（19）中华人民共和国国家知识产权局

（12）发明专利申请

（10）申请公布号 CN 102947280 A
（43）申请公布日 2013.02.27

（21）申请号 201080060378.0
（22）申请日 2010.11.01

（30）优先权数据
61/258,272 2009.11.05 US

（85）PCT申请进入国家阶段日
2012.07.02

（86）PCT申请的申请数据
PCT/IB2010/054930 2010.11.01

（87）PCT申请的公布数据
WO2011/055289 EN 2011.05.12

（71）申请人 皮拉马尔企业有限公司
地址 印度孟买

（72）发明人 R·D·贾达夫 R·夏尔马
K·S·卡达姆 S·S·肯德拉

（74）专利代理机构 北京派特恩知识产权代理事务所（普通合伙）11270
代理人 张颖玲 孟桂超

（51）Int.Cl.
C07D 263/34 (2006.01)
C07D 277/56 (2006.01)
C07D 277/82 (2006.01)
C07D 417/12 (2006.01)
A61K 31/421 (2006.01)
A61K 31/426 (2006.01)
A61K 31/428 (2006.01)
A61K 31/4439 (2006.01)
A61P 3/06 (2006.01)
A61P 3/10 (2006.01)

（54）发明名称
作为治疗肥胖有用的DGAT-1抑制剂的羧基
噻唑或噻唑化合物

（57）摘要
本发明涉及式(I)的新的芳基化合物、
所述化合物的制备方法、含有所述化合物的药
物组合物、及所述化合物在治疗由二酰基甘油
酰基转移酶1(DGAT-1)介导的疾病或障碍性
疾病特别是肥胖或肥胖相关障碍性疾病中的
应用。其中Z选自取代或未取代的烷基环烷
基、取代或未取代的环烷基、取代或未取代的
芳基、取代或未取代的杂芳基、和取代或未取代的
杂环；Y选自-N(R1)-、-N(R2)CON(R3)-、-N(R1)
CSN(R1)-、-NR,R,C(0)-、-N(R2)、(C = NR,R)N(R2)-、-C
ON(R1)-、-NR,R,SO,-和-SO,NR,R-；R选自(a)和(b)，
其中T是-O-或-S-；V选自-COH,-CONR,R,、
-C(O)-、-C(S)-、-COC(R1)(R2)和-SO,NR,R,-选
自-COOR,R,-CONR,R,-CONR,R,SCH和羧酸电子等
排体，所述羧酸电子等排体选自：四唑-5-基、5-三
氮甲基-1,2,4-三唑-3-基、S-(甲磺酰基)-1,2,4-
-三唑-3-基和2,5-二氢-5-氧代-1,2,4-噻
二唑-3-基；R1、R2、R3和R4是H、且可选地是取

Z

R1

R2

R3

R4

（I）

(a)

(b)
1. 一种式 (I) 的化合物，其立体异构体或其互变异构体或其前药或其药学上可接受的盐或药学上可接受的溶剂化物，

![化合物结构](image)

其中，

Z 选自：取代或未取代的烷基环烷基、取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基、及取代或未取代的杂环，其中每个取代的烷基环烷基、环烷基、芳基、杂芳基和杂环被一个或多个选自 R° 的取代基取代；

R° 在每次出现时选自：卤素、氧代、硫代、硝基、-CN、-OR_2、-S(=O)NR_2、-OCONR_2、-SCOR_2、-NR_2COR_2，-NR_2CONR_2，-NR_3SO_2R、-NR_2CONR_2R、-COR_2、-CN、-CO

R° 在每次出现时选自：卤素、硝基、-CN、羟基、烷氧基、-COOH、-NH_2 和烷基；

Y 选自：-N(R_2)_2、-N(R_2)CON(R_2)_2、-N(R_2)CSN(R_2)_2、-NR_2C(O)-、-NR_2(C = NR_2)_2N(R_2)_2、

U 选自：

V 选自：-CONR_2、-CSNR_2、-C(O)-、-C(S)-、-COC(R_2)_2R 和 -SO_2NR_2；

R° 和 R° 在每次出现时独立地选自：H、及取代或未取代的烷基，其中取代的烷基被选自 R° 的取代基取代；

R° 和 R° 在每次出现时独立地选自：H、及取代或未取代的烷基，其中取代的烷基被选自 R° 的取代基取代；

or R° 和 R° 与它们连接的碳一起形成 3-6 元环，其中所述环可以选地被一个或多个选自 R° 的取代基取代；

m 是 0-2 的整数；

n 是 1-2 的整数；

* 表示与 -V- 的连接点，且

$\frac{y}{2}$—表示与苯环的连接点。
2. 一种式 (I) 的化合物，或其立体异构体或其互变异构体或其前药或其药学上可接受的盐或药学上可接受的溶剂化物，

![化合物结构式](image)

(I)

其中，

Z 选自：取代或未取代的烷基环烷基、取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基、及取代或未取代的杂环，其中每个取代的烷基环烷基、环烷基、芳基、杂芳基和杂环被一个或多个选自 R' 的取代基取代；

R' 在每次出现时选自：卤素、硝基、-CN、-OR、-S(=O)nR、-NR、-NR、-NH、COR、-NR、-OR、-NR、-SO2R、-NR、-CONR、-CONR、-CONR、-(CR), -OR、烷基、卤代烷基、芳基和杂芳基；其中 R、R' 独立地选自：H 和烷基，其中烷基可选地被一个或多个卤素或氰基取代；

Y 选自：-(CH2)nN(R')-, -N(R')-, -N(R')CON(R')-, -N(R')CON(R')-, -CON(R')-, -NR，SO2- 和 -SO2NR-；

U 选自：

V 是 -CONR；

R、R' 和 R'' 在每次出现时独立地选自：H 和未取代的烷基；

R 选自：-COOR、烷酸电子等排体，所述烷酸电子等排体选自：四环 -5- 基、5- 三氯甲基 -1, 2, 4- 三唑 -3- 基、5- (甲磺酰基)-1, 2, 4- 三唑 -3- 基和 2, 5- 二氢 -5- 氧代 -1, 2, 4- 三唑 -3- 基；其中，R 选自：H；取代或未取代的烷基、取代或未取代的芳基、取代或未取代的杂芳基、取代或未取代的杂环基、其中每个取代的烷基、芳基、杂环和杂芳基被一个或多个选自 R' 的取代基取代；

m 是 0-2 的整数；

n 是 1-2 的整数；

* 表示与 -V- 的连接点，且

- 表示与苯环的连接点。

3. 根据权利要求 1 或 2 所述的化合物，其中 Z 是取代或未取代的烷基环烷基。
4. 根据权利要求 3 所述的化合物，其中 Z 是乙基环己基。
5. 根据权利要求 1 或 2 所述的化合物，其中 Z 是取代或未取代的环烷基。
6. 根据权利要求 5 所述的化合物，其中 Z 是被一个或多个卤素取代的环烷基。
7. 根据权利要求 1 或 2 所述的化合物，其中 Z 是取代或未取代的芳基。
8. 根据权利要求 7 所述的化合物，其中 Z 是取代或未取代的苯基。
9. 根据权利要求 8 所述的化合物，其中 Z 是被一个或多个选自卤代烷基、卤素、芳基、-OR、和烷基的基团取代的苯基；其中，烷基可选地被一个或多个卤素或氰基取代，且 R 是芳基。
10. 根据权利要求1或2所述的化合物，其中Z是取代或未取代的杂芳基。
11. 根据权利要求10所述的化合物，其中Z是被烷基或卤素取代的杂芳基。
12. 根据权利要求11所述的化合物，其中Z选自取代或未取代的苯并噻唑基、及取代
或未取代的吡啶基，其中所述取代基是氟或烷基。
13. 根据权利要求1或2所述的化合物，其中Y选自-N(R)₂₋₋˓→Next
2-(5-(4-(3-(3,4-二甲苯基)胺基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸，
3-甲基-2-(5-(4-(3-(2-苯氧基苯基)胺基)苯基)喹啉-2-甲酰氨基)丁酸甲酯，
2-(5-(4-(3-(4-氯-2-苯氧基苯基)胺基)苯基)喹啉-2-甲酰氨基)丁酸，
2-(5-(4-(3-(3-氯-2-苯氧基苯基)胺基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(5-(4-(3-(4-氯-2-苯氧基苯基)胺基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸，
2-(5-(4-(6-氟苯并[d]喹啉-2-基氨基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸乙酯，
2-(5-(4-(6-氟苯并[d]喹啉-2-基氨基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸，
2-(5-(4-(4-叔丁基苯甲酰氨基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(5-(4-(4-叔丁基苯甲酰氨基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(4-(4-(3-(2-氯苯基)胺基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸，
2-(4-(4-(3-(2-氯苯基)胺基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸，
2-(4-(4-(6-氟苯并[d]喹啉-2-基氨基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(4-(4-(6-氟苯并[d]喹啉-2-基氨基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸，
2-(4-(4-(4-叔丁基苯甲酰氨基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(4-(4-(4-叔丁基苯甲酰氨基)苯基)喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(4-(4-(3-(4-(3-氯甲基)苯基)胺基)苯基)喹啉-2-甲酰氨基)丁酸甲酯，
2-(4-(4-(3-(4-(3-氯甲基)苯基)胺基)苯基)喹啉-2-甲酰氨基)丁酸甲酯，
2-(4-(4-(3-(4-(3-氯甲基)苯基)胺基)苯基)喹啉-2-甲酰氨基)丁酸甲酯，
2-(4-(4-(4-联苯基-4-基甲酰氨基苯基)喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(4-(4-联苯基-4-基甲酰氨基苯基)喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
3-甲基-2-(4-(4-(4-联苯基-4-基甲酰氨基苯基)喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
3-甲基-2-(N-甲基-5-(4-(4-戊基苯甲酰氨基)苯基)喹啉-2-甲酰氨基)丁酸甲酯，
3-甲基-2-(N-甲基-5-(4-(4-戊基苯甲酰氨基)苯基)喹啉-2-甲酰氨基)丁酸甲酯，
2-(5-(4-联苯基-4-基甲酰氨基苯基)-N-甲基喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(4-(4-叔丁基苯甲酰氨基)苯基)-N-甲基喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(5-(4-(4-叔丁基苯甲酰氨基)苯基)-N-甲基喹啉-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(4-(4-(2,4-二氯苯基磺酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯， 2-(4-(4-(2,4-二氯苯基磺酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸， 2-(5-(4-联苯基-4-基甲酰氨基苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯， 2-(5-(4-联苯基-4-基甲酰氨基苯基)噻唑-2-甲酰氨基)-3-甲基丁酸， 2-(5-(4-(3-环己基丙酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯， 2-(5-(4-(3-环己基丙酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸， 2-(5-(4-(2,3-二氯-1H-茚-2-基甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯， 2-(5-(4-(2,3-二氯-1H-茚-2-基甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸， 2-(5-(4-(4,4-二氯环己烷甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯， 2-(5-(4-(4,4-二氯环己烷甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸， （S）-2-(5-(4-(3-(2,3-二氯-1H-茚-5-基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯， （S）-2-(5-(4-(3-(2,3-二氯-1H-茚-5-基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸， （S）-2-(5-(4-(3-(4-氯苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯， （S）-2-(5-(4-(3-(4-氯苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸， （S）-2-(5-(4-(3-(3-氯苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯， （S）-2-(5-(4-(3-(3-氯苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸， （S）-2-(5-(4-(3-(2-氯-4-(三氟甲基)苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯， （S）-2-(5-(4-(3-(2-氯-4-(三氟甲基)苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸， （S）-2-(5-(4-(3-(4-氯苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯， （S）-2-(5-(4-(3-(4-氯苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸， （S）-2-(5-(4-(3-(4-氯苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
(S)-2-(5-4-(3-(4-氯-2-氯苯基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
(S)-2-(5-4-(3-(4-氯-2-氯苯基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸，
(S)-2-(4-4-(3-(4-氯苯基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
(S)-2-(4-4-(3-(4-氯苯基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸，
(S)-2-(4-4-(3-(2,3-二氯-1-甲基-5-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
(S)-2-(4-4-(3-(2,3-二氯-1-甲基-5-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸，
(S)-2-(4-4-(3-(3-氯苯基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
(S)-2-(4-4-(3-(3-氯苯基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸，
(S)-2-(4-4-(3-(4-氯苯基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
(S)-2-(4-4-(3-(4-氯苯基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸，
2-(5-4-(4-(2-氰基丙烷-2-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(5-4-(4-(2-氰基丙烷-2-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸，
2-(5-4-(4-(3-氟基戊烷-3-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(5-4-(4-(3-氟基戊烷-3-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸，
2-(5-4-(4-(3-氟基戊烷-3-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(5-4-(4-(3-氟基戊烷-3-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸，
2-(5-4-(4-(3-氟基戊烷-3-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(5-4-(4-(3-氟基戊烷-3-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸，
2-(5-4-(4-(3-氟基戊烷-3-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
2-(5-4-(4-(3-氟基戊烷-3-基)甲基基)甲基基)噻唑-2-甲酰氨基)-3-甲基丁酸，
23. 一种药物组合物，所述药物组合物包括：治疗有效量的前述权利要求1-22中任一项所述的式(I)的化合物或其药学上可接受的盐或药学上可接受的溶剂化物，以及药学上可接受的赋形剂或载体。
24. 一种药物组合物，所述药物组合物包括：治疗有效量的根据前述权利要求1-22中任一项所述的式(I)的化合物或其药学上可接受的盐或药学上可接受的溶剂化物，和至少另外一种药学活性化合物，以及药学上可接受的赋形剂或载体；所述药学活性化合物选自：
减食欲物质诸如西布曲明，肝葡萄糖平衡调节剂诸如二甲双胍，胰岛素敏化剂诸如吡格列酮，二肽基肽酶 IV 抑制剂诸如西他列汀，肠降血糖素类似物诸如艾塞那肽，降低来自肠和肾的葡萄糖吸收的试剂诸如阿卡波糖和葡萄糖转运蛋白抑制剂，利莫那班，他汀类药物，贝特类药物，β-阻断剂诸如阿替洛尔，血管紧张素受体拮抗剂诸如坎地沙坦，血管紧张素转换酶抑制剂诸如依那普利，和利尿剂诸如呋塞米。

25. 一种用于治疗由 DGAT-1 介导的疾病的药物，所述方法包括：向有需要的哺乳动物施用治疗有效剂量的根据前述权利要求 1-22 中任一项所述的式 (1) 的化合物或其药学上可接受的盐或药学上可接受的溶剂化合物。

26. 一种用于治疗由 DGAT-1 介导的疾病的药物，所述方法包括：向有需要的哺乳动物施用治疗有效剂量的根据前述权利要求 23 所述的药物组合物。

27. 根据权利要求 25 或 26 所述的方法，其中所述 DGAT-1 介导的疾病是肥胖或肥胖相关障碍性疾病。

28. 根据权利要求 27 所述的方法，其中所述肥胖相关障碍性疾病选自：外周血管病，糖尿病，胰岛素抵抗，葡萄糖耐量受损，糖尿病肾病，糖尿病视网膜病变，高胆固醇血症，高甘油三酯血症，高脂血症，代谢性酸中毒，酮病，脂肪性肝病，代谢紊乱综合征，关节炎，骨质疏松症，心血管疾病诸如高血压，心力衰竭，心脏病，心肌缺血，心肌梗塞，动脉硬化和动脉粥样硬化，大脑缺血和再灌注损伤，不育症，多囊卵巢综合征，肌无力，皮肤病诸如痤疮，多种免疫调节疾病诸如银屑病，炎性肠综合征和炎性肠病诸如克罗恩氏病和溃疡性结肠炎。

29. 根据前述权利要求 1-22 中任一项所述的式 (1) 的化合物或其药学上可接受的盐或药学上可接受的溶剂化合物用于治疗由 DGAT-1 介导的疾病的使用。

30. 根据权利要求 23 所述的药物组合物用于治疗由 DGAT-1 介导的疾病的使用。

31. 根据权利要求 29 或 30 所述的使用，其中所述 DGAT-1 介导的疾病是肥胖或肥胖相关障碍性疾病。

32. 根据前述权利要求 1-22 中任一项所述的式 (1) 的化合物或其药学上可接受的盐或药学上可接受的溶剂化合物在制造用于治疗由 DGAT-1 介导的疾病的药剂中的应用。

33. 一种用于制备式 (10) 的化合物的方法，

![化合物](image)

所述方法包括：

使式 (9) 的化合物在溶剂诸如四氢呋喃中与式 Z-NCO 的异氰酸酯发生反应，

![化合物](image)

其中，Z、U、R_1 和 R_2 与在权利要求 1 或 2 中的定义相同，且 R_p 是烷基；

可选地，通过碱性水解将所得到的酯转化成对应的酸；
可选地，将所得到的酸转化成药学上可接受的盐。

34. 一种用于制备式 (12) 的化合物的方法，

![化学结构式](12)

所述方法包括：

使式 (9) 的化合物在溶剂诸如二氯甲烷中，且在碱诸如吡啶的存在下与式 Z-COCl 的化合物发生反应；或者，使式 (9) 的化合物在三甲基铝的存在下，且在溶剂诸如甲苯中与式 Z-COOMe 的化合物发生反应，

![化学结构式](9)

其中，Z、U、R₁ 和 R₂ 与在权利要求 1 或 2 中的定义相同，且 R₃ 是烷基；
可选地，通过碱性水解将所述得到的酯转化成对应的酸；
可选地，将所述得到的酸转化成药学上可接受的盐。

35. 一种用于制备式 (14) 的化合物的方法，

![化学结构式](14)

所述方法包括：

使式 (9) 的化合物在溶剂诸如正丁醇中，且在二氯甲烷中的盐酸的存在下与式 Z-Cl 的化合物发生反应；或者，使式 (9) 的化合物在溶剂诸如二氯甲烷中，且在碱诸如三乙胺的存在下与式 Z-Br 的化合物发生反应，

![化学结构式](9)

其中，Z、U、R₁ 和 R₂ 与在权利要求 1 或 2 中的定义相同，且 R₃ 是烷基；
可选地，通过碱性水解将所述得到的酯转化成对应的酸；
可选地，将所述得到的酸转化成药学上可接受的盐。

36. 一种用于制备式 (14a) 的化合物的方法，

![化学结构式](14a)

所述方法包括：

使式 (9) 的化合物在溶剂诸如丙酮中，且在碱诸如碳酸钾的存在下与式 Z-CH₂Cl 或
Z-CH₃Br 的化合物发生反应，

其中，Z、U、R₁ 和 R₂ 与在权利要求 1 或 2 中的定义相同，且 Rₚ 是烷基；
可选地，通过碱性水解将所述得到的酯转化成所对应的酸；
可选地，将所述得到的酸转化成药学上可接受的盐。

37. 一种用于制备式 (18) 的化合物的方法，

所述方法包括：
使式 (17) 的化合物与式 Z-COCl 的化合物发生反应，

其中，Z、U、R₁ 和 R₂ 与在权利要求 1 或 2 中的定义相同，且 Rₚ 是烷基；
可选地，通过碱性水解将所述得到的酯转化成所对应的酸；
可选地，将所述得到的酸转化成药学上可接受的盐。

38. 一种用于制备式 (20) 的化合物的方法，

所述方法包括：
使式 (9) 的化合物在溶剂诸如二氯甲烷中、且在碱诸如吡啶的存在下与式 Z-SO₂Cl 的化合物发生反应，

其中，Z、U、R₁ 和 R₂ 与在权利要求 1 或 2 中的定义相同，且 Rₚ 是烷基；
可选地，通过碱性水解将所述得到的酯转化成所述对应的酸；
可选地，将所述得到的酸转化成药学上可接受的盐。
作为治疗肥胖有用的 DGAT-1 抑制剂的羧基嘧啶或噻唑化合物

技术领域
[0001] 本发明涉及新颖的杂芳基化合物、所述化合物的制备方法、含有所述化合物的药物组合物、及其所述化合物作为药剂的应用，尤其涉及这些化合物用于治疗由二脂酰甘油酰基转移酶（DGAT）、特别是 DGAT-1 介导的疾病或障碍性疾病的应用。

