the correlation between the context
702 and the context 704 at time T3.

[0082] As shown in FIGS. 7A-7C, data stored in a context
graph can evolve over time. That is, the correlations between
contexts (i.e., categories of events) can change over time to
reflect changes in the tastes, behaviors, and/or preferences of
a user. This can assist with improving the accuracy of
resolutions to user requests by the embodiments of the
intelli-interface described herein.

[0083] FIGS. 8A-8E illustrate, in block diagram form, a
2D graphical approximation of an exemplary multi-dimen-
sional context graph 800 comprised of multiple context
clusters 801 for entities 811-815 at five different times T1,
T2, T3, T4, and T5 in accordance with one embodiment.
Here, T5 occurs after T4-T1, T4 occurs after T3-T1, T3
occurs after T2-T1, and T2 occurs after T1. The exemplary
context graph 800 in FIGS. 8A-8E can be generated and/or
used by the embodiments of an intelli-interface described
herein (e.g., the intelli-interface described above in connec-
tion with FIGS. 1-6, etc.).

[0084] For one embodiment, the context graph 800 com-
prises multiple context clusters 801-805 associated with a
user account to be serviced (e.g., User A’s account, etc.). As
shown in FIGS. 8 A-8E, each of the context clusters 801-805
corresponds to one of the entities 811-815. Note that, as
explained above in connection with FIGS. 7A-7C, each of
the entities 811-815 has a relationship with the user account
having graph 800. Each of the context clusters 801-805 can
be similar to or the same as the context cluster of the graph
700, which is described above in connection with FIGS.
7A-7C.

[0085] The context graph 800 includes multiple edges
within each context cluster (as explained above in connec-
tion with FIGS. 7A-7C) and multiple interrelationships 807
between each of the context clusters 801-805. For one
embodiment, each of the interrelationships 807 correlates
contexts across context clusters that are of the same type
(i.e., have at least some data that is the same or similar). For
a first example, a context type of “restaurants” in the context
cluster 801 is correlated via one of the edges with a context
type of “restaurants” in the context cluster 803. For a second
example, a context type of “books” in the context cluster 802
is correlated via one of the edges with a context type of
“books about Paris, France” in the graph for user 804.

[0086] Similar to the graph 700, the graph 800 also
evolves as time passes, such that there are different types of
correlations (i.e., edges) between nodes (i.e., contexts) of a
single context cluster. For example, new relationships are
formed, old ones are removed, and existing relationships
weaken or strengthen based on contexts relationships within
context cluster 805 as time passes from T1-T5, etc. Further-
more, the graph 800 also evolves as time passes because one
or more interrelationships 807 between the context clusters
801-805 evolve over time. There are different types of

US 2018/0189352 Al

interrelationships 807 between the context clusters. For one
embodiment, the discussion provided above in connection
with at least FIGS. 7A-7C about differing degrees of corre-
lation and weights of edges is also applicable to the inter-
relationships 807. For a first example, a first interrelation-
ship between two context clusters may indicate that the two
context clusters are more or less correlated to each other than
a second interrelationship between the two context clusters.

[0087] With regard now to FIG. 8A, which shows the
graph 800 at a first time T1. In FIG. 8A, a degree of
correlation between the context clusters 801-805 is shown
by the spatial distance between the entities 801-806 along
the circumference of the graph 800. For example, a com-
parison of distances 850 and 851 indicate that the context
cluster 802 associated with the entity 812 is more strongly
correlated to the context cluster 801 associated with the
entity 815 than the context cluster 803 associated with the
entity 813. As explained above, the correlations (and their
relative strengths) can evolve over time, which would result
in one or more of the distances between the context clusters
801-805 associated with the entities 811-815 changing. For
one embodiment, the degree of correlations between the
context clusters 801-805 is based on one or more of: (i) the
interrelationships 807 between the context clusters 801-805;
and (ii) the edges within each of the context clusters 801-
805. In FIG. 8A, the interrelationships 807 represented by
the thicker lines are different from the interrelationships 807
represented by the narrower lines. For a first example, a first
pair of context clusters that is linked using a thicker line
(e.g., context graphs 802 and 804, etc.) is less correlated than
a second pair of context clusters that is linked using a
narrower line (e.g., context clusters 801 and 804, etc.). For
a second example, a first pair of context clusters that is
linked using a thicker line (e.g., context clusters 801 and
805, etc.) is more correlated than a second pair of context
clusters that is linked using a narrower line (e.g., context
clusters 801 and 803, etc.). For a third example, a first pair
of context clusters that is linked using a thicker line (e.g.,
context clusters 803 and 804, etc.) is not correlated, while a
second pair of context clusters that is linked using a nar-
rower line (e.g., context clusters 802 and 805, etc.) is
correlated. The examples in this paragraph are merely illus-
trative and can be varied or combined without departing
from the scope of the inventive concepts described herein.

[0088] FIG. 8B shows the graph 800 at a second time T2,
which occurs after time T1. A comparison of FIGS. 8A and
8B shows that the distance 850 has increased at time T2.
Consequently, the degree of correlation between the context
clusters 801 and 802 is reducing (i.e., changing over time).
Furthermore, a comparison of the graph 800 at times T1 and
T2 shows that some of the interrelationships have changed.
For example, an interrelationship 807 between the context
clusters 804 and 805 has changed from a thicker line to a
narrower line to represent the change in the interrelationship.
[0089] FIG. 8C shows the graph 800 at a third time T3,
which occurs after time T2. A comparison of FIGS. 8A-B
and 8C shows that the distance 850 has increased at time T3.
Consequently, the degree of correlation between the context
clusters 801 and 802 is reducing (i.e., changing over time).
Furthermore, a comparison of the graph 800 at times T2 and
T3 shows that some of the interrelationships have changed.
For example, an interrelationship 807 between the context
clusters 804 and 805 has changed from a solid line to a
dotted line to represent the change in the interrelationship.

Jul. 5, 2018

One or more other changes in the interrelationships between
the context clusters shown in FIGS. 8B-8C are evident from
inspection of the drawings.

[0090] FIG. 8D shows the graph 800 at a third time T4
which occurs after time T3. A comparison of FIGS. 8A-C
and 8D shows that the distance 850 has increased at time T4.
Consequently, the degree of correlation between the context
clusters 801 and 802 is reducing (i.e., changing over time).
Furthermore, a comparison of FIGS. 8A-C and 8D shows
that the distance 852 between the context clusters 803 and
804 decreases at time T4. Hence, the degree of correlation
between the context clusters 803 and 804 is increasing (i.e.,
changing over time). Also, a comparison of the graph 800 at
times T3 and T4 shows that some of the interrelationships
have changed. One or more other changes in the interrela-
tionships between the context clusters shown in FIGS.
8C-8D are evident from inspection of the drawings.
[0091] FIG. 8E shows the graph 800 at a third time T5
which occurs after time T4. A comparison of FIGS. 8A-C
and 8D shows that the distance 850 has not changed between
times T4 and T5. Consequently, the degree of correlation
between the context clusters 801 and 802 remains the same
(i.e., not changing over time). Furthermore, a comparison of
FIGS. 8A-C and 8D shows that the distance 852 between the
context clusters 803 and 804 has decreased at time T5.
Hence, the similarity between the context clusters 803 and
804 is increasing (i.e., changing over time). Also, a com-
parison of the graph 800 at times T4 and T5 shows that some
of the interrelationships have changed. One or more other
changes in the interrelationships between the context clus-
ters shown in FIGS. 8D-8E are evident from inspection of
the drawings.

[0092] FIG. 9 illustrates, in flowchart form, a technique
900 to service multiple user requests associated with a user
account by intelli-interface that includes a context graph
having multiple context clusters in accordance with an
embodiment. Technique 900 can be performed by an intelli-
interface (e.g., the interactive interface logic/module 140,
the interactive interface service(s) 150, and the context
graph 800, etc.).

[0093] Technique 900 includes aspects that are similar to
those described above in connection with technique 600 of
FIG. 6. For brevity, only the differences between technique
900 and 600 are described below in connection with FIG. 9.
[0094] Technique 900 begins at operation 902 when an
intelli-interface receives multiple user requests from a user
account. For example, the intelli-interface receives a first
user request and a second user request from a user account.
For one embodiment, operation 902 is similar to or the same
as operation 602, which is described above in connection
with FIG. 6. For one embodiment, operation 902 includes
the intelli-interface storing each received requests.

[0095] Next, at operation 904, the intelli-interface deter-
mines a current context associated with each of the user
requests using a context graph comprised of multiple context
clusters associated with the user account. Operation 904 can,
for one embodiment, include operation 914. Operation 914
includes the intelli-interface determining, for each current
context, a context cluster in the context graph that the
current context belongs to. Operation 904 includes at least
one portion that is similar to or the same as operation 604,
which is described above.

