(54) Title: ENCODING AND DECODING DIGITAL DATA SETS

(57) Abstract: When combining digital data sets in the time domain into a combined digital data set a sub set of samples of each digital data set is adjusted to enable unraveling the data when decoding. To enable correction during decoding of an error introduced by the adjustment, an error approximation is stored for each adjusted sample. A set of error approximations is created which is indexed allowing substantial reduction in size of the error approximations to be stored for the adjusted samples. Instead of creating a set of error approximations for each combined digital data set one set of error approximations is created based on the errors introduced when creating multiple combined digital data sets.

![Diagram](image-url)
Encoding and decoding digital data sets

Technical field

The present invention relates to encoding and decoding digital data sets, and more particular to a method for combining a first and second digital data set of samples into a third digital data set of samples.

The present invention further relates to a record carrier for storing such combined digital data set.

Background art

EP1592008 discloses a method for mixing two digital data sets into a third digital data set. In order to fit two digital data sets into a single digital data set with a size smaller than the sum of the sizes of the two digital data sets, a reduction of information in the two digital data sets is required. EP1592008 achieves this reduction in defining an interpolation at samples between a first set of predefined positions in the first digital data set and at a non-coinciding set of samples between predefined positions in the second digital data set. The value of the samples between the predefined positions of the digital data sets are adjusted to the interpolation value. After performing this reduction in information in the two digital data sets, each sample of the first digital data set is summed with the corresponding sample of the second digital data set. This results in a third digital data set comprising the summed samples. This summation of samples together with known relationship of the offset between the predefined positions between the first digital data set and the second digital data set allows the recovery of the first digital data set and the second digital data set, albeit only with the samples adjusted by interpolation between the predefined positions. When the method of EP1592008 is used for audio streams this interpolation is not noticeable and the third digital data set can be played as a mixed representation of the two digital data sets comprised. In order to enable the retrieval of the first and second digital data set with the adjusted samples, a start value for both the first and second digital data set must be known and hence these two values are also stored during
mixing to allow a later unraveling of the two digital data sets from the third digital data set.

EP2092791 discloses an other method for mixing two digital data sets into a third digital data set. In EP2092791, instead of using interpolation, sample values are adjusted by equating them to the sample value of a neighbouring sample. A disadvantage of this method is that it introduces errors which have to be corrected during decoding.

Both methods, the interpolation in EP1592008 and the equating in EP2092791, effectively adjust the sample value of a subset of samples, thus introducing an error. In order to be able to correct this error during decoding for each adjusted sample the error must be stored for later retrieval during decoding. As storing all errors would result in large files, EP2092791 discloses a method wherein, after determining the errors, a reduction is performed by grouping the errors into error groups. For each error group a representative approximated error is chosen resulting in a sets of error approximations. These sets of error approximations are indexed. For each sample affected by the adjustment an index is chosen corresponding to that error approximation which is closest to the error or satisfies other criteria such as compensation for errors occurring when reversing the interpolation because multiple adjusted sample values are used during the reversing of the interpolation.

It is however still a disadvantage of EP 2092791 that the amount of data which needs to be stored for the sets of error approximations is still large.

It is an objective of the present invention to further reduce the amount of data to be stored for later retrieval during decoding.

Disclosure of the invention

To achieve this objective the method further comprises the steps of: grouping errors resulting from adjustment of the samples of the first, second, fourth and fifth digital data sets into error groups, - storing, in the set of error approximations, one error approximation for each error group, each error approximation having an index, and - associating with each error of each adjusted sample of the first, second, fourth
and fifth digital data set of adjusted sample values the corresponding index of the
selected error approximation.

Instead of having one set of error approximations per combined channel
as disclosed in EP2092791, one set of error approximations is used for encoding
and decoding more than just one combined channel. Surprisingly it was found
that even in situations where the digital data channels have little correlation, it is
beneficial to group errors from channels that are not to be combined into a single
set of error approximations, thus being able to create a single set of error
approximations and needing a smaller amount of data to store this set of error
approximations than when each combined digital data set had its own sets of
error approximations.

Alternatively, it is possible to use this advantage not to reduce the amount
of storage space for the set of error approximations but to increase the number of
errors approximations when using the same amount of storage space as was
used when each combined digital data set had its own sets of error
approximations. This allows more error approximations to be stored allowing a
more accurate approximation of the errors, which in turn allows a more accurate
reconstruction of the original digital data sets when extracting them from the
combined digital data set.

In the example of the input digital data sets representing multi channel
audio being combined into two combined audio channels to be played back
through a stereo system, previously two sets of error approximations were
created, one for each of the combined audio channels. Now, a single set of error
approximations is derived that applies to both combined audio channels and is in
this example derived from all input audio channels.

In an embodiment the step of grouping errors comprises the step of only
grouping errors of adjusted samples of the first and second digital data sets.

Using only errors occurring during the adjustment of sample values for a
single combined channel to create the set of error approximations results in a
small amount of storage space needed to store this set of error approximations at
the penalty of less accurate approximations for the other combined channels.

In a further embodiment the step of grouping errors comprises the step of
grouping errors of adjusted samples of the first, second, fourth and fifth digital
data sets. Using all errors from all digital data channels results in the best grouping of errors and thus the best set of error approximations.

In a further embodiment the step of associating the index comprises the step of storing association data in one or more meta data blocks of one or more of the combined digital data sets.

Storing the association information in meta data blocks allows this data to be both embedded in the combined digital data sets or to be stored in or transmitted via an auxiliary channel.

A decoding method as claimed comprises the steps of
- retrieving a single set of error approximations, each error approximation in the single set of error approximations having an index, and
- retrieving an association of each adjusted sample of the first, second, fourth and fifth digital data set with a corresponding index of the error approximations
- retrieving for each adjusted sample an error approximation corresponding to the index associated with the sample,
- adding the corresponding error approximation to the sample.

Having a single set of error approximations allows the decoder to retrieve the error approximations quicker and use a single set or error approximations for decoding multiple combined digital data sets allowing a more efficient processing of the combined digital data sets.

An encoder as claimed benefits from the same advantages as obtained by the encoding method.

A decoder as claimed benefits from the same advantages as obtained by the decoding method.

A mobile device comprising an encoder and or decoder benefits from the same advantages as obtained by the encoding method and/or decoding method. In particular mobile devices are often limited in processing and storage capabilities compared to non-mobile devices and as such storage and processing efficiency are highly beneficial for a mobile device.

A multimedia device as claimed benefits from the same advantages as the encoding and / or decoding method as most multimedia data streams are digital data streams and very often many digital data streams are combined into
combined digital data streams for storage or transmission purposes which the multimedia device must either be able to encode and/or decode.

A recording medium as claimed can have the meta data blocks both embedded in the combined digital data set(s) or separately stored on the disc.