背景技术
[0002] 肥胖（通常定义为体重指数（BMI）超过 30 千克/平方米（Kg/m²））是全世界的一个重要健康问题，它是高血压、糖尿病和心血管疾病的一个危险因素。肥胖被视作当能量输入超过能量输出时产生的能量贮存障碍。大部分多余的卡路里作为脂肪（超过 95% 的脂肪是甘油三酯）储存在导致肥胖的脂肪组织中，而当多余的卡路里储存在非脂肪组织中时，则导致胰岛素抵抗。因此，甘油三酯合成的抑制代表了用于治疗人类肥胖和 II 型糖尿病的潜在治疗策略。

[0006] 使用 DGAT-1 反义寡核苷酸进行的其它研究提示：对 DGAT-1 的抑制会导致 ob/ob 小鼠中的血糖的降低。因而，对由增加的能量消耗和减少的能量吸收引起的肥胖抵抗、以及
与DGAT-1缺乏有关的胰岛素敏感性的明显改善共同提示：对DGAT-1的抑制可能是解决代谢综合症的潜在治疗策略。

【0008】DGAT-1抑制剂也可以用于治疗丙型肝炎感染（Nature Medicine（2010年10月10日））。

【0009】下述专利公开描述了抑制DGAT-1活性的化合物：

【0011】WO2007/087429描述了用于炎症和免疫相关应用的苯基和吡啶基化合物。

【0012】WO2008/154601描述了用于治疗病毒感染的化合物，组合物和方法，所述病毒感染是由病毒的黄病毒科的病毒介导。

发明内容

【0013】根据本发明的一个方面，提供了一种式(I)的化合物（如下文所述）。

【0014】根据本发明的另一个方面，提供了一种抑制受试者体内的DGAT-1的方法，所述方法包括：向需要这种治疗的受试者施用治疗有效量的式(I)的化合物或其药学上可接受的盐。

【0015】根据本发明的另一个方面，提供了一种用于治疗肥胖和肥胖相关障碍性疾病的方法，所述方法包括：向需要这种治疗的受试者施用治疗有效量的式(I)的化合物或其药学上可接受的盐。

【0016】根据本发明的另一个方面，提供了一种用于治疗肥胖、糖尿病、胰岛素抵抗或葡萄糖耐量受损的方法，所述方法包括：向需要这种治疗的受试者施用治疗有效量的式(I)的化合物或其药学上可接受的盐。

【0017】根据本发明的又一方面，提供了一种用于治疗肥胖和肥胖相关障碍性疾病的方式(I)的化合物。

【0018】根据本发明的又一方面，提供了一种用于治疗糖尿病、肥胖、胰岛素抵抗或葡萄糖耐量受损的方式(I)的化合物。

【0019】根据本发明的另一个方面，提供了一种药物组合物，所述药物组合物包含式(I)的化合物或其药学上可接受的盐，及药学上可接受的载体、媒介物（vehicle）、稀释剂或赋形剂。

【0020】根据本发明的另一个方面，提供了一种用于制备药物组合物的方法，所述方法包括：使式(I)的化合物与药学上可接受的赋形剂或载体相组合。

【0021】根据本发明的另一个方面，提供了一种用于制备式(I)的化合物的方法。

具体实施方式
本发明提供了一种式 (I) 的化合物及其立体异构体及其互变异构体及其前药及其药学上可接受的盐和溶剂化物，其中，

(I)

Z 选自，取代或未取代的烷基烷基、取代或未取代的烷基、取代或未取代的芳基、取代或未取代的杂芳基、及取代或未取代的杂环基，其中每个取代的烷基或烷基表示一个一个或多个选自 R³ 的取代基取代；

R³ 在每次出现时选自：卤素、氧代 (oxo)、硫代 (thio)、硝基、-CN、-OR、-S(=O)₂ R₄，-OCOR₅、-SCOR₅、-NR₂ R₆、-NR₃ COR₅、-NR₅ COR₅、-NR₆ SO₂ R₇·-NR₇ SO₂ R₈·-NR₈ CO NR₉ R₉，-COR₅、-COOR₅·-CONR₉ R₉、-(CR₃ R₄)ₙ OR·-烷基、卤代烷基，烯基，炔基，环烷基，烷基环烷基，芳基，芳基，烃基，杂环基，烷基醇基；其中, R₆ 和 R₇ 独立地选自：H、烷基，烯基，炔基，烷基环烷基，烷基环烷基，芳基，烯基，芳基，烯基，炔基，烷基环烷基，芳基，烯基，芳基，烯基，炔基，烷基环烷基，芳基，烯基，芳基环烷基，芳基，烯基，炔基，烷基环烷基，芳基，烯基，炔基，烷基环烷基，芳基，烯基，芳基，烯基，炔基，烷基环烷基；

R³ 在每次出现时选自：卤素、氧基、硝基、-CN、烃基，烷氧基，-COOH，-NH₂ 和烷基；

Y 选自，-(CH₂)-N(R₂)-，-N(R₃)-，-N(R₄) CON(R₅)-，-N(R₅) CSN(R₆)-，-N(R₆) C(=NR₇) N(R₇)-，-NR₆ C(O)-，-CONR₇-，-NR₇ SO₂- 和 -SO₂ NR₈-；

U 选自：

其中 T 是 -O- 或 -S-；

V 选自：-CONR₉-，-CSNR₉-，-C(O)-，-C(S)-，-COC(R₉) (R₉) 和 -SO₂ NR₉-；

R₃ 选自：-COOR₉，-CONR₉ R₉，-CONR₉ SO₂ R₉，和羧酸类等排体，其中羧酸类等排体包括四唑-5-基，5-三氟甲基-1,2,4-三唑-3-基，5-(甲磺酰基)-1,2,4-三唑-3-基，和 2,5-二氢-5-氧化-1,2,4-噁二唑-3-基；

R₇、R₈、R₉ 和 R₁₀ 在每次出现时独立地选自：H、和取代或未取代的烷基，其中取代的烷基被选自 R³ 的取代基取代；

R₉ 和 R₁₀ 独立地选自：H、取代或未取代的烷基，取代或未取代的芳基，取代或未取代的杂环基，取代或未取代的杂芳基，其中每个取代的烷基，芳基，烯基，炔基，环烷基和杂芳基被一个或多个选自 R³ 的取代基取代；

R₁₀ 和 R₁₁ 与它们连接的碳一起形成 3-6 元环，其中所述环可以可选地被一个或多个选自 R³ 的取代基取代；

m 是 0-2 的整数；

n 是 1-2 的整数；

* 表示与 V- 的连接点，且

*表示与苯环的连接点。
定义

下面列出了适用于在本说明书中使用的术语（除非在特定情况下对它们做出限制）的定义。

应该理解，“取代”或“被……取代”包括下述暗示的条件：这样的取代是依据取代原子和取代基允许的化合价进行的，且代表稳定的化合物，所述化合物不容易发生诸如重排、环化、消除等转化。

术语“卤素”表示选自F、Cl、Br和I的原子。

本文使用的术语“烷基”表示饱和的脂肪基团，包括含有1-10个碳原子，相当于1-6个碳原子，优选是1-4个碳原子的直链或支链烷基。烷基的实施例包括，但不限于：甲基、乙基、丙基、丁基、异丙基、异丁基、1-甲基丁基、异戊基、新戊基、2,2-二甲基丁基、2-甲基戊基、3-甲基戊基、仲丁基、叔丁基等。

术语“烯基”表示不饱和的、直链或支链烷基，该不饱和的、直链或支链烷基具有2-10个碳原子，相当于2-6个碳原子，优选是2-4个碳原子和至少一个碳-碳双键（两个邻近的sp²碳原子）。根据双键和取代基（如果有）的布局，双键的几何构型可以是位置在反（entgegen，E）或位于同一侧（zusammen，Z）的顺式或反式。烯基的实施例包括，但不限于：乙烯基、丙烯基、2-丙烯基、顺式-2-丁烯基、反式-2-丁烯基、2-甲基-2-丙烯基、4-甲基-2-丙烯基等。

术语“炔基”表示不饱和的、直链或支链烷基，该不饱和的、直链或支链烷基具有2-10个碳原子，相当于2-6个碳原子，优选是2-4个碳原子和至少一个碳-碳三键（两个邻近的sp碳原子）。炔基的实施例包括，但不限于：乙炔基、1-丙炔基、3-丙炔基、1-丁炔基等。

本文使用的术语“卤代烷基”表示如下的烷基：其中一个或多个氢原子被一个或多个卤素原子替换。“卤代-\text{C}_x\text{-C}_y”烷基”基团具有1-8个碳原子，“卤代-\text{C}_x\text{-C}_6”烷基”基团具有1-6个碳原子。卤代烷基的实施例包括，但不限于：单氟甲基、二氟甲基或三氟甲基；单氯甲基、二氯甲基或三氯甲基；单溴乙基、二溴乙基、三溴乙基、四溴乙基或五溴乙基；七氟丙基；二氯氟甲基和二氯氟甲基。

术语“烷氧基”表示-O-烷基，其中烷基为如上定义的烷基。

术语“环烷基”表示饱和或部分不饱和的环状烃基，该环状烃基包括单环、双环或多环的环状烃基系统，且包括共3-20个环碳原子。环烷基的实施例包括，但不限于：环丙基、环丁基、环戊基、环己基、环庚烷基、[3,3,0]环辛烷基、[4,4,0]环癸烷基等。多环的环烷基环系统可以包括：与诸如环己基（indanyl）、四氢萘基等芳烃稠合的环状烃基。环烷基环系统可以经由任何希望的位置被键合在一起。多环的环烷基环系统可以经由sp³碳或sp²碳被键合在一起。

术语“芳基”表示具有多达20个环碳原子，优选多达10个环碳原子的单环或多环的烃基，其中存在至少一个具有共轭π电子系统的环碳。芳基的实施例包括，但不限于：苯基、萘基等。

术语“苯烷基”表示通过烷基键合的芳基，其中术语“烷基”和“芳基”如上文所定义。苯烷基的实施例包括，但不限于：苯基、1-苯基乙基、1-苯基乙基等。

术语“苯环烷基”表示通过烷基键合的环烷基，其中术语“烷基”和“环烷基”如
上文所定义。

【0051】术语“杂环基”或“杂环”表示饱和或部分不饱和的、单环或多环的、含有5~20个
环原子的环系统，所述环原子中的1、2、3或4个环原子是相同或不同的选自N、0和S的杂
原子。“杂环基”或“杂环”可以在环中具有例如1或2个氧原子、和/or1或2个硫原子、
和/or1~4个氮原子。“杂环基”或“杂环”优选地是5~6原子环。只要得到的“杂环基”
或“杂环”是稳定的，则环杂原子可以相对于彼此存在于任何位置。“杂环基”或“杂环”
的实施例包括但不限于：吖辛因基(azocynyl)、色满基(chromanyl)、十氢喹啉基、呋喃基
(furazanyl)、咪唑并基、二氢吲哚基、异苯并呋喃基、异二氢吲哚基、异噁唑啉基、吲哚基、
八氢异喹啉基、噁啶基、哌啶基、吡啶基、吡啶基、苯并吡喃基、苯并呋喃基、吲哚基、
呫啶基、4H-喹唑基、四氢呋喃基、苯并二氧杂环戊烯基、二氢异喹啉基、四氢喹啉基、
6H-1,2,5-噻二唑基和呫吨基(xanthanyl)。

【0052】术语“烷基杂环”表示通过烷基键合的杂环基团，其中术语“烷基”和“杂环”如上
文所定义。

【0053】本发明的术语“杂芳基”表示含有5~20个环原子，适当为5~10个环原子的芳
族杂环系统，该芳族杂环系统可以是单个环(单环的)、或偶合在一起或共价连接的多个环
(二环、三环或多环的)。所述环可以含有1~4个选自N、0和S的杂原子，其中所述N或S
原子可选地被氧化、或所述N原子可选地被卤原子化。杂芳基部分的任意适当的环位置可以
共价地相连至确定的化学结构。杂芳基的实施例包括但不限于：吡啶、哒嗪、吲哚、噻唑基、
喹啶基、噻唑基、咪唑基(cinnolinyl)、异噁唑基、噻唑基、4H-唑基、噁唑基、噻唑基、
三唑基、吡唑基、噁唑基、咪唑基、苯并咪唑基、苯并哒嗪基、苯并噻唑基、苯并嘧啶基、
苯并恶唑基、苯并噻唑基、苯并嘧啶基、苯并咪唑基、苯并喹唑基、苯并咪唑基、苯并噁唑基、
苯并噻唑基、苯并噁唑基、苯并咪唑基、苯并噁唑基、苯并噻唑基、苯并嘧啶基、苯并嘧啶基、
苯并噁唑基、苯并噻唑基、苯并嘧啶基、苯并噁唑基、苯并噻唑基、苯并嘧啶基、苯并嘧啶基、
苯并噻唑基、苯并嘧啶基、苯并嘧啶基、苯并嘧啶基、苯并嘧啶基、苯并嘧啶基、苯并嘧啶基、
苯并嘧啶基、苯并嘧啶基、苯并嘧啶基、苯并嘧啶基。其中术语“烷基杂芳基”表示通过烷基
键合的杂芳基，其中术语“烷基”和“杂芳基”如上文所定义。

【0054】本发明的术语“溶液化物”优选地表示通过溶质(在本发明中，式(I)的化合物
或其盐)和溶剂的相互作用形成的化合物。用于本发明目的的这种溶剂不会干扰溶质的生
物活性。适合的溶剂的实施例包括但不限于：水、甲醇、乙醇和醋酸。优选使用的溶剂是药
学上可接受的溶剂。适合的药学上可接受的溶剂的实施例包括但不限于：水、乙醇和醋酸。最
优选使用的溶剂是水。适合的溶液化物的实施例是根据本发明的化合物的单水合物、或二
水合物、或醇合物。

【0055】本发明的术语“立体异构体”是用于表示单一化合物的所有异构体的一般术语，
所述异构体仅在它们的原子的空间排列方向上存在不同。术语立体异构体包括：镜像异构
体(对映异构体)、镜像异构体的混合物(外消旋体、外消旋的混合物)、几何(顺/反或
E/Z)异构体，和具有超过一个的彼此不成镜像的手性中心的化合物的异构体(非对映异构
体)。本发明的化合物可以具有不对称的中心，且本发明的化合物作为外消旋体、外消旋
的混合物、单一的非对映异构体、或对映异构体存在，或者作为几何异构体存在，所述化合
物的所有异构体形式都被包括在本发明中。
本文使用的术语“互变异构体”表示两种（或多种）化合物的共存。所述两种（或多种）化合物中，仅有一个（或多个）可移动原子的位置和电子分布的不同，例如酮-烯醇互变异构体。

术语“药学上可接受的盐”表示本发明化合物的无毒的、无机的和有机的酸加成盐和碱加成盐。

本文使用的术语“治疗”和“疗法”等表示：减轻现有疾病（例如，糖尿病或肥胖），减慢该疾病的进展，预防、减弱或治愈该疾病。

本文使用的术语“药学上可接受的”是指载体、稀释剂、赋形剂，和/或盐必须与制剂的其它成分相容，且对其受体无害。

实施方式

本发明的一个实施方式是式 I 的化合物，其中 Z 选自：取代或未取代的烷基环烷基，取代或未取代的环烷基，取代或未取代的芳基，和取代或未取代的杂芳基。

另一个实施方式是式 I 的化合物，其中 Z 是取代或未取代的烷基环烷基。

另一个实施方式是式 I 的化合物，其中 Z 是乙基环己基。

另一个实施方式是式 I 的化合物，其中 Z 是取代或未取代的烷基环烷基。

另一个实施方式是式 I 的化合物，其中 Z 是被一个或多个卤素取代的环烷基。

另一个实施方式是式 I 的化合物，其中 Z 选自：环己基和 4,4-二氟环己基。

另一个实施方式是式 I 的化合物，其中 Z 是取代或未取代的芳基。

又一实施方式是式 I 的化合物，其中 Z 是取代或未取代的苯基。

又一实施方式是式 I 的化合物，其中 Z 是被一个或多个选自卤代烷基，卤素，芳基，OR和烷基的基团取代的苯基;其中烷基可选地被一个或多个卤素或氟基取代，且R是芳基。

又一实施方式是式 I 的化合物，其中 Z 是取代或未取代的杂芳基。

又一实施方式是式 I 的化合物，其中 Z 是被烷基或卤素取代的芳基。

又一实施方式是式 I 的化合物，其中 Z 选自：取代或未取代的苯并噻唑基，和取代或未取代的吗啉基，其中所述取代基是氟或烷基。

又一实施方式是式 I 的化合物，其中 Z 选自：6-氯-苯并噻唑-2-基和5-丁基-吡啶-2-基。

又一实施方式是式 I 的化合物，其中 Z 选自：乙基环己基，二甲基基，苯基，4,4-二氟环己基，苯基，4-氟苯基，4-(2-氟基丙基)-2-基苯基，4-(3-氟基丙烷-3-基) 苯基，4-(3-氟基戊烷-3-基) 苯基，4-三氟甲基苯基，4-三氟甲基苯基，2-氯苯基，3-氯苯基，4-氯苯基，4-氯-2-氟苯基，4-氯-2-苯
氧基苯基、2-氟-4-三氟甲基苯基、3,4-二甲苯基、2,4-二氯苯基、2-苯氧基苯基、4-叔丁基苯基、4-甲基苯基、联苯基、6-氟-苯并噻唑-2-基和5-丁基-吡啶-2-基。

[0077] 另一个实施方式是式I的化合物，其中Y选自：-N(R₄)₆-, -N(R₅)₂CON(R₆)₆-, -N(R₇)₆C(0)₆-, -(CH₂)₆-N(R₈)₆-, -CON(R₉)₆和-SO₂N(R₅)₆-, 其中R₄和R₅独立地选自：H和未取代的烷基。

[0078] 另一个实施方式是式I的化合物，其中Y选自：-NH-, -NHCONH-, -CH₂-N(CH₃-苯基)-, -CH₂-NH-, -CONH-和-SO₂NH-。

[0079] 另一个实施方式是式I的化合物，其中U是：\[
\begin{align*}
\text{\textit{}}
\end{align*}
\]
其中T是-0-或-S-。

[0080] 另一个实施方式是式I的化合物，其中U是：\[
\begin{align*}
\text{\textit{}}
\end{align*}
\]
其中T是-0-或-S-。

[0081] 另一个实施方式是式I的化合物，其中V是：-CON(R₅)₆-。

[0082] 另一个实施方式是式I的化合物，其中R₄选自：H和未取代的烷基。

[0083] 另一个实施方式是式I的化合物，其中V选自：-CONH-和-CO(CH₃)-。

[0084] 另一个实施方式是式I的化合物，其中R₄和R₅独立地选自：H、和取代或未取代的烷基。

[0085] 另一个实施方式是式I的化合物，其中R₄和R₅独立地选自：H和异丙基。

[0086] 另一个实施方式是式I的化合物，其中R₅是：-COOR₆。

[0087] 另一个实施方式是式I的化合物，其中R₆是H或烷基。

[0088] 另一个实施方式是式I的化合物，其中R₆选自：-COOH和-COOCH₃。

[0089] 另一个实施方式是式I的化合物，其中Z选自：取代或未取代的烷基环烷基、取代或未取代的环烷基、取代或未取代的芳基、取代或未取代的杂芳基和未取代的烷基，其中每个取代的烷基环烷基、环烷基、芳基、杂芳基和环烷基被一个或多个选自R₇的取代基取代；

[0090] R₇在每次出现时选自：卤素、硝基、-CN、-OR₆、-S(=O)₂R₆、-S(=O)₆R₆、-NR₆R₇、-NR₇R₆、-NR₆COR₆、-NR₆SOR₆、-NR₆SO₂R₆、-NR₆CONR₆R₇、-COOR₆、-CONR₆R₇、-(CR₆)₆OR₆、卤代烷基、芳基、杂芳基和烷基；其中烷基可选地被一个或多个卤素或氟基取代，H、R₆和R₇独立地选自：H、烷基和芳基；