[0096] Technique 900 proceeds to operation 906. Here, the
intelli-interface receives the determined current context(s)

US 2018/0189352 Al

for each user account and further determines previous con-
texts within the respective context graphs that are related to
the current context. Operation 906 can, for one embodiment,
include operations 916 and 918. Operation 916 includes the
intelli-interface determining previous contexts associated
with a current context using only that current context’s
cluster. Operation 916 can be based on the description
provided above in connection with FIGS. 3 and 7A-7C.
Next, operation 918 includes the intelli-interface determin-
ing previous contexts associated with a current context using
other context clusters in the context graph that do not include
the current context. Operation 918 can be based on the
description provided in connection with FIGS. 3 and 8 A-8E.
Operation 906 includes at least one portion that is similar to
or the same as operation 606, so it is not described again for
brevity.

[0097] Next, at operation 908, the intelli-interface gener-
ates a context tier for each of the user requests. Operation
908 is similar to or the same as operation 608 so it is not
described again for brevity. Optionally, and as shown in
operation 910, each of contexts that make up a context tier
are cached to enable improved retrieval and use of the
contexts. Operation 910 is similar to or the same as opera-
tion 610 so it is not described again for brevity.

[0098] Technique 900 proceeds to operation 912. Here, the
intelli-interface resolves each of the multiple user requests.
Operation 912 is similar to or the same as operation 612,
which is described above. Operation 912 also includes, for
each request, storing or updating the current context in its
respective context graph as a past context that includes
information about the resolved user request. For a first
example, if a first request from a user account is to “suggest
a restaurant that John Doe and I will like” and a second
request from the user account is to “suggest a time for a
meeting between the Jane Doe and 1,” the intelligent inter-
active interface can perform technique 900 to resolve each
of these requests. In this example, the context graph asso-
ciated with the user account can have multiple context
clusters—e.g., a context cluster for Jane Doe, a context
cluster for John Doe, a context cluster for meetings, a
context cluster for restaurants, etc. As will be appreciated,
these requests can be resolved independently of each other
based on one or more edges within one or more context
clusters associated with the user account and/or one or more
interrelationships between the one or more context clusters.
For this example, the intelligent interactive interface will
also update the current contexts in the context graph asso-
ciated with the user account by converting the current
context (i.e., an open context) into a previous context with
information about the resolved request (i.e., a closed con-
text). In this way, the intelli-interface updates the context
graph, as user requests are resolved. For a second example,
if a first request from a user account is to “suggest a museum
for Homeri and I when he communicates with me” and a
second request from the user account is to “send a text
message to the Homeri after I hear from Margei,” the
intelli-interface can perform technique 900 to resolve each
of these requests. In this example, the context graph asso-
ciated with the user account can have multiple context
clusters—e.g., a context cluster for Homeri, a context cluster
for Margei, a context cluster for museums, a context cluster
for communications between the user and Margei, a context
cluster for text messages between the user and Homeri, etc.
As will be appreciated, these requests cannot be resolved

Jul. 5, 2018

independently of each other because resolution of the second
request depends on resolution of the first request. Also, the
resolution of these two requests can based on one or more
edges within one or more context clusters associated with
the user account and/or one or more interrelationships
between the one or more context clusters. Consequently, for
this example, the intelli-interface will maintain two current
contexts (i.e., open contexts) for the requests. After the
intelli-interface resolves the second request of this second
example and updates its status in the user’s context graph,
then the intelli-interface can resolve the first request and
update its status in the user’s context graph.

[0099] For one embodiment, and with regard to the two
examples above, each of the first and/or second requests can
be maintained as a current context (i.e., an open context) for
as long as is necessary (e.g., seconds, minutes, hours, years,
decades, etc.) until resolution. For a further embodiment, the
interactive interface can request confirmation from the user
to complete one or more of the multiple requests if a
predetermined amount of time elapsed after receiving the
requests.

[0100] FIG. 10 is a block diagram illustrating an exem-
plary data processing system 1000 that may be used with one
or more of the described embodiments. The description
provided below in connection with FIG. 10 refers to intelli-
interfaces 1028A-D. For one embodiment, each of the
intelli-interfaces 1028A-D is similar to or the same as one or
more of the intelli-interfaces described above in connection
with one or more of FIGS. 1-9.

[0101] The system 1000 may represent any data process-
ing system (e.g., one or more of the systems described above
performing any of the operations, techniques, or methods
described above in connection with one or more of FIGS.
1-9, etc.). System 1000 can include many different compo-
nents. These components can be implemented as integrated
circuits (ICs), portions thereof, discrete electronic devices,
or other modules adapted to a circuit board such as a
motherboard or add-in card of a computer system, or as
components otherwise incorporated within a chassis of a
computer system. Note that system 1000 is intended to show
a high-level view of many, but not all, components of the
computer system. Nevertheless, it is to be understood that
additional components may be present in certain implemen-
tations and furthermore, different arrangements of the com-
ponents shown may occur in other implementations. System
1000 may include, but is not limited to, a desktop computer
system, a laptop computer system, a tablet computer system,
a server computer system, a mobile phone, a media player,
a personal digital assistant (PDA), a personal communicator,
a gaming device, a network router or hub, a wireless access
point (AP) or repeater, a set-top box, a programmable
device, a network-connected device, an IoT device, or a
combination thereof. Further, while only a single machine or
system is illustrated, the term “machine” or “system” shall
also be taken to include any collection of machines or
systems that individually or jointly execute instructions to
perform any of the methodologies discussed herein.

[0102] For one embodiment, system 1000 includes pro-
cessor(s) 1001, memory 1003, devices 1005-1009, and
device 1011 via a bus or an interconnect 1010. System 1000
also includes a network 1012. Processor(s) 1001 may rep-
resent a single processor or multiple processors with a single
processor core or multiple processor cores included therein.
Processor(s) 1001 may represent one or more general-

US 2018/0189352 Al

purpose processors such as a microprocessor, a central
processing unit (CPU), graphics processing unit (GPU), or
the like. More particularly, processor(s) 1001 may be a
complex instruction set computer (CISC), a reduced instruc-
tion set computer (RISC) or a very long instruction word
(VLIW) computer architecture processor, or processors
implementing a combination of instruction sets. Processor(s)
1001 may also be one or more special-purpose processors
such as an application specific integrated circuit (ASIC), an
application-specific instruction set processor (ASIP), a cel-
Iular or baseband processor, a field programmable gate array
(FPGA), a digital signal processor (DSP), a physics pro-
cessing unit (PPU), an image processor, an audio processor,
a network processor, a graphics processor, a graphics pro-
cessing unit (GPU), a network processor, a communications
processor, a cryptographic processor, a co-processor, an
embedded processor, a floating-point unit (FPU), or any
logic that can process instructions.

[0103] Processor(s) 1001, which may be a low power
multi-core processor socket such as an ultra-low voltage
processor, may act as a main processing unit and central hub
for communication with the various components of the
system. Such processor(s) can be implemented as one or
more system-on-chip (SoC) integrated circuits (ICs). An
intelli-interface 1028A may reside, completely or at least
partially, within processor(s) 1001. For one embodiment, the
intelli-interface 1028A enables the processor(s) 1001 to
perform any or all of the operations or methods described
above in connection with FIGS. 1-9. Additionally or alter-
natively, the processor(s) 1001 may be configured to execute
instructions for performing the operations and methodolo-
gies discussed herein.

[0104] System 1000 may further include a graphics inter-
face that communicates with optional graphics subsystem
1004, which may include a display controller, a graphics
processing unit (GPU), and/or a display device. Processor(s)
1001 may communicate with memory 1003, which in one
embodiment can be implemented via multiple memory
devices to provide for a given amount of system memory.
Memory 1003 may include one or more volatile storage (or
memory) devices such as random access memory (RAM),
dynamic RAM (DRAM), synchronous DRAM (SDRAM),
static RAM (SRAM), or other types of storage devices.
Memory 1003 may store information including sequences of
instructions that are executed by processor(s) 1001 or any
other device. For example, executable code and/or data from
a variety of operating systems, device drivers, firmware
(e.g., input output basic system or BIOS), and/or applica-
tions can be loaded in memory 1003 and executed by
processor(s) 1001. An operating system can be any kind of
operating system. An intelli-interface 1028D may also
reside, completely or at least partially, within memory 1003.
[0105] For one embodiment, the memory 1003 includes an
intelli-interface 1028B as executable instructions. For
another embodiment, when the instructions represented by
the intelli-interface 1028B are executed by the processor(s)
1001, the instructions cause the processor(s) 1001 to per-
form any, all, or some of the operations or methods
described above in connection with FIGS. 1-9.

[0106] System 1000 may further include I/O devices such
as devices 1005-1008, including network interface device(s)
1005, optional input device(s) 1006, and other optional 1/O
device(s) 1007. Network interface device 1005 may include
a wired or wireless transceiver and/or a network interface

Jul. 5, 2018

card (NIC). The wireless transceiver may be a WiFi trans-
ceiver, an infrared transceiver, a Bluetooth transceiver, a
WiMax transceiver, a wireless cellular telephony trans-
ceiver, a satellite transceiver (e.g., a global positioning
system (GPS) transceiver), or other radio frequency (RF)
transceivers, or a combination thereof. The NIC may be an
Ethernet card.

[0107] Input device(s) 1006 may include a mouse, a touch
pad, a touch sensitive screen (which may be integrated with
display device 1004), a pointer device such as a stylus,
and/or a keyboard (e.g., a physical keyboard or a virtual
keyboard displayed as part of a touch sensitive screen). For
example, input device 1006 may include a touch screen
controller coupled to a touch screen. The touch screen and
touch screen controller can, for example, detect contact and
movement or a break thereof using one or more touch
sensitivity technologies, including but not limited to capaci-
tive, resistive, infrared, and surface acoustic wave technolo-
gies, as well as other proximity sensor arrays or other
elements for determining one or more points of contact with
the touch screen.

[0108] I/O devices 1007 may include an audio device. An
audio device may include a speaker and/or a microphone to
facilitate voice-enabled functions, such as voice recognition,
voice replication, digital recording, and/or telephony func-
tions. Other /O devices 1007 may include universal serial
bus (USB) port(s), parallel port(s), serial port(s), a printer, a
network interface, a bus bridge (e.g., a PCI-PCI bridge),
sensor(s) (e.g., a motion sensor such as an accelerometer,
gyroscope, a magnetometer, a light sensor, compass, a
proximity sensor, etc.), or a combination thereof. Device(s)
1007 may further include an imaging processing subsystem
(e.g., a camera), which may include an optical sensor, such
as a charged coupled device (CCD) or a complementary
metal-oxide semiconductor (CMOS) optical sensor, utilized
to facilitate camera functions, such as recording photographs
and video clips. Certain sensors may be coupled to inter-
connect 1010 via a sensor hub (not shown), while other
devices such as a keyboard or thermal sensor may be
controlled by an embedded controller (not shown), depen-
dent upon the specific configuration or design of system
1000.

[0109] To provide for persistent storage for information
such as data, applications, one or more operating systems
and so forth, a mass storage device or devices (not shown)
may also be coupled to processor(s) 1001. For various
embodiments, to enable a thinner and lighter system design
as well as to improve system responsiveness, this mass
storage may be implemented via a solid state device (SSD).
However in other embodiments, the mass storage may
primarily be implemented using a hard disk drive (HDD)
with a smaller amount of SSD storage to act as a SSD cache
to enable non-volatile storage of context state and other such
information during power down events so that a fast power
up can occur on re-initiation of system activities. In addition,
a flash device may be coupled to processor(s) 1001, e.g., via
a serial optional peripheral interface (SPI). This flash device
may provide for non-volatile storage of system software,
including a basic input/output software (BIOS) and other
firmware.

[0110] An intelli-interface 1028C may be part of a spe-
cialized stand-alone computing system/device 1011 that is
formed from hardware, software, or a combination thereof.
For one embodiment, the intelli-interface 1028C performs

US 2018/0189352 Al

any, all, or some of the operations or methods described
above in connection with FIGS. 1-9.

[0111] Storage device 1008 may include computer-acces-
sible storage medium 1009 (also known as a machine-
readable storage medium or a computer-readable medium)
on which is stored one or more sets of instructions or
software—e.g., an intelli-interface 1028D.

[0112] For one embodiment, the instruction(s) or software
stored on storage medium 1009 embody one or more meth-
odologies or functions described above in connection with
FIGS. 1-9. For another embodiment, the storage device 1008
includes an intelli-interface 1028D as executable instruc-
tions. When the instructions represented by an intelli-inter-
face 1028D are executed by the processor(s) 1001, the
instructions cause the system 1000 to perform any, all, or
some of the operations or methods described above in
connection with FIGS. 1-9.

[0113] Computer-readable storage medium 1009 can store
some or all of the software functionalities of an intelli-
interface 1028 A-D described above persistently. While com-
puter-readable storage medium 1009 is shown in an exem-
plary embodiment to be a single medium, the term
“computer-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a central-
ized or distributed database, and/or associated caches and
servers) that store the one or more sets of instructions. The
terms “computer-readable storage medium” shall also be
taken to include any medium that is capable of storing or
encoding a set of instructions for execution by the system
1000 and that cause the system 1000 to perform any one or
more of the disclosed methodologies. The term “computer-
readable storage medium” shall accordingly be taken to
include, but not be limited to, solid-state memories, and
optical and magnetic media, or any other non-transitory
machine-readable medium.

[0114] Note that while system 1000 is illustrated with
various components of a data processing system, it is not
intended to represent any particular architecture or manner
of interconnecting the components; as such, details are not
germane to the embodiments described herein. It will also be
appreciated that network computers, handheld computers,
mobile phones, servers, and/or other data processing sys-
tems, which have fewer components or perhaps more com-
ponents, may also be used with the embodiments described
herein.

[0115] In the foregoing description, numerous specific
details are set forth, such as specific configurations, dimen-
sions and processes, etc., in order to provide a thorough
understanding of the embodiments. In other instances, well-
known processes and manufacturing techniques have not
been described in particular detail in order to not unneces-
sarily obscure the embodiments. Reference throughout this
specification to “one embodiment,” “an embodiment,”
“another embodiment,” “other embodiments,” ‘“some
embodiments,” and their variations means that a particular
feature, structure, configuration, or characteristic described
in connection with the embodiment is included in at least
one embodiment. Thus, the appearances of the phrase “for
one embodiment,” “for an embodiment,” “for another
embodiment,” “in other embodiments,” “in some embodi-
ments,” or their variations in various places throughout this
specification are not necessarily referring to the same
embodiment. Furthermore, the particular features, struc-

Jul. 5, 2018

tures, configurations, or characteristics may be combined in
any suitable manner in one or more embodiments.

[0116] In the following description and claims, the terms
“coupled” and “connected,” along with their derivatives,
may be used. It should be understood that these terms are not
intended as synonyms for each other. “Coupled” is used to
indicate that two or more elements or components, which
may or may not be in direct physical or electrical contact
with each other, co-operate or interact with each other.
“Connected” is used to indicate the establishment of com-
munication between two or more elements or components
that are coupled with each other.

[0117] Some portions of the preceding detailed description
have been presented in terms of algorithms and symbolic
representations of operations on data bits within a computer
memory. These algorithmic descriptions and representations
are the ways used by those skilled in the data processing arts
to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of operations
leading to a desired result. The operations are those requir-
ing physical manipulations of physical quantities. It should
be borne in mind, however, that all of these and similar terms
are to be associated with the appropriate physical quantities
and are merely convenient labels applied to these quantities.
Unless specifically stated otherwise as apparent from the
above discussion, it is appreciated that throughout the
description, discussions utilizing terms such as those set
forth in the claims below, refer to the action and processes
of a computer system, or similar electronic computing
system, that manipulates and transforms data represented as
physical (electronic) quantities within the computer sys-
tem’s registers and memories into other data similarly
represented as physical quantities within the computer sys-
tem memories or registers or other such information storage,
transmission or display devices.

[0118] Embodiments described herein can relate to an
apparatus for performing a computer program (e.g., the
operations described herein, etc.). Such a computer program
is stored in a non-transitory computer readable medium. A
machine-readable medium includes any mechanism for stor-
ing information in a form readable by a machine (e.g., a
computer). For example, a machine-readable (e.g., com-
puter-readable) medium includes a machine (e.g., a com-
puter) readable storage medium (e.g., read only memory
(“ROM”), random access memory (“RAM”), magnetic disk
storage media, optical storage media, flash memory
devices).

[0119] Although operations or methods are described
above in terms of some sequential operations, it should be
appreciated that some of the operations described may be
performed in a different order. Moreover, some operations
may be performed in parallel rather than sequentially.
Embodiments described herein are not described with ref-
erence to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the various embodiments of the disclosed
subject matter. In utilizing the various aspects of the embodi-
ments described herein, it would become apparent to one
skilled in the art that combinations, modifications, or varia-
tions of the above embodiments are possible for managing
components of a processing system to increase the power
and performance of at least one of those components. Thus,
it will be evident that various modifications may be made

US 2018/0189352 Al

thereto without departing from the broader spirit and scope
of at least one of the disclosed concepts set forth in the
following claims. The specification and drawings are,
accordingly, to be regarded in an illustrative sense rather
than a restrictive sense.

[0120] In the development of any actual implementation
of one or more of the disclosed concepts (e.g., such as a
software and/or hardware development project, etc.), numer-
ous decisions must be made to achieve the developers’
specific goals (e.g., compliance with system-related con-
straints and/or business-related constraints). These goals
may vary from one implementation to another, and this
variation could affect the actual implementation of one or
more of the disclosed concepts set forth in the embodiments
described herein. Such development efforts might be com-
plex and time-consuming, but may still be a routine under-
taking for a person having ordinary skill in the art in the
design and/or implementation of one or more of the inven-
tive concepts set forth in the embodiments described herein.
[0121] One aspect of the present technology is the gath-
ering and use of data available from various sources to
improve the operation of the interactive interfaces. The
present disclosure contemplates that in some instances, this
gathered data may include personal information data that
uniquely identifies a specific person. Such personal infor-
mation data can include demographic data, location-based
data, telephone numbers, email addresses, twitter 1D’s,
home addresses, or any other identifying information.
[0122] The present disclosure recognizes that the use of
such personal information data, in the present technology,
can be used to the benefit of users. For example, the personal
information data can be used to improve the resolution of
requests by an interactive interface. Further, other uses for
personal information data that benefit the user are also
contemplated by the present disclosure.

[0123] The present disclosure further contemplates that
the entities responsible for the collection, analysis, disclo-
sure, transfer, storage, or other use of such personal infor-
mation data will comply with well-established privacy poli-
cies and/or privacy practices. In particular, such entities
should implement and consistently use privacy policies and
practices that are generally recognized as meeting or exceed-
ing industry or governmental requirements for maintaining
personal information data private and secure. For example,
personal information from users should be collected for
legitimate and reasonable uses of the entity and not shared
or sold outside of those legitimate uses. Further, such
collection should occur only after receiving the informed
consent of the users. Additionally, such entities would take
any needed steps for safeguarding and securing access to
such personal information data and ensuring that others with
access to the personal information data adhere to their
privacy policies and procedures. Further, such entities can
subject themselves to evaluation by third parties to certify
their adherence to widely accepted privacy policies and
practices.

[0124] Despite the foregoing, the present disclosure also
contemplates embodiments in which users selectively block
the use of, or access to, personal information data. That is,
the present disclosure contemplates that hardware and/or
software elements can be provided to prevent or block
access to such personal information data. For example, in
the case of the present context network, the present tech-
nology can be configured to allow users to select to “opt in”

Jul. 5, 2018

or “opt out” of participation in the collection of personal
information data for use in generating a context network.
[0125] Although the present disclosure broadly covers use
of personal information data to implement one or more
various disclosed embodiments, the present disclosure also
contemplates that the various embodiments can also be
implemented without the need for accessing such personal
information data. That is, the various embodiments of the
present technology are not rendered inoperable due to the
lack of all or a portion of such personal information data.
[0126] As used in the description above and the claims
below, the phrase “at least one of A, B, or C” includes A
alone, B alone, C alone, a combination of A and B, a
combination of B and C, a combination of A and C, and a
combination of A, B, and C. That is, the phrase “at least one
of A, B, or C” means A, B, C, or any combination thereof
such that one or more of a group of elements consisting of
A, B and C, and should not be interpreted as requiring at
least one of each of the listed elements A, B and C,
regardless of whether A, B and C are related as categories or
otherwise. Furthermore, the use of the article “a” or “the” in
introducing an element should not be interpreted as being
exclusive of a plurality of elements. In addition, the recita-
tion of “A, B and/or C” is equal to “at least one of A, B or
Cc”

[0127] Also, the use of “a” refers to “one or more” in the
present disclosure. For example, “a context” refers to “one
or more contexts.”

What is claimed is:

1. A computer-implemented method for resolving mul-
tiple user requests from a user account by an interactive
interface, comprising:

obtaining, by a processor, a multi-dimensional context

graph associated with a user account, wherein the
context graph comprises correlated contexts related to
the user account, wherein each context is represented as
node in the context graph, wherein each correlation
between two contexts is represented as an edge in the
context graph, and wherein the context graph includes
one or more context clusters, and wherein each corre-
lation between two context clusters is represented as an
interrelationship in the context graph;

receiving a first user request and a second user request,

each of the requests being associated with the user
account;

for each of the first and second user requests:

determining, based on the context graph, a current
context for the user request and one or more first
previous contexts that are related to the current
context, wherein the current context and the first
previous contexts are part of a same context cluster;
determining, based on the context graph, one or more
second previous contexts that are related to the
current context, wherein the current context and the
second previous contexts are not part of the same
context cluster; and
resolving the user request based on the current context,
the one or more first previous contexts, and the one
or more second previous contexts.
2. The method of claim 1, further comprising updating the

one or more interrelationships between context clusters as
data associated with the user account evolves.

US 2018/0189352 Al

3. The method of claim 2, wherein determining the one or
more first previous contexts includes determining a context
cluster to which the current context belongs.

4. The method of claim 3, further comprising determining,
for each current cluster, that the current context’s cluster is
related to another context cluster based on one or more
interrelationships between the current context’s cluster and
the other cluster.

5. The method of claim 3, further comprising determining,
for each current cluster, that the current context’s cluster is
related to another context cluster based on one or more edges
within the current context’s cluster.

6. The method of claim 1, wherein none of the user
requests is resolved prior to receipt of the other user request.

7. The method of claim 1, wherein determining each of
the current contexts is based, at least in part, on determining
one or more key identifiers within the user requests.

8. A non-transitory computer readable medium compris-
ing instructions for resolving multiple user requests from a
user account by an interactive interface, which when
executed by one or more processors, cause the one or more
processors to:

obtain a context graph associated with a user account,

wherein the context graph comprises correlated con-
texts related to the user account, wherein each context
is represented as node in the context graph, wherein
each correlation between two contexts is represented as
an edge in the context graph, and wherein the context
graph includes one or more context clusters, and
wherein each correlation between two context clusters
is represented as an interrelationship in the context
graph;

receive a first user request and a second user request, each

of the requests being associated with the user account;

for each of the first and second user requests:

determine, based on the context graph, a current con-
text for the user request and one or more first
previous contexts that are related to the current
context, wherein the current context and the first
previous contexts are part of a same context cluster;

determine, based on the context graph, one or more
second previous contexts that are related to the
current context, wherein the current context and the
second previous contexts are not part of the same
context cluster; and

resolve the user request based on the current context,
the one or more first previous contexts, and the one
or more second previous contexts.

9. The non-transitory computer readable medium of claim
8, further comprising instructions for causing the one or
more processors to update the one or more interrelationships
between context clusters as data associated with the user
account evolves.

10. The non-transitory computer readable medium of
claim 9, wherein the instructions for causing the one or more
processors to determine the one or more first previous
contexts includes instructions for causing the one or more
processors to determine a context cluster to which the
current context belongs.

11. The non-transitory computer readable medium of
claim 10, further comprising instructions for causing the one
or more processors to determine, for each current cluster,
that the current context’s cluster is related to another context

Jul. 5, 2018

cluster based on one or more interrelationships between the
current context’s cluster and the other cluster.

12. The non-transitory computer readable medium of
claim 10, further comprising instructions for causing the one
or more processors to determine, for each current cluster,
that the current context’s cluster is related to another context
cluster based on one or more edges within the current
context’s cluster.

13. The non-transitory computer readable medium of
claim 8, wherein none of the user requests is resolved prior
to receipt of the other user request.

14. The non-transitory computer readable medium of
claim 8, wherein the instructions for causing the one or more
processors to determine each of the current contexts is
based, at least in part, on instructions that cause the one or
more processors to determine one or more key identifiers
within the user requests.

15. A processing system configured to resolve multiple
user requests from multiple user accounts, comprising:

logic configured to:

obtain a context graph associated with a user account,
wherein the context graph comprises correlated con-
texts related to the user account, wherein each con-
text is represented as node in the context graph,
wherein each correlation between two contexts is
represented as an edge in the context graph, and
wherein the context graph includes one or more
context clusters, and wherein each correlation
between two context clusters is represented as an
interrelationship in the context graph;
receive a first user request and a second user request,
each of the requests being associated with the user
account;
for each of the first and second user requests:
determine, based on the context graph, a current
context for the user request and one or more first
previous contexts that are related to the current
context, wherein the current context and the first
previous contexts are part of a same context
cluster;
determine, based on the context graph, one or more
second previous contexts that are related to the
current context, wherein the current context and
the second previous contexts are not part of the
same context cluster; and
resolve the user request based on the current context,
the one or more first previous contexts, and the
one or more second previous contexts.

16. The system of claim 15, wherein the logic is further
configured to update the one or more interrelationships
between context clusters as data associated with the user
account evolves.

17. The system of claim 16, wherein the logic being
configured to determine the one or more first previous
contexts includes the logic being configured to determine a
context cluster to which the current context belongs.

18. The system of claim 17, wherein the logic is further
configured to determine, for each current cluster, that the
current context’s cluster is related to another context cluster
based on one or more interrelationships between the current
context’s cluster and the other cluster.

19. The system of claim 17, wherein the logic is further
configured to determine, for each current cluster, that the

US 2018/0189352 Al Jul. 5, 2018
18

current context’s cluster is related to another context cluster
based on one or more edges within the current context’s
cluster.

20. The system of claim 15, wherein the logic being
configured to determine each of the current contexts is
based, at least in part, on the logic being configured to
determine one or more key identifiers within the user
requests.