An explanation of the basic principle of combining digital data sets employing interpolation can be found in paragraphs [0037] up to and including [0048] of EP1592008B1 and is incorporated by reference. An explanation of the interpolation used when combining digital data sets can be found in paragraph [0055] up to and including [0060] of EP1592008B1 and is incorporated by reference.

An explanation of the basic unmixing principle employing interpolation can be found in paragraph [0061] & [0062] of EP1592008B1 and is incorporated by reference.

An explanation of the errors introduced by the equating of neighboring samples can be found on page 4 line 39 up to and including line 54 of EP2092791B1 and is incorporated by reference. An explanation of indexing the set of error approximations can be found in paragraph [0017] of EP2092791B1 and is incorporated by reference.

The use of digital data sets in multi channel audio is disclosed in paragraph [0027] up to and including [0033] and are incorporated here by reference.

An explanation of the basic unmixing principle employing equating can be found in paragraph [0067] & [0068] of EP2092791B1 and is incorporated by reference.

A encoder as described herein can be integrated in a larger device such as a recording system or can be a stand alone encoder coupled to a recording system or a mixing system. The encoder can also be implemented as a computer program for instance for performing the encoding methods of the present invention when run on a computer system suitable to run said computer program.

A decoder as described herein can be integrated in a larger device such as an output module in a playback device, an input module in an amplification device or can be a standalone decoder via its input coupled to a source of the encoded combined data stream and via its output coupled to an amplifier.
A digital signal processing device is in this document understood to be a
device in the recording section of the recording/transmission/reproduction chain,
such as audio mixing table, a recording device for recording on a recording
medium such as optical disc or hard disk, a signal processing device or a signal
capturing device.

A reproduction device is in this document understood to be a device in the
reproduction section of the recording transmission/reproduction chain, such as an
audio amplifier or a playback device for retrieving data from a storage medium.

Brief description of the drawings

The invention will be further elucidated by means of the following
description and the appended figures.

Figure 1 shows a prior art encoder for combining four channels into two
channels.

Figure 2 shows an encoder according to the invention for combining two
channels in the time domain.

Figure 3 shows a decoder according to the prior art.

Figure 4 shows a decoder according to the invention.

Figure 5 shows a mobile device comprising an encoder according to the
invention.

Figure 6 shows a mobile device comprising a decoder according to the
invention.

Modes for carrying out the invention

The present invention will be described with respect to particular
embodiments and with reference to certain drawings but the invention is not
limited thereto but only by the claims. The drawings described are only schematic
and are non-limiting. In the drawings, the size of some of the elements may be
exaggerated and not drawn on scale for illustrative purposes. The dimensions
and the relative dimensions do not necessarily correspond to actual reductions to
practice of the invention.

Furthermore, the terms first, second, third and the like in the description
and in the claims, are used for distinguishing between similar elements and not
necessarily for describing a sequential or chronological order. The terms are interchangeable under appropriate circumstances and the embodiments of the invention can operate in other sequences than described or illustrated herein.

Moreover, the terms top, bottom, over, under and the like in the description and the claims are used for descriptive purposes and not necessarily for describing relative positions. The terms so used are interchangeable under appropriate circumstances and the embodiments of the invention described herein can operate in other orientations than described or illustrated herein.

Furthermore, the various embodiments, although referred to as "preferred" are to be construed as exemplary manners in which the invention may be implemented rather than as limiting the scope of the invention.

The term "comprising", used in the claims, should not be interpreted as being restricted to the elements or steps listed thereafter; it does not exclude other elements or steps. It needs to be interpreted as specifying the presence of the stated features, integers, steps or components as referred to, but does not preclude the presence or addition of one or more other features, integers, steps or components, or groups thereof. Thus, the scope of the expression "a device comprising A and B" should not be limited to devices consisting only of components A and B, rather with respect to the present invention, the only enumerated components of the device are A and B, and further the claim should be interpreted as including equivalents of those components.

Further, in order to explain the principle, the embodiments are explained using two input streams but the invention can equally be used with three or more input streams being combined into one single output stream.

It should further be noted that although the embodiments use separate adjusters, combiners, error approximators, etc for each channel it is equally possible to have just a single adjuster, combiner, error approximator which processes all the channels/digital data sets.

Referring to Figure 1, Figure 1 shows a prior art encoder for combining four channels into two channels. The coder 10, in order to create a first combined digital data set, comprises a first adjustment unit 11a and a second adjustment unit 11b. Each adjustment unit 11a and 11b receives a digital data set from a respective input of the encoder 10. The first adjustment unit 11a selects a first
subset of samples of the first digital data set and adjusts each sample of this first
subset for instance by equating them to neighbouring samples of a second
subset of samples of the first digital data set or by adjusting them to an
interpolated value. The resulting digital data set comprising the unaffected
samples of the second subset and the adjusted samples of the first sub set can
be passed on to a first optional sample size reducer 12a or can be passed
directly to the combiner 13. The second adjustment unit 11b selects a third
subset of samples of the second digital data set and adjusts each sample of this
third subset for instance by equating them to neighbouring samples of a fourth
subset of samples of the second digital data set or by adjusting them to an
interpolated value. The resulting digital data set comprising the samples of the
fourth subset and the adjusted samples of the third sub set can be passed on to
an second optional sample size reducer 12b or can be passed directly to the
combiner 13. The first and second sample size reducer 12a and 12b both remove
a defined number of lower bits from the samples of their respective digital data
sets, for instance reducing 24 bit samples to 20 bits by removing the four bits
least significant bits. The adjustment of samples as performed by the adjustment
units 11a and 11b introduces an error. This error is approximated by an error
approximator 15 by comparing the adjusted samples to the original samples and
selecting an error approximation that best fits the error. This error approximation
can be used by the decoder to more accurately restore the original digital data
sets, as will be described below when describing the decoder. The combiner 13
adds the samples of the first digital data set to corresponding samples of the
second digital data set, as provided to its inputs, and supplies the resulting
samples of the third combined digital data set via its output to a formatter 14
which embeds additional data such as seed values from the two digital data sets
and the association data between the errors of the adjusted samples and their
corresponding error approximations as received from the error approximator 15 in
the lower significant bits of the third digital data set or in meta data blocks and
provides the resulting digital data set to a first output of the coder 10.

The coder 10, in order to create a second combined digital data set,
进一步 comprises a third adjustment unit 21a and a fourth adjustment unit 21b.
Each adjustment unit 21a and 21b receives a digital data set from a respective
input of the encoder 10. The third adjustment unit 21a selects a first subset of
samples of the fourth digital data set and adjusts each sample of this first subset
for instance by equating them to neighbouring samples of a second subset of
samples of the fourth digital data set or by adjusting them to an interpolated
value. The resulting digital data set comprising the unaffected samples of the
second subset and the adjusted samples of the first sub set can be passed on to
a third optional sample size reducer 22a or can be passed directly to the second
combiner 23. The fourth adjustment unit 21b selects a third subset of samples of
the fourth digital data set and adjusts each sample of this third subset for
instance by equating them to neighbouring samples of a fourth subset of samples
of the fourth digital data set or by adjusting them to an interpolated value.
The resulting digital data set comprising the samples of the fourth subset and the
adjusted samples of the third sub set can be passed on to an fourth optional
sample size reducer 22b or can be passed directly to the second combiner 23.
The third and fourth sample size reducer 22a and 22b both remove a defined
number of lower bits from the samples of their respective digital data sets, for
instance reducing 24 bit samples to 20 bits by removing the four bits least
significant bits. The adjustment of samples as performed by the adjustment units
21a and 21b introduces an error. This error is approximated by the second error
approximator 25 by comparing the adjusted samples to the original samples and
selecting an error approximation that best fits the error. This error approximation
can be used by the decoder to more accurately restore the original digital data
sets, as will be described below when describing the decoder. The second
combiner 23 adds the samples of the third digital data set to corresponding
samples of the fourth digital data set, as provided to its inputs, and supplies the
resulting samples of the sixth combined digital data set via its output to a second
formatter 24 which embeds additional data such as seed values from the two
digital data sets and the association data between the errors of the adjusted
samples and their corresponding error approximations as received from the
second error approximator 25 in the lower significant bits of the third digital data
set or in meta data blocks and provides the resulting digital data set to a second
output of the coder 10.
Referring now to Figure 2, Figure 2 shows an encoder according to the present invention for combining two channels in the time domain. The coder 10, in order to create a first combined digital data set, comprises a first adjustment unit 11a and a second adjustment unit 11b. Each adjustment unit 11a and 11b receives a digital data set from a respective input of the coder 10.

The first adjustment unit 11a selects a first subset of samples of the first digital data set and adjusts each sample of this first subset for instance by equating them to neighbouring samples of a second subset of samples of the first digital data set or by adjusting them to an interpolated value. The resulting digital data set comprising the unaffected samples of the second subset and the adjusted samples of the first sub set, can be passed on to a first optional sample size reducer 12a or can be passed directly to the combiner 13. The second adjustment unit 11b selects a third subset of samples of the second digital data set and adjusts each sample of this third subset for instance by equating them to neighbouring samples of a fourth subset of samples of the second digital data set or by adjusting them to an interpolated value. The resulting digital data set comprising the samples of the fourth subset and the adjusted samples of the third sub set can be passed on to a second optional sample size reducer 12b or can be passed directly to the combiner 13. The first and second sample size reducer 12a and 12b both remove a defined number of lower bits from the samples of their respective digital data sets, for instance reducing 24 bit samples to 20 bits by removing the four bits least significant bits. The combiner 13 adds the samples of the first digital data set to corresponding samples of the second digital data set, as provided to its inputs. The coder 10 in order to create a second combined digital data set comprises a third adjustment unit 21a and a fourth adjustment unit 21b. Each adjustment unit 21a and 21b receives a digital data set from a respective input of the encoder 10. The third adjustment unit 21a selects a first subset of samples of the fourth digital data set and adjusts each sample of this first subset for instance by equating them to neighbouring samples of a second subset of samples of the fourth digital data set or by adjusting them to an interpolated value. The resulting digital data set comprising the unaffected samples of the second subset and the adjusted samples of the first sub set can be passed on to a third optional sample size reducer 22a or can be passed
directly to the second combiner 23. The fourth adjustment unit 21b selects a third
subset of samples of the fourth digital data set and adjusts each sample of this
third subset for instance by equating them to neighbouring samples of a fourth
subset of samples of the fourth digital data set or by adjusting them to an
interpolated value. The resulting digital data set comprising the samples of the
fourth subset and the adjusted samples of the third sub set can be passed on to
an fourth optional sample size reducer 22b or can be passed directly to the
second combiner 23. The third and fourth sample size reducer 22a and 22b both
remove a defined number of lower bits from the samples of their respective digital
data sets, for instance reducing 24 bit samples to 20 bits by removing the four
bits least significant bits.

The adjustment of samples as performed by the adjustment units 11a and 11b
introduces an error, and the adjustment of samples as performed by the
adjustment units 21a and 21b also introduces an error. These errors from the
adjustment units 11a, 11b, 21a, 21b are all approximated by error approximator
27 by comparing the values of adjusted samples received from the adjustment
units 11a, 11b, 21a, 21b to the values of the original samples directly taken from
the corresponding inputs and selecting an error approximation from a set of error
approximations that best fits the error. This error approximation can be used by
the decoder to more accurately restore the original digital data sets, as will be
described below when describing the decoder. As the error approximator 27
determines the approximation error for samples of several digital data sets an
advantage is obtained as the approximation errors can be clustered into groups
and a single set of errors that are clustered into error clusters can then be used to
represent the approximation errors. This leads to efficiency on the encoder and
decoder side as only one set of approximation errors need to be stored and used
for multiple digital data sets, respectively multiple channels.

Instead of sending the actual error approximation value, the center value of the
corresponding approximation error cluster can be sent, or an index to the cluster
so that on the decoding side , where the center values of the clusters are known
as a set of error approximations, the decoder can correct for the approximation
error by adding the value of the center of the corresponding approximation error
cluster to the reconstructed sample value.
As there is now a single error approximator 27 only a single table, i.e. a single set of error approximations is needed which can most likely be stored in one combined digital data set or, if desired, spread over multiple combined digital data sets. Multiple tables/sets of error approximations no longer need to be stored in each combined digital data sets but only a highly compressable set of error approximations or indexes, thus saving space in the data stream or in a storage medium. It should be noted that the association data linking the adjusted samples to their error approximations needs to be preserved for each adjusted samples. This association data may fit in the auxiliary channel of one combined digital data set or if needed may overflow into auxiliary data channels of other (in this case the second) combined digital data set. The association data may also be kept with the combined digital data set to which it applies.

The combiner 13 supplies the resulting samples of the third combined digital data set via its output to a formatter 14 which embeds additional data such as seed values from the two digital data sets, the set of error approximations and the association data between the errors of the adjusted samples and their corresponding error approximations as received from the error approximator 27 in the lower significant bits of the third digital data set or in meta data blocks and provides the resulting digital data set to a first output of the coder 10.

The second combiner 23 adds the samples of the third digital data set to corresponding samples of the fourth digital data set, as provided to its inputs, and supplies the resulting samples of the sixth combined digital data set via its output to a second formatter 24 which embeds additional data such as seed values from the two digital data sets in the lower significant bits of the sixth combined digital data set or in meta data blocks, and provides the resulting digital data set to a second output of the coder 10. In case the first formatter 14 was unable to fit the association data between the errors of the adjusted samples and their corresponding error approximations as received from the error approximator 27 in the third combined digital data set the remaining association data is handed to the second formatter 24 for embedding in the sixth combined digital data set.

It should be noted that the association data linking the errors of the adjusted samples to their error approximations needs to be preserved for each adjusted sample. This association data may fit in the auxiliary channel of one
combined digital data set or may overflow into auxiliary data channels of other (in this case the second) combined digital data set.

In an alternative embodiment, instead of having a first and second formatter 14 and 24, a single combiner can be used that handles the task of formatting for both combined channels. This also allows the seed values, set of error approximations and association data to be combined into a single data block and this data block can be evenly distributed across the available auxiliary data channels or stored in meta data blocks. Having a single formatter facilitates this. The association data may also be kept with the combined digital data set to which it applies. The formatter controls the location where the association data is stored. Therefore, having a single formatter handling more than one combined digital data set / channel enables the formatter to choose a suitable distribution of the data.

Referring to Figure 3, Figure 3 shows a decoder according to the prior art. The decoder 200 for decoding a signal detects (preferably automatically) if ‘audio’ (e.g. 24 bit) has been encoded according to the techniques described above. This can be achieved for instance by a sync detector 201 that searches the received data stream for a synchronizing pattern in the lower significant bits. The sync detector 201 has the ability to synchronize to the data blocks in the auxiliary data area formed by the lower significant bits of the samples by finding the synchronization patterns. Alternatively the decoder 200 can retrieve the seed values and association data between errors of samples and error approximations from meta data blocks. The following will assume that the seed values and error approximation association data is embedded in the combined digital data set that is to be decoded. Once the sync detector 201 has found any of these matching patterns, it ‘waits’ till a similar pattern is detected. Once that pattern has been detected, the sync detector 201 gets in a SYNC-candidate-state. Based on the detected synchronizing pattern the sync detector 201 can also determine whether 2, 4, 6 or 8 bits were used per sample for the auxiliary data area.

On the 2nd sync pattern, the decoder 200 will scan through the data block to decode the block length, and verify with the next sync pattern if there is a match between the block length and the start of the next sync pattern. If these both match, the decoder 200 gets in the Sync-state. If this test fails, the decoder
200 will restart its syncing process from the very beginning. During decode operation, the decoder 200 will always compare the block length against the number of samples between the start of each successive sync block. As soon as a discrepancy has been detected, the decoder 200 gets out of Sync-state and the syncing process has to start over.

An error correction code can be applied to data blocks in the auxiliary data area as to protect the data present. This error correction code can also be used for synchronization if the format of the Error Correction Code blocks is known and the position of the auxiliary data in the Error Correction Code blocks is known. In Figure 3, the sync detector and error detector are shown as being combined in block 201, but alternatively the sync detector and error detector may be implemented separately as well.

The error detector calculates the CRC value (using all data from this data block, except syncs) and compares this CRC value with the value found at the end of the data block. If there is a mismatch, the decoder is said to be in CRC-Error state.

The sync detector provides information to the seed value retriever 202, the approximation error retriever 203 and the auxiliary controller 204 which allows the seed value retriever 202, the approximation error retriever 203 and the auxiliary controller 204 to extract the relevant data from the auxiliary data area as received from the first input of the decoder 200.

Once the sync detector is synced to the data block sync headers, the seed value retriever scans through the data in the data block to determine the offset, i.e. the number of samples between the end of a data block and the first duplicated audio sample (this number could theoretically be negative) and to read these duplicated (audio) samples.

The seed value retriever 202 retrieves one or more seed values from the auxiliary data area of the received digital data set and provides the retrieved seed values to the unraveler 206. The unraveler 206 performs the basic unraveling of the digital data sets using the seed value(s) as disclosed in paragraph [0067] & [0068] of EP2092791B1 and is incorporated here by reference.

The result of this unraveling is either multiple digital data sets, or a single digital data set with one or more digital data sets removed from the combined
digital data set. This is indicated in Figure 3 by the three arrows connecting the unraveler 206 to outputs of the decoder 200.

The approximation error retriever 203 will decompress the association data and the error approximation table. The unraveler 206 applies the error approximations received from the approximation error retriever 203 to the corresponding samples of the unraveled digital data sets and provides the resulting unraveled digital data set to the first output of the decoder.

As long as the decoder 200 stays synced to the data-block headers, the approximation error retriever 203 will continue decompressing the reference lists and the approximation tables, and supply these data to the unraveler 206 to un-mix the mixed audio samples according to \(C = A^*+B^*+E' \) or \(C-E' = A^*+B^* \). The unraveler 206 uses the duplicated audio samples to start un-mixing into \(A^* \) samples and \(B^* \) samples. For a combined digital data set in which two digital data sets have been combined, the even indexed samples of \(A_{2i}^* \) match with these of \(A_{2i+1}^* \), and \(A_{2i+1}^* \) are corrected by adding error approximation \(E_{2i+1}^* \). Similarly, the odd indexed samples of \(B_{2i+1}^* \) match with these of \(B_{2i+1}^* \), and \(B_{2i+2}^* \) are corrected by adding error approximation \(E_{2i+2}^* \). The extracted and corrected digital data sets are sent out as independent uncorrelated audio streams.

A second channel is equally decoded using a second sync detector 211, a second seed value retriever 212, a second approximation error retriever 213 and a second unraveler 216. The decoder 200 detects preferably automatically if ‘audio’ (e.g. 24 bit) has been encoded according to the techniques described above. This can be achieved for instance by a sync detector 211 which searches the received data stream for a synchronizing pattern in the lower significant bits.

The sync detector 211 has the ability to synchronize to the data blocks in the auxiliary data area formed by the lower significant bits of the samples by finding the synchronization patterns. Alternatively the decoder 200 can retrieve the seed values and association data between errors of the samples and error approximations from meta data blocks. The following will assume that the seed values and error approximation association data is embedded in the combined digital data set that is to be decoded. Once the sync detector 211 has found any of these matching patterns, it ‘waits’ till a similar pattern is detected. Once that pattern has been detected, the sync detector 211 gets in a SYNC-candidate-
state. Based on the detected synchronizing pattern the sync detector 211 can also determine whether 2, 4, 6 or 8 bits were used per sample for the auxiliary data area.

On the 2nd sync pattern, the decoder 200 will scan through the data block to decode the block length, and verify with the next sync pattern if there is a match between the block length and the start of the next sync pattern. If these both match, the decoder 200 gets in the Sync-state. If this test fails, the decoder 200 will restart its syncing process from the very beginning. During decode operation, the decoder 200 will always compare the block length against the number of samples between the start of each successive sync block. As soon as a discrepancy has been detected, the decoder 200 gets out of Sync-state and the syncing process has to start over.

An error correction code can be applied to data blocks in the auxiliary data area as to protect the data present. This error correction code can also be used for synchronization if the format of the Error Correction Code blocks is known, and the position of the auxiliary data in the Error Correction Code blocks is known. In Figure 3, the sync detector and error detector are shown as being combined in block 211. Alternatively, the sync detector and error detector may be implemented separately as well.

The error detector calculates the CRC value (using all data from this data block, except syncs) and compares this CRC value with the value found at the end of the data block. If there is a mismatch, the decoder is said to be in CRC-Error state.

The sync detector provides information to the seed value retriever 212 and the approximation error retriever 213 which allows the seed value retriever 212 and the approximation error retriever 213 to extract the relevant data from the auxiliary data area as received from the first input of the decoder 200. Once the sync detector is synced to the data block sync headers, the seed value retriever scans through the data in the data block to determine the offset, i.e. the number of samples between the end of a data block and the first duplicated audio sample (this number could theoretically be negative) and to read these duplicated (audio) samples.
The seed value retriever 212 retrieves one or more seed values from the auxiliary data area of the received digital data set and provides the retrieved seed values to the unraveler 216. The unraveler 216 performs the basic unraveling of the digital data sets using the seed value(s) as disclosed again in paragraph [0067] & [0068] of EP2092791B1 (incorporated here by reference).

The result of this unraveling is either multiple digital data sets, or a single digital data set with one or more digital data sets removed from the combined digital data set. This is indicated in Figure 3 by the three arrows connecting the unraveler 216 to outputs of the decoder 200.

The approximation error retriever 213 will decompress the association data and the error approximation table. The unraveler 216 applies the error approximations received from the approximation error retriever 213 to the corresponding samples of the unraveled digital data sets and provides the resulting unraveled digital data set to the first output of the decoder.

As long as the decoder 200 stays synced to the data-block headers, the approximation error retriever 213 will continue decompressing the reference lists and the approximation tables, and supply these data to the unraveler 216 to unmix the mixed audio samples according to $C = A''+B''+E'$ or $C-E' = A''+B''$ The unraveler 216 uses the duplicated audio samples to start un-mixing into A'' samples and B'' samples. For a combined digital data set in which two digital data sets have been combined, the even indexed samples of A''_{2i} match with these of A'_{2i} and A''_{2i+1} are corrected by adding error approximation E'_{2i+1}. Similarly, the odd indexed samples of B''_{2i+1} match with these of B'_{2i+1} and B''_{2i+2} are corrected by adding error approximation E'_{2i+2}. The extracted and corrected digital data sets are sent out as independent uncorrelated audio streams.

Referring now to Figure 4, Figure 4 shows a decoder according to the invention. The decoder 200 for decoding the signal as obtained by the invention has to some extend the same structure as the prior art decoder discussed in Figure 3. The main difference is that the decoder of Figure 4 has a single approximation error retriever (instead of two approximation error retrievers in Figure 3 where one approximation error retriever is provided for each input). The sync detector 201 searches the received data stream for a synchronizing pattern in the lower significant bits. The sync detector 201 has the ability to
synchronize to the data blocks in the auxiliary data area formed by the lower significant bits of the samples by finding the synchronization patterns. Alternatively the decoder 200 can retrieve the seed values and association data between errors of the samples and error approximations from meta data blocks. The following will assume that the seed values and error approximation association data is embedded in the combined digital data set which is to be decoded. Once the sync detector 201 has found any of these matching patterns, it ‘waits’ till a similar pattern is detected. Once that pattern has been detected, the sync detector 201 gets in a SYNC-candidate-state. Based on the detected synchronizing pattern the sync detector 201 can also determine whether 2, 4, 6 or 8 bits were used per sample for the auxiliary data area.

On the 2nd sync pattern, the decoder 200 will scan through the data block to decode the block length, and verify with the next sync pattern if there is a match between the block length and the start of the next sync pattern. If these both match, the decoder 200 gets in the Sync-state. If this test fails, the decoder 200 will restart its syncing process from the very beginning. During decode operation, the decoder 200 will always compare the block length against the number of samples between the start of each successive sync block. As soon as a discrepancy has been detected, the decoder 200 gets out of Sync-state and the syncing process has to start over.

An error correction code can be applied to data blocks in the auxiliary data area as to protect the data present. This error correction code can also be used for synchronization if the format of the Error Correction Code blocks is known, and the position of the auxiliary data in the Error Correction Code blocks is known. In figure 4, the sync detector and error detector are shown as being combined in block 201, but alternatively the sync detector and error detector may be implemented separately as well.

The error detector calculates the CRC value (using all data from this data block, except syncs) and compares this CRC value with the value found at the end of the data block. If there is a mismatch, the decoder is said to be in CRC-Error state.

The sync detector provides information to the seed value retriever 202 and the approximation error retriever 217 which allows the seed value retriever
202 and the approximation error retriever 217 to extract the relevant data from the auxiliary data area as received from the first input of the decoder 200.

Once the sync detector is synced to the data block sync headers, the seed value retriever 202 scans through the data in the data block to determine the offset, i.e. the number of samples between the end of a data block and the first duplicated audio sample (this number could theoretically be negative) and to read these duplicated (audio) samples.

The seed value retriever 202 retrieves one or more seed values from the auxiliary data area of the received digital data set and provides the retrieved seed values to the unraveler first 206. The unraveler 206 performs the basic unraveling of the digital data sets using the seed value(s) as disclosed in paragraph [0067] & [0068] of EP2092791B1 which section is incorporated here by reference.

The result of this unraveling is either multiple digital data sets, or a single digital data set with one or more digital data sets removed from the combined digital data set. This is indicated in Figure 4 by the three arrows connecting the unraveler 206 to outputs of the decoder 200.

The approximation error retriever 217 will decompress the association data and the error approximation table. The unraveler 206 applies the error approximations received from the approximation error retriever 217 on the corresponding samples of the unraveled digital data sets and provides the resulting unraveled digital data set to the first output of the decoder.

As long as the decoder 200 stays synced to the data-block headers, the approximation error retriever 217 will continue decompressing the reference lists and the approximation tables, and supply these data to the unraveler 206 to un-mix the mixed audio samples according to C = A"+B"+E' or C-E' = A"+B". The unraveler 206 uses the duplicated audio samples to start un-mixing into A" samples and B" samples. For a combined digital data set in which two digital data sets have been combined, the even indexed samples of A_{2i}^\prime match with these of A_{2i}^\prime and A_{2i+1}^\prime are corrected by adding error approximation E_{2i+1}^\prime. Similarly, the odd indexed samples of B_{2i+1}^\prime match with these of B_{2i+1}^\prime and B_{2i+2}^\prime are corrected by adding error approximation E_{2i+2}^\prime. The extracted and corrected digital data sets are sent out as independent uncorrelated audio streams.
A second channel is equally decoded using a second sync detector 211, a second seed value retriever 212, the same approximation error retriever 217 as used for the first channel and a second unraveler 216.

The sync detector 211 searches the received data stream for a synchronizing pattern in the lower significant bits. The sync detector 211 has the ability to synchronize to the data blocks in the auxiliary data area formed by the lower significant bits of the samples by finding the synchronization patterns. Alternatively the decoder 200 can retrieve the seed values and association data between errors of the samples and error approximations from meta data blocks.

The following will assume that also for the second channel the seed values and optionally error approximation association data are embedded in the combined digital data set that is to be decoded. Once the sync detector 211 has found any of these matching patterns, it 'waits' till a similar pattern is detected. Once that pattern has been detected, the sync detector 211 gets in a SYNC-candidate-state. Based on the detected synchronizing pattern the sync detector 211 can also determine whether 2, 4, 6 or 8 bits were used per sample for the auxiliary data area.

On the 2nd sync pattern, the decoder 200 will scan through the data block to decode the block length, and verify with the next sync pattern if there is a match between the block length and the start of the next sync pattern. If these both match, the decoder 200 gets in the Sync-state. If this test fails, the decoder 200 will restart its syncing process from the very beginning. During decode operation, the decoder 200 will always compare the block length against the number of samples between the start of each successive sync block. As soon as a discrepancy has been detected, the decoder 200 gets out of Sync-state and the syncing process has to start over.

An error correction code can be applied to data blocks in the auxiliary data area as to protect the data present. This error correction code can also be used for synchronization if the format of the Error Correction Code blocks is known, and the position of the auxiliary data in the Error Correction Code blocks is known. Hence, in figure 4 the sync detector and error detector are shown as being combined in block 211 for convenience, but they may be implemented separately as well.
The error detector calculates the CRC value (using all data from this data block, except syncs) and compares this CRC value with the value found at the end of the data block. If there is a mismatch, the decoder is said to be in CRC-Error state.

The sync detector provides information to the seed value retriever 212 and if association data for the error approximation is found it is provided to the approximation error retriever 213 which allows the seed value retriever 212 and the approximation error retriever 213 to extract the relevant data from the auxiliary data area as received from the first input of the decoder 200. As there is now a single approximation error retriever 217 only a single set of error approximations is needed which can most likely be stored in one combined digital data set and does not need to be stored in both combined digital data sets, thus saving space. It should be noted that the association data linking the errors of the adjusted samples to their error approximations needs to be preserved for each adjusted samples. This association data may fit in the auxiliary channel of one combined digital data set or may overflow into auxiliary data channels of other (in this case the second) combined digital data set. The association data may also be kept with the combined digital data set to which it applies.

Once the sync detector is synced to the data block sync headers, the seed value retriever scans through the data in the data block to determine the offset, i.e. the number of samples between the end of a data block and the first duplicated audio sample (this number could theoretically be negative) and to read these duplicated (audio) samples.

The seed value retriever 212 retrieves one or more seed values from the auxiliary data area of the received digital data set and provides the retrieved seed values to the unraveler 216. The unraveler 216 performs the basic unraveling of the digital data sets using the seed value(s) as disclosed in paragraph [0067] & [0068] of EP2092791B1 (incorporated here by reference).

The result of this unraveling is either multiple digital data sets, or a single digital data set with one or more digital data sets removed from the combined digital data set. This is indicated in Figure 4 by the three arrows connecting the unraveler 216 to outputs of the decoder 200.
The approximation error retriever 217 will decompress the association data and already has the error approximation table as it was retrieved in order to decode the first combined digital data set. The unraveler 216 applies the error approximations received from the approximation error retriever 217 to the corresponding samples of the unraveled digital data sets and provides the resulting unraveled digital data set to the second output of the decoder.

As long as the decoder 200 stays synced to the data-block headers, the approximation error retriever 217 will continue decompressing the reference lists and the approximation tables, and supply these data to the unraveler 216 to unmix the mixed audio samples according to \(C = A''+B''+E' \) or \(C-E' = A''+B'' \). The unraveler 216 uses the duplicated audio samples to start un-mixing into \(A'' \) samples and \(B'' \) samples. For a combined digital data set in which two digital data sets have been combined, the even indexed samples of \(A''_{2i} \) match with these of \(A'_{2i} \) and \(A''_{2i+1} \) are corrected by adding error approximation \(E'_{2i+1} \). Similarly, the odd indexed samples of \(B''_{2i+1} \) match with these of \(B'_{2i+1} \) and \(B''_{2i+2} \) are corrected by adding error approximation \(E'_{2i+2} \). The extracted and corrected digital data sets are sent out as independent uncorrelated audio streams.

Figure 5 shows a mobile device comprising an encoder according to the invention. The mobile device 31 comprises the encoder 10 of Figure 4. The encoder 10 is connected to 4 microphones 32, 33, 34, 35 which provide the source of the digital data set. In order not to complicate the figure, the analog to digital conversion of the microphone signal has been omitted in Figure 5 but the four inputs are receiving a digital data set representing the audio signal picked up by the microphones 32, 33, 34, 35. The encoder 10 combines the digital data set received from first and second microphone 35, 34 into the first combined digital data set and combines the digital data set coming from the third and fourth microphone 33, 32 into the second combined digital data set. A central processing unit 28, which coordinates the operation of the mobile device 31, receives the first and second combined digital data set from the encoder 10 and embeds the first and second combined digital data set in a transmission data set which in turn is provided to a communication interface 29 which subsequently transmits the transmission data via an antenna 30. It is evident that instead of transmitting via an antenna 30 the transmission data can
also be transmitted via a wired interface. In an alternative embodiment (not shown), the first and second combined digital data sets are, instead of transmitted, stored on a storage medium such as a flash memory inside the mobile device 31 or attached to the mobile device 31.

The association data and set of error approximations can be transmitted embedded in the combined digital data sets, via meta data block transmitted via an auxiliary transmission channel or stored on the storage medium together with or embedded in the combined digital data sets.

Where Figure 5 is described for a mobile device, the structure as shown in Figure 5 (and the described alternatives) is the same for any other multimedia device according to the present invention. In other words, a multimedia device according to the invention has the same structure as the mobile device 31 shown in Figure 5.

Figure 6 shows a mobile device comprising a decoder according to the invention. The mobile device 231 comprises an antenna 230 for receiving a transmitted signal comprising transmission data comprising combined digital data sets as created using the present invention. The antenna 230 is coupled to a communication interface which receives the transmitted signal from the antenna 230 and extracts the transmission data from the transmission signal. This transmission data is provided to a central processing unit 218 which extracts from the transmission signal the first and second combined digital audio sets and in turn provides the first and second combined digital data sets to the decoder 200.

The decoder 200 which is connected to 4 loudspeaker 232, 233, 234, 235. In order not to complicate the figure, the digital to analog conversion of the extracted digital data sets into analog signals suitable for analog loudspeakers has been omitted, but the four outputs to the speakers are providing the audio signal to be reproduced by the loudspeakers 232, 233, 234, 235. Loudspeakers that accept digital data instead of analog signals of course can be fed directly without digital to analog conversion. The decoder extracts the first and second digital data sets from the first combined digital data set and extracts the third and fourth digital data sets from the second combined digital data set as described in Figure 4.
It is evident that instead of receiving via an antenna 230 the transmission data, the transmission data can also be received via a wired interface. In an alternative embodiment (not shown), the first and second combined digital data sets are, instead of received, retrieved from a storage medium such as a flash memory inside the mobile device 31 or attached to the mobile device 31. The association data and set of error approximations can be received embedded in the combined digital data sets, via meta data block transmitted via an auxiliary transmission channel or retrieved from the storage medium.

Where Figure 6 is described for a mobile device, the structure as shown in Figure 6 (and the described alternatives) is the same for any other multimedia device including a decoder according to the present invention. In other words, a multimedia device suitable for receiving combined digital data sets according to the invention has the same structure as the mobile device 231 shown in Figure 6.
Claims

1. A method for combining a first digital data set of samples \((A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9)\) with a first size and a second digital data set of samples \((B_0, B_1, B_2, B_3, B_4, B_5, B_6, B_7, B_8, B_9)\) with a second size into a third combined digital data set of samples \((C_0, C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9)\) with a third size smaller than a sum of the first size and the second size, comprising the steps of:

- adjusting each sample of a first subset of samples \((A_1, A_3, A_5, A_7, A_9)\) of the first digital data set where the first subset of samples \((A_1, A_3, A_5, A_7, A_9)\) and a second subset of samples \((A_0, A_2, A_4, A_6, A_8)\) are interleaved,

- adjusting each sample of a third subset of samples \((B_0, B_2, B_4, B_6, B_8)\) of the second digital data set \((30)\) where the third subset of samples \((B_0, B_2, B_4, B_6, B_8)\) and a fourth subset of samples \((B_1, B_3, B_5, B_7, B_9)\) are interleaved, where the samples of the fourth subset \((B_1, B_3, B_5, B_7, B_9)\) and the second subset of samples \((A_2, A_4, A_6, A_8)\) have no samples corresponding in time,

- creating the samples \((C_0, C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9)\) of the third combined digital data set by adding the samples \((A_0^", A_1^", A_2^", A_3^", A_4^", A_5^", A_6^", A_7^", A_8^", A_9^")\) of the adjusted first digital data set to the, in the time domain, corresponding samples \((B_0^", B_1^", B_2^", B_3^", B_4^", B_5^", B_6^", B_7^", B_8^", B_9^")\) of the adjusted second digital data set,

- embedding a first seed sample \((A_0)\) of the first digital data set and a second seed sample \((B_1)\) of the second digital data set in a meta data block associated to the third combined digital data set,

wherein a fourth digital data set of samples with a fourth size and a fifth digital data set of samples with a fifth size are equally combined into a sixth combined digital data set of samples with a sixth size smaller than a sum of the fourth size and the fifth size,

wherein each error, resulting from the adjustment of the samples, is approximated by selecting an error approximation from a set of error approximations,

characterized in that the method further comprises the steps of:

- grouping errors resulting from adjustment of the samples of the first, second, fourth and fifth digital data sets into error groups,
- storing, in the set of error approximations, one error approximation for each error group, each error approximation having an index, and
- associating with each error of each sample of the first, second, fourth and fifth digital data set of adjusted sample values the corresponding index of the selected error approximation.

2. A method as claimed in claim 1, wherein the step of grouping errors comprises the step of only grouping errors of adjusted samples of the first and second digital data sets.

3. A method as claimed in claim 1, wherein the step of grouping errors comprises the step of grouping errors of adjusted samples of the first, second, fourth and fifth digital data sets.

4. A method as claimed in claim 1, 2 or 3, wherein the step of associating the index comprises the step of storing association data in one or more meta data blocks of one or more of the combined digital data sets.

5. A method for extracting a first digital data set of samples \((A_0, A_1, A_2, A_3, A_4, A_5, A_6, A_7, A_8, A_9)\) and a second digital data set of samples \((B_0, B_1, B_2, B_3, B_4, B_5, B_6, B_7, B_8, B_9)\) from a third combined digital data set of samples \((C_0, C_1, C_2, C_3, C_4, C_5, C_6, C_7, C_8, C_9)\) as obtained by the method of claim 1, comprising the steps of:

- retrieving a first seed sample \((A_0)\) of the first digital data set and a second seed sample \((B_1)\) of the second digital data set from a meta data block associated to the third combined digital data set,

- retrieving the first digital data set comprising a first subset of samples \((A_1, A_3, A_5, A_7, A_9)\) and a second subset of samples \((A_0, A_2, A_4, A_6, A_8)\) and the second digital data set comprising a third subset of samples \((B_0, B_2, B_4, B_6, B_8)\) and a fourth subset of samples \((B_1, B_3, B_5, B_7, B_9)\), by extracting a sample \((B_n)\) of the second digital data set by subtracting a known value of a sample of the first digital data set from a corresponding sample of the third digital data set and extracting a sample of the first digital data set by subtracting a known value
of a sample of the second digital data set from a corresponding sample of the third digital data set, where the samples of the fourth subset \((B_1, B_3, B_5, B_7, B_9)\) and the second subset of samples \((A_0, A_2, A_4, A_6, A_8)\) have no samples corresponding in time, where each sample of the first subset of samples \((A_1, A_3, A_5, A_7, A_9)\) has an adjusted value, where the first subset of samples \((A_1, A_3, A_5, A_7, A_9)\) and the second subset of samples \((A_0, A_2, A_4, A_6, A_8)\) are interleaved, where each sample of the third subset of samples \((B_0, B_2, B_4, B_6, B_8)\) has an adjusted value, where the third subset of samples \((B_0, B_2, B_4, B_6, B_8)\) and the fourth subset of samples \((B_1, B_3, B_5, B_7, B_9)\) are interleaved, and

- retrieving a single set of error approximations, each error approximation in the single set of error approximations having an index, and

- retrieving an association of each adjusted sample of the first, second, fourth and fifth digital data set with a corresponding index of the error approximations

- retrieving for each adjusted sample an error approximation corresponding to the index associated with an error of the adjusted sample,

- using the corresponding error approximation to correct the error of the adjusted sample.

6. A method as claimed in claim 5, wherein the step of retrieving for each adjusted sample of the first, second, fourth and fifth digital data set a corresponding index comprises the step of retrieving the association from one or more meta data blocks of one or more of the combined digital data sets.

7. An encoder (10) arranged to execute the method as claimed in any one of the claims 1 to 18, comprising:

- a first adjusting means (11a) to adjust each sample of a first subset of samples \((A_1, A_3, A_5, A_7, A_9)\) of the first digital data set wherein the first subset of samples \((A_1, A_3, A_5, A_7, A_9)\) and the second subset of samples \((A_0, A_2, A_4, A_6, A_8)\) are interleaved, and to adjust each sample of a third subset of samples \((B_0, B_2, B_4, B_6, B_8)\) of the second digital data set (30) where the third subset of samples \((B_0, B_2, B_4, B_6, B_8)\) and the fourth subset of samples \((B_1, B_3, B_5, B_7, B_9)\) are interleaved, where the fourth subset of samples \((B_1, B_3, B_5, B_7, B_9)\) and the
second subset of samples (A₀, A₂, A₄, A₆, A₈) have no samples corresponding in
time,

- a combiner (13) for creating the samples of the third combined digital data
set by adding the samples of the first digital data set to the in the time domain
the corresponding samples of the second digital data set, and

- a formatting means (14) for embedding a first seed sample of the first digital
data set and a second seed sample of the second digital data set in a meta data
block associated to the third digital data set,

- a further adjusting means, combiner and formatting means for equally
combining a fourth digital data set of samples with a fourth size and a fifth digital
data set of samples with a fifth size into a sixth combined digital data set of
samples with a sixth size smaller than a sum of the fourth size and the fifth size,
and

- an approximator arranged to approximate an error, resulting from the
adjustment of the samples, by selecting an error approximation from a set of
error approximations,

characterized in that the encoder further comprises:

- a grouper arranged to group errors of the samples into error groups,

- storage means arranged to store, in the set of error approximations, one
error approximation for each error group, each error approximation having an
index, and

- association means arranged to establish an association between the error
of each sample of the first, second, fourth and fifth digital data set of adjusted
sample values and a corresponding index of the selected error approximation.

8. An encoder as claimed in claim 7 where the grouper is arranged to
only group errors of the adjusted samples of the first and second digital data sets.

9. An encoder as claimed in claim 7 where the grouper is arranged to
group errors comprises the step of grouping errors of the adjusted samples of the
first, second, fourth and fifth digital data sets.
10. An encoder as claimed in claim 7, 8 or 9, where the association means are arranged to store association data in one or more meta data blocks of one or more of the combined digital data sets.

11. A mobile device comprising an encoder as claimed in claim 7, 8, 9 or 10.

12. A multimedia device comprising an encoder as claimed in claim 7, 8, 9 or 10.

13. A decoder arranged to execute the method as claimed in any one of the claims 5 to 6, comprising:
 - a seed value retriever (202) for retrieving a first seed sample \((A_0) \) of the first digital data set (20) and a second seed sample \((B_1) \) of the second digital data set (30) from a meta data block associated to the third combined digital data set (40),
 - a processor (206) for retrieving the first digital data set (20) comprising a first subset of samples \((A_1, A_3, A_5, A_7, A_9) \) and a second subset of samples \((A_0, A_2, A_4, A_6, A_8) \) and the second digital data set (30) comprising a third subset of samples \((B_0, B_2, B_4, B_6, B_8) \) and a fourth subset of samples \((B_1, B_3, B_5, B_7, B_9) \),
 the first processing means comprising an first extractor for extracting a sample \((B_n) \) of the second digital data (30) set and a first subtractor for subtracting a known value of a sample of the first digital data set (20) from a corresponding sample of the third combined digital data set (40), the processor further comprising a second extractor for extracting a sample of the first digital data set (20) and a second subtractor for subtracting a known value of a sample of the second digital data set (30) from a corresponding sample of the third digital data set (31), where the samples of the fourth subset \((B_1, B_3, B_5, B_7, B_9) \) and the second subset of samples \((A_0, A_2, A_4, A_6, A_8) \) have no samples corresponding in time, where each sample of the first subset of samples \((A_1, A_3, A_5, A_7, A_9) \) has an adjusted value, where the first subset of samples \((A_1, A_3, A_5, A_7, A_9) \) and the second subset of samples \((A_0, A_2, A_4, A_6, A_8) \) are interleaved, where each sample of the third subset of samples \((B_0, B_2, B_4, B_6, B_8) \) has an adjusted value,
and where the third subset of samples (B₀, B₂, B₄, B₆, B₈) and the fourth subset of samples (B₁, B₃, B₅, B₇, B₉) are interleaved, and

- retrieval means arranged to retrieve a single set of error approximations from the meta data block associated to the third combined data set, each error approximation in the single set of error approximations having an index, and

and to retrieve an association of an error of each adjusted sample of the first, second, fourth and fifth digital data set with a corresponding index of the error approximations from the meta data block and to retrieve for the error of each adjusted sample of the first subset and third subset of samples an error approximation corresponding to the index associated with the adjusted sample, using the corresponding error approximation to correct the error of each adjusted sample of the first subset and third subset of samples, and

- output means for outputting the retrieved first digital data set.

14. A decoder as claimed in claim 13, where retrieval means is arranged to retrieve for each adjusted sample of the first, second, fourth and fifth digital data set an association between each adjusted sample and a corresponding index from one or more meta data blocks of one or more of the combined digital data sets.

15. A mobile device comprising a decoder as claimed in claim 13 or 14.

16. A multimedia device comprising a decoder as claimed in claim 13 or 14.

17. A recording medium comprising a digital data set and meta data blocks as obtained by the method as claimed in any one of the claims 1 to 4.

18. A computer program comprising code means for executing the method as claimed in one of the claims 1 to 6 when executed on a computer which provides a suitable environment for execution of the computer program.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>EP 2 092 791 A1 (GALAXY STUDIOS NV [BE]; DEN BERGHE GUIDO VAN [BE]; BAELEN WILFRIED VAN) 26 August 2009 (2009-08-26) cited in the application figures 2-4,9 paragraph [0065] page 4, line 41, paragraph 15 first sentence; paragraph [0017] sentence 13, paragraph 81 - sentence 15</td>
<td>5, 6, 13, 15, 16</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier application or patent but published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

- **T** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- **X** document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- **Y** document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Date of the actual completion of the international search: 24 May 2016

Date of mailing of the international search report: 01/06/2016

Authorized officer: Ziegler, Stefan
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>EP 2092791 A1</td>
<td>26-08-2009</td>
<td>AT 476834 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2678681 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 101641970 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 2092791 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2092791 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2299734 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2328364 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2337380 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2350018 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2399562 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1141188 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 5325108 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010506226 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 2299734 E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2010027819 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006043858 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2014295360 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2917770 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2918237 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 105580073 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 105593931 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SG 112016004685 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201514972 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 201514973 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015010926 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2015010934 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20150038155 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014023196 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2014023197 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2014015299 A1</td>
</tr>
</tbody>
</table>