[0091] Y选自：-(CH₂)₆-N(R₈)₆-, -N(R₉)₂CON(R₁₀)₆-, -N(R₁₁)₂C(0)₆-, -CON(R₁₂)₆-, -N(R₁₃)₂SO₂-和-SO₂N(R₁₄)₂-；

[0092] U选自：\[
\begin{align*}
\text{\textit{}}
\end{align*}
\]
其中T是-0-或-S-；

[0093] V是：-CONR₆-；

[0094] R₆、R₇、R₈和R₉在每次出现时独立地选自：H和未取代的烷基；

[0095] R₉选自：-COOR₆和羧酸电子等排体，其中羧酸电子等排体诸如四唑-5-基、5-三氟甲基-1,2,4-三嗪-3-基、5-(甲磺酸基)-1,2,4-三嗪-3-基和2,5-二氢-5-氧代-1,2,4-三嗪-3-基，其中R₈选自：H，和取代或未取代的烷基；

[0096] m是0-2的整数；n是1-2的整数；
[0097] *表示与V-的连接点，且3-表示与苯基环的连接点。

[0098] 另一个实施方式是式I的化合物，其中Z选为取代或未取代的烷基环烷基，取代或未取代的环烷基、取代或未取代的芳基，和取代或未取代的杂芳基，其中每个取代的烷基环烷基、环烷基、芳基、杂芳基和环烷基被一个或多个选自下述的取代基取代：卤素、-OR、卤代烷基、芳基和未取代的烷基或被一个或多个选自卤素和氨基的取代基取代的烷基；R₃选自：H、烷基和芳基；

[0099] Y选为：-(CH₂)₆-N(C₆H₅)-、-N(R₆)-、-N(R₆)CON(R₇)-、-NR₆C(O)-、-CON(R₇)-、-N(R₆)SO₂-和-SO₂NR₆-；

[0100] U选自：

[0101] V选为：-CON(R₇)-；

[0102] R₁、R₂、R₃和R₆在每次出现时独立地选自：H和未取代的烷基；且R₃选自：-COOR₆和羧酸电子等排体，其中羰酸电子等排体诸如四唑-5-基，5-三氟甲基-1,2,4-三唑-3-基，5-(甲磺酰基)-1,2,4-三唑-3-基和2,5-二氢-5-氧化-1,2,4-二噁唑-3-基；其中R₆选自：H和未取代的烷基；

[0103] *表示与V-的连接点，且3-表示与苯基环的连接点。

[0104] 另一个实施方式是式I的化合物，其中Z选为取代或未取代的烷基环烷基，取代或未取代的环烷基、取代或未取代的芳基和取代或未取代的杂芳基，其中每个取代的烷基环烷基、环烷基、芳基、杂芳基和环烷基被一个或多个选自下述的取代基取代：卤素、卤代烷基、-OR、芳基和未取代的烷基或被一个或多个选自卤素和氨基的取代基取代的烷基；R₃选自：H、烷基和芳基；

[0105] Y选为：-CH₂-NH-、-NH-、-NHCONH-、-NHC(O)-、-CON(H)-、-NH₂SO₂-和-SO₂NH-；

[0106] U选自：

[0107] V选为：-CONR₇-；

[0108] R₁、R₂、R₃和R₆在每次出现时独立地选自：H和未取代的烷基；且R₃选自：-COOR₆和羧酸电子等排体，其中羧酸电子等排体诸如四唑-5-基，5-三氟甲基-1,2,4-三唑-3-基，5-(甲磺酰基)-1,2,4-三唑-3-基和2,5-二氢-5-氧化-1,2,4-二噁唑-3-基；其中R₆选自：H和未取代的烷基；

[0109] *表示与V-的连接点，且3-表示与苯基环的连接点。

[0110] 另一个实施方式是式I的化合物，其中Z选为取代或未取代的烷基环烷基，取代或未取代的环烷基、取代或未取代的芳基和取代或未取代的杂芳基，其中每个取代的烷基环烷基、环烷基、芳基、杂芳基和环烷基被一个或多个选自R₈的取代基取代；

[0111] R₈在每次出现时选自：卤素、硝基、-CN、-OR、-S(＝O)nR₉、-S(＝O)nOR₉、-NR₉COR₉、-NR₉SOR₉、-NR₉SO₂R₉、-NR₉CONR₉、-COOR₉、-CONR₉、-(CR₉R₉)n-OR₉和卤代烷基、芳基、杂芳基和烷基；其中烷基可选地被一个或多个卤素或氨基取代，且R₉和R₉独立地选自：H、
烷基和芳基；

[0112] Y 选自：-CH₂-NH-、-CH₂-N(CH₂-苯基)-、-NH-、-NHCONH-、-NHC(O)-、-CON(H)-、-NHSO₂- 和 -SO₂NH；

[0113] U 选自：*，其中 T 是 -O- 或 -S-；

[0114] V 是 -CONR₃⁻；

[0115] R₁、R₂、R₃ 和 R₅ 在每次出现时独立地选自：H 和未取代的烷基；且 R₅ 选自：-COOR₆ 和羧酸电子等排体，其中羧酸电子等排体诸如四唑 -5- 基、5- 三氟甲基 -1, 2, 4- 三唑 -3- 基、5- (甲磺酰基) -1, 2, 4- 三唑 -3- 基和 2, 5- 二氯 -5- 氧代 -1, 2, 4- 二噁唑 -3- 基；其中 R₆ 选自：H 和未取代的烷基；

[0116] m 是 0-2 的整数；n 是 1-2 的整数；

[0117] * 表示与 -V- 的连接点，且 -R- 表示与苯基环的连接点。

[0118] 另一个实施方式是式 I 的化合物，其中 Z 选自：苯基环己基、苯环己基、4- 二氟环己基、苯基、4- 氟苯基、4- (2- 氟苯基丙烷 -2 基) 苯基、4- (3- 氟苯基戊烷 -2 基) 苯基、4- 三氟甲基苯基、4- 三氟甲基苯基、2- 氟苯基、3- 氟苯基、4- 氯苯基、4- 氯苯基、4- 氟苯基、4- 萘基苯基、2- 氟苯基苯基、2- 氟苯基苯基、苯基、4- 二甲苯基、2, 4- 二氯苯基、2- 苯氧基苯基、4- 二氯苯基、1- 腈基苯基、2- 氯苯基 -2- 氯苯基 -2- 氯苯基 -2- 氯苯基；其中 R₆ 选自：H 和未取代的烷基；

[0119] Y 选自：-CH₂-NH-、-CH₂-N(CH₂-苯基)-、-NH-、-NHCONH-、-CON(H)- 和 -SO₂NH；

[0120] U 选自：*，其中 T 是 -O- 或 -S-；

[0121] V 是 -CONR₃⁻；

[0122] R₁、R₂、R₃ 和 R₅ 在每次出现时独立地选自：H 和未取代的烷基；且 R₅ 选自：-COOR₆ 和羧酸电子等排体，其中羧酸电子等排体选自诸如四唑 -5- 基、5- 三氟甲基 -1, 2, 4- 三唑 -3- 基、5- (甲磺酰基) -1, 2, 4- 三唑 -3- 基和 2, 5- 二氯 -5- 氧代 -1, 2, 4- 二噁唑 -3- 基的基团；其中 R₆ 选自：H 和未取代的烷基；

[0123] * 表示与 -V- 的连接点，且 -R- 表示与苯基环的连接点。

[0124] 式 (I) 的化合物：

[0125] 3- 甲基 -2- (5- (4- (3- (3- (三氟甲基) 苯基) 苯基) 腈基) 苯基) 噁唑 -2- 甲酰氨基)

丁酸甲酯，

[0126] 3- 甲基 -2- (5- (4- (3- (3- (三氟甲基) 苯基) 苯基) 苯基) 噁唑 -2- 甲酰氨基)

丁酸，

[0127] 2- (5- (4- (3- (3- (三氟甲基) 苯基) 苯基) 噁唑 -2- 甲酰氨基) -3- 甲基丁酸甲酯，

[0128] 2- (5- (4- (3- (3- (三氟甲基) 苯基) 苯基) 噁唑 -2- 甲酰氨基) -3- 甲基丁酸，

[0129] 2- (5- (4- (3- (3- (二甲苯基) 苯基) 苯基) 噁唑 -2- 甲酰氨基) -3- 甲基丁酸甲酯，

[0130] 2- (5- (4- (3- (3- (二甲苯基) 苯基) 苯基) 噁唑 -2- 甲酰氨基) -3- 甲基丁酸，
[0131] 2-(5-(4-(3-(4-氯-2-苯氧基苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
[0132] 2-(5-(4-(3-(4-氯-2-苯氧基苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，
[0133] 3-甲基-2-(5-(4-(3-(3-(三氯甲基)苯基)苯基)噻唑-2-甲酰氨基)丁酸甲酯，
[0134] 3-甲基-2-(5-(4-(3-(3-(三氟甲基)苯基)苯基)苯基)噻唑-2-甲酰氨基)丁酸，
[0135] 2-(5-(4-(3-(2-氯苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
[0136] 2-(5-(4-(3-(2-氯苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，
[0137] 2-(5-(4-(3-(2-二甲苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
[0138] 2-(5-(4-(3-(3,4-二甲苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，
[0139] 3-甲基-2-(5-(4-(3-(2-苯氧基苯基)苯基)苯基)噻唑-2-甲酰氨基)丁酸甲酯，
[0140] 3-甲基-2-(5-(4-(3-(2-苯氧基苯基)苯基)苯基)噻唑-2-甲酰氨基)丁酸，
[0141] 2-(5-(4-(3-(4-氯-2-苯氧基苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
[0142] 2-(5-(4-(3-(4-氯-2-苯氧基苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，
[0143] 2-(5-(4-(6-氟苯并[d]噻唑-2-基氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸乙酯，
[0144] 2-(5-(4-(6-氟苯并[d]噻唑-2-基氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，
[0145] 2-(5-(4-(4-叔丁基苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
[0146] 2-(5-(4-(4-叔丁基苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，
[0147] 2-(4-(4-(3-(2-氯苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
[0148] 2-(4-(4-(3-(2-氯苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，
[0149] 2-(4-(4-(6-氟苯并[d]噻唑-2-基氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
[0150] 2-(4-(4-(6-氟苯并[d]噻唑-2-基氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，
[0151] 2-(4-(4-(4-叔丁基苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
[0152] 2-(4-(4-(4-叔丁基苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，
[0153] 3-甲基-2-(4-(4-(3-(4-(3-三氟甲基)苯基)苯基)苯基)噻唑-2-甲酰氨基)丁酸甲酯，
[0154] 3-甲基-2-(4-(4-(3-(4-(3-三氟甲基)苯基)苯基)苯基)噻唑-2-甲酰氨基)丁酸，
[0155] 2-(4-(4-(3-(3,4-二甲苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
酯，
[0156] 2-(4-(4-(3-(3,4-二甲苯基) 膦基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸，
[0157] 2-(4-(4-(3-4-氯 -2- 苯氧基苯基) 膦基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸甲酯，
[0158] 2-(4-(4-(3-4-氯 -2- 苯氧基苯基) 膦基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸，
[0159] 2-(4-(4-联苯基 -4- 基甲酰氨基苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸甲酯，
[0160] 2-(4-(4-联苯基 -4- 基甲酰氨基苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸，
[0161] 3- 甲基 -2-(4-(4-戊基苯甲酰氨基) 苯基) 嘧啶 -2- 甲酰氨基) 丁酸甲酯，
[0162] 3- 甲基 -2-(4-(4-戊基苯甲酰氨基) 苯基) 嘧啶 -2- 甲酰氨基) 丁酸，
[0163] 3- 甲基 -2-(N- 甲基 -5-(4-(4-戊基苯甲酰氨基) 苯基) 嘧啶 -2- 甲酰氨基) 丁酸甲酯，
[0164] 3- 甲基 -2-(N- 甲基 -5-(4-(4-戊基苯甲酰氨基) 苯基) 嘧啶 -2- 甲酰氨基) 丁酸，
[0165] 2-(5-(4-联苯基 -4- 基甲酰氨基苯基) -N- 甲基嘧啶 -2- 甲酰氨基)-3- 甲基丁酸甲酯，
[0166] 2-(5-(4-联苯基 -4- 基甲酰氨基苯基) -N- 甲基嘧啶 -2- 甲酰氨基)-3- 甲基丁酸，
[0167] 2-(5-(4-叔丁基苯甲酰氨基) 苯基) -N- 甲基嘧啶 -2- 甲酰氨基)-3- 甲基丁酸甲酯，
[0168] 2-(5-(4-叔丁基苯甲酰氨基) 苯基) -N- 甲基嘧啶 -2- 甲酰氨基)-3- 甲基丁酸，
[0169] 2-(4-(4-(2,4-二氯苯基磺酰氨基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸甲酯，
[0170] 2-(4-(4-(2,4-二氯苯基磺酰氨基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸，
[0171] 2-(5-(4-联苯基 -4- 基甲酰氨基苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸甲酯，
[0172] 2-(5-(4-联苯基 -4- 基甲酰氨基苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸，
[0173] 2-(5-(4-(3-环己基丙酰氨基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸甲酯，
[0174] 2-(5-(4-(3-环己基丙酰氨基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸，
[0175] 2-(5-(4-(2,3-二氢 -1H- 苄 -2- 甲酰氨基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸甲酯，
[0176] 2-(5-(4-(2,3-二氢 -1H- 苄 -2- 甲酰氨基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸，
[0177] 2-(5-(4-(4,4-二氟环己烷甲酰氨基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸甲酯，
[0178] 2-(5-(4-(4,4-二氟环己烷甲酰氨基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸，
[0179] (S)-2-(5-(4-(3-(2,3-二氢 -1H- 苄 -5- 基) 萜基) 苯基) 嘧啶 -2- 甲酰氨基)-3- 甲基丁酸甲酯，
[0180] (S)-2-(5-(4-(3-(2,3-二氢 -1H- 苄 -5- 基) 萜基) 苯基) 嘧啶 -2- 甲酰氨基)
基）3-甲基丁酸，

[S]-2-(5-(4-(3-(4-氯苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(4-氯苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，

[S]-2-(5-(4-(3-(3-氯苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(3-氯苯基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸，

[S]-2-(5-(4-(3-(3-氯苯基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(3-氯苯基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(3-氯苯基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(3-氯苯基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(4-氯苯基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(4-氯苯基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(2,3-二氯-1H-茚-5-基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(2,3-二氯-1H-茚-5-基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(4-氯苯基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(4-氯苯基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，

[S]-2-(5-(4-(3-(2,3-二氯-1H-茚-5-基)苯基)苯基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，
基）-3-甲基丁酸甲酯，
[S0203] (S)-2-(4-(4-(3-(3-氯苯基)脲基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸甲酯，
[S0204] (S)-2-(4-(4-(3-(3-氯苯基)脲基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸，
[S0205] (S)-2-(4-(4-(2-氯-4-(三氟甲基)苯基)脲基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸甲酯，
[S0206] (S)-2-(4-(4-(3-(2-氯-4-(三氟甲基)苯基)脲基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸甲酯，
[S0207] (S)-2-(4-(4-(4-氯-2-氯苯基)脲基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸甲酯，
[S0208] (S)-2-(4-(4-(3-氯苯基)脲基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸，
[S0209] 2-(5-(4-(4-(4-氯基丙烷-2-基)苯甲酰氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸甲酯，
[S0210] 2-(5-(4-(4-(4-氧基丙烷-2-基)苯甲酰氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸，
[S0211] 2-(5-(4-(4-(3-氧基戊烷-3-基)苯甲酰氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸甲酯，
[S0212] 2-(5-(4-(4-(3-氧基戊烷-3-基)苯甲酰氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸，
[S0213] 2-(5-(4-(苯基氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸甲酯，
[S0214] 2-(5-(4-(4-氯苄基)氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸甲酯，
[S0215] 2-(5-(4-(4-氯苄基)氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸，
[S0216] 2-(5-(4-(二苄基氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸甲酯，
[S0217] 2-(5-(4-(二苄基氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸，
[S0218] 2-(5-(4-(5-丁基吡啶羧酸氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸甲酯，
[S0219] 2-(5-(4-(5-丁基吡啶羧酸氨基)苯基)喹唑啉-2-甲酰氨基)-3-甲基丁酸，
[S0220] 及其立体异构体及其互变异构体及其前药及其药学上可接受的盐和溶剂化合物。
[S0221] 根据本发明的另一方面，提供了一种用于制备式 (1) 的化合物、及其盐、溶剂化合物或前药的方法。
[S0222] 根据本发明的另一方面，提供了一种用于制备式 (10) 的化合物的方法，
[S0223]
[S0224] 所述方法包括：
[S0225] 使式 (9) 的化合物在诸如四氢呋喃等溶剂中与式 Z-NCO 的异氰酸酯发生反应，
[S0226]
其中，Z、U、R₁和R₂如对式(1)所定义的，且Rₚ是烷基。

根据本发明的另一个方面，提供了一种用于制备式(12)的化合物的方法

所述方法包括：

使式(9)的化合物在诸如DCM等溶剂中，且在诸如吡啶等碱的存在下与式Z-COCl的化合物发生反应；或者使式(9)的化合物在三甲基铝的存在下，且在诸如甲苯等溶剂中与式Z-COOMe的化合物发生反应；

其中，Z、U、R₁和R₂如对式(1)所定义的，且Rₚ是烷基。

根据本发明的另一个方面，提供了一种用于制备式(14)的化合物的方法

所述方法包括：

使式(9)的化合物在诸如正丁醇等溶剂中，且在盐酸（在二氯甲烷中）的存在下与式Z-Cl的化合物发生反应；或者使式(9)的化合物在诸如DCM等溶剂中，且在诸如三乙胺等碱的存在下与式Z-Br的化合物发生反应；

其中，Z、U、R₁和R₂如对式(1)所定义的，且Rₚ是烷基。

根据本发明的另一个方面，提供了一种用于制备式(14a)的化合物的方法
所述方法包括：

使式 (9) 的化合物在诸如丙酮等溶剂中，且在诸如碳酸钾等碱的存在下与式 Z-\text{Cl}_2\text{Cl} 或 Z-\text{Cl}_2\text{Br} 的化合物发生反应；

其中，Z、U、R_1 和 R_2 如式 (1) 所定义的，且 R_p 是烷基。

根据本发明的另一个方面，提供了一种用于制备式 (18) 的化合物的方法。

所述方法包括：

使式 (17) 的化合物在诸如 DCM 等溶剂中，且在诸如吡啶等碱的存在下与式 Z-\text{COCl} 的化合物发生反应，

其中，Z、U、R_1 和 R_2 如式 (1) 所定义的，且 R_p 是烷基。

根据本发明的另一个方面，提供了一种用于制备式 (20) 的化合物的方法。

所述方法包括：

使式 (9) 的化合物在诸如 DCM 等溶剂中，且在诸如吡啶等碱的存在下与式 Z-\text{SO}_2\text{Cl} 的化合物发生反应；
[0257] 其中，Z、U、R₁和R₂如对式 (1) 所定义的，且R₃是烷基。

[0258] 式 (10)、(12)、(14)、(18) 和 (20) 的化合物通过碱性水解可以转化成对应的酸；
可选地，将得到的酸转化成盐、酯化物或前药。

[0259] 制备方法

[0260] 可以使用不同的方法来制备式 (1) 的化合物，在下面的方案中描述了其中的一些
方法。本领域技术人员应理解，可以改变在所述方案中鉴定出的具体起始化合物和试剂
（诸如酸、碱、溶剂、还原剂、温度条件等）以制备本发明所包括的化合物。

[0261] 方案 1

[0262]

[0263] 其中，U 是

[0264] 如在方案 1 中所示，式 (1) 的化合物在诸如氯化铝等催化剂的存在下，且在诸如醚
等溶剂中经溴处理，以得到式 (2) 的化合物。式 (2) 的 2- 溴-1-(4- 硝基苯基）乙酮可以
在诸如氯甲烷等溶剂中经诸如六亚甲基四胺等胺的处理，以得到式 (3) 的化合物。式 (3)
的化合物可以在诸如乙酸乙酯等溶剂中，且在诸如三乙胺等碱的存在下与乙基乙二酰氯酯
(ethylchlororoxyacetate) 一起回流，以得到式 (4) 的化合物。式 (4) 的化合物可以：

[0265] i) 在磷酰氯存在的情况下进行回流，以得到式 (5a) 的环化化合物，其中 U 是

[0266] ii) 在诸如 1,4- 二噁烷等溶剂中与劳森试剂 (Lawesson’s reagent) 一起回流，
以得到式 (5a) 的环化化合物，其中 U 是

[0267] 方案 2

[0268]
其中，U 是 \(\begin{array}{c}
\text{N} \\
\text{H}
\end{array} \) 且 T 是 -O- 或 -S-。

如方案 2 所示，式 (2) 的化合物在诸如甲醇等溶剂中与式 (6) 的化合物一起回流，以得到式 (5b) 的环化化合物，其中 U 是 \(\begin{array}{c}
\text{N} \\
\text{H}
\end{array} \) 且 T 是 -O- 或 -S-。

方案 3

其中，Z、U、R_1 和 R_2 如对式 (1) 所定义的，且 R_p 是烷基。

如方案 3 所示，式 (5a) 或 (5b) 的化合物可以（其中 U 是如对式 (1) 所定义的）：

i) 在诸如三乙胺等碱的存在下，且在诸如乙醇等溶剂中经\(\begin{array}{c}
\text{H}_2\text{N} \\
\text{O}
\end{array} \) R_p处理，以得到式 (8) 的化合物；或者

ii) 在诸如氢氧化锂等碱的存在下，且在诸如四氢呋喃等溶剂中被水解，以得到式 (7) 的化合物。式 (7) 的化合物可以在诸如氯甲酸异丁酯等偶联剂的存在下，且在诸如三乙胺等碱的存在下，在诸如四氢呋喃、N-甲基吗啉等溶剂中经\(\begin{array}{c}
\text{H}_2\text{N} \\
\text{O}
\end{array} \) R_p的化合物处理，以得到式 (8) 的化合物。

式 (8) 的化合物的硝基可以在诸如铁 / 氯化铵等还原剂存在下被还原，以得到式 (9) 的化合物。式 (9) 的化合物可以在诸如四氢呋喃等溶剂中经式 Z-NCO 的异氰酸酯处理，以形成式 (10) 的化合物。式 (10) 的酯可以在诸如氢氧化锂等碱的存在下，且在诸如四氢呋喃等溶剂中被水解，以形成式 (11) 的酸。

其中 Z、U、R_1 和 R_2 是如对式 (1) 所定义的。
其中，Z、U、R₁和R₂是如对式(1)所定义的，且Rₚ是烷基。

如方案4所示，在式(9)的化合物中，U、R₁和R₂是如对式(1)所定义的，且Rₚ是烷基。式(9)的化合物可以在诸如吡啶等碱的存在下，且在诸如二氯甲烷等溶剂中经式Z-COC₁的化合物处理，或者式(9)的化合物可以在诸如三甲基铝等试剂的存在下，且在诸如甲苯等溶剂中经式Z-COMe（其中Z是如对式(1)所定义的）的化合物处理，以得到式(12)的化合物。式(12)的酯可以在诸如氢氧化钾等碱的存在下，且在诸如四氢呋喃等溶剂中被水解，以得到式(13)的化合物，其中Z、U、R₁和R₂是如对式(1)所定义的。

其中Z、U、R₁和R₂是如对式(1)所定义的，且Rₚ是烷基。

如方案5所示，在式(9)的化合物中，U、R₁和R₂是如对式(1)所定义的，且Rₚ是烷基。式(9)的化合物可以在诸如盐酸等酸的存在下，且在诸如1,4-二噁烷、乙醇等溶剂中与式Z-Cl或Z-Br的化合物（其中Z是如对式(1)所定义的）一起回流，以得到式(14)的化合物。式(14)的化合物可以在诸如氢氧化钾等碱的存在下，且在诸如四氢呋喃等溶剂中被水解，以得到式(15)的化合物，其中Z、U、R₁和R₂是如对式(1)所定义的。
其中，Z, U, R₁ 和 R₂ 是如对式 (I) 所定义的，且 Rₚ 是烷基。

方案 5a 所示，式 (9) 的化合物中，U, R₁ 和 R₂ 是如对式 (I) 所定义的，且 Rₚ 是烷基。式 (9) 的化合物可以在诸如碳酸钾等碱的存在下，且在诸如丙酮等溶剂中与式 Z-CH₂Cl 或 Z-CH₂Br 的化合物（其中 Z 是如对式 (I) 所定义的）发生反应，以得到式 (14a) 的化合物。式 (14a) 的化合物可以在诸如氢氧化锂等碱的存在下，且在诸如四氢呋喃等溶剂中被水解，以得到式 (15a) 的化合物，其中 Z, U, R₁ 和 R₂ 是如对式 (I) 所定义的。

方案 6

其中，Z, U, R₁ 和 R₂ 是如对式 (I) 所定义的，且 Rₚ 是烷基。

方案 6 所示，在式 (8) 的化合物中，U, R₁ 和 R₂ 是如对式 (I) 所定义的，且 Rₚ 是烷基。式 (8) 的化合物可以在诸如碳酸铯或碳酸钾等碱的存在下经诸如碘甲烷等甲基化剂处理，以得到式 (16) 的化合物。式 (16) 的化合物的硝基可以在诸如铁 / 氯化铵等还原剂的存在下被还原，以得到式 (17) 的化合物。式 (17) 的化合物可以在诸如吡啶等碱的存在下，且在诸如二氯甲烷等溶剂中经式 Z-COCI 的化合物（其中 Z 是如关于式 (I) 所定义）处理，以得到式 (18) 的化合物。式 (18) 的酯可以在诸如氢氧化锂等碱的存在下，且在诸如四氢呋喃等溶剂中被水解，以得到式 (19) 的化合物，其中 Z, U, R₁ 和 R₂ 是如对式 (I) 所定义的。

方案 7

29
其中，Z、U、R₁和R₂是如对式（1）所定义的，且R₃是烷基。

如方案7所示，在式（9）的化合物中，U、R₁和R₂是如对式（1）所定义的，且R₃是烷基。式（9）的化合物可以在诸如氯代等碱的存在下，且在诸如二氯甲烷等溶剂中经式Z-SO₂Cl的化合物（其中Z是如对式（1）所定义的）处理，以得到式（20）的化合物。式（20）的酯可以在诸如氢氧化锂等碱的存在下，且在诸如四氢呋喃等溶剂中被水解，以得到式（21）的化合物，其中Z、U、R₁和R₂是如对式（1）所定义的。

本发明在其范围内也包括式（1）化合物的所有同位素标记的形式。其中式（1）化合物的一个或多个原子被它们各自的同位素替代。可以并入本文公开的化合物中的同位素的实例包括，但不限于：氢的同位素诸如¹H和²H,碳的同位素诸如¹³C、¹⁴C和¹²C，氮的同位素诸如¹⁵N和¹⁴N,氧的同位素诸如¹⁷O、¹⁸O和¹⁶O,氯的同位素诸如³⁵Cl，氟的同位素诸如³⁷F，以及硫的同位素诸如³⁵S。

经更重的同位素的取代（例如，使用碳-氘键替代一个或多个关键的碳-氢键）可能会显示出某种治疗益处，例如：更长的代谢周期、改善的安全性或更高的有效性。

可通过本领域技术人员已知的常规技术，通过与在上面和在随后的实验部分中描述的那些类似的方法，且使用适当的同位素标记的试剂替代未标记的试剂，来制备式（1）化合物的同位素标记的形式。

使用药学上可接受的碱，可以将由通式（1）表示的含有酸性基团的本发明的化合物转化成盐。这样的盐包括：例如，碱金属盐，如锂盐、钠盐和钾盐；碱土金属盐，如钙盐和镁盐；铵盐（例如，[三（羟甲基）氨基甲烷]、三甲胺盐和二乙胺盐），与氨基酸诸如赖氨酸、精氨酸等形成的盐，肽等。

由式（1）表示的含有一个或多个碱性基团（可以被质子化的基团）的本发明的化合物可以与无机酸或有机酸一起形成加成盐。适当的酸加成盐的实例包括：乙酸盐、海藻酸盐、抗坏血酸盐、天冬氨酸盐、苯甲酸盐、苯磺酸盐、硫酸氢盐、硼酸盐、肉桂酸盐、柠檬酸盐、乙烷磺酸盐、富马酸盐、葡糖醛酸盐、谷氨酸盐、乙酰胺盐、盐酸盐、氨溴酸盐、氯盐酸盐、酪氨酸盐、乳酸盐、马来酸盐、丙二酸盐、甲磺酸盐、硝酸盐、草酸盐、二羟萘酸酸吡啶、高氯酸盐、磷酸盐、苦味酸盐、水杨酸盐、琥珀酸盐、氨基磺酸盐、硫酸盐、酒石酸盐、甲苯磺酸盐，及本领域技术人员已知的其它酸。

可以通过常规化学方法自包含碱性或酸性部分的主体化合物合成本发明的药学上可接受的盐。通常以如下方式制备所述盐：在适当的溶剂或分散剂中，使游离碱或酸与化
学计量的量或过量的形成盐所需的无机或有机酸或碱接触；或通过阳离子或阴离子交换从其它盐进行制备。适当的溶剂为；例如，乙酸乙酯、醚、醇、丙酮、四氢呋喃、二噁烷、或这些溶剂的混合物。这些盐也可以用于纯化得到的化合物。

[0305] 本发明进一步包括：式（I）化合物的所有溶剂化物，例如水合物；以及，与其它结晶溶剂形成的溶剂化物，其中结晶溶剂例如醇、醚、乙酸乙酯、二噁烷、三甲基甲酰胺、或低级烷基醚（例如丙酮）、或其混合物。

[0306] 本发明还包括式（I）的化合物的前药和其它生理上可接受的衍生物。

[0307] 因此，本文描述的本发明的方法包括下述任选的步骤：形成式（I）的化合物的盐和/或溶剂化物和/或前药。

[0308] 本发明化合物的光学活性形式可通过使用光学活性的原材料，或通过使用标准步骤拆分化合物的外消旋形式来得到。

[0309] 治疗方法

[0310] 本发明的化合物是DGAT-1的抑制剂，可以用于治疗温血动物中与肥胖有关的临床病症和肥胖相关障碍性疾病。本发明的化合物特别适用于延迟或治疗与肥胖有关的多种疾病状态，包括：糖尿病（更具体地为II型糖尿病（T2DM））及其引起的并发症（例如视网膜病变、心脏病和肾病）、胰岛素抵抗、葡萄糖耐量受损（IGT）、空腹血糖受损的病症、代谢性酸中毒、酮病、皮脂腺病、代谢紊乱综合征、关节炎、骨质疏松症、和其它肥胖相关障碍性疾病，其中其它肥胖相关障碍性疾病包括外周血管病（包括间歇性跛行）、心力衰竭、和某些心肌病、高血压、心肌缺血、心肌梗塞、动脉硬化、动脉粥样硬化、高胆固醇血症、高甘油三酯血症、高脂血症、大脑缺血和再灌注损伤、不育症和多囊卵巢综合症、肌无力、皮肤病诸如痤疮、多种免疫调节疾病诸如银屑病、炎性肠症结和炎性肠病诸如克罗恩氏病和溃疡性结肠炎。本发明的化合物可以用于治疗丙型肝炎感染。

[0311] 根据本发明的另一个方面，提供了一种用于治疗由DGAT-1介导的疾病的方法，所述方法包括：向有需要的哺乳动物施用治疗有效量的式（I）的化合物或其药学上可接受的盐或药学上可接受的溶剂化物。

[0312] 根据本发明的另一个方面，提供了一种用于治疗由DGAT-1介导的、选自肥胖和肥胖相关障碍性疾病的方法，所述方法包括：向有需要的哺乳动物施用治疗有效量的式（I）的化合物或其药学上可接受的盐或药学上可接受的溶剂化物。

[0313] 根据本发明的另一个方面，提供了一种用于治疗肝病的方法，所述方法包括：向有需要的哺乳动物施用治疗有效量的式（I）的化合物或其药学上可接受的盐或药学上可接受的溶剂化物。

[0314] 根据本发明的另一个方面，提供了一种式（I）的化合物在治疗由DGAT-1介导的疾病中的应用。

[0315] 根据本发明的另一个方面，提供了一种式（I）的化合物在治疗由DGAT-1介导的、选自肥胖和肥胖相关障碍性疾病中的应用。

[0316] 根据本发明的另一个方面，提供了一种式（I）的化合物或其药学上可接受的盐或药学上可接受的溶剂化物在制备用于治疗由DGAT-1介导的疾病的药物剂型中的应用。

[0317] 根据本发明的另一个方面，提供了一种式（I）的化合物或其药学上可接受的盐或药学上可接受的溶剂化物在制备药物剂型中的应用，所述药物剂型用于治疗由DGAT-1介导的、选自
肥胖和肥胖相关障碍性疾病。

[0318] 本发明的另一方面，所述肥胖相关障碍性疾病包括：外周血管病、糖尿病、胰岛素抵抗、葡萄糖耐量受损、糖尿病神经病、糖尿病肾病、糖尿病视网膜病变、高胆固醇血症、高甘油三酯血症、脂肪性肝病、代谢性酸中毒、酮病、皮脂病、代谢性骨病、关节炎、骨质疏松症、心血管疾病（诸如高血压、心力衰竭、心肌病、心肌缺血、心肌梗塞、动脉硬化和动脉粥样硬化）、大脑缺血和再灌注损伤、不育症、多囊卵巢综合征、肌无力、皮肤病诸如痤疮、多种免疫调节疾病（诸如银屑病、炎性肠综合征和炎性肠病等）、克罗恩病和溃疡性结肠炎。

[0319] 本发明的另一方面，所述肥胖相关障碍性疾病包括：糖尿病、胰岛素抵抗、葡萄糖耐量受损、糖尿病神经病、糖尿病肾病、糖尿病视网膜病变、代谢性酸中毒、酮病、或皮脂病。

[0320] 本发明的另一方面，所述肥胖相关障碍性疾病包括：外周血管病、高胆固醇血症、高甘油三酯血症、脂肪性肝病、代谢性骨病、关节炎、骨质疏松症、心血管疾病（诸如高血压、心力衰竭、心肌病、心肌梗塞、心肌梗塞、动脉硬化和动脉粥样硬化）。

[0321] 本发明的另一方面，所述肥胖相关障碍性疾病包括：关节炎、骨质疏松症、大脑缺血和再灌注损伤、不育症、多囊卵巢综合征、肌无力、皮肤病诸如痤疮、多种免疫调节疾病（诸如银屑病、炎性肠综合征和炎性肠病诸如克罗恩病和溃疡性结肠炎）。

[0322] 具体地，本发明的化合物可用作延迟或治疗糖尿病和/或肥胖和/或肥胖相关障碍性疾病。DPP-IV的抑制可以作为单一疗法来使用，或与用于治疗的其他疗法中的一种或多种其他药物/或治疗联合使用。在代谢综合征/或糖尿病/或肥胖/或炎性肠病的治疗中，联合治疗可能是有益的。这样的联合治疗可以包括下述主要种类：

[0323] 1. 抗肥胖疗法，如通过影响食物摄取、营养吸收或能量消耗而引起的体重减轻的疗法，如奥利司他（orlistat）、西布曲明（sibutramine）等；

[0324] 2. 大鼠麻醉受体1 (CB1) 阻断剂，诸如利莫那班（rimonabant）；

[0325] 3. 胰岛素分泌促进剂，包括磺酰脲类（例如格列本脲（glibenclamide）、格列吡嗪）、餐时血糖调节剂（例如瑞格列奈、那格列奈）；

[0326] 4. 改善肠道血糖作用的剂（例如二肽基肽酶IV（DPP-IV）抑制剂和胰高血糖样肽（GLP）-1激动剂）、或肠道激素类似物或内源性物质（例如艾塞那肽（exenatide））；

[0327] 5. 胰岛素增敏剂，包括过氧化物酶增殖体激活受体（PPAR）Y激动剂（例如吡格列酮和罗格列酮）、以及具有组合的PPARα和Y活性的剂；

[0328] 6. 调节肝葡萄糖平衡的剂，例如二甲双胍、1,6-二磷酸果糖酶抑制剂、糖原磷酸化酶抑制剂、糖原合成酶激活剂抑制剂；

[0329] 7. 用以脂肪吸收的葡萄糖的剂，例如阿卡波糖；

[0330] 8. 防止肾对葡萄糖重吸收的剂，例如葡萄糖转运蛋白（SGLT）抑制剂；

[0331] 9. 用以治疗持续长时间的高血糖症并并发症的剂，例如胰岛素原酶抑制剂；

[0332] 10. 抗血脂异常的剂，如紫锥花、二酸酰胺（HMG-CoA还原酶抑制剂（例如他汀类药物）、PPARα-激动剂（贝特类药物、例如吉非罗齐（gemfibrozil））、胆汁酸微粒体结合剂（考来烯胺（cholestyramine））、胆固醇吸收抑制剂（植物固醇、合成抑制剂）、胆汁酸吸收抑制剂（IBATi）和烟酸及类似物（烟酸和缓释制剂）；
[0333] 11) 抗高血压剂，诸如：β-阻断剂（例如阿替洛尔、普萘洛尔）；血管紧张素转换酶（ACE）抑制剂（例如赖诺普利）；钙拮抗剂（例如硝苯地平）；血管紧张素受体拮抗剂（例如坎地沙坦）；a-拮抗剂和利尿剂（例如呋塞米（furosemide）、氢氯噻嗪）。

[0334] 12) 止血调节剂，诸如：抗凝药、纤维蛋白溶解激动剂和抗血小板剂；凝血酶拮抗剂；Xa因子抑制剂、VIIa因子抑制剂、抗血小板剂（例如阿司匹林、氯吡格雷）；抗凝血剂（anticoagulant）（肝素和低分子量类似物、水蛭素）和华法林；

[0335] 13) 抗胰高血糖素作用的试剂；

[0336] 14) 抗炎试剂，诸如非甾体抗炎药（例如阿司匹林）和甾体抗炎试剂（例如可的松）。

[0337] 式（1）的化合物可以在其它活性成分之前、之后或同时被施用，所述施用是通过相同或不同的给药途径分别被施用，或在同一药物制剂中一起被施用。

[0338] 除了在治疗性药物中的应用以外，所述化合物还可以用作为寻找新治疗试剂的一部分的体外和体内实验系统开发和标准化中的药理学工具，所述实验系统用于在实验动物（如猫、狗、兔、猴、大鼠和小鼠）中评价DGAT-1活性抑制剂的效果。

[0339] 药物组合物和方法

[0340] 根据本发明的另一个方面，提供了一种药物组合物，该药物组合物包括作为活性成分的上文所述的式（1）的化合物或其盐，以及药学上可接受的载体或赋形剂。所述药物组合物被用于治疗肥胖、糖尿病、胰岛素抵抗、葡萄糖耐量受损、及其有关的病症。

[0341] 本发明的药物组合物是适用于上述给药途径的形式：i）口服使用，例如，水性或油性悬浮液，可分散的粉末或颗粒，酏剂、乳剂，硬的或软的胶囊，锭剂，糖浆，或片剂；或 ii）局部使用，例如，乳膏剂，软膏剂，透皮贴剂，凝胶，水性或油性溶液或悬浮液；或 iii）肠胃外给药，例如，用于静脉内、皮下、腹膜内、肌肉途径给药的无菌水性或油性溶液，或作为用于直肠给药的栓剂；或 iv）吸入使用，例如，气雾剂。

[0342] 根据本发明的药物组合物，以本身已知的且本领域技术人员熟悉的方式来制备，且所述药物制剂可以含有一种或多种选自由甜味剂、增味剂（flavoring agent）、着色剂和防腐剂所组成的组中试剂。片剂和胶囊含有与药学上可接受的赋形剂相混合的活性成分，所述赋形剂例如为：稀释剂诸如碳酸钙、山梨醇、甘露醇、乳糖或右旋糖（dextrose）；崩解剂和/or 成粒剂，诸如微晶纤维素、淀粉、琼脂或海藻酸；粘合剂，诸如明胶、黄蓍胶、聚乙烯吡咯烷酮、阿拉伯胶、淀粉、硅酸铝或硅酸钠；以及，润滑剂，诸如硬脂酸镁、滑石粉或硬脂酸。所述片剂可以没有包衣或具有包衣。可以制作包衣，以掩盖令人不悦的味道（例如，糖衣）或延迟崩解（例如肠溶包衣）。

[0343] 水性或油性悬浮液含有与药学上可接受的赋形剂相混合的活性成分，所述赋形剂例如为：助悬剂，诸如羧甲基纤维素钠、甲基纤维素或黄蓍胶；分散剂或润湿剂，诸如卵磷脂或聚氧乙烯硬脂酸酯；增稠剂，诸如蜂蜡或硬脂蜡；防腐剂，诸如对羟基苯甲酸甲酯对羟基苯甲酸乙酯和抗氧化剂（诸如 a-生育酚）。

[0344] 注射制剂可以是无菌的水溶液或悬浮液或乳剂。这样的制剂可以含有佐剂，例如防腐剂、稳定剂、润湿剂或乳化剂，用于调节渗透压的盐和/or 缓冲剂。

[0345] 药物制剂通常包含以重量计的约 1% 至 99%，例如约 5-70% 或约 5% 至约 30% 的式（1）的化合物和/or 它的生理上可耐受的盐。式（1）化合物和/or 它的生理上可耐受的
盐的活性成分在药物制剂中的量通常为约 5-500mg。

[0346] 本发明化合物的施用剂量可以覆盖广泛范围。选择每天的施用剂量，以适用于期望的效果。对于约 50-70kg 体重的受试者的适用剂量可以是约 1mg/天 -1000mg/天的式 (I) 的化合物和 / 或它的生理上可耐受的盐，例如约 1-500mg/天的式 (I) 的化合物或所述化合物的药学上可耐受的盐。如果需要，每天也可以施用更高或更低的剂量。本发明药物组合物中活性成分的实际剂量水平可发生变化，以得到如下的活性成分的量；该量对于特定患者、组合物和施用模式而言可有效地实现期望的治疗反应，并且不会造成不适当的副作用或对患者产生毒性。

[0347] 选择的剂量水平将取决于一系列的因素，包括应用的本发明特定化合物的活性，施用途径，施用时间，所应用的特定化合物的排泄速率，治疗持续的时间，与所应用的特定化合物组合施用的其它药物、化合物和 / 或材料，以及治疗患者的年龄、性别、体重、病症、综合健康情况和以前的病史，以及医药领域众所周知的类似因素。

[0348] 除式 (I) 的化合物和 / 或它的生理上可耐受的盐的活性成分，及载体物理外，药物制剂可包含添加剂，例如填充剂、抗氧剂、分散剂、乳化剂、消泡剂、增味剂、防腐剂、溶剂或着色剂。所述药物制剂还可包含一种或两种以上式 (I) 的化合物和 / 或它们的生理上可耐受的盐。此外，除至少一种式 (I) 的化合物和 / 或它的生理上可耐受的盐外，所述药物制剂还包含一种或多种其它治疗地或预防地活性成分。

[0349] 应当理解，基本不会影响本发明各种实施例活性的改变，因此，下列实施例适用于进行例证，但并不限制本发明。

[0350] 实验部分

[0351] 参照下面的实施例来进一步理解本发明，所述实施例仅用于例证本发明。本发明的范围不受示例性实施方式的限制，所述实施方式仅用作对本发明单一方面的解释。在功能上与在实施例中描述的那些等效的任意方法都在本发明的范围内。除了本文描述的那些以外，本领域技术人员从前述描述中会明白本发明的不同修改。这样的修改落入所附权利要求书的范围内。

[0352] 除非另有说明，所有温度都是以摄氏度为单位。另外，在这些实施例中和在别处，缩写具有下述含义：

<table>
<thead>
<tr>
<th>NH₄Cl</th>
<th>氯化铵</th>
<th>Pet 醣</th>
<th>石油醚</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHCl₃</td>
<td>氯仿</td>
<td>POCI₃</td>
<td>磷酰氯</td>
</tr>
<tr>
<td>CH₂Cl₂ 或 DCM</td>
<td>二氯甲烷 / 亚甲基二氯</td>
<td>KBr</td>
<td>溴化钾</td>
</tr>
<tr>
<td>DMSO</td>
<td>二甲基亚砜</td>
<td>RT</td>
<td>室温(20°C-30°C)</td>
</tr>
<tr>
<td>EtOH</td>
<td>乙醇</td>
<td>NaHCO₃</td>
<td>碳酸氢钠</td>
</tr>
<tr>
<td>EtOAc</td>
<td>乙酸乙酯</td>
<td>Na₂CO₃</td>
<td>碳酸钠</td>
</tr>
<tr>
<td>g</td>
<td>克</td>
<td>NaOH</td>
<td>氢氧化钠</td>
</tr>
<tr>
<td>H</td>
<td>小时</td>
<td>Na₂SO₄</td>
<td>硫酸钠</td>
</tr>
<tr>
<td>HCl</td>
<td>盐酸</td>
<td>THF</td>
<td>四氢呋喃</td>
</tr>
<tr>
<td>ml</td>
<td>毫升</td>
<td>Et₃N</td>
<td>三乙胺</td>
</tr>
</tbody>
</table>
[0354] 中间体

[0355] 在实施例的制备中使用了下述中间体。

[0356] 中间体 1: 2-(5-(4-氨基苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0357] A. 2-溴-1-(4-硝基苯基)乙酮

[0358] 乙醛(250ml)中的4-硝基苯乙酮(25g)与氯化铝(催化剂),随后经溴(7.77ml)处理10分钟,并搅拌该反应物30分钟。用NaHCO₃水溶液析出该反应物。乙醚层被分离,使用Na₂SO₄干燥,且被浓缩。残余物被溶解于EtOAc中,使用Na₂SO₄进行干燥,且被浓缩,以去除在EtOAc/Pet醚中的结晶的灰白色固体,从而得到25.5克(69%)的标题化合物。

1HNMR(CDC₃, 300MHz): δ 8.19(d, 2H), 8.36(d, 2H), 4.47(s, 2H)。

[0359] B. 2-氨基-1-(4-硝基苯基)乙酮氢氧化物

[0360] 将六亚甲基四胺(20.1g)加入2-溴-1-(4-硝基苯基)乙酮(步骤A的产物,25g)在DCM(250mL)中的溶液中,该混合物被搅拌1小时。然后过滤该混合物,残余物被溶解于HCl的乙醇溶液(40mL HCl的162mL EtOH中)中。该乙醇溶液被搅拌3小时,并被静置2天。过滤该溶液,残余物经水洗并进行干燥,以得到11.8g(72%)的标题化合物。

1HNMR(DMSO-d₆, 300MHz): δ 8.3(b, 3H), 8.38(d, 2H), 8.27(d, 2H), 4.68(s, 2H)。

[0361] C. 2-(2-(4-硝基苯基)-2-氧化乙烯基)-2-氧化亚乙酸乙酯

[0362] 将Et₂N(8.88ml)加入2-氨基-1-(4-硝基苯基)乙酮氢氧化物(步骤B的产物,11.5g)在EtOAc(15ml)中的溶液中。然后,逐滴加入乙基二乙酸氯酯(7.11ml)。该反应混合物回流2小时,然后被冷却,并用水进行萃取。有机层被分离且经Na₂SO₄干燥,且溶剂被浓缩,得到深褐色油。该深褐色油通过柱层析(在3:7乙酸乙酯:Pet醚中)进行纯化,以得到黄色固体。该黄色固体在乙酸乙酯/Pet醚中被结晶,以得到8.9g(59%)的标题化合物。

1HNMR(DMSO-d₆, 300MHz): δ 9.21(t, 1H), 8.35(d, 2H), 8.24(d, 2H), 4.78(d, 2H), 4.29(q, 2H), 1.29(t, 3H)。

[0363] D. 5-(4-硝基苯基)噻唑-2-甲酸乙酯

[0364] 将2-(2-(4-硝基苯基)-2-氧化乙烯基)-2-氧化亚乙酸乙酯(步骤C的产物,8.5g)在POCl₃(55ml)中的溶液回流6小时。该反应混合物被冷却,且用冰稀释,并用碳酸钠中和。向该混合物中加入DCM,且分离有机层和水层。有机层经Na₂SO₄干燥,过滤、并在减压下被浓缩,以得到深褐色残余物。该残余物经在2:8乙酸乙酯:Pet醚中的硅胶上被色谱分离,以得到淡褐色的有色固体,该固体在氯仿/Pet醚中被结晶,以得到4.82g(60%)的标题化合物。

1HNMR(CDC₃, 300MHz): δ 8.41(d, 2H), 7.97(d, 2H), 7.37(s, 1H), 4.55(q, 2H), 1.49(t, 3H)。

[0365] E. 3-甲基-2-(5-(4-硝基苯基)噻唑-2-甲酸氨基)丁酸甲酯

[0366] 将5-(4-硝基苯基)噻唑-2-甲酸乙酯(步骤D的产物,3.4g)和预先用Et₃N(4.52ml)中和的L-缩氨酸甲酯氢氧化物(5.43g)的乙醇溶液在密闭试管中在110°C加热2天。EtOH在减压下被去除,且原材料在1:9的EtOAc:Pet醚中的硅胶上被色谱分离,以得到呈状有色固体。该固体在EtOAc/Pet醚中被结晶,得到700mg(31%)的标题化合物。

1HNMR(DMSO-d₆, 300MHz): δ 9.2(d, 1H), 8.37(d, 2H), 8.24(s, 1H), 8.14(d, 2H), 4.32(m, 1H), 3.68(s, 3H), 2.26(m, 1H), 0.86(t, 6H); MS(ESI): m/z 348(M+1)。

[0367] F. 2-(5-(4-氨基苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯
[0368] 3-甲基-2-(5-(4-硝基苯基)噻唑-2-甲酰基)丁酸甲酯（步骤E的产物，700mg）被溶解于EtOH（7ml）、THF（2.8ml）和水（2.8ml）的溶剂混合物中。然后加入氯化铵（323mg）和铁（264mg），且反应混合物在80℃回流3小时。然后该混合物被冷却且通过硅藻土进行过过滤，且溶剂在减压下被去除，以得到深褐色残余物。该残余物溶解于水中，并用EtOAc萃取。有机层被分离，经Na2SO4干燥，且被浓缩，以得到深褐色残余物。该残余物通过在2.5：7.5的EtOAc：CHCl3中的硅胶柱层析进行纯化，以得到黄色固体，该黄色固体在DCM/Pet醚中被结晶，以得到550mg（86%）黄色固体。1H NMR (DMSO-d6, 300MHz): δ 8.83 (d, 1H), 7.55 (s, 1H), 7.48 (d, 2H), 6.66 (d, 2H), 5.63 (bs, 2H), 4.28 (m, 1H), 3.67 (s, 3H), 1.98 (m, 1H), 0.96 (d, 6H).

[0369] 中间体2:2-[(5-(4-氨基苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0370] A. 5-（4-硝基苯基）噻唑-2-甲酸乙酯

[0371] B. 2-(2-(4-硝基苯基)-2-氧代乙氨基)-2-氧代乙酸乙酯（中间体1，步骤C,5g）和劳森试剂（7.22g）在1,4-二噁烷（100ml）中的溶液回流2小时。反应混合物被冷却，加入水，且该混合物用Na2CO3饱和溶液进行中和。然后，加入EtOAc，然后分离各层。有机层经Na2SO4干燥，过滤，且在减压下被浓缩，以得到深褐色的残余物。该残余物物在0.5：9.5的EtOAc：CHCl3中的硅胶上被色谱分离，得到深黄色的有色固体。该深黄色的有色固体在CHCl3/Pet醚中被结晶，以得到3.65g（73%）的标题化合物。1H NMR (CDCl3, 300MHz): δ 8.33 (d, 2H), 8.3 (s, 1H), 7.83 (d, 2H), 4.54 (q, 2H), 1.40 (t, 3H); MS (ES+), m/z 279 (M+1).

[0372] B. 5-(4-硝基苯基)噻唑-2-羧酸

[0373] 将5-(4-硝基苯基)噻唑-2-甲酸乙酯（中间体2，步骤A,3.6g）溶解于THF（90ml）中。加入1摩尔NaOH水溶液（52ml），并在室温下搅拌15-20分钟。反应混合物经1M HCl酸化，用EtOAc进行萃取。有机层经盐水洗涤，经Na2SO4干燥，且在减压下被浓缩，以得到淡黄色的有色固体。该有色固体在EtOAc/Pet醚中被结晶，以得到2.48g（76%）的标题化合物。1H NMR (DMSO-d6, 300MHz): δ 14.21 (bs, 1H), 8.7 (s, 1H), 8.31 (d, 2H), 8.1 (d, 2H); MS (ES+), m/z 251 (M+1).

[0374] C. 3-甲基-2-(5-(4-硝基苯基)噻唑-2-甲酰氨基)丁酸甲酯

[0375] 将N-甲基吗啉（1.01ml）加入5-(4-硝基苯基)噻唑-2-羧酸（中间体2，步骤B, 2.3g）在THF（72ml）中的溶液中。反应混合物在室温下搅拌10分钟，且被冷却至-20°C。加入氯酸甲基异丁基（1.19ml），且该混合物在-20°C至-30°C下搅拌15-20分钟。然后，加入预先用Et3N(1.8ml)中和的L-缬氨酸甲酯氢氧化钠溶液（2.15g）。该反应混合物在-20°C至-30°C下搅拌5分钟，然后被逐渐温热至室温。溶剂在减压下被去除，且原材料在15：85的EtOAc：CHCl3中的硅胶上被色谱分离，以得到淡黄色的有色固体。该淡黄色的有色固体在EtOAc/Pet醚中被结晶，得到2.25g（67%）的标题化合物。1H NMR (DMSO-d6, 300MHz): δ 8.95 (d, 1H), 8.7 (s, 1H), 8.34 (d, 2H), 8.09 (d, 2H), 4.33 (m, 1H), 3.68 (s, 3H), 2.27 (m, 1H), 0.95 (t, 6H); MS (ES+), m/z 364 (M+1).

[0376] D. 2-(5-(4-氨基苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0377] 将氯化铵（1.04g）和铁（777mg）加入3-甲基-2-(5-(4-硝基苯基)噻唑-2-甲酰氨基)丁酸甲酯（中间体2，步骤C, 2.15g）在EtOH（21.5ml）、THF（8.6ml）和水（8.6ml）中的溶液中。该反应混合物在80°C回流3小时，然后冷却，通过硅藻土进行过滤，并在减压
下去除溶剂，以得到深褐色残余物。该残余物被溶解于水中，并使用乙酸乙酯进行萃取。有机层被分离，经 Na₂SO₄ 干燥，且被浓缩，以得到深褐色残余物。该深褐色残余物在 2.5：7.5 的 EtOAc：氯仿中的硅胶上的柱子纯化，以得到黄色粘性固体。该黄色粘性固体在 DCM/Pet 醚中被结晶，以得到 1.82g (91%) 的标题化合物。¹H NMR (DMSO-d₆, 300MHz)：δ 8.59 (d, 1H), 8.15 (s, 1H), 7.42 (d, 2H), 6.63 (d, 2H), 5.76 (bs, 2H), 4.31 (m, 1H), 3.67 (s, 3H), 2.27 (m, 1H), 0.91 (d, 6H); MS (ES+)：m/z 334 (M+1)。

[0378] 中间体 3: 2-(4-(4-氨基苯基) 噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0379] A. 4-(4-硝基苯基) 噻唑-2-甲酰乙酸

[0380] 向在甲醇 (200ml) 中的 2-溴-1-(4-硝基苯基)乙酮 (中间体 1, 步骤 A, 9.2g) 中加入硫代草酰亚乙酯 (5.0g), 且该反应混合物回流 2 小时, 然后该反应混合物被冷却至室温。沉淀的固体被固定、干燥、以得到标题化合物。产量: 7.1g (67%). ¹H NMR (CDCl₃, 300MHz)：δ 8.33 (d, 2H), 8.17 (d, 2H), 7.96 (s, 1H), 4.56 (q, 2H), 1.51 (t, 3H)。

[0381] B. 4-(4-硝基苯基) 噻唑-2-羧酸

[0382] 向在 THF (70ml) 中的 4-(4-硝基苯基) 噻唑-2-甲酰乙酸 (中间体 3, 步骤 A, 7.0g) 中加入（1ml）1N 的氢氧化锂-水溶液混合物, 该反应混合物在室温被搅拌 4 小时。浓缩有机溶剂, 并用稀 HCl 溶液使该反应混合物呈酸性。这导致白色固体的沉淀, 该白色固体经过滤和水洗涤。干燥该固体, 以得到标题化合物。产量: 6.2g (98%). ¹H NMR (DMSO-d₆, 300MHz)：δ 8.78 (s, 1H), 8.32 (d, 4H)。

[0383] C. 3-甲基-2-(4-(4-硝基苯基) 噻唑-2-甲酰氨基) 丁酸甲酯

[0384] 将 N-甲基甲胺 (1.8g) 加入到 4-(4-硝基苯基) 噻唑-2-羧酸 (中间体 3, 步骤 B, 4.5g) 在 THF (50ml) 中的溶液中。该反应混合物被搅拌 5 分钟，然后被冷却至 -20°C，向其中加入氯甲酸异丁酯 (2.45g) 并将该反应混合物搅拌 20 分钟。向该反应混合物中加入预先用三乙胺 (4.63g) 中和的 1-缩氨酸甲基酯氢氯化物 (7.2g) 并将该反应物搅拌 3 小时，同时使湿温度升高至 R T。浓缩有机溶剂，并通过柱层析（硅胶, EtOAc-石油醚）纯化混合物，以得到为黄色固体的标题化合物。产量: 4.4g (67%). ¹H NMR (DMSO-d₆, 300MHz)：δ 8.36 (d, 2H), 8.14 (d, 2H), 7.94 (s, 1H), 7.80 (d, 1H), 4.77 (t, 1H), 3.83 (s, 3H), 2.37 (m, 1H), 1.07 (s, 6H)。

[0385] D. 2-(4-(4-氨基苯基) 噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0386] 向在 EtOH (40ml) 和水 (20ml) 中的 3-甲基-2-(4-(4-硝基苯基) 噻唑-2-甲酰氨基) 丁酸甲酯 (中间体 3, 步骤 C, 4.277g) 中加入氯化铵 (630mg) 和铁 (1.97g), 反应混合物在 80°C 回流 3 小时。该反应混合物被冷却至室温，通过硅藻土进行过滤，并且被蒸馏，以得到褐色残余物。加入碳酸氢钠水溶液，然后加入乙酸乙酯并搅拌。有机相被收集，经 Na₂SO₄ 干燥，且被浓缩。得到的残余物通过柱层析（硅胶, EtOAc-石油醚）进行纯化，以得到为黄色固体的标题化合物。产量: 2.7g (68%). ¹H NMR (DMSO-d₆, 300MHz)：δ 8.71 (d, 1H), 8.03 (s, 1H), 7.78 (d, 2H), 6.64 (d, 2H), 5.38 (s, 2H), 4.38 (t, 1H), 3.69 (s, 3H), 2.30 (m, 1H), 0.98 (d, 6H)。

[0387] 中间体 4: 2-(5-(4-氨基苯基)-N-甲基噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0388] A. 3-甲基-2-(N-甲基-5-(4-硝基苯基) 噻唑-2-甲酰氨基) 丁酸甲酯

[0389] 向在 DMSO(10ml) 中的 3-甲基-2-(5-(4-硝基苯基) 噻唑-2-甲酰氨基) 丁酸甲酯
酸甲酯（中间体2, 步骤C, 1g）中加入碳酸钠（1.346克），并将该反应混合物搅拌5分钟。向该反应混合物中加入碘甲烷（0.258ml），并将该反应混合物搅拌1小时。使用水

石灰反应混合物。得到的残留物经过滤，并被干燥，以得到目标化合物。产量:0.870克（83%）。

\[{}^1H \text{NMR(DMSO-}d_6, 300MHz) : \delta 8.65(s, 1H), 8.33(d, 2H), 8.08(d, 2H), 6.18-4.75(d, 1H), 3.68(s, 3H), 3.46-2.96(s, 3H), 2.38(m, 1H), 1.03(d, 3H), 0.91(d, 3H) ; MS(ESI) m/z 378[M+H]^+ , 400[M+Na]^+ \]

【0390】B. 2-(5-(4-(氨基苯基)-N-甲基噻唑-2-甲酰基)-3-甲基丁酸甲酯

【0391】向在乙醇（8ml）和水（4ml）中的3-甲基-2-(N-甲基-5-(4-硝基苯基)噻唑-2-甲酰氨基)丁酸甲酯（中间体4, 步骤A, 0.8克）中加入氯化铵（0.113克）和铁（0.355克），反应混合物在80℃回流3小时。该反应混合物被冷却至室温，并通过硅藻土进行过滤。浓缩有机溶剂，得到褐色残留物，加入碳酸氢钠水溶液，然后加入乙酸乙酯，并搅拌，有机层被收集，经Na₂SO₄干燥，且被浓缩。得到的残留物通过柱层析（硅胶，EtOAc-石油醚）进行纯化，以得到为黄色固体的标题化合物。产量:0.7克（95%）。

\[{}^1H \text{NMR}(CDCl_3; 300MHz) : \delta 7.91(d, 1H), 7.45(d, 2H), 6.77(d, 2H), 6.45-5.02(d, 1H), 3.74(s, 3H), 3.56-3.06(s, 3H), 2.45(m, 1H), 1.09(d, 3H), 1.00(d, 3H) ; MS(ESI) m/z 348.1[M+H]^+ , 370.1[M+Na]^+ \]

【0392】中间体5:4-(2-氧基丙烷-2-基)苯甲酸甲酯

【0393】在惰性气氛中，将碘甲烷（5.35ml）和4-(氧基甲基)苯甲酸甲酯（5g）在THF（25ml）中的溶液缓慢地加入到-30℃的叔丁醇钾（8g）在THF（25ml）中的溶液中。该反应混合物在室温搅拌约2小时，然后被用水（10ml）稀释，并加入EtOAc，分离有机层和水层。有机层经水，水连续洗涤，并经硫酸钠干燥。浓缩有机溶剂，以得到紫色残留物，该紫色残留物使用20%的EtOAc-石油醚，通过硅胶柱层析进行纯化，以得到灰色固体。该灰色固体在氯仿-石油醚中被结晶，得到为白色固体的标题化合物。

\[{}^1H \text{NMR}(CDCl_3; 300MHz) : \delta 8.06(d, 2H), 7.58(d, 2H), 3.97(s, 3H), 1.76(s, 6H) ; MS(ESI) m/z 204.1[M+H]^+ \]

【0394】中间体6:4-(3-苯基戊烷-3-基)苯甲酸甲酯

【0395】使用碘乙烷（4.11ml）替代碘甲烷，且与中间体5类似地方法合成标题化合物。

\[{}^1H \text{NMR}(CDCl_3; 300MHz) : 8.08-8.06(d, 2H), 7.5-7.47(d, 2H), 3.94(s, 3H), 2.15-2.03(m, 2H), 2.0-1.89(m, 2H), 0.91(t, 6H) ; MS(ESI) m/z 232.1[M+H]^+ \]

【0396】实施例

【0397】实施例1:3-甲基-2-(5-(4-(3-(三氟甲基)苯基)苯基)苯基)噻唑-2-甲酰氨基)丁酸甲酯

【0398】向2-(5-(4-(氨基苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯（中间体1, 150mg）在THF（3ml）中的溶液中加入1-异氰酰-3-(三氟甲基)苯（132mg），并将该混合物在室温搅拌过夜。然后该混合物被浓缩，并通过柱层析(EtOAc : Pet醚, 2 : 8)进行纯化，并在CHCl₃/Pet醚中被结晶，以得到目标化合物。产量:210mg（88%）。

\[{}^1H \text{NMR(DMSO-d_6, 300MHz) : } \delta 9.13(s, 1H), 9.09(s, 1H), 8.99(d, 1H), 8.03(d, 1H), 7.82(s, 1H), 7.8(d, 2H), 7.64(d, 2H), 7.58(dd, 1H), 7.55(dd, 1H), 7.34(m, 1H), 4.3, (m, 1H), 3.68(s, 3H), 2.24(m, 1H), 0.95(d, 6H) ; MS(ESI+) m/z 505(M+1) \]

【0399】实施例2:3-甲基-2-(5-(4-(3-(三氟甲基)苯基)苯基)苯基)噻唑-2-甲
酰氨基）丁酸

[0400] 向 3-甲基-2-（5-4-（3-（三氟甲基）苯基）苯基）喹唑-2-甲酰氨基）丁酸甲酯（实施例 1,150mg）在 THF (3ml) 中的溶液中加入 1M 氢氧化锂-水合物的水溶液（0.6ml），并将该混合物在室温搅拌 4 小时。该反应混合物用稀 HCl 酸化，并用 EtOAc 进行萃取。有机层被分离、经 Na2SO4 干燥，且在减压下被浓缩、然后在 EtOAc 中被结晶，以得到标题化合物。产率：125mg（85%）；1HNMR (DMSO-d6, 300MHz): δ 12.93 (bs, 1H), 9.14 (s, 1H), 9.06 (s, 1H), 8.64 (d, 1H), 8.03 (d, 1H), 7.81 (s, 1H), 7.8 (d, 2H), 7.64 (d, 2H), 7.58 (dd, 1H), 7.52 (dd, 1H), 7.34 (m, 1H), 4.28, (m, 1H), 2.26 (m, 1H), 0.95 (d, 6H); MS (ES+) m/z 491 (M+1)。

[0401] 实施例 3：2-（5-4-（3-2-氯苯基）苯基）喹唑-2-甲酰氨基）-3-甲基丁酸甲酯

[0402] 使用 1-氯-2-异氰酸苯和中间体 1、以与实施例 1 类似的方法合成标题化合物。产率：79％；1HNMR (DMSO-d6, 300MHz): δ 9.68 (s, 1H), 8.98 (d, 1H), 8.39 (s, 1H), 8.15 (dd, 1H), 7.82 (s, 1H), 7.78 (d, 2H), 7.63 (d, 2H), 7.48 (dd, 1H), 7.34 (m, 1H), 7.05 (m, 1H), 4.3, (m, 1H), 3.68 (s, 3H), 2.26 (m, 1H), 0.95 (d, 6H); MS (ES+) m/z 471 (M+1)。

[0403] 实施例 4：2-（5-4-（3-2-氯苯基）苯基）喹唑-2-甲酰氨基）-3-甲基丁酸

[0404] 使用 2-（5-4-（3-2-氯苯基）苯基）喹唑-2-甲酰氨基）-3-甲基丁酸甲酯、以与实施例 2 类似的方法合成标题化合物。产率：79％；1HNMR (DMSO-d6, 300MHz): δ 12.93 (bs, 1H), 9.68 (s, 1H), 8.64 (d, 1H), 8.39 (s, 1H), 8.17 (dd, 1H), 7.81 (s, 1H), 7.78 (d, 2H), 7.63 (d, 2H), 7.48 (dd, 1H), 7.34 (m, 1H), 7.05 (m, 1H), 4.28, (m, 1H), 2.3 (m, 1H), 0.95 (d, 6H); MS (ES+) m/z 455 (M-1)。

[0405] 实施例 5：2-（5-4-（3-3-4-二甲苯基）苯基）苯基）喹唑-2-甲酰氨基）-3-甲基丁酸甲酯

[0406] 使用 4-异氰酸-1,2-二甲苯基苯和中间体 1、以与实施例 1 类似的方法合成标题化合物。产率：82％；1HNMR (DMSO-d6, 300MHz): δ 8.97 (d, 1H), 8.89 (s, 1H), 8.56 (s, 1H), 7.79 (s, 1H), 7.77 (d, 2H), 7.61 (d, 2H), 7.24 (dd, 1H), 7.19 (dd, 1H), 7.04 (d, 1H), 4.3, (m, 1H), 3.68 (s, 3H), 2.28 (m, 1H), 2.19 (s, 3H), 2.15 (s, 3H), 0.95 (d, 6H); MS (ES+) m/z 465 (M+1)。

[0407] 实施例 6：2-（5-4-（3-3-4-二甲苯基）苯基）苯基）喹唑-2-甲酰氨基）-3-甲基丁酸

[0408] 使用 2-（5-4-（3-3-4-二甲苯基）苯基）苯基）喹唑-2-甲酰氨基）-3-甲基丁酸甲酯、以与实施例 2 类似的方法合成标题化合物。产率：79％；1HNMR (DMSO-d6, 300MHz): δ 12.89 (bs, 1H), 8.9 (s, 1H), 8.63 (d, 1H), 8.57 (s, 1H), 7.83 (s, 1H), 7.79 (d, 2H), 7.61 (d, 2H), 7.24 (dd, 1H), 7.16 (dd, 1H), 7.04 (d, 1H), 4.28, (m, 1H), 2.27 (m, 1H), 2.19 (s, 3H), 2.08 (s, 3H), 0.95 (d, 6H); MS (ES+) m/z 451 (M+1)。

[0409] 实施例 7：2-（5-4-（3-4-氯-2-苯氧基苯基）苯基）苯基）喹唑-2-甲酰氨基）-3-甲基丁酸甲酯

[0410] 使用 4-氯-1-异氰酸-2-苯氧基苯和中间体 1、以与实施例 1 类似的方法合成标题化合物。产率：79％；1HNMR (DMSO-d6, 300MHz): δ 9.61 (s, 1H), 8.99 (d, 1H), 8.74 (s, 1H), 8.67 (s, 1H), 8.57 (s, 1H), 8.42 (d, 2H), 7.79 (d, 2H), 7.61 (d, 2H), 7.16 (d, 2H), 7.04 (d, 1H), 4.28, (m, 1H), 2.27 (m, 1H), 2.19 (s, 3H), 2.08 (s, 3H), 0.95 (d, 6H); MS (ES+) m/z 451 (M+1)。
实施例 8：2-（5-（4-（3-（4-氯-2-苯氧基苯基）苯基）噻唑-2-甲酰氨基）-3-甲基丁酸

使用 2-（5-（4-（3-（4-氯-2-苯氧基苯基）苯基）苯基）噻唑-2-甲酰氨基）-3-甲基丁酸甲酯，与实施例 2 类似的方法合成标题化合物。产率：80%；"H NMR (DMSO-d6, 300MHz): δ 12.96 (s, 1H), 8.73 (s, 1H), 8.63 (d, 1H), 8.39 (s, 1H), 7.8 (s, 1H), 7.77 (d, 2H), 7.6 (d, 2H), 7.44 (d, 2H), 7.22 (dd, 1H), 7.11 (d, 2H), 7.0 (dd, 1H), 6.85 (d, 1H), 4.28 (m, 1H), 2.32 (m, 1H), 0.97 (d, 6H); MS (ES+) m/z 549 (M+1).

实施例 9：3-甲基-2-（5-（4-（3-（三氟甲基）苯基）苯基）苯基）噻唑-2-甲酰氨基）丁酸

向 2-（5-（4-氨苯基）噻唑-2-甲酰氨基）-3-甲基丁酸甲酯（中间体 2, 120mg）在 THF (2.4mL) 中的溶液中加入 1-异氰酸-3-（三氟甲基）苯（101mg），并将其混合物在室温搅拌过夜。混合物被浓缩，通过柱层析（EtOAc：Pet醚, 2：8）进行纯化，并用二氯甲烷/ Pet醚中被结晶，以得到标题化合物。产率：156mg (83%); "H NMR (DMSO-d6, 300MHz): δ 9.12 (s, 1H), 9.08 (s, 1H), 8.36 (s, 1H), 8.03 (d, 1H), 7.74 (d, 2H), 7.61 (d, 2H), 7.55 (dd, 1H), 7.5 (m, 1H), 7.32 (dd, 1H), 4.33 (m, 1H), 3.68 (s, 3H), 2.26 (m, 1H), 0.92 (d, 6H); MS (ES+) m/z 521 (M+1).

实施例 10：3-甲基-2-（5-（4-（3-（三氟甲基）苯基）苯基）苯基）噻唑-2-甲酰氨基）丁酸

向 3-甲基-2-（5-（4-（3-（三氟甲基）苯基）苯基）苯基）噻唑-2-甲酰氨基）丁酸甲酯（实施例 9, 100mg）在 THF (2mL) 中的溶液中加入 1M 氢氧化钾一水合物的水溶液 (0.38mL)，并将该混合物在室温搅拌 4 小时。该反应混合物被稀 HCl 酸化，并用 EtOAc 进行萃取。有机层被分离，经 Na2SO4 干燥，在减压下进行浓缩，然后在 EtOAc 中被结晶，以得到标题化合物。产率：60mg (62%); "H NMR (DMSO-d6, 300MHz): δ 12.97 (s, 1H), 9.18 (s, 1H), 9.13 (s, 1H), 8.37 (d, 1H), 8.36 (s, 1H), 8.03 (d, 1H), 7.74 (d, 2H), 7.61 (d, 2H), 7.55 (dd, 1H), 7.5 (dd, 1H), 7.34 (d, 1H), 4.31 (m, 1H), 2.28 (m, 1H), 0.95 (d, 6H); MS (ES+) m/z 507 (M+1).

实施例 11：2-（5-（4-（3-（2-氯苯基）苯基）苯基）苯基）噻唑-2-甲酰氨基）-3-甲基丁酸

使用 1-氯-2-异氰酸苯和中间体 2, 以与实施例 9 类似的方法合成标题化合物。产率：87%; "H NMR (DMSO-d6, 300MHz): δ 9.67 (s, 1H), 8.74 (d, 1H), 8.38 (s, 1H), 8.36 (s, 1H), 8.15 (dd, 1H), 7.75 (d, 2H), 7.6 (d, 2H), 7.49 (dd, 1H), 7.32 (m, 1H), 7.06 (m, 1H), 4.33 (m, 1H), 3.68 (s, 3H), 2.26 (m, 1H), 0.95 (d, 6H); MS (ES+) m/z 487 (M+1).

实施例 12：2-（5-（4-（3-（2-氯苯基）苯基）苯基）苯基）苯基）噻唑-2-甲酰氨基）-3-甲基丁酸

使用 2-（5-（4-（3-（2-氯苯基）苯基）苯基）苯基）苯基）噻唑-2-甲酰氨基）-3-甲基丁酸甲酯，与实施例 10 类似的方法合成标题化合物。产率：72%; "H NMR (DMSO-d6, 300MHz):
说明书

0421 实施例13:2-(5-(4-(3-(3,4-二甲苯基)脲基)苯基)喹唑-2-甲酰氨基)-3-甲基丁酸甲酯

0422 使用4-异氰酸-1,2-二甲苯基和中间体2以与实施例9类似的方法合成目标化合物。产率:82%;\(^1\)H NMR (DMSO-d_6, 300MHz): δ 8.89 (s, 1H), 8.73 (d, 1H), 8.56 (s, 1H), 8.35 (s, 1H), 7.69 (d, 2H), 7.58 (d, 2H), 7.24 (dd, 1H), 7.19 (dd, 1H), 7.05 (d, 1H), 4.33 (m, 1H), 3.68 (s, 3H), 2.28 (m, 1H), 2.2 (s, 3H), 2.16 (s, 3H), 0.95 (d, 6H); MS (ES+) m/z 481 (M+1)。

0423 实施例14:2-(5-(4-(3-(3,4-二甲苯基)脲基)苯基)喹唑-2-甲酰氨基)-3-甲基丁酸甲酯

0424 使用2-(5-(4-(3-(3,4-二甲苯基)脲基)苯基)喹唑-2-甲酰氨基)-3-甲基丁酸甲酯,以与实施例10类似的方法合成目标化合物。产率:83%;\(^1\)H NMR (DMSO-d_6, 300MHz): δ 12.98 (bs, 1H), 8.9 (s, 1H), 8.56 (s, 1H), 8.36 (d, 1H), 8.34 (s, 1H), 7.72 (d, 2H), 7.58 (d, 2H), 7.24 (dd, 1H), 7.17 (dd, 1H), 7.05 (d, 1H), 4.31 (m, 1H), 2.27 (m, 1H), 2.23 (s, 3H), 2.2 (s, 3H), 0.95 (d, 6H); MS (ES+) m/z 467 (M+1)。

0425 实施例15:3-甲基-2-(5-(4-(3-(2-苯氧基苯基)脲基)苯基)喹唑-2-甲酰氨基)丁酸甲酯

0426 使用1-异氰酸-2-苯氧基苯基和中间体2,以与实施例9类似的方法合成目标化合物。产率:84%;\(^1\)H NMR (DMSO-d_6, 300MHz): δ 9.53 (s, 1H), 8.73 (d, 1H), 8.54 (s, 1H), 8.35 (s, 1H), 8.27 (dd, 1H), 7.73 (d, 2H), 7.57 (d, 2H), 7.43 (dd, 2H), 7.17 (m, 1H), 7.1 (d, 1H), 7.07 (dd, 2H), 6.98 (s, 1H), 6.86 (d, 1H), 4.32 (m, 1H), 3.68 (s, 3H), 2.28 (m, 1H), 0.94 (d, 6H); MS (ES+) m/z 545 (M+1)。

0427 实施例16:3-甲基-2-(5-(4-(3-(2-苯氧基苯基)脲基)苯基)喹唑-2-甲酰氨基)丁酸

0428 使用3-甲基-2-(5-(4-(3-(2-苯氧基苯基)脲基)苯基)喹唑-2-甲酰氨基)丁酸甲酯,以与实施例10类似的方法合成目标化合物。产率:51%;\(^1\)H NMR (DMSO-d_6, 300MHz): δ 12.98 (bs, 1H), 9.53 (s, 1H), 8.54 (s, 1H), 8.37 (d, 1H), 8.34 (s, 1H), 8.3 (d, 1H), 7.73 (d, 2H), 7.5 (d, 2H), 7.43 (dd, 2H), 7.15 (m, 2H), 7.05 (d, 2H), 7.0 (dd, 1H), 6.86 (d, 1H), 4.31 (m, 1H), 2.27 (m, 1H), 0.94 (d, 6H); MS (ES+) m/z 531 (M+1)。

0429 实施例17:2-(5-(4-(3-(4-氯-2-苯氧基苯基)脲基)苯基)喹唑-2-甲酰氨基)-3-甲基丁酸甲酯

0430 使用4-氯-1-异氰酸-2-苯氧基苯基和中间体2,以与实施例9类似的方法合成目标化合物。产率:60%;\(^1\)H NMR (DMSO-d_6, 300MHz): δ 9.61 (s, 1H), 8.73 (s, 1H), 8.71 (d, 1H), 8.4 (d, 1H), 8.36 (s, 1H), 7.74 (d, 2H), 7.54 (d, 2H), 7.44 (d, 2H), 7.2 (dd, 1H), 7.2 (d, 2H), 7.03 (dd, 1H), 6.86 (d, 1H), 4.33 (m, 1H), 3.68 (s, 3H), 2.26 (m, 1H), 0.95 (d, 6H); MS (ES+) m/z 579 (M+1)。

0431 实施例18:2-(5-(4-(3-(4-氯-2-苯氧基苯基)脲基)苯基)喹唑-2-甲酰氨基)-3-甲基丁酸
使用 2-(5-(4-(3-(4-氯-2-苯氧基苯基) 甲基) 吡啶-2-甲酰氨基)-3-甲基丁酸甲酯, 以及与实施例 10 类似的方法合成乙酸衍生物。产率: 69%; 1H NMR (DMSO-d6, 300 MHz): δ 12.99 (s, 1H), 9.61 (s, 1H), 8.73 (s, 1H), 8.34 (d, 1H), 8.37 (d, 1H), 8.36 (s, 1H), 7.74 (d, 2H), 7.57 (d, 2H), 7.44 (d, 2H), 7.2 (dd, 1H), 7.11 (d, 2H), 7.00 (dd, 1H), 6.86 (d, 1H), 4.31 (m, 1H), 2.27 (m, 1H), 0.94 (d, 6H); MS (ES+) m/z: 563 (M+1)。

实施例 19: 2-(5-(4-(6-氟苯并[d] 哌啶-2-基氨基) 苯基) 唑啉-2-甲酰氨基)-3-甲基丁酸乙酯

在 55℃-60℃ 加热 2-(5-(4-氨基苯并[d] 咪唑-2-基氨基)-3-甲基丁酸甲酯（中间体 2, 150mg）和 2-氯-6-氟苯并[d] 哌啶（101mg）在 EtOH（3ml）中的溶液，以得到澄清溶液。向其中加入在 1,4-二噁烷（0.11ml）中 4M 的 HCl 水溶液，并将该反应混合物在 80℃ 回流 20 小时。在减压下除去溶剂，并通过硅胶柱层析（EtOAc: Pet醚, 2: 8）纯化残余物。该固体在 EtOAc/Pet醚中被结晶，以得到标题化合物。产率: 120mg (53%); 1H NMR (DMSO-d6, 300 MHz): δ 10.76 (s, 1H), 8.66 (d, 1H), 8.37 (s, 1H), 7.80 (d, 2H), 7.77 (d, 1H), 7.64 (dd, 1H), 7.2 (m, 1H), 4.29 (m, 1H), 4.16 (q, 2H), 2.72 (m, 1H), 1.22 (t, 3H), 0.95 (d, 6H); MS (ES+) m/z: 499 (M+1)。

实施例 20: 2-(5-(4-(6-氟苯并[d] 哌啶-2-基氨基) 苯基) 哌啶-2-甲酰氨基)-3-甲基丁酸

向 2-(5-(4-(6-氟苯并[d] 哌啶-2-基氨基) 苯基) 哌啶-2-甲酰氨基)-3-甲基丁酸乙酯（实施例 19, 80mg）在 THF（1.6ml）中的溶液中加入 1M 氢氧化钠一水合物的水溶液（0.32ml），并将该混合物在室温搅拌 4 小时。该反应混合物被稀 HCl 酸化，并用 EtOAc 进行萃取。有机层被分离，经 Na2SO4 干燥，并在减压下被浓缩，以得到黄色固体。该黄色固体在乙酸乙酯中被结晶，以得到标题化合物。产率: 58mg (77%); 1H NMR (DMSO-d6, 300 MHz): δ 12.99 (s, 1H), 10.76 (s, 1H), 8.36 (s, 1H), 8.34 (d, 1H), 7.88 (d, 2H), 7.82 (d, 2H), 7.77 (d, 1H), 7.65 (dd, 1H), 7.2 (m, 1H), 4.32, (m, 1H), 2.27 (m, 1H), 0.97 (d, 6H); MS (ES+) m/z: 471 (M+1)。

实施例 21: 2-(5-(4-(4-叔丁基苯甲酰氨基) 苯基) 哌啶-2-甲酰氨基)-3-甲基丁酸

将吡啶（0.11ml）加入 2-(5-(4-氨基苯并[d] 哌啶-2-甲酰氨基)-3-甲基丁酸甲酯（中间体 2, 150mg）在 DCM（3ml）中的溶液中，并将该反应混合物搅拌 5 分钟。然后加入 4-叔丁基苯甲酰氯（0.125ml），并将该反应混合物搅拌 1h。用水稀释该反应物。有机层经 Na2SO4 干燥，并在减压下被蒸发，以得到深褐色固体。该深褐色固体通过硅胶柱层析（EtOAc: CHCl3, 2: 8）进行纯化，以得到灰白色固体。该固体在 CHCl3/Pet醚中结晶，以得到标题化合物。产率: 160mg (72%); 白色固体。 1H NMR (DMSO-d6, 300 MHz): δ 10.38 (s, 1H), 8.76 (d, 1H), 8.41 (s, 1H), 7.94 (d, 2H), 7.91 (d, 2H), 7.82 (d, 2H), 7.58 (d, 2H), 4.33 (m, 1H), 3.69 (s, 3H), 2.27 (m, 1H), 0.95 (d, 6H); MS (ES+) m/z: 449 (M+1)。

实施例 22: 2-(5-(4-(4-叔丁基苯甲酰氨基) 苯基) 哌啶-2-甲酰氨基)-3-甲基丁酸

向 2-(5-(4-叔丁基苯甲酰氨基) 苯基) 哌啶-2-甲酰氨基)-3-甲基丁酸甲酯（110mg）在 THF（2.2ml）中的溶液中加入 1M 氢氧化钠一水合物的水溶液（0.44ml），并将
该反应混合物在室温处 4 小时。该反应混合物被稀 HCl 酸化，并用 EtOAc 进行萃取。有机层被分离，经 Na2SO4 干燥，并在真空下被浓缩，以得到灰白色固体。该灰白色固体在 EtOAc 中被结晶，以得到标题化合物。产量：87mg (81%)。\(^{1}H\) NMR (DMSO-d_6, 300MHz)：δ 13.02 (s, 1H), 10.38 (s, 1H), 8.4 (s, 1H), 8.36 (d, 1H), 7.94 (d, 2H), 7.91 (d, 2H), 7.8 (d, 2H), 7.58 (d, 2H), 4.32 (m, 1H), 2.26 (m, 1H), 0.95 (d, 6H); MS (ESI+) /m/z 480 (M+1)。

[0441] 实施例 23: 2-(4-(4-(3-(2-氯苯基) 甲基)) 苯基) 嘌呤 -2- 甲酰氨基) -3- 甲基丁酰酸酯

[0442] 向 THF (2ml) 中的 2-(4-(4-(3-氨基苯基) 嘌呤 -2- 甲酰氨基)) -3- 甲基丁酰酸甲酯 (中间体 3, 170mg) 中加入异氰酸 2-氯苯酯 (94mg)，将反应混合物搅拌 16 小时。有机溶剂被浓缩以得到粘性固体，通过柱层析 (硅胶, EtOAc-石油醚) 进行纯化，以得到为固体的标题化合物。产量：190mg (76%)。\(^{1}H\) NMR (DMSO-d_6, 300MHz)：δ 9.58 (s, 1H), 8.80 (d, 1H), 8.34 (s, 1H), 8.31 (s, 1H), 8.17 (d, 1H), 8.05 (d, 2H), 7.58 (d, 2H), 7.46 (d, 1H), 7.32 (t, 1H), 7.05 (t, 1H), 4.38 (t, 1H), 3.68 (s, 3H), 2.32 (m, 1H), 0.98 (t, 6H)。

[0443] 实施例 24: 2-(4-(4-(3-(2-氯苯基) 甲基)) 苯基) 嘌呤 -2- 甲酰氨基) -3- 甲基丁酸

[0444] 向 THF (2ml) 中的 2-(4-(4-(3-(2-氯苯基) 甲基)) 苯基) 嘌呤 -2- 甲酰氨基) -3- 甲基丁酰酸甲酯 (实施例 23, 120mg) 中加入 IN 氢氧化钠 - 水合物 (1.2ml)，将反应混合物在室温处 16 小时。浓缩有机溶剂，加入水，在搅拌下加入稀 HCl 以使 pH 值呈酸性。过滤反应混合物，残余物经水洗，干燥。将残余物溶解于丙酮中，加入 Pot 醋，固体经过滤、并被干燥，以得到为固体的标题化合物。产量：70mg (60%)。\(^{1}H\) NMR (DMSO-d_6, 300MHz)：δ 12.98 (bs, 1H), 9.59 (s, 1H), 8.48 (d, 1H), 8.35 (s, 1H), 8.30 (s, 1H), 8.17 (d, 1H), 8.03 (d, 2H), 7.58 (d, 2H), 7.46 (d, 1H), 7.30 (t, 1H), 7.02 (t, 1H), 4.33 (s, 1H), 2.26 (s, 1H), 0.98 (d, 6H)。

[0445] 实施例 25: 2-(4-(4-(6-氯苯并 [d] 嘌呤 -2- 基氨基) 苯基) 嘌呤 -2- 甲酰氨基) -3- 甲基丁酰酸甲酯

[0446] 向在正丁醇 (5ml) 中的 2-(4-(4-(氨基苯基) 嘌呤 -2- 甲酰氨基)) -3- 甲基丁酰酸甲酯 (中间体 3, 300mg) 中加入 2-氯-6-氯苯并 [d] 嘌呤 (202mg)，将该反应混合物在 70°C 加热并搅拌 10 分钟。加入在二氯烷 (0.131 克) 中 4M 的 HCl，并将该反应混合物在 90°C 搅拌 16 小时。浓缩有机溶剂以得到粘性固体，该粘性固体通过柱层析 (硅胶, EtOAc-石油醚) 进行纯化以得到为固体的标题化合物。产量：130mg (29%)。\(^{1}H\) NMR (CDCl_3, 300MHz)：δ 7.97 (d, 2H), 7.83 (d, 1H), 7.67 (s, 1H), 7.64 (d, 1H), 7.38 (dd, 1H), 7.13 (td, 1H), 4.77 (q, 1H), 3.80 (s, 3H), 2.37 (m, 1H), 0.97 (dd, 6H)。

[0447] 实施例 26: 2-(4-(4-(6-氯苯并 [d] 嘌呤 -2- 基氨基) 苯基) 嘌呤 -2- 甲酰氨基) -3- 甲基丁酸

[0448] 如实施例 24 中所述的方法，从 2-(4-(4-(6-氯苯并 [d] 嘌呤 -2- 基氨基) 苯基) 嘌呤 -2- 甲酰氨基)) -3- 甲基丁酰酸甲酯制备标题化合物，并以 68% 的产率得到该标题化合物。\(^{1}H\) NMR (DMSO-d_6, 300MHz)：δ 10.71 (s, 1H), 8.42 (d, 1H), 8.29 (s, 1H), 8.06 (d, 2H), 7.89 (d, 2H), 7.75 (d, 1H), 7.60 (bs, 1H), 7.19 (t, 1H), 4.24 (s, 1H), 2.27 (s, 1H), 0.96 (d, 6H)。
实施例 27: (4-(4-(4-叔丁基苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

将吡啶 (0.22ml) 加入在 DCM (4ml) 中的 2-(4-(4-氨基苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯 (中间体 3, 300mg) 中，并将该反应混合物搅拌 5 分钟。加入 4-叔丁基苯甲酰氯 (230mg)，将反应混合物在室温搅拌 16 小时。浓缩有机溶剂以得到粘性固体。该粘性固体通过柱层析 (硅胶, EtOAc-石油醚) 进行纯化，以得到为固体的标题化合物。产量: 235mg (53%)。

1H NMR (DMSO-d6, 300MHz): δ 10.31 (s, 1H), 8.83 (d, 1H), 8.36 (s, 1H), 8.10 (d, 2H), 7.91 (dd, 4H), 7.56 (d, 2H), 4.38 (t, 1H), 3.68 (s, 3H), 2.35 (m, 1H), 1.31 (s, 9H), 0.98 (t, 6H).

实施例 28: (4-(4-(4-叔丁基苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸

如实施例 24 中所述的方法，从 2-(4-(4-叔丁基苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯制备标题化合物，并以 85% 的产率得到该标题化合物。

1H NMR (DMSO-d6, 300MHz): δ 10.31 (s, 1H), 8.53 (d, 1H), 8.35 (s, 1H), 8.08 (d, 2H), 7.91 (d, 4H), 7.55 (d, 2H), 4.35 (t, 1H), 2.31 (m, 1H), 1.31 (s, 9H), 0.98 (t, 6H).

实施例 29: 甲基-3-甲基-2-(4-(4-(3-(3-氟甲基)苯基)脲基)苯基)噻唑-2-甲酰氨基)丁酸酯

使用 1-异氰酸-4-(3-氟甲基)苯和中间体 3, 以与实施例 23 类似的方法合成标题化合物。产率: 79%。

1H NMR (DMSO-d6, 300MHz): δ 9.14 (s, 1H), 8.99 (s, 1H), 8.80 (d, 1H), 8.32 (s, 1H), 8.06 (d, 2H), 7.66 (bs, 4H), 7.61 (d, 2H), 4.37 (s, 1H), 3.70 (s, 3H), 2.32 (m, 1H), 0.97 (s, 6H).

实施例 30: 甲基-2-(4-(4-(3-(3-氟甲基)苯基)脲基)苯基)噻唑-2-甲酰氨基)丁酸

如实施例 24 中所述的方法，从 3-甲基-2-(4-(4-(3-(3-氟甲基)苯基)脲基)苯基)噻唑-2-甲酰氨基)丁酸甲酯制备标题化合物，并以 72% 的产率得到该标题化合物。

1H NMR (DMSO-d6, 300MHz): δ 13.03 (bs, 1H), 9.18 (s, 1H), 9.03 (s, 1H), 8.50 (d, 1H), 8.32 (s, 1H), 8.04 (d, 2H), 7.66 (bs, 4H), 7.61 (d, 2H), 4.35 (s, 1H), 2.30 (m, 1H), 0.99 (d, 6H).

实施例 31: 2-(4-(4-(3,3-二甲基)苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

使用 4-异氰酸-1,2-二甲基苯和中间体 3, 以与实施例 23 类似的方法合成标题化合物。产率: 75%。

1H NMR (DMSO-d6, 300MHz): δ 8.80 (s, 2H), 8.51 (s, 1H), 8.30 (s, 1H), 8.03 (d, 2H), 7.57 (d, 2H), 7.24 (s, 1H), 7.19 (d, 1H), 7.07 (d, 1H), 4.39 (t, 1H), 3.70 (s, 3H), 2.31 (m, 1H), 2.19 (s, 3H), 2.16 (s, 3H), 0.97 (t, 6H).

实施例 32: 2-(4-(4-(3,3-二甲苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸

如实施例 24 中所述的方法，从 2-(4-(4-(3,3-二甲基苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯制备标题化合物，并以 88% 的产率得到该标题化合物。

1H NMR (DMSO-d6, 300MHz): δ 13.01 (bs, 1H), 8.81 (s, 1H), 8.52 (s, 1H), 8.48 (d, 1H),
8. 28 (s, 1H), 7. 99 (d, 2H), 7. 56 (d, 2H), 7. 22 (s, 1H), 7. 17 (dd, 1H), 7. 02 (d, 1H), 4. 35 (t, 1H), 2. 32 (m, 1H), 2. 18 (s, 3H), 2. 14 (s, 3H), 0. 97 (d, 6H)。

实施例 33 : 2-(4-(4-氯-2-苯氧基苯基) 胺基) 吡唑 -2- 甲酰胺基) -3- 甲基丁酸甲酯

使用 4- 氯 -1- 异氰酸酯 -2- 苯氧基苯和中间体 3, 以与实施例 23 类似的方法合成标题化合物。产率 : 61 %; 1H NMR (DMSO-d6, 300 MHz): δ 9. 54 (s, 1H), 8. 81 (d, 1H), 8. 71 (s, 1H), 8. 41 (s, 1H), 8. 32 (s, 1H), 8. 06 (d, 2H), 7. 57 (d, 2H), 7. 44 (d, 2H), 7. 22 (t, 1H), 7. 11 (d, 2H), 7. 02 (d, 1H), 6. 86 (d, 1H), 4. 39 (t, 1H), 3. 69 (s, 3H), 2. 31 (m, 1H), 0. 99 (d, 6H)。

实施例 34 : 2-(4-(3-氯-2-苯氧基苯基) 胺基) 吡唑 -2- 甲酰胺基) -3- 甲基丁酸甲酯

使用 4- 氯 -1- 异氰酸酯 -2- 苯氧基苯和中间体 3, 以与实施例 23 类似的方法合成标题化合物。产率 : 61 %; 1H NMR (DMSO-d6, 300 MHz): δ 12. 97 (s, 1H), 9. 54 (s, 1H), 8. 71 (s, 1H), 8. 48 (d, 1H), 8. 39 (d, 1H), 8. 30 (s, 1H), 8. 02 (d, 2H), 7. 56 (d, 2H), 7. 45 (t, 2H), 7. 20 (t, 1H), 7. 09 (d, 2H), 7. 00 (dd, 1H), 6. 84 (d, 1H), 4. 34 (t, 1H), 2. 30 (m, 1H), 0. 97 (d, 6H)。

实施例 35 : 2-(4-(3-联苯基-4-基甲酰氯基苯基) 吡唑 -2- 甲酰胺基) -3- 甲基丁酸甲酯

以与实施例 24 中所述的方法, 从 2-(4-(3-氯-2-苯氧基苯基) 胺基) 吡唑 -2- 甲酰胺基) -3- 甲基丁酸甲酯制备标题化合物, 并以 93% 的产率得到该标题化合物。1H NMR (DMSO-d6, 300 MHz): δ 10. 45 (s, 1H), 8. 86 (d, 1H), 8. 39 (s, 1H), 8. 14 (m, 4H), 7. 97 (d, 2H), 7. 87 (d, 2H), 7. 79 (d, 2H), 7. 52 (t, 2H), 7. 46 (d, 1H), 4. 40 (t, 1H), 3. 70 (s, 3H), 2. 32 (m, 1H), 1. 01 (t, 6H)。

实施例 36 : 2-(4-(3-联苯基-4-基甲酰氯基苯基) 吡唑 -2- 甲酰胺基) -3- 甲基丁酸甲酯

使用联苯基 -4- 碳酰氯和中间体 3, 以与实施例 27 类似的方法合成标题化合物。产率 : 61 %; 1H NMR (DMSO-d6, 300 MHz): δ 10. 48 (s, 1H), 8. 37 (d, 1H), 8. 31 (s, 1H), 8. 10 (d, 2H), 8. 03 (d, 2H), 7. 95 (d, 2H), 7. 84 (d, 2H), 7. 76 (d, 2H), 7. 52 (t, 2H), 7. 43 (d, 1H), 3. 97 (s, 1H), 2. 20 (s, 1H), 0. 90 (d, 6H)。

实施例 37 : 3- 甲基 -2-(4-(4-戊基苯甲酰氯基苯基) 吡唑 -2- 甲酰胺基) 丁酸甲酯

以与实施例 24 中所述的方法, 从 2-(4-(4-联苯基-4-基甲酰氯基苯基) 吡唑 -2- 甲酰胺基) -3- 甲基丁酸甲酯制备标题化合物, 并以 80% 的产率得到该标题化合物。1H NMR (DMSO-d6, 300 MHz): δ 10. 32 (s, 1H), 8. 84 (d, 1H), 8. 37 (s, 1H), 8. 12 (d, 2H), 7. 91 (bs, 4H), 7. 37 (d, 2H), 4. 37 (t, 1H), 3. 70 (s, 3H), 2. 66 (s, 2H), 2. 32 (m, 1H), 1. 61 (s, 2H), 1. 29 (s, 4H), 0. 98 (t, 6H), 0. 87 (s, 3H)。

实施例 38 : 3- 甲基 -2-(4-(4-戊基苯甲酰氯基苯基) 吡唑 -2- 甲酰胺基) 丁酸甲酯

使用 4- 戊基苯甲酰氯和中间体 3, 以与实施例 27 类似的方法合成标题化合物。产率 : 66 %; 1H NMR (DMSO-d6, 300 MHz): δ 13. 00 (bs, 1H), 10. 29 (s, 1H), 8. 51 (d, 1H), 8. 35 (s, 1H),
8.07 (d, 2H), 7.89 (bs, 4H), 7.35 (d, 2H), 4.33 (s, 1H), 2.75 (s, 2H), 2.28 (d, 1H), 1.59 (s, 2H), 1.28 (s, 4H), 0.97 (d, 6H), 0.85 (s, 3H)。

0474 实施例 39:3-甲基-2-(N-甲基-5-(4-(4-叔丁基苯甲酰氨基)苯基)喹唑)-2-甲酰基)丁酸甲酯

0474 使用4-叔丁基苯甲酰氯和中间体4，以与实施例27类似的方法合成标题化合物。产率：59%；¹H NMR (DMSO-d₆, 300MHz)：δ 10.38 (s, 1H), 8.86 (d, 1H), 7.95 (m, 4H), 7.78 (d, 2H), 7.37 (d, 2H), 6.27-4.76 (d, 1H), 3.68 (s, 3H), 3.47-2.95 (s, 3H), 2.68 (t, 2H), 2.38 (m, 1H), 1.63 (m, 2H), 1.30 (m, 4H), 1.03 (m, 3H), 0.90 (dd, 6H)；MS (ESI) m/z 522.2 [M+H]⁺。

0475 实施例 40:3-甲基-2-(N-甲基-5-(4-(4-叔丁基苯甲酰氨基)苯基)喹唑)-2-甲酰氨基)丁酸甲酯

0475 以如实施例24中所述的方法，从3-甲基-2-(N-甲基-5-(4-(4-叔丁基苯甲酰氨基)苯基)喹唑)-2-甲酰氨基)丁酸甲酯制备标题化合物，并以72%的产率得到该标题化合物。¹H NMR (DMSO-d₆, 300MHz)：δ 12.99 (bs, 1H), 10.38 (s, 1H), 8.36 (s, 1H), 7.92 (m, 4H), 7.78 (d, 2H), 7.37 (d, 2H), 6.06-4.68 (d, 1H), 3.45-2.94 (s, 3H), 2.68 (t, 2H), 2.32 (m, 1H), 1.63 (t, 2H), 1.30 (bs, 4H), 1.03 (bs, 3H), 0.88 (dd, 6H)；MS (ESI) m/z 508.1 [M+H]⁺。

0477 实施例 41:2-(5-(4-联苯基-4-基甲酰氨基苯基)-N-甲基喹唑)-2-甲酰氨基)丁酸甲酯

0477 使用联苯基-4-碳酰氯和中间体4，以与实施例27类似的方法合成标题化合物。产率：20%；¹H NMR (DMSO-d₆, 300MHz)：δ 10.52 (s, 1H), 8.88 (d, 1H), 8.10 (d, 2H), 7.97 (d, 2H), 7.87 (d, 2H), 7.80 (dd, 4H), 7.54 (t, 2H), 7.46 (1H), 6.28-4.76 (d, 1H), 3.69 (s, 3H), 3.47-2.95 (s, 3H), 2.38 (m, 1H), 1.03 (m, 3H), 0.91 (m, 3H)；MS (ESI) m/z 528.2 [M+H]⁺。

0479 实施例 42:2-(5-(4-联苯基-4-基甲酰氨基苯基)-N-甲基喹唑)-2-甲酰氨基)丁酸甲酯

0479 以如实施例24中所述的方法，从2-(5-(4-联苯基-4-基甲酰氨基苯基)-N-甲基喹唑)-2-甲酰氨基)丁酸甲酯制备标题化合物，并以66%的产率得到该标题化合物。¹H NMR (DMSO-d₆, 300MHz)：δ 10.52 (s, 1H), 8.37 (s, 1H), 8.09 (d, 2H), 7.94 (s, 2H), 7.87 (d, 2H), 7.78 (bs, 4H), 7.52 (s, 2H), 7.46 (1H), 6.02-4.68 (d, 1H), 3.45-2.94 (s, 3H), 2.30 (s, 1H), 1.04 (s, 3H), 0.89 (s, 3H)；MS (ESI) m/z 514.1 [M+H]⁺, 536.1 [M+Na]⁺。

0481 实施例 43:2-(5-(4-(4-叔丁基苯甲酰氨基)苯基)-N-甲基喹唑)-2-甲酰氨基)丁酸甲酯

0481 使用4-叔丁基苯甲酰氯和中间体4，以与实施例27类似的方法合成标题化合物。产率：56%；¹H NMR (DMSO-d₆, 300MHz)：δ 10.38 (s, 1H), 8.37 (s, 1H), 8.04 (m, 4H), 7.78 (d, 2H), 7.57 (d, 2H), 6.27-4.76 (d, 1H), 3.69 (s, 3H), 3.47-2.95 (s, 3H), 2.35 (m, 1H), 1.33 (s, 9H), 1.11 (bs, 3H), 0.90 (bs, 3H)；MS (ESI) m/z 508.2 [M+H]⁺。

0483 实施例 44:2-(5-(4-(4-叔丁基苯甲酰氨基)苯基)-N-甲基喹唑)-2-甲酰氨基)丁酸甲酯

0483 以如实施例24中所述的方法，从2-(5-(4-(4-叔丁基苯甲酰氨基)苯基)-N-甲基喹唑)-2-甲酰氨基)丁酸甲酯制备标题化合物，并以85%的产率得到该标题化合物。¹H NMR (DMSO-d₆, 300MHz)：δ 12.98 (bs, 1H), 10.38 (s, 1H), 8.37 (s, 1H), 7.90 (s, 4H),
说明书

7.65 (d, 2H), 7.57 (d, 2H), 6.10-4.68 (d, 1H), 3.45-2.94 (s, 3H), 2.29 (s, 1H), 1.32 (s, 9H),
1.03 (bs, 3H), 0.89 (bs, 3H); MS (ESI) m/z 494. [M+H]^+.

[0485] 实施例 45:2-(4-(4-(2,4-二氯苯基磺酰氨基) 苯基) 噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0486] 将吡啶 (1.5ml) 加入 2-(4-(4-氯苯基氨基) 噻唑-2-甲酰氨基)-3-甲基丁酸甲酯 (中间体 3,160mg) 在 DCM (4ml) 中的溶液中，将反应混合物搅拌 5 分钟。加入 2,4-二氯苯磺酰氯 (130mg)，将反应混合物在室温搅拌 16 小时。浓缩有机溶剂，得到粘性固体。该粘性固体通过柱层析 (硅胶, EtOAc-石油醚) 进行纯化，以得到为固体的标题化合物。产率: 215mg (82%); 1H NMR (CDCl3, 300MHz): δ 7.97 (d, 1H), 7.81 (d, 2H), 7.75 (d, 1H),
7.63 (s, 1H), 7.51 (d, 1H), 7.33 (dd, 1H), 7.21 (d, 2H), 7.13 (bs, 1H), 4.73 (m, 1H), 3.78 (s, 3H), 2.32 (m, 1H), 1.04 (dd, 6H); MS (ESI) m/z 542.0 [M+H]^+.

[0487] 实施例 46;2-(4-(4-(2,4-二氯苯基磺酰氨基) 苯基) 噻唑-2-甲酰氨基)-3-甲基丁酸

[0488] 以如实施例 24 中所述的方法，从 2-(4-(4-(2,4-二氯苯基磺酰氨基) 苯基) 噻唑-2-甲酰氨基)-3-甲基丁酸甲酯制备标题化合物，并以 66%的产率得到该标题化合物。1H NMR (CDCl3, 300MHz): δ 8.00 (d, 1H), 7.80 (d, 3H), 7.74 (d, 1H), 7.63 (s, 1H), 7.49 (d, 1H), 7.33 (dd, 1H), 7.22 (d, 2H), 4.80 (m, 1H), 2.42 (m, 1H), 1.08 (dd, 6H); MS (ESI) m/z 528.0 [M+H]^+.

[0489] 实施例 47;2-(5-(4-联苯基-4-基甲酰氨基苯基) 噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0490] 使用联苯基-4-碳酰氯和中间体 2，以与实施例 27 类似的方法合成标题化合物。产率: 54%; 1H NMR (DMSO-d6, 300MHz): δ 10.50 (s, 1H), 8.75 (d, 1H), 8.41 (s, 1H), 8.10 (d, 2H),
7.97 (d, 2H), 7.87 (m, 6H), 7.54 (t, 2H), 7.45 (t, 1H), 4.36 (t, 1H), 3.68 (s, 3H), 2.31 (m, 1H), 0.97 (t, 6H); MS (ESI) m/z 514.1 [M+H]^+.

[0491] 实施例 48;2-(5-(4-联苯基-4-基甲酰氨基苯基) 噻唑-2-甲酰氨基)-3-甲基丁酸

[0492] 以如实施例 24 中所述的方法，从 2-(5-(4-联苯基-4-基甲酰氨基苯基) 噻唑-2-甲酰氨基)-3-甲基丁酸甲酯制备标题化合物，并以 82%的产率得到该标题化合物。1H NMR (DMSO-d6, 300MHz): δ 13.00 (bs, 1H), 10.50 (s, 1H), 8.40 (s, 1H), 8.39 (d, 1H),
8.10 (d, 2H), 7.97 (d, 2H), 7.87 (m, 6H), 7.54 (t, 2H), 7.45 (t, 1H), 4.34 (m, 1H), 2.32 (m, 1H),
0.97 (t, 6H); MS (ESI) m/z 500.1 [M+H]^+.

[0493] 实施例 49;2-(5-(4-(3-环己基丙酰氨基) 苯基) 噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0494] 使用 3-环己基丙酰氯和中间体 2，以与实施例 27 类似的方法合成标题化合物。产率: 49%; 1H NMR (DMSO-d6, 300MHz): δ 10.09 (s, 1H), 8.74 (d, 1H), 8.35 (s, 1H), 7.71 (s, 4H),
4.32 (t, 1H), 3.69 (s, 3H), 2.36 (t, 2H), 2.30 (m, 1H), 1.73 (m, 5H), 1.51 (q, 2H), 1.17 (m, 4H), 0.96 (t, 6H), 0.92 (m, 2H); MS (ESI) m/z 472.0 [M+H]^+.

[0495] 实施例 50;2-(5-(4-(3-环己基丙酰氨基) 苯基) 噻唑-2-甲酰氨基)-3-甲基丁酸
[0496] 以如实施例24中所述的方法，从2-(5-(4-(3-环己基丙酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯制备标题化合物，并以76％的产率得到该标题化合物。¹H NMR (DMSO-d₆, 300MHz): δ 13.01 (bs, 1H), 10.08 (s, 1H), 8.36 (d, 1H), 8.34 (s, 1H), 7.71 (s, 4H), 4.32 (m, 1H), 2.36 (t, 2H), 2.29 (m, 4H), 1.73 (m, 5H), 1.54 (q, 2H), 2.5 (m, 4H), 0.96 (t, 6H), 0.91 (m, 2H); MS (ESI) m/z 458, 0 [M+H]^⁺.

[0497] 实施例51:2-(5-(4-(2,3-二氮-1H-茚-2-甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0498] 使用2,3-二氮-1H-茚-2-碳酸酸和中间体2，以与实施例27类似的方法合成标题化合物，产率为18％;¹H NMR (DMSO-d₆, 300MHz): δ 10.28 (s, 1H), 8.75 (d, 1H), 8.37 (s, 1H), 7.75 (s, 4H), 7.25 (m, 2H), 7.16 (m, 2H), 4.35 (t, 1H), 3.68 (s, 3H), 3.43 (m, 1H), 3.19 (d, 4H), 2.28 (m, 1H), 0.96 (t, 6H); MS (ESI) m/z 487, 0 [M+H]^⁺.

[0499] 实施例52:2-(5-(4-(2,3-二氮-1H-茚-2-甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸

[0500] 以如实施例24中所述的方法，从2-(5-(4-(2,3-二氮-1H-茚-2-甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯制备标题化合物，并以74％的产率得到该标题化合物。¹H NMR (DMSO-d₆, 300MHz): δ 12.97 (bs, 1H), 10.28 (s, 1H), 8.39 (d, 2H), 7.75 (s, 4H), 7.25 (m, 2H), 7.16 (m, 2H), 4.32 (m, 1H), 3.46 (m, 1H), 3.17 (d, 4H), 2.29 (m, 1H), 0.96 (d, 6H); MS (ESI) m/z 464, 2 [M+H]^⁺.

[0501] 实施例53:2-(5-(4-(4,4-二氮环己烷基甲酸氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸

[0502] 使用4,4-二氮环己烷甲酸肽和中间体3，以与实施例27类似的方法合成标题化合物，产率为62％;¹H NMR (DMSO-d₆, 300MHz): δ 10.18 (s, 1H), 8.73 (d, 1H), 8.36 (s, 1H), 4.35 (t, 1H), 3.68 (s, 3H), 2.28 (m, 1H), 2.13 (m, 2H), 1.94 (m, 4H), 1.80 (m, 3H), 0.96 (t, 6H); MS (ESI) m/z 480 [M+H]^⁺.

[0503] 实施例54:2-(5-(4-(4,4-二氮环己烷甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸

[0504] 以如实施例24中所述的方法，从2-(5-(4-(4,4-二氮环己烷甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酰胺甲酯制备标题化合物，并以88％的产率得到该标题化合物。¹H NMR (DMSO-d₆, 300MHz): δ 12.99 (bs, 1H), 10.19 (s, 1H), 8.36 (s, 2H), 7.72 (s, 4H), 4.31 (t, 1H), 2.27 (m, 1H), 2.08 (m, 3H), 1.95 (m, 3H), 1.80 (m, 3H), 0.96 (d, 6H); MS (ESI) m/z 466 [M+H]^⁺.

[0505] 实施例55:(S)-2-(5-(4-(3,3-二氮-1H-茚-5-基)脲基)苯基)(S)-2-甲酰氨基)-3-甲基丁酸甲酯

[0506] 使用5-(2,3-二氮-1H-茚(84.87mg,0.533mmol)和中间体1,以与实施例1类似的方法合成标题化合物，产率为92％;¹H NMR (DMSO-d₆, 300MHz): δ 9.005-8.978 (d, 1H), 8.912 (s, 1H), 8.624 (s, 1H), 7.804 (s, 1H), 7.781-7.752 (d, J = 8.7Hz, 2H), 7.671-7.587 (d, J = 9Hz, 2H), 7.395 (s, 1H), 7.172-7.106 (m, 2H), 4.328-4.277 (m, 1H), 3.681 (s, 3H), 2.860-2.772 (m, 4H), 2.286-2.217 (m, 1H), 2.052-2.154 (m, 2H), 0.980-0.928 (d, J = 6.9Hz, 6H); MS (ESI) m/z 477 [M+H]^⁺, 477 [M+H]^⁺.
说明书

实施例56：(S)-2-(5-(4-(3-(2,3-二氢-1H-茚-5-基)胺基)苯基)噁唑-2-甲酰氨基)-3-甲基丁酸

实施例57：(S)-2-(5-(4-(3-(4-氯苯基)脲基)苯基)噁唑-2-甲酰氨基)-3-甲基丁酸甲酯

实施例58：(S)-2-(5-(4-(3-(4-氯苯基)脲基)苯基)噁唑-2-甲酰氨基)-3-甲基丁酸

实施例59：(S)-2-(5-(4-(3-(4-氯苯基)脲基)苯基)噁唑-2-甲酰氨基)-3-甲基丁酸甲酯

实施例60：(S)-2-(5-(4-(3-(3-氯苯基)脲基)苯基)噁唑-2-甲酰氨基)-3-甲基丁酸

实施例61：(S)-2-(5-(4-(3-(3-氯苯基)脲基)苯基)噁唑-2-甲酰氨基)-3-甲基丁酸甲酯
0.975-0.952 (d, J = 6.9 Hz, 6H); MS (ESI) m/z 455 (M-H), 457 (M+H):

[0519] 实施例 61: (S)-2-(5-(4-(3-(2-氯-4-(三氟甲基)苯基)甲基)苯基)嗪唑)-2-甲酰胺基)-3-甲基丁酸甲酯

[0520] 使用 2-(5-(4-(3-(2-氯-4-(三氟甲基)苯基)甲基)苯基)嗪唑)-2-甲酰胺基)-3-甲基丁酸甲酯，与实施例 1 类似的方法合成标题化合物。^H NMR (DMSO-d6, 300 MHz): δ 9.883 (s, 1H), 9.027-8.994 (d, 1H), 8.707 (s, 1H), 8.498-8.469 (d, J = 8.7 Hz, 1H), 7.904-7.898 (d, J = 1.8 Hz, 1H), 7.842 (s, 1H), 7.837-7.807 (d, J = 9 Hz, 2H), 7.723-7.688 (dd, J = 1.8, 9 Hz, 1H), 7.653-7.624 (d, J = 8.7 Hz, 2H), 4.332-4.287 (m, 1H), 3.682 (s, 3H), 2.228-2.219 (m, 1H), 0.982-0.960 (d, J = 6.6 Hz, 6H); MS (ESI) m/z 537 (M-H), 539 (M+H).

[0521] 实施例 62: (S)-2-(5-(4-(3-(2-氯-4-(三氟甲基)苯基)甲基)苯基)嗪唑)-2-甲酰胺基)-3-甲基丁酸甲酯

[0522] 使用 2-(5-(4-(3-(2-氯-4-(三氟甲基)苯基)甲基)苯基)嗪唑)-2-甲酰胺基)-3-甲基丁酸甲酯，与实施例 2 类似的方法合成标题化合物。^H NMR (DMSO-d6, 300 MHz): δ 12.944 (s, 1H), 9.888 (s, 1H), 8.709 (s, 1H), 8.681-8.653 (d, 1H), 8.499-8.469 (d, J = 9 Hz, 1H), 7.903-7.899 (d, J = 1.2 Hz, 1H), 7.836-7.808 (d, J = 8.4 Hz, 2H), 7.723-7.692 (d, J = 9.3 Hz, 1H), 7.653-7.624 (d, J = 8.1 Hz, 2H), 4.308-4.259 (m, 1H), 2.258-2.236 (m, 1H), 0.976-0.954 (d, J = 6.6 Hz, 6H); MS (ESI) m/z 523 (M-H), 525 (M+H).

[0523] 实施例 63: (S)-2-(5-(4-(3-(2-氯-4-(三氟甲基)苯基)甲基)苯基)嗪唑)-2-甲酰胺基)-3-甲基丁酸甲酯

[0524] 使用 4-氯-2-氯-1-异氰酰胺 (0.533 mmol) 和中间体 1、以与实施例 1 类似的方法合成标题化合物。^H NMR (DMSO-d6, 300 MHz): δ 9.356 (s, 1H), 9.017-8.990 (d, 1H), 8.733 (s, 1H), 8.208-8.149 (m, 1H), 7.826 (s, 1H), 7.809-7.780 (d, J = 8.7 Hz, 2H), 7.623-7.593 (d, J = 9 Hz, 2H), 7.514-7.470 (d, J = 2.1, 1.1 Hz, 1H), 7.270-7.241 (dd, J = 0.6, 8.7 Hz, 1H), 4.328-4.277 (m, 1H), 3.680 (s, 3H), 2.286-2.217 (m, 1H), 0.979-0.957 (d, J = 6.6 Hz, 6H); MS (ESI) m/z 487 (M-H), 489 (M+H).

[0525] 使用 2-(5-(4-(3-(2-氯-4-(三氟甲基)苯基)甲基)苯基)嗪唑)-2-甲酰胺基)-3-甲基丁酸甲酯，以与实施例 2 类似的方法合成标题化合物。^H NMR (DMSO-d6, 300 MHz): δ 12.939 (s, 1H), 9.413 (s, 1H), 8.763 (s, 1H), 8.671-8.643 (d, J = 8.4 Hz, 1H), 8.208-8.149 (t, J = 8.7, 9 Hz, 1H), 7.819 (s, 1H), 7.809-7.780 (d, J = 8.7 Hz, 2H), 7.624-7.595 (d, J = 8.7 Hz, 2H), 7.513-7.468 (dd, J = 3, 11.5 Hz, 1H), 7.267-7.237 (d, J = 9 Hz, 1H), 4.306-4.257 (m, 1H), 2.278-2.211 (m, 1H), 0.974-0.952 (d, J = 6.6 Hz, 6H); MS (ESI) m/z 473 (M-H), 475 (M+H).

[0526] 实施例 65: (S)-2-(5-(4-(3-(2-氯-1H-苯并-5-基)苯基)甲基)苯基)嗪唑)-2-甲酰胺基)-3-甲基丁酸甲酯

[0527] 使用 5-异氰酰胺-2,3-二氯-1H-苯 (0.599 mmol) 和中间体 2、以与实施例 9 类似的方法合成标题化合物。^H NMR (DMSO-d6, 300 MHz): δ ppm 8.891 (s, 1H), 8.732-8.704 (d, 1H), 8.602 (s, 1H), 8.347 (s, 1H), 7.717-7.689 (d, J = 8.4 Hz, 2H), 7.575-7.547 (d, J = 8.4 Hz,
说明书

[0528] 实例例66：(S)-2-(5-(4-(3-(2,3-二氧-1H-茚-5-基)-脲-基)) 脲基) 苯基) 嗪唑-2-甲酰胺基)-3-甲基丁酸

[0529] 使用(S)-2-(5-(4-(3-(2,3-二氧-1H-茚-5-基) 脲基) 苯基) 嗪唑-2-甲酰胺基)-3-甲基丁酸甲酯，以与实例例10类似的方法合成标题化合物。1HNMRSOESO-d₆，300MHz)：δ 12.940 (s, 1H), 8.497 (s, 1H), 8.408 (s, 1H), 8.362-8.339 (d, 2H), 7.718-7.689 (d, J = 8.7Hz, 2H), 7.577-7.549 (d, J = 8.4Hz, 2H), 7.390 (s, 1H), 7.120 (m, 2H), 4.334-4.306 (m, 4H), 2.860-2.771 (m, 4H), 2.312-2.254 (m, 1H), 2.027-1.979 (m, 2H), 0.967-0.946 (d, J = 6.3Hz, