Abstract: A wireless power transmission system includes a transmitter configured to transmit power waves including printed circuit boards and antenna boards, where each antenna board comprises one or more antenna elements, at least one antenna board resides on a printed circuit board, and the at least one antenna board is connected with a power feeding line. The transmitter further includes a heat sink attached to the at least one printed circuit board, wherein placement of the heat sink with respect to the at least one antenna board comprising the one or more antenna elements and shape of the heat sink is configured such that the heat sink operates as a reflector to direct wireless power waves transmitted from the one or more antenna elements of the at least one antenna board in a pre-determined direction.
MODULAR ANTENNAS IN WIRELESS POWER TRANSMISSION SYSTEMS

TECHNICAL FIELD

[0001] This application generally relates to wireless power transmission systems and antenna components used in such systems.

BACKGROUND

[0002] Electronic devices, such as laptop computers, smartphones, portable gaming devices, tablets, or others, require power to operate. This state of being may entail having to charge electronic equipment at least once a day, or in high-use or power-hungry electronic devices, more than once a day. Such activity may be tedious and may present a burden to some users. For example, a user may be required to carry chargers in case his electronic equipment is lacking power. In addition, some users have to find available power sources to connect to, which is time consuming. Lastly, some users must plug into a wall or some other power supply to be able to charge their electronic device. However, such activity may render electronic devices inoperable or not portable during charging.

[0003] Numerous attempts have been made to wirelessly transmit energy to electronic devices, where a receiver device can consume the transmission and convert it to electrical energy. However, most conventional techniques are unable to transmit energy at any meaningful distance. For example, magnetic resonance provides electric power to devices without requiring an electronic device to be wired to a power resonator. However, the electronic device is required to be proximately located to a coil of the power resonator (i.e., within a magnetic field). Other conventional solutions may not contemplate user mobility for users who are charging their mobile devices, or such solutions do not allow devices to be outside of a narrow window of operability.

[0004] While certain advancements in remote wireless charging have occurred, acceptance of the new technology into homes and businesses (e.g., conference rooms) often requires design elements that extend beyond functionality. As an example, for remote wireless power charging that enables a transmitter to deliver high gain in small areas while avoiding power transmission to other nearby areas, transmitter antennas may be utilized. Also with the introduction of many applications into the 2.4 GHz band for commercial and consumer use, transmitter antenna design has become a stumbling point for many customers, as at frequencies used for the remote wireless charging, the transmitter antennas have
sufficiently large dimensions that consumers and businesses may resist deploying such devices into their homes and offices as a result of undesirable aesthetics and dimensions.

Therefore, there is a need in the art to addresses the above mentioned drawbacks of the conventional antenna systems being employed in the wireless power transmission systems.

SUMMARY

Wireless power transmission systems disclosed herein address the above issues and may provide a number of other benefits as well. Wireless power transmission systems described herein provide transmitter antennas that can be integrated into a printed circuit board, and thereby solves the above mentioned drawbacks of the large dimensioned antennas being employed in conventional wireless power transmission systems. The transmitters may comprise expandable transmitter boards that include ports configured to receive new antenna boards, thereby allowing end-users to expand the capabilities of the transmitter and transmitter board by adding additional antenna boards. The transmitter board may comprise specially-programmed integrated circuits, such as a processor and/or a timing circuit, that not only control and manage generation and transmission of power waves, but may also manage the transmitter's configurations to dynamically account for new antenna boards. Such dynamic reconfigurations of how the integrated circuits and the antennas of the transmitter function may prevent, or at least mitigate, the potential for the power waves to interact in an undesired manner, due to addition of the new antenna board. Otherwise, when a new antenna board is added, the behavior of the transmitter and the antennas might cause unaccounted for or unwanted interference among the power waves. As an example, a processor may be configured to automatically detect a new antenna board connected to an empty port of the transmitter board, and then automatically re-configure various operational parameters and behaviors, such as the selection parameters for activating certain antenna boards during power wave transmission. As another example, the processor may re-configure waveform generation parameters that are used to determine the waveform characteristics of the power waves during power wave generation and transmission.

In an embodiment, a transmitter in a wireless power transmission system includes a transmitter board comprising one or more ports configured to receive one or more antenna boards. The transmitter further includes an antenna board comprising one or more antenna elements configured to transmit power waves, wherein the antenna board is
configured to be removably connected to a port of the one or more ports of the transmitter board. The transmitter further includes a heat sink attached to the transmitter board configured to absorb heat generated by components of the transmitter board. The heat sink has a substantially parabolic shape configured to reflect the power waves transmitted by the antenna board in a pre-determined direction.

[0008] In another embodiment, a method for making transmitter components includes forming a transmitter board comprising one or more ports configured to receive one or more antenna boards, where each antenna board is configured to removably connect to the transmitter board, and where each antenna board comprises one or more antenna elements configured to transmit power waves. The method further includes attaching a heat sink to the transmitter board configured to absorb heat generated by the transmitter board, where the heat sink has a substantially parabolic shape configured to reflect the power waves transmitted by the antenna boards in a pre-determined direction.

[0009] In another embodiment, a transmitter of a wireless power transmission system includes a transmitter board comprising a plurality of ports configured to receive a plurality of antenna boards, where each respective port is configured to receive a respective antenna board, and where each respective antenna board comprises one or more antenna elements configured to transmit one or more power waves. The transmitter further includes a processor configured to determine each antenna board connected to a respective port of the transmitter board, and control transmission of the one or more power waves via each antenna board connected to the respective port of the transmitter board to form a pocket of energy within a transmission field of the transmitter.

[0010] In another embodiment, a method is performed by a processor of a transmitter of a wireless power transmission system and the method includes identifying, by a processor configured to control a transmitter board having a plurality of ports configured to receive a plurality of antenna boards respectively, an antenna board connected to a respective port of the plurality of ports of the transmitter board, wherein each respective antenna board comprises one or more antenna elements configured to transmit one or more power waves. The method further includes selectively activating, by the processor, the antenna board connected to the respective port of the plurality of ports, whereby the processor instructs at least one antenna element of the antenna board to transmit the one or more power waves. The method further includes controlling, by the processor, transmission of the one or more

3
power waves via the at least one antenna element of the antenna board connected to the respective port to form a pocket of energy within a transmission field of the transmitter.

[0011] In another embodiment, an antenna board includes one or more antenna elements configured to transmit one or more power waves, where the antenna board is configured to detachably connect to a transmitter board, and where the transmitter board comprises a port configured to receive the antenna board.

[0012] In another embodiment, a transmitter in a wireless power transmission system includes an antenna board comprising one or more antenna elements configured to transmit one or more power waves; and a processor configured to detachably connect the antenna board to a transmitter board. The transmitter board comprises a port configured to receive the antenna board.

[0013] Additional features and advantages of an embodiment will be set forth in the description which follows, and in part will be apparent from the description. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the exemplary embodiments in the written description and claims hereof as well as the appended drawings.

[0014] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the embodiments described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The accompanying drawings constitute a part of this specification and illustrate an embodiment of the invention and together with the specification, explain the invention.

[0016] FIG. 1 illustrates a wireless power transmission system, according to an exemplary embodiment.

[0017] FIG. 2 illustrates a transmitter of a wireless power transmission system, according to an exemplary embodiment.

[0018] FIG. 3A illustrates a front view of an antenna array of a wireless power transmission system, according to an exemplary embodiment.
FIG. 3B illustrates a rear view of an antenna array of a wireless power transmission system, according to an exemplary embodiment.

FIG. 4A illustrates a front view of an antenna array of a wireless power transmission system, according to an exemplary embodiment.

FIG. 4B illustrates a rear view of an antenna array of a wireless power transmission system, according to an exemplary embodiment.

FIG. 5 is a flow diagram depicting forming a heat sink in a wireless power transmission system, according to an exemplary embodiment.

FIG. 6A illustrates a front view of a modular antenna board of a wireless power transmission system, according to an exemplary embodiment.

FIG. 6B illustrates a rear view of a modular antenna board of a wireless power transmission system, according to an exemplary embodiment.

FIG. 6C illustrates a transmitter board having a plurality of ports, and plugging an antenna board into a port of an antenna board of a wireless power transmission system, according to an exemplary embodiment.

FIG. 7 is a flow diagram depicting coupling of antenna arrays into an antenna board in a wireless power transmission system, according to an exemplary embodiment.

FIG. 8 is a flow diagram depicting operation of a wireless power transmission system, according to an exemplary embodiment.

DETAILED DESCRIPTION

Reference will now be made to the exemplary embodiments illustrated in the drawings, where specific language will be used here to describe the same. It should be understood that no limitation of the scope of the invention is intended by the descriptions of such exemplary embodiments. Alterations and further modifications of the exemplary embodiments and additional applications implementing the principles of the inventive features, which would occur to a person skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of this disclosure.

In a wireless power transmission system, the transmitters are devices that comprise, or are otherwise associated with, various components and circuits responsible for, e.g., generating and transmitting power waves, forming pockets of energy at locations in a
transmission field, monitoring the conditions of the transmission field, and generating null spaces where needed. The transmitter may generate and transmit power waves for pocket-forming based on location of one or more receivers and/or null steering based on location of one or more objects such as humans and animals within a transmission field of the transmitter.

[0030] The transmitter comprises antenna elements that are configured to transmit power waves. The antenna elements of the transmitters may wirelessly transmit power waves having certain physical waveform characteristics, which are particular to the particular waveform technology implemented. The power waves may be transmitted to receivers within the transmission field of the transmitters in form of any physical media capable of propagating through space and being converted into useable electrical energy for charging the one or more electronic devices. The examples of the physical media may include radio frequency (RF) waves, infrared, acoustics, electromagnetic fields, and ultrasound. The power transmission signals may include any radio signal, having any frequency or wavelength. It should be appreciated by those skilled in the art that the wireless charging techniques are not limited to RF wave transmission techniques, but may include alternative or additional techniques for transmitting energy to the receivers.

[0031] Exemplary Components of Wireless Charging System

[0032] FIG. 1 illustrates a wireless power transmission system 100, according to an exemplary embodiment. The wireless power transmission system 100 includes a transmitter 102. The transmitter 102 may refer to a device, including a chip that may generate one or more power waves 104, whereby at least one RF wave is phase shifted and gain adjusted with respect to at least one other RF wave. The transmitter 102 transmits the one or more power waves 104 from an antenna array 106 to receivers connected to or integrated within one or more electronic devices, such as a mobile phone 108 and a laptop 110. The receiver may refer to a device that may include at least one antenna, at least one rectifying circuit, and at least one power converter, which may utilize a pocket of energy for powering or charging an electronic device. Non-limiting examples of an electronic device of the one or more electronic devices may include: laptops, mobile phones, smartphones, tablets, music players, toys, batteries, flashlights, lamps, electronic watches, cameras, gaming consoles, power tools, battery chargers, appliances, and GPS devices, among other types of electrical devices.
[0033] The examples of the power waves 104 may include microwaves, radio frequency (RF) waves, and ultrasound waves. The power waves 104 may be controlled through phase and/or relative amplitude adjustments to form constructive and destructive interference patterns by a transmitter processor of the transmitter 102 to form a pocket of energy 112 in locations where the pocket of energy 112 is intended. The pocket of energy 112 or energy pocket may refer to an area or region of space where energy or power may accumulate based on a convergence of the power waves 104 causing constructive interference at that area or region. The pocket of energy 112 may be formed at locations of constructive interference patterns of the power waves 104 transmitted by the transmitter 102. The pockets of energy 112 may manifest as a three-dimensional field where energy may be harvested by the receivers located within or proximate to the pocket of energy 112. The pocket of energy 112 produced by the transmitter 102 during pocket forming processes may be harvested by the receiver, converted to an electrical charge, and then provided to the electronic device (e.g., laptop computer, smartphone, rechargeable battery) associated with the receiver. In the illustrative embodiment, the pocket of energy 112 is intended in the locations of the one or more electronic devices such as the mobile phone 108 and the laptop 110. The transmitter 102 is further configured to transmit the power waves 104 that may converge in three-dimensional space to create the one or more null spaces in the one or more locations where the transmitted power waves 104 cancel each other out substantially.

[0034] The transmitter 102 is placed in a housing that comprises plastic, but can comprise at least one other material, whether additionally or alternatively, such as wood, metal, rubber, glass, or others. The housing may have a shape of a cube, but other shapes are possible, such as a cuboid, a sphere, a hemisphere, a dome, a cone, a pyramid, or any other polygonal shape, whether having an open-shape or a closed-shape. Such capability may allow the location of transmitters in a variety of strategic positions, such as ceiling, decorations, walls, and the like.

[0035] A receiver may communicate with the transmitter 102 in order to indicate its position with respect to the transmitter 102. The receiver may be an integral or external component of the one or more electronic devices such as the mobile phone 108 and the laptop 110. A communications component may enable the receiver to communicate with the transmitter 102 by transmitting communications signals over a wireless protocol. The communications component may be part of the receiver or alternatively may be part of the electronic devices such as the mobile phone 108 and the laptop 110 to which the receiver
interfaces. The wireless protocol can be selected from a group consisting of Bluetooth, ZigBee, Wi-Fi, NEC, or the like. The communications component may then be used to transfer information, such as an identifier for the one or more electronic devices 108, 110, as well as battery level information of the one or more electronic devices 108, 110, geographic location data of the one or more electronic devices 108, 110, or other information that may be of use for the transmitter 102 in determining when to send energy to the receiver, as well as the location to deliver the power waves 104. The receiver may then utilize the power waves 104 emitted by the transmitter 102 to establish the pocket of energy 112, for charging or powering the one or more electronic devices 108, 110. The receiver may comprise circuitry for converting the power waves 104 into electrical energy that may be provided to the one or more electronic devices 108, 110.

[0036] The transmitter 102 may transmit or broadcast the power waves 104 to the receiver associated with the electronic devices such as the mobile phone 108 and the laptop 110. The transmitter 102 includes the antenna array 106 having the one or more antennas elements for sending the power waves 104. Each antenna of the one or more antenna elements sends power waves 104 where the transmitter 102 applies a different phase and amplitude to the power waves 104 transmitted from different antennas of the one or more antenna elements. The transmitter 102 can form a phased array of delayed versions of the power waves 104 to be transmitted, then applies different amplitudes to the delayed versions of the power waves 104, and then sends the power waves 104 from appropriate antennas of the one or more antenna elements.

[0037] In some embodiments, the one or more electronic devices 108, 110 may be distinct from the receiver associated with the one or more electronic devices 108, 110. In such embodiments, the one or more electronic devices 108, 110 may be connected to the receiver over a wire that conveys converted electrical energy from the receiver to the one or more electronic devices 108, 110.

[0038] Exemplary Transmitter Device

[0039] FIG. 2 illustrates a transmitter 200 of a wireless power transmission system, according to an exemplary embodiment. FIG. 2 will be explained in conjunction to FIG. 1. The transmitter 200 may transmit or broadcast power waves to a receiver associated with an electronic device. Although several of the embodiments mentioned below describe the power waves as radio frequency (RF) waves, it should be appreciated that the power waves may be
physical media that is capable of being propagated through space, and that is capable of being converted into a source of electrical energy. The transmitter 200 includes antenna elements that may transmit the power waves as a single beam directed at the receivers. In some cases, the antenna elements of the transmitter 200 may transmit a plurality of power waves that are propagated in a multiple directions and may deflect off of physical obstructions (e.g., walls). The transmitter 200 may control pocket-forming based on phase and/or relative amplitude adjustments of power transmission signals, to form constructive interference patterns.

[0040] The transmitter 200 may comprise an application-specific integrated circuit (ASIC). The ASIC may be part of the circuitry on the antenna boards 202, and one or more transmitter boards 204. In addition to the ASIC, there may be one or more radio frequency integrated circuits (RFIC) 206, a power source 208, among other components in the transmitter 200. In an embodiment, a respective transmitter board of the transmitter boards 204 may be a printed circuit board (PCB). The transmitter 200 may be encased in a housing, which may allocate all the requested components for the transmitter 200. The components in the transmitter 200 may be manufactured using meta-materials, micro-printing of circuits, nano-materials, and/or any other materials, it may include integrated circuits and it may also include discrete components. It should be obvious to someone skilled in the art that the entire transmitter 200 or the entire receiver can be implemented on a single circuit board, as well as having one or more of the functional blocks pictured in Fig. 2 implemented in separate circuit boards.

[0041] Antenna elements may be connected to the antenna boards 202. In an embodiment, the antenna boards 202 may be connected to a respective transmitter board of the transmitter board 204. In another embodiment, the antenna elements may be formed directly on the respective transmitter board. The antenna elements may be defined in areas of the respective transmitter board. By forming the antenna elements in the transmitter board 204, the cost of the antenna elements may be reduced. The antenna elements may be formed on the transmitter board 204 in conjunction with the same process used to form the transmitter board 204.

[0042] The antenna boards 202 include one or more antenna elements that may include any type of antenna elements capable of transmitting and/or receiving signals in frequency bands used by the transmitter 200. The one or more antenna elements may include vertical or horizontal polarization, right hand or left hand polarization, elliptical polarization,
or other polarizations, as well as any number of polarization combinations. Using multiple polarizations can be beneficial in devices where there may not be a preferred orientation during usage or whose orientation may vary continuously through time, for example a smartphone or portable gaming system. For devices having a well-defined expected orientation, for example video controller, there might be a preferred polarization for antennas, which may dictate a ratio for the number of antennas of a given polarization. The types of antenna elements may include patch antennas, which may have heights from about 1/8 inch to about 6 inches and widths from about 1/8 inch to about 6 inches. The patch antennas may preferably have a polarization that depends upon connectivity, i.e., the polarization may vary depending on from which side the patch is fed.

[0043] An antenna element of the one or more antenna elements of a respective antenna board 202 may be directional and/or omni-directional and also include flat antenna elements dipole antenna elements, and any other suitable antenna for wireless power transmission. Suitable antenna element types may include, for example, patch antennas with heights from about 1/8 inch to about 6 inches and widths from about 1/8 inch to about 6 inches. The shape and orientation of antenna element 202 may vary depending on the desired features of the transmitter 200. For example, orientation may be flat in X, Y, and Z axes, as well as various orientation types and combinations in three dimensional arrangements may be provided. The antenna element materials may include any suitable material that may allow RF signal transmission with high efficiency, good heat dissipation, or the like. The amount of antenna elements may vary in relation with the desired range and power transmission capability on the transmitter 200; the more antenna elements, the wider range and higher the power transmission capability.

[0044] The antenna element may include suitable antenna types for operating in frequency bands such as 900 MHz, 2.5 GHz or 5.8 GHz as these frequency bands conform to Federal Communications Commission (FCC) regulations part 18 (industrial, scientific, and medical equipment). The antenna element may operate in multiple frequencies, allowing a multichannel operation of pocket-forming

[0045] The antenna element may also have at least one polarization or a selection of polarizations. Such polarization may include vertical polarization, horizontal polarization, circularly polarized, left hand polarized, right hand polarized, or a combination of polarizations. The selection of polarizations may vary in depending on the transmitter 200
characteristics. In addition, the antenna element may be located in various surfaces of the transmitter 200. The antenna element may operate in single array, pair array, quad array and any other suitable arrangement that may be designed in accordance with the desired application.

[0046] The transmitter 200 may include transmitter board 204 layers, which may include antenna elements and/or RFIC for easy implementation and cost reduction. The transmitter board 204 may mechanically support and electrically connect the electronic components described herein using conductive tracks, pads and/or other features etched from copper sheets laminated onto a non-conductive substrate. A respective transmitter board of the transmitter boards 204 may be single sided (one copper layer), double sided (two copper layers), and/or multi-layer. Multiple transmitter boards 204 layers may reduce size of the transmitter and make it easier to integrate it into commercial applications. Transmitter board 204 layers may be connected to a single transmitter processor, an ASIC, and/or to general purpose microcontrollers.

[0047] In some implementations, a box transmitter, including a plurality of transmitter board 204 layers inside it may include a detachable antenna board 202 for providing greater control over pocket-forming and allow a flexible implementation. Furthermore, a range of wireless power transmission may be increased by the box transmitter. Multiple transmitter boards 204 layers may increase the range and the amount of power waves (e.g., RF power waves, ultrasound waves) that could be transferred and/or broadcasted wirelessly by the transmitter 200 due the higher density of a respective antenna element of the one or more antenna elements of a respective antenna board 202. The transmitter board 204 layers may be connected to the single transmitter processor and/or to dedicated microcontroller for each antenna board 202. Furthermore, box shape of the transmitter 200 may increase action ratio of wireless power transmission. In some implementations, the entire side of the transmitter board 204 may be closely packed with the antenna boards 202. The RFIC may connect to multiple antenna elements. The multiple antenna elements may surround a single RFIC.

[0048] The transmitter 200 may include the RFIC 206 that may receive an RF signal from the processor 202, and split the RF signal into multiple outputs, each output linked to the antenna element 202. For example, each RFIC 206 may be connected to four antenna elements of the antenna boards 202. In some implementations, each RFIC 206 may be
connected to eight, sixteen, and/or multiple antenna elements of the antenna boards 202. The RFIC 206 may include a plurality of RF circuits that may include digital and/or analog components, such as, amplifiers, capacitors, oscillators, piezoelectric crystals and the like. The RFIC 206 may control features of the antenna elements of the antenna boards 202, such as gain and/or phase for pocket-forming and manage it through direction, power level, and the like. The phase and the amplitude of pocket-forming in each antenna element may be regulated by the corresponding RFIC 206 in order to generate the desired pocket-forming and/or creating signal null in specific locations. In addition, the RFIC 206 may be connected to the microcontroller, which may utilize digital signal processing (DSP), ARM, central processor, computer, and the like. The lower number of the RFICs 206 present in the transmitter 200 may correspond to desired features such as lower control of multiple pocket-forming, lower levels of granularity, and a less expensive embodiment. In some implementations, the RFIC 206 may be connected to one or more processors, and the processor may be included into an independent base station or into the transmitter 200.

[0049] In some implementations of the transmitter 200, the phase and the amplitude used to transmit power waves via each antenna element may be regulated by the corresponding RFIC 206 in order to generate desired pockets of energy and creating transmission nulls in specific locations. The RFIC 206 signals connected to a respective antenna board of the antenna boards 202 may reduce processing requirement and may increase control over pocket-forming, allowing multiple pocket-forming and a more granular pocket-forming with less load over the microcontroller, and a higher number of pockets of energy may be formed. In this way, a higher number of receivers may be charged and a better transmission trajectory to such receivers may be achieved.

[0050] The RFIC 206 and the antenna boards 202 may operate in any suitable arrangement that may be designed in accordance with the desired application. For example, the transmitter 200 may include the antenna boards 202 and the RFIC 206 in a flat arrangement. A subset of 4, 8, 16, and/or any number of antenna elements may be connected to a single RFIC 206. The RFIC 206 may be directly embedded behind each respective antenna board of the antenna boards 202; such integration may reduce losses due the shorter distance between components. In some implementations, a row or column of antenna boards 202 may be connected to a single processor. The RFIC 206 connected to each row or column may allow for building a less expensive transmitter 200 that may produce pocket-forming by changing phase and gain between rows or columns.
In some implementations, a cascade arrangement of the RFICs 206 may be implemented. A flat transmitter 200 using a cascade arrangement of the RFICs 206 may provide greater control over pocket-forming and may enable more accurate targeting of receivers.

The transmitter 200 may be fed by the power source 208 that may include AC or DC power supply. Voltage, power, and current intensity provided by power source 208 may vary in dependency with the required power to be transmitted. Conversion of power to radio signal may be managed by the microcontroller and carried out by RFIC 206 that may utilize a plurality of methods and components to produce radio signals in a wide variety of frequencies, wavelength, intensities, and other features. As an exemplary use of a variety of methods and components for radio signal generation, oscillators and piezoelectric crystals may be used to create and change radio frequencies in different antenna elements. In addition, a variety of filters may be used for smoothing signals as well as amplifiers for increasing power to be transmitted.

The transmitter 200 may emit the RF power waves with a power capability from few watts to a predetermined number of watts required by a particular chargeable electronic device. Each respective antenna board of the antenna boards 202 may manage a certain power capacity.

Exemplary Heat Sink Device

FIG. 3A and FIG. 3B illustrate schematic diagrams of a front view and a rear view of an antenna array 300 of a wireless power transmission system, according to an exemplary embodiment. FIG. 3A and FIG. 3B will be explained in conjunction with FIG. 1 and FIG. 2. The transmitter may include a transmitter board 302. The transmitter board 302 may have a structure in which a plurality of conductive plates are electrically separated and structurally supported by a dielectric layer also stacked with the conductive plates. The transmitter board 302 allows electrical connection between electronic products to be implemented with high density, low costs, high reliability, and high productivity. A plurality of grounding layers and a plurality of ground vias that connect the plurality of grounding layers may be formed in the transmitter board 302.

A power feeding line may be formed on the transmitter board 302. An antenna board 304 may be removably connected to the transmitter board 302 and electrically coupled to the power feeding line. In another embodiment, the transmitter board 302 may
have a structure in which the antenna board 304 for wireless communication is integrally
formed in a printed circuit board (PCB). The structure allows omission of an assembly
process of a ball grid array (BGA) or a land grid array (LGA) which is used to bond the
antenna board 304, which is separately manufactured from the transmitter board 302, and a
physical distance between the antenna board 304 and the transmitter board 302 is minimized.
The transmitter may further include a radio frequency integrated circuit (RFIC) attached to
the transmitter board 302. The RFIC, the transmitter board 302, and the antenna board 304
(comprising one or more antenna elements 306) may be formed as a single or as separate
components.

[0057] The RFIC may also be bonded to the transmitter board 302. The RFIC chip
may be bonded to the transmitter board 302 using, for example, by flip-chip bonding.
However it will be apparent to a person having ordinary skill in the art that the bonding
method is not limited thereto, and the RFIC chip may be bonded to the transmitter board 302
by using wire bonding or other any other suitable surface mounting methods, e.g. BOA or
LGA. In another embodiment, the antenna board 304 may be bonded to the RFIC in a final
process using a surface mounting method such as a flip-chip bonding method or a wire
bonding method, and then the combined antenna board 304 and RFIC may be bonded to the
transmitter board 302 using surface mount technology (SMT) such as a ball grid array
(BGA), a land grid array (LGA), etc.

[0058] The RFIC, the transmitter board 302, and the antenna board 304 (comprising
one or more antenna elements 306) may also be individually designed and separately
manufactured in an alternate embodiment in order to provide respective performances thereof
in the high frequency bands. The transmitter may then be assembled from the separately
manufactured antenna board 304, the RFIC, and the transmitter board 302.

[0059] In one embodiment, each antenna element 306 of the antenna board 304
connected to the transmitter board 302 may behave like a metamaterial antenna.
Metamaterials are artificial composites that achieve material performance beyond the
limitation of uniform materials and exhibit properties not found in naturally-formed
substances. Such artificially structured materials are typically constructed by patterning or
arranging a material or materials to expand the range of electromagnetic properties of the
material. When an electromagnetic wave enters a material, the electric and magnetic fields of
the wave interact with electrons and other charges of the atoms and molecules of the material.
These interactions alter the motion of the wave changing the electromagnetic wave propagation properties in the material, e.g., velocity, wavelength, direction, impedance, index of refraction, and the like. Similarly, in a metamaterial, the electromagnetic wave interacts with appropriately designed artificial unit cells that macroscopically affect these characteristics. In an embodiment, the metamaterial may comprise an array of unit cells formed on or in a dielectric substrate and are configured to radiate wireless power signals to power electronic devices.

[0060] In one example, a metamaterial structure may be a periodic structure with a metamaterial unit cell. The metamaterial unit cell may include a surface having a metal patch with an aperture. The aperture is defined such that a periphery of the aperture is within a periphery of the surface by a spacing distance. An antenna element may be disposed within the aperture.

[0061] In another embodiment, the antenna board 304 connected to the transmitter board 302 includes, for example, a patch antenna. The patch antenna radiates a wireless signal and is configured to have a pattern suitable for a signal frequency. For example, the patch antenna may be configured to radiate a millimeter waveband signal. The patch antenna may be configured to include at least two layers of planar patterns, and is not limited to the illustrated two-layer structure. Also, the patch antenna may have an array structure including a plurality of antennas.

[0062] In one example, the patch antenna may include a high dielectric constant substrate having a cavity, a radiator disposed on a portion of one surface of the high dielectric constant substrate corresponding to the cavity, a feeder line disposed on the high dielectric constant substrate and supplying a signal to the radiator, and a ground part disposed on the high dielectric constant substrate. In another example, the patch antenna may include a dielectric body, radiation element, earth conductor and feed member. The radiation element may be disposed on a surface of the dielectric body, and each side of the radiation element has a length adjusted based on the frequency of a radio wave to be received and the effective permittivity of the dielectric body. The earth conductor may be disposed on the bottom surface of the dielectric body. The feed member may be electrically connected to the radiation element.

[0063] In another embodiment, the antenna board 304 connected to the transmitter board 302 includes, for example, a helical antenna, in which a resonator element is embedded
within a substrate. The resonator element may be configured in a helical shape with four or more turns. The dimensions and number of turns is dependent on a frequency range at which the antenna is to operate as well as its desired directivity. The helical antenna operates at frequencies over 1 GHz, however, the helical antenna may be configured to operate at frequencies in a range from 900 MHz to 100 GHz. The dimensions of the helical antenna and type of helical antenna may be configured to accommodate the frequencies of operation. The substrate may be cylindrical, and configured to embed the resonator element therein. The substrate may also be ceramic, where the ceramic may be alumina. The substrate further operates as a dielectric, and is denser than air. The substrate may be any material that provides for a relative permittivity between approximately 9 and 10 at a center frequency of a wireless signal transmitted by the transmitter via the helical antenna. A base may include a circular portion that defines a support region in which the substrate may be positioned. The base may also include a connector through which a conductor extends to a feed point to feed power signals to the resonator element that is to be transmitted by the helical antenna to an electronic device, for example, to be charged.

[0064] In another embodiment, the antenna board 304 connected to the transmitter board 302 and inside the transmitter board 302 and includes, for example, a stamped antenna resonator element configured to transmit a wireless power signal. The resonator element may be metallic, and configured to provide a certain inductive-capacitive (LC) response profile for transmitting a wireless power signal for use in remotely powering an electronic device and/or recharging a battery. The resonator element when configured into an antenna operates at frequencies in a range from over 1 GHz to 100 GHz. The dimensions of the resonator element may be configured to accommodate the frequencies of operation. In one example, the stamped resonator element may be a stamped piece of metal. The resonator element may include a plurality of horizontal resonator elements interconnected by vertical sections. The vertical sections may not be perpendicular to the horizontal resonator elements, but may provide for a transition that separates the horizontal resonator elements by a certain gap that provides for a predetermined inductive-capacitive response profile over a certain frequency range of operation. Each of the horizontal resonator elements may be at least in part planar, vertically aligned, and in parallel with one another. In being vertically aligned, at least a portion of each of the resonator elements may be disposed over one another. A signal feed may be positioned along one side of the stamped resonator element to conduct RF signals thereto. The signal feed may be formed by a stamping operation of a single piece of metal.
that forms the stamped resonator element or may be formed by another piece of metal and connected to the resonator element. Alternatively, an induction technique may be utilized to apply the RF signal to the resonator element for transmission of the wireless power signal.

[0065] In an embodiment, a heat sink 308 may be formed at a surface of the transmitter board 302 on which the antenna board 304 including one or more antenna elements 306 is connected. The heat sink 308 may be formed of a metal having good thermal conductivity, and may include a plurality of heat dissipation pins to increase heat radiation efficiency. In some embodiments, the heat sink 308 may include cooling elements that may include cooling fins. In other embodiments, the heat sink 308 may further comprise a heat pipe and an external liquid cooler or air cooler.

[0066] The transmitter board 302 includes a plurality of surfaces where the antenna board 304 and the heat sink 308 are formed on opposite sides of same surface of the plurality of surfaces. The heat sink 308 is formed on the transmitter board 302 such that the placement of the heat sink 308 with respect to the antenna board 304 and shape of the heat sink 308 allows the heat sink 308 to operate as a reflector to direct the power waves emitted from the one or more antenna elements 306 of the antenna board 304 in a pre-determined direction. The shape of the heat sink 308 is typically designed to facilitate high radiation gain of the one or more antenna elements 306. In one example, the shape of the heat sink 308 is parabolic. In another example, the shape of the heat sink 308 is U-shaped. The gain refers to a mathematical measure of an antenna radiation pattern compared to a reference antenna such as a dipole or an isotropic radiator. The gain may be measured in dBs relative to a dipole or dBi relative to an ideal isotropic. In any given direction, a negative gain means that the antenna radiates less than the reference antenna and a positive number means that the antenna radiates more than the reference antenna. The decibel (dB) refers to a logarithmic scale that represents power gain or loss in an RF circuit. For example, 3 dB represents a doubling of power, -3 dB is half the power and -6 dB represents half the voltage or current, but a quarter of the power.

[0067] In one example, the shape of the heat sink 308 may be designed based on the number of one or more antenna elements 306 to allow the heat sink 308 to operate as a reflector to direct the power waves emitting from the one or more antenna elements 306 in a predetermined direction. In another example, the shape of the heat sink 308 may be designed based on the shape of the one or more antenna elements 306 to allow the heat sink 308 to
operate as a reflector to direct the power waves emitting from the one or more antenna elements 306 in a predetermined direction. In yet another example, the shape of the heat sink 308 may be designed based on the number and shape of one or more antenna elements 306 to allow the heat sink 308 to operate as a reflector to direct the power waves emitting from the one or more antenna elements 306 in a pre-determined direction. In yet another example, the shape of the heat sink 308 may be designed based on the type of one or more antenna elements 306 to allow the heat sink 308 to operate as a reflector to direct the power waves emitting from the one or more antenna elements 306 in a pre-determined direction.

[0068] In a preferred embodiment, the one or more antenna elements 306 are configured to operate in a frequency band of 5.8 GHz. The height of at least one antenna element of the one or more antenna elements 306 may be from about 1/8 inches to about 1 inch, where the width of the at least one antenna element may be from about 1/8 inches to about 1 inch. The distance between two adjacent antenna elements of the one or more antenna elements 306 may be a fraction of Lambda and up to about 1 Lambda (e.g. 1/2 Lambda, 1/4 Lambda, 1/12 Lambda). The one or more antenna elements 306 may also be positioned at a pre-defined distance with respect to each other such that power waves transmitted by the one or more antenna elements 306 are directed to form a pocket of energy at a receiver within an electronic device. The one or more antenna elements 306 may be configured to transmit power waves at a different time from each other based on placement of the one or more antenna elements 306. The one or more antenna elements 306 may also be positioned at a pre-defined depth with respect to each other such that power waves transmitted by the one or more antenna elements 306 are focused on a receiver and do not form a pocket of energy outside a receiver within an electronic device. The one or more antenna elements 306 may also have a mutual coupling among them where the mutual coupling is inductive or capacitive coupling between the one or more antenna elements 306.

[0069] The transmitter board 302 may also be connected to one or more processors for each antenna element of the one or more antenna elements 306 formed on the transmitter board 302. The processor may control, manage, and otherwise govern the various processes, functions, and components of the transmitter. The processors may be configured to operate one or more antenna switches may be connected to the one or more antenna elements 306, and one or more filters are also connected to the one or more antenna switches. The processors are further configured to activate a first set of antenna elements of the one or more antenna elements 306 based on a target for directing a pocket of energy using power waves.
where the first set of antenna elements may be selected based on a distance between antenna elements of the first set of antenna elements.

[0070] The processor may include suitable logic, circuitry, and interfaces that are operable to execute one or more instructions to perform predetermined operations of the transmitter. The processor may be realized through a number of processor technologies known in the art. The examples of the processor, i.e. microcontroller, include, but are not limited to, an x86 processor, an ARM processor, a Reduced Instruction Set Computing (RISC) processor, an Application-Specific Integrated Circuit (ASIC) processor, or a Complex Instruction Set Computing (CISC) processor, among others.

[0071] FIG. 4A and FIG. 4B illustrate schematic diagrams of a front view and a rear view of an antenna board 400 of a wireless power transmission system, according to an exemplary embodiment. The connection between transmitter board 402, antenna board 404, and heat sink in FIG. 3A and FIG. 3B is the same as described in FIG. 4A and FIG. 4B. For example, the PCB with the transmitter board 402 includes a plurality of surfaces where the antenna board 404 and a heat sink are placed on opposite sides of same surface of the plurality of surfaces. The heat sink is formed on the transmitter board 402 such that the placement of the heat sink with respect to the antenna board 404 and shape of the heat sink is designed such that the heat sink operates as a reflector to direct energy in a pre-determined direction. The shape of the heat sink is typically configured to facilitate high radiation gain of antenna elements of the antenna board 404. In one example, the shape of the heat sink is parabolic. In another example, the shape of the heat sink is U-shaped. The heat sink may be formed of a metal having good thermal conductivity, and may include a plurality of heat dissipation pins to increase heat radiation efficiency.

[0072] The antenna elements of the antenna board 404 described herein are ceramic antenna elements. In an embodiment, the ceramic antenna element may be a small antenna component made of ceramic material. There may be several types of ceramic antennas each with its own characteristics.

[0073] The ceramic antenna element may include a substrate and a conductor. The body of the substrate may have two free ends that form two conductive terminals. In another embodiment, the ceramic antenna element comprises a metal antenna further comprising an inverted F-type antenna, a planar inverted-F antenna or a monopole antenna. The process used is usually printing on the ceramic block complex radiation pattern, or using low
temperature co-fired ceramic process to print multilayer metal pattern. In yet another embodiment, the antenna element may be a compact ceramic based antenna without printing a small amount of the metal pattern. The structure of such an antenna element is simple, has high radiation efficiency, and it is easy to adjust the resonant frequency.

[0074] In another embodiment, the ceramic antenna may include a substrate and a conductor. The substrate may be made of ceramic material with a low dielectric loss and a high dielectric constant. The conductor may be made of metal with a high Q factor as well as a good anti-oxidation property, and being formed on surfaces of the substrate by means of mask etching or printing technology. The conductor may have a circuit portion disposed on surfaces of the substrate in a helical manner, and two conducting electrodes may be disposed at two concavities of the substrate and connected by the circuit portion.

[0075] The ceramic antennas offer advantages such as they are separate components, have small sizes and a variety of configurations are available. Also, close proximity of the ceramic antenna to other components doesn't cause severe detuning. The ceramic antennas are also less affected by environmental factors. Further, flexible tuning and testing options are possible, and the design changes are more easily introduced.

[0076] FIG. 5 is a flow diagram 500 depicting forming a heat sink in a wireless power transmission system, according to an exemplary embodiment.

[0077] At step 502, a transmitter board is formed. The transmitter board may be formed to build a variety of devices and circuitry for the wireless power transmission system. The transmitter board may have a structure in which a plurality of conductive plates are electrically separated and structurally supported by a dielectric layer also stacked with the conductive plates. The transmitter board allows electrical connection between electronic products to be implemented with high density, low costs, high reliability, and high productivity. A plurality of grounding layers and a plurality of ground vias that connects the plurality of grounding layers may be formed in the transmitter board. In an embodiment, the transmitter board comprises a power feeding line and one or more ports.

[0078] At step 504, a port on the transmitter board is selected to removably connect at least one antenna board. The at least one antenna board comprises one or more antenna elements configured to transmit power waves.

[0079] At step 506, the at least one antenna board is connected to the selected port. In some embodiments, the antenna board includes one or more antenna elements connected in
the selected port. In some embodiments, the connection between the antenna board and the port on the transmitter board is removable. In some embodiments, the at least one antenna board is also electrically coupled to the power feeding line of the transmitter board.

[0080] At step 508, the heat sink is attached to the transmitter board. The transmitter board may include a plurality of surfaces where the antenna board and the heat sink may be located on opposite sides of a same surface of the plurality of surfaces. In some embodiments, the heat sink is attached to the transmitter board such that the placement of the heat sink with respect to the at least one antenna board, and shape of the heat sink allows the heat sink to operate as a reflector to direct the wireless power waves transmitted from the at least one antenna board in a pre-determined direction. In one example, the shape of the heat sink is parabolic. In another example, the heat sink is U-shaped.

[0081] During operation, a receiver may communicate with a transmitter having the transmitter board in order to indicate its position with respect to the transmitter. The receiver may be an integral or external component of the one or more electronic devices such as the mobile phone and the laptop (electronic devices 112 and 110, respectively, FIG. 1). A communications component may enable the receiver to communicate with the transmitter by transmitting communication signals over a wireless protocol. The communications component may then be used to transfer information, such as an identifier for the one or more electronic devices as well as battery level information of the one or more electronic devices, geographic location data of the one or more electronic devices, or other information that may be of use for the transmitter in determining when to send energy to the receiver, as well as the location at which to deliver the power waves.

[0082] The transmitter may transmit or broadcast the power waves to the receiver associated with the electronic devices such as the mobile phone and the laptop. The transmitter includes the antenna board formed on the transmitter board having one or more antenna elements for sending the power waves. Each antenna element of the one or more antenna elements sends power waves where the transmitter applies a different phase and amplitude to the power waves transmitted from different antenna elements of the one or more antenna elements.

[0083] During the transmission of power waves from the antenna elements, the heat sink in some embodiments operates as a reflector to direct the power waves emitted from the antenna elements of the antenna board in a pre-determined direction. The shape of the heat
sink, which may be parabolic or U-shaped, facilitates high radiation gain of the antenna elements due to the ability of the heat sink to direct the power waves emitted from the antenna elements of the antenna board in a predetermined direction.

[0084] The receiver may then utilize the power waves emitted by the transmitter to establish a pocket of energy, for charging or powering the one or more electronic devices. The receiver may comprise circuitry for converting the power waves into electrical energy that may be provided to the one or more electronic devices. In some embodiments, the one or more electronic devices may be distinct from the receiver associated with the one or more electronic devices. In such embodiments, the one or more electronic devices may be connected to the receiver over a wire that conveys converted electrical energy from the receiver to the one or more electronic devices.

[0085] Exemplary Modular Antenna Boards and Antennas

[0086] Embodiments of a wireless power transmission system include a transmitter, which is configured to transmit power waves. The transmitter includes one or more transmitter boards. Each of the one or more transmitter boards may include a plurality of ports. Embodiments of the wireless power transmission system further include a plurality of detachable antenna boards which can be connected to the plurality of ports on a transmitter board of the one or more transmitter boards, and which obviates the need for internal antenna boards on the transmitter. Some embodiments of the present disclosure also allow increased frequency ranges and improved performance by providing an ability to attach additional antenna boards to the transmitter board for transmitting the power waves. Some embodiments of the present disclosure may also include switching circuitry having a microprocessor or a microcontroller, which automatically activates or switches the port on the transmitter board when the antenna board is inserted into a connector on the port. When the antenna board is removed, the port on the transmitter board is deactivated.

[0087] FIG. 6A and FIG. 6B illustrate schematic diagrams of a front view and a rear view of a modular transmitter board 600 of a wireless power transmission system, according to an exemplary embodiment. FIG. 6A and FIG. 6B will be explained in conjunction with FIG. 6C that illustrates a schematic diagram plugging of an antenna board 602 into a port 604 of the transmitter board 600 of the wireless power transmission system, according to an exemplary embodiment.
The transmitter board 600 may be built on a printed circuit board (PCB). The transmitter board 600 may include a plurality of ports 604. The plurality of ports 604 is configured to receive a plurality of antenna boards 602. For simplicity of explanation, only one antenna board 602 is shown. Each of the plurality of antenna boards 602 may include a complimentary port that is plugged into the port 604 of the plurality of ports on each of the one or more transmitter boards 600. In one example, a coupling feature may be provided on each antenna board 602 that aligns with a similar corresponding feature on the inside of the port 604. In one example, each coupling feature may comprise a plate with dimensions generally matching those of the corresponding feature (opening) in the port and a tab to make contact to the transmitter board 600.

Each antenna board 602 may further include a plurality of antenna elements 608 configured to transmit one or more types of the power waves. The antenna elements 608 may be selected from the group consisting of ceramic antennas, yagi antenna, tapered antenna, patch antenna, or the like. In some embodiments, the antenna board 602 may include antenna elements, and one or more integrated circuits controlling the behavior of the antenna elements, such as generating the power waves having predetermined characteristics (e.g., amplitude, frequency, trajectory, phase). The antenna elements may transmit the power waves having the predetermined characteristics, such that the power waves arrive at a given location within a transmission field of a transmitter, and exhibit those characteristics. It should be appreciated that, although the exemplary wireless power transmission system describes radio-frequency based power waves, additional or alternative wave-based technologies may be used (e.g., ultrasonic, infrared, magnetic resonance) to wirelessly transmit the power waves from the transmitter to the receiver.

In one embodiment, each of the plurality of ports 604 may correspond to a connector member. The connector member may be secured to the transmitter board 600 and the antenna board 602 may be removably connectable to the connector member. In some embodiments, the connector member may be permanently attached to the transmitter board 600 such that at least partial disassembly of the transmitter board 600 may be required to remove the connector member. However, it should be understood that in some embodiments, the connector member may be attached to the transmitter board 600 in a different manner.

In some embodiments, the antenna board 602 is configured to be detachable from the connector member to enable replacement of the antenna board 602 in the event
antenna board 602 is damaged or becomes unworkable. Furthermore, in some embodiments, if excessive force is applied to the antenna board 602, the antenna board 602 is configured to get separated from the connector member, thereby reducing the likelihood of damage to the antenna board 602 and/or other components of the transmitter that may otherwise result if excessive force is applied to the antenna board 602.

[0092] In another embodiment, removable antenna board 602 for the transmitter is provided. The removable antenna board 602 may be removably connected to the transmitter board 600. The antenna board 602 and the transmitter board 600 may have corresponding coupling structures. In some embodiments, the coupling structures may be flexible and may removably connect the antenna board 602 to the transmitter board 600. In some embodiments, the flexible coupling structures may be integrated into the structure of the antenna board 602 and the structure of the transmitter board 600. In one suitable arrangement, the coupling structures may be formed in distinct portions of the antenna board 602 and the transmitter board 600. At least one of the coupling structures may be formed from a flexible material (i.e., an elastic material). Because the antenna board 602 is removably connected to the transmitter board 600 with the flexible elastic coupling structures, in some embodiments, the antenna board 602 may be removed from the transmitter board 600 without damaging the antenna board 602, the transmitter board 600, or the flexible coupling structures. The coupling of the antenna board 602 to the transmitter board 600 may facilitate easy replacement of the antenna board 602 and easy addition of the antenna board 602 whenever there are more receivers to be charged.

[0093] The antenna board 602 may also be mechanically and electrically connected to the transmitter board 600 using a coupling structure and a corresponding coupling structure on antenna board 602. The coupling structure and the corresponding coupling structure on antenna board 602 may be used to create a communications path between the transmitter board 600 and the antenna board 602. The coupling structures may be configured to allow the antenna board 602 to move about an axis. The antenna board 602 may move about the axis from an original position into an extended position or move from the extended position into the original position. The coupling structures may be configured to connect an antenna board 602 to the transmitter board 600 in such a way as the antenna board 602 is not released during operations, for example, while moving the antenna board 602 around an axis. In one example, the coupling structure may be a rectangular port. The coupling structure may be formed in a rectangular shape with an elastic material. In another example, the coupling
structure may be formed in any suitable shape such as a pentagon, hexagon, etc. In some embodiments, the coupling structure may connect with a corresponding coupling structure in the antenna board 602 such that a hole or depression in the coupling structure is mated with the tab (corresponding coupling structure) in the antenna board 602.

[0094] In another embodiment, magnetic coupling port on the transmitter board 600 and corresponding magnetic coupling port on the antenna board 602 may provide a magnetic attraction force between the transmitter board 600 and the antenna board 602. The magnetic attraction force provided by magnetic coupling ports may hold the antenna board 602 onto the transmitter board 600. The coupling structures (or portions of the coupling structures) may be made of one or more magnetic elements (magnets) and/or one or more ferromagnetic elements (e.g., iron bars). The magnetic or ferromagnetic portions of the coupling structures may produce a magnetic force that holds the antenna board 602 to the transmitter board 600. The magnetic coupling ports and other coupling structures discussed in the present disclosure may be configured to provide feedback to a user when the antenna board 602 is connected or disconnected from the transmitter board 600. For example, the magnetic coupling ports may be configured to make a noise when the antenna board 602 is connected to or disconnected from the transmitter board 600.

[0095] The transmitter may have sensors to determine whether the antenna board 602 is attached to or detached from the transmitter board 600. A communications path may be used to convey signals between the sensors and a processor of the transmitter. The communications path may be implemented using any suitable cable or wires or printed connections on the PCB. In one embodiment, the microprocessor, on receiving a notification from the sensor that the antenna board 602 is attached to the transmitter board 600, activates the port 604 of the transmitter board 600 in which the antenna board 602 is plugged. On activation of the port 604, an electrical coupling occurs between the antenna board 602 and the port 604 in which the antenna board 602 is plugged, and the antennas of the antenna board 602 are activated for transmission of the power waves. In another embodiment, the microprocessor, on receiving a notification from the sensor that the antenna board 602 is detached from the transmitter board 600, deactivates the port 604 of the transmitter board 600 from which the antenna board 602 was unplugged.

[0096] The processor of the transmitter may include suitable logic, circuitry, and interfaces that are operable to execute one or more instructions to perform predetermined
operations on receiving the inputs from the sensors. The processor may be implemented using a number of processor technologies known in the art. Examples of the processor include, but are not limited to, an x86 processor, an ARM processor, a Reduced Instruction Set Computing (RISC) processor, an Application-Specific Integrated Circuit (ASIC) processor, or a Complex Instruction Set Computing (CISC) processor, among others. The processor may also include a Graphics Processor (GPU) that executes sets of instructions to perform one or more processing operations associated with handling various forms of graphical data, such as data received from a visual or thermal camera, or to produce a graphical user interface (GUI) allowing a user to configure and manage operation.

[0097] In another embodiment, the processor is further configured to automatically detect a new antenna board connected to an empty port of the plurality of ports. Based on the detection of the new antenna board being connected, the processor may then re-configure selection parameters for activating the new antenna board. Similarly, the processor may re-configure waveform generation parameters applied during power wave generation and transmission. The processor, while reconfiguring the selection parameters, takes into consideration operation of other antenna boards so that their respective transmitted power waves do not interact in an undesired manner or create unwanted interference. The transmitter may also include a timing circuit. When the new antenna board is connected to the transmitter board 600, the processor may update trigger timings of all the antenna boards in the timing circuit and include the trigger time for the new antenna board. Based on a position of the receiver, the processor may control the trigger timing such that the one or more antennas of each antenna board are configured to transmit the one or more power waves at a same time or a different time from each other based on the position of the identified receiver. The timing circuit may also be used to select a different transmission time for each antenna board.

[0098] FIG. 7 is a flow diagram depicting coupling of antenna arrays with an antenna board in a wireless power transmission system, according to an exemplary embodiment.

[0099] At step 702, a transmitter board is formed. In some embodiments, the transmitter board may be formed to build a variety of devices and circuitry for the wireless power transmission system. In an embodiment, the transmitter board comprises a power feeding line and one or more ports.
[0100] At step 704, a port on the transmitter board is selected to removably connect at least one antenna board. The at least one antenna board comprises one or more antenna elements configured to transmit power waves.

[0101] At step 706, the at least one antenna board is connected in the selected port. In some embodiments, the at least one antenna board includes one or more antenna elements connected in the selected port. In some embodiments, the connection between the at least one antenna board and the port on the transmitter board is removable; the at least one antenna board is also connected to the power feeding line of the transmitter board.

[0102] At step 708, a processor adjusts and controls transmission of one or more power waves via the antenna boards connected to the respective ports to form a pocket of energy within a transmission field of the transmitter. In an embodiment, the processor is also configured to selectively activate antenna boards of the plurality of antenna boards that are connected to respective ports of the plurality of ports. In another embodiment, the processor is further configured to automatically detect a new antenna board connected to an empty port of the plurality of ports.

[0103] In an embodiment, the transmitter of the wireless power transmission system adheres to electromagnetic field (EMF) exposure protection standards for human subjects. Maximum exposure limits are defined by US and European standards in terms of power density limits and electric field limits (as well as magnetic field limits): These include, for example, limits established by the Federal Communications Commission (FCC) for MPE, and limits established by European regulators for radiation exposure. Limits established by the FCC for MPE are codified at 47 CFR § 1.1310. For electromagnetic field (EMF) frequencies in the microwave range, power density can be used to express an intensity of exposure. Power density is defined as power per area. For example, power density can be commonly expressed in terms of watts per square meter (W/m²), milliwatts per square centimeter (mW/cm²), or microwatts per square centimeter (μW/cm²).

[0104] In some embodiments, the transmitter of the wireless power transmission system incorporates various safety techniques to ensure that human occupants in or near a transmission field are not exposed to EMF energy near or above regulatory limits or other nominal limits. One safety method is to include a margin of error (e.g., about 10% to 20%) beyond the nominal limits in deciding to avoid, reduce, or cease transmission, so that human subjects are not exposed to power levels at or near the EMF exposure limits. A second safety
method can provide staged protection measures, such as reduction or termination of wireless power transmission if humans (and in some embodiments, other living beings or sensitive objects) move toward a pocket of energy with power density levels exceeding EMF exposure limits.

[0105] The antenna element structures and wireless communications devices may support communications over any suitable wireless communications bands. For example, wireless communications devices may be used to cover communications frequency bands such as the cellular telephone bands at 850 MHz, 900 MHz, 1800 MHz, and 1900 MHz, data service bands such as the 3G data communications band at 2100 MHz (commonly referred to as UMTS or Universal Mobile Telecommunications System), Wi-Fi® (IEEE 802.11) bands at frequencies such as 2.4 GHz and 5.0 GHz (also sometimes referred to as wireless local area network or WLAN bands), the Bluetooth® band at 2.4 GHz, and the global positioning system (GPS) band at 1575 MHz. A communications device can cover these communications bands and/or other suitable communications bands with proper configuration of the antenna structures in wireless communications circuitry.

[0106] FIG. 8 is a flow diagram depicting operation of a wireless power transmission system, according to an exemplary embodiment.

[0107] In a first step 802, a transmitter determines location of a receiver. In some embodiments, the transmitter establishes a connection with the receiver. The transmitter and receiver may communicate information and data over using a wireless communication protocol capable of transmitting information between two processors of electrical devices such as Bluetooth. For example, the transmitter may scan for receiver's broadcasting signals or a receiver may transmit a signal to the transmitter. The signal may announce the receiver's presence to the transmitter, and may trigger an association between the transmitter and the receiver. Once the transmitter identifies location of the receiver, the transmitter may establish the connection between the transmitter and the receiver, allowing the transmitter and receiver to communicate signals. The transmitter may also receive data from one or more sensors about a location of the receiver.

[0108] In a next step 804, the transmitter may determine parameters for power wave transmission based on location of the receiver. In one embodiment, a processor of the transmitter may execute one or more software modules in order to analyze the received data corresponding to location of the receiver, and based on the analysis identify one or more
parameters. In some embodiments, the one or more parameters act as input to the processor to make the necessary selections to form the pocket of energy at the location of the receiver. In some embodiments, the one or more parameters correspond to a waveform to be generated by a waveform generator, an output frequency of the waveform, shape of antenna arrays in an antenna board, and spacing of the antennas in the antenna array to form the pocket of energy at the targeted location of the receiver.

[0109] At step 806, a processor of the transmitter controls and adjusts transmission of power waves via antenna boards (having antenna elements) connected to respective ports on a transmitter board to form a pocket of energy within a transmission field of the transmitter. In an embodiment, the processor is configured to selectively activate antenna boards of the plurality of antenna boards that are connected to respective ports of the plurality of ports of the transmitter board based on the determined parameters or the location of the receiver.

[0110] The transmitter algorithms based on the one or more parameters may also vary production and transmission of power transmission signals by the antenna elements of the antenna board to optimize the pocket of energy around the receiver. For example, the transmitter may adjust the phase at which the antenna elements transmit respective power transmission signals until power received by the receiver indicates that an effective pocket energy has been established around the receiver. When an optimal configuration for the antenna elements is identified (e.g., the optimal configuration allows for formation of the effective pocket of energy), memory of the transmitter may store the configurations to keep the transmitter broadcasting at that optimal configuration.

[0111] The algorithms of the transmitter based on the one or more parameters may further determine when it is necessary to adjust the power transmission signals and may also vary the configuration of the antenna elements. For example, the transmitter may determine that power received at a receiver is less than maximal, based on the one or more parameters. The transmitter may then adjust the phase of the power transmission signals, but may also simultaneously continue to generate new parameters based on the information and data being reported back from receiver and/or the sensor devices.

[0112] In the next step 808, the transmitter generates the pocket of energy for the receiver. The receiver may be electrically connected to the electronic device like a smart phone.
In an embodiment, the transmitter may scan for new receivers at a predetermined interval and thereby generate new parameters that correspond to the new receivers. As each new receiver is detected, the new parameters are generated and, based on the new parameters, the transmitter may establish a connection and begin transmitting power transmission signals, accordingly.

While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.

Other variations to the disclosed embodiments can be understood and effected by those skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure, and the appended claims. In the claims, the word "comprising" does not exclude other elements or steps, and the indefinite article "a" or "an" does not exclude a plurality. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage. Any reference signs in the claims should not be construed as limiting scope.
What is claimed is:

1. A transmitter in a wireless power transmission system comprising:
 - a transmitter board comprising one or more ports configured to receive one or more antenna boards;
 - an antenna board comprising one or more antenna elements configured to transmit power waves, wherein the antenna board is configured to removably connect to the one or more ports of the transmitter board; and
 - a heat sink attached to the transmitter board configured to absorb heat generated by the transmitter board, the heat sink configured to reflect the power waves transmitted by the antenna board in a pre-determined direction.

2. The transmitter of claim 1, wherein placement of the heat sink in relation to the one or more ports is selected such that the heat sink reflects power waves that are transmitted by the one or more antenna elements of the antenna board in the pre-determined direction.

3. The transmitter of any preceding claim, wherein the heat sink is substantially U-shaped.

4. The transmitter of any one of claims 1-2, wherein the heat sink has a substantially parabolic shape.

5. The transmitter of any preceding claim, wherein a shape of the heat sink is configured to enable high radiation gain of the one or more antenna elements.

6. The transmitter of any preceding claim, wherein the one or more antenna elements are made of ceramic, and wherein the ceramic is alumina.

7. The transmitter of any preceding claim, wherein the one or more antenna elements are patch antennas configured to irradiate wireless signals.

8. The transmitter of any preceding claim, wherein the transmitter board comprises a plurality of surfaces, and wherein the antenna board and the heat sink are positioned on opposite sides of a same surface of the plurality of surfaces.
9. The transmitter of any preceding claim, further comprising a casting of a dielectric embedding the one or more antenna elements, wherein the casting of the dielectric is silicon.

10. The transmitter of any preceding claim, wherein the one or more antenna elements transmit the power waves to a receiver embedded in an electronic device to charge the electronic device.

11. The transmitter of any preceding claim, wherein the one or more antenna elements are configured to operate in a frequency band of 5.8 GHz.

12. The transmitter of any preceding claim, wherein the transmitter board comprises a processor configured to determine when the antenna board is connected to the one or more ports of the transmitter board.

13. The transmitter of claim 12, wherein the processor is configured to control power wave transmission operations of the one or more antenna elements of the antenna board connected to the one or more ports.

14. The transmitter of any preceding claim, wherein a radio frequency integrated circuit is connected to the antenna board.

15. The transmitter of any preceding claim, wherein one or more antenna switches are connected to the one or more antenna elements, and wherein one or more filters are connected to the one or more antenna switches.

16. A method for making transmitter components, the method comprising:
 forming a transmitter board comprising one or more ports configured to receive one or more antenna boards, wherein:
 each respective antenna board of the one or more antenna boards is configured to removably connect to the transmitter board, and
 each respective antenna board comprises one or more antenna elements configured to transmit power waves, and
 attaching a heat sink to the transmitter board, the heat sink configured to absorb heat generated by the transmitter board, wherein the heat sink is configured to reflect the power waves transmitted by the one or more antenna elements of a respective antenna board in a pre-determined direction.
17. The method of claim 16, wherein placement of the heat sink in relation to the antenna board is selected such that the heat sink reflects the power waves transmitted by the one or more antenna elements of the respective antenna board in the pre-determined direction.

18. The method of any one of claims 16-17, wherein the one or more antenna elements have a mutual coupling among them, and wherein the mutual coupling is inductive or capacitive coupling between the one or more antenna elements.

19. The method of any one of claims 16-18, wherein the transmitter board comprises a plurality of surfaces, and wherein the antenna board and the heat sink are positioned on opposite sides of a same surface of the plurality of surfaces.

20. The method of any one of claims 16-19, wherein the heat sink is substantially U-shaped.

21. The method of any one of claims 16-19, wherein the heat sink has a substantially parabolic shape.

22. The method of any one of claims 16-21, wherein the height of at least one antenna element of the one or more antenna elements of a respective antenna board is from about 1/8 inches to about 1 inch, wherein the width of the at least one antenna element is from about 1/8 inches to about 1 inch, and wherein the distance between two adjacent antenna elements of the one or more antenna elements of the respective antenna board is between about 1/12 Lambda to about 1 Lambda.

23. A transmitter of a wireless power transmission system comprising:
 a transmitter board comprising a plurality of ports configured to receive a plurality of antenna boards, wherein each respective port of the plurality of ports is configured to receive a respective antenna board of the plurality of antenna boards, and wherein the respective antenna board comprises one or more antenna elements configured to transmit one or more power waves; and
 a processor configured to:
 determine that the respective antenna board is connected to a respective port of the transmitter board, and
control transmission of one or more power waves via the one or more antenna elements of the respective antenna board connected to the respective port of the transmitter board to form a pocket of energy within a transmission field of the transmitter.

24. The transmitter of claim 23, wherein the respective antenna board comprises a complimentary port that is connected to the respective port of the transmitter board.

25. The transmitter of any one of claims 23-24, further comprising a locking mechanism to hold the respective antenna board in place while it is connected to the respective port of the transmitter board.

26. The transmitter of any one of claims 23-25, wherein the respective antenna board frictionally engages to the respective port of the transmitter board.

27. The transmitter of any one of claims 23-26, wherein the one or more antenna elements of the respective antenna board are made of ceramic, and wherein the ceramic is alumina.

28. The transmitter of any one of claims 23-27, wherein an antenna element of the one or more antenna elements of the respective antenna board is a resonator element configured to radiate a wireless signal, and a substrate is embedding the resonator element.

29. The transmitter of any one of claims 23-28, wherein a casting of a dielectric is embedding the one or more antenna elements of the respective antenna board, and wherein the casting is silicon.

30. The transmitter of any one of claims 23-29, wherein the respective antenna element comprises an antenna mount defining an opening configured to operate as a resonator for transferring an RF signal, and wherein the resonator is configured as a Yagi antenna.

31. The transmitter of any one of claims 23-29, wherein an antenna element of the one or more antenna elements of the respective antenna board is a patch antenna configured to irradiate wireless signals.

32. The transmitter of any one of claims 23-29, wherein an antenna element of the one or more antenna elements of the respective antenna board comprises a plurality of horizontal resonator elements.
33. The transmitter of claim 32, wherein each horizontal resonator element of the plurality of horizontal resonator elements is planar, vertically aligned, and substantially parallel to at least one other horizontal resonator element.

34. A method performed by a processor of a transmitter of a wireless power transmission system, the method comprising:

 identifying, by a processor configured to control a transmitter board having a plurality of ports configured to receive a plurality of antenna boards, an antenna board connected to a respective port of the plurality of ports of the transmitter board, wherein the antenna board comprises one or more antenna elements configured to transmit one or more power waves;

 selectively activating, by the processor, the antenna board connected to the respective port of the plurality of ports, wherein selectively activating the antenna board includes instructing the one or more antenna elements of the antenna board to transmit the one or more powers; and

 controlling, by the processor, transmission of the one or more power waves via the one or more antenna elements of the antenna board to form a pocket of energy within a transmission field of the transmitter.

35. The method of claim 34, further comprising automatically detecting, by the processor, a new antenna board connected to an empty port of the plurality of ports.

36. The method of any one of claims 34-35, wherein a heat sink is attached to the transmitter board.

37. The method of any one of claims 34-36, wherein antenna switches are connected to each antenna element of the one or more antenna elements, and wherein one or more filters are connected to the antenna switches.

38. The method of any one of claims 34-37, wherein the antenna board comprises a complimentary port that is connected to the respective port of the plurality of ports.

39. The method of any one of claims 34-38, wherein the transmitter comprises a locking mechanism to hold the antenna board in place while it is connected to the respective port of the plurality of ports.
40. The method of any one of claims 34-39, wherein the antenna board frictionally engages to the respective port of the plurality of ports.

41. The method of any one of claims 34-40, wherein the one or more antenna elements are made of ceramic, and wherein the ceramic is alumina.

42. The method of any one of claims 34-41, wherein an antenna element of the one or more antenna elements is a resonator element configured to radiate a wireless signal, and a substrate is embedding the resonator element.

43. An antenna board comprising:
 one or more antenna elements configured to transmit one or more power waves, wherein the antenna board is configured to detachably connect to a transmitter board, and wherein the transmitter board comprises a port configured to receive the antenna board.

44. The antenna board of claim 43, comprising a complimentary port configured to connect with the port of the transmitter board.

45. The antenna board of claim 44, wherein the transmitter board comprises a processor configured to activate the port when the antenna board is connected to the port.

46. The antenna board of claim 45, wherein the processor controls the transmission of the one or more power waves from the antenna board to form a pocket of energy in a transmission field of a transmitter.

47. The antenna board of any one of claims 43-46, wherein the one or more antenna elements are made of ceramic, and wherein the ceramic is alumina.

48. The antenna board of any one of claims 43-47, wherein an antenna element of the one or more antenna elements is a resonator element configured to radiate a wireless signal, and a substrate is embedding the resonator element.

49. The antenna board of claim 48, wherein the resonator element is cylindrical, and wherein the substrate is cylindrical.

50. The antenna board of any one of claims 43-49, wherein a casting of a dielectric is embedding the one or more antenna elements, and wherein the casting is silicon.
51. The antenna board of any one of claims 43-50, wherein each antenna element of the one or more antenna elements comprises an antenna mount defining an opening configured to operate as a resonator for transferring an RF signal.

52. The antenna board of claim 51, wherein the resonator is configured as a Yagi antenna.

53. The antenna board of any one of claims 43-52, wherein the antenna board is frictionally engaged to the port.

54. A transmitter in a wireless power transmission system comprising:
 an antenna board comprising one or more antenna elements configured to transmit one or more power waves;
 a processor configured to detachably connect the antenna board to a transmitter board;
 and
 a port configured to receive the antenna board.

55. The transmitter of claim 54, wherein the processor controls the transmission of the one or more power waves from the antenna board connected to the transmitted board to form a pocket of energy in a transmission field of the transmitter.

56. The transmitter of any one of claims 54-55, wherein the processor is configured to selectively activate antenna elements from the one or more antenna elements based on power required to charge electronic devices in a transmission field of the transmitter.

57. The transmitter of any one of claims 54-56, wherein an antenna element of the one or more antenna elements is a patch antenna configured to irradiate wireless signals.

58. The transmitter of any one of claims 54-57, wherein an antenna element of the one or more antenna elements comprises a plurality of horizontal resonator elements, wherein each horizontal resonator element of the plurality of horizontal resonator elements is planar, vertically aligned, and substantially parallel with at least one other horizontal resonator element of the plurality of horizontal resonator elements.

59. The transmitter of any one of claims 54-58, further comprising a heat sink that is attached to the transmitter board.
60. The transmitter of any one of claims 54-59, wherein antenna switches are connected to each antenna element of the one or more antenna elements, and wherein one or more filters are connected to the antenna switches.

61. The transmitter of any one of claims 54-60, further comprising a locking mechanism to hold the antenna board in the port.

62. The transmitter of any one of claims 54-61, wherein the one or more power waves are radio frequency waves.
Form transmitter board 502

Select port on transmitter board to connect antenna board 504

Connect antenna board in selected port 506

Attach heat sink to transmitter board 508

FIG. 5
From transmitter board 702

Select port on transmitter board to connect antenna board 704

Connect antenna board in selected port 706

Processor adjusts and then controls power wave transmission of antenna board 708

FIG. 7
Transmitter determine location of receiver 802

Transmitter calculates parameters for power wave transmission based on location of receiver 804

Transmitter adjusts and controls power wave transmission of antenna board based on parameters 806

Transmitter generate packet of energy 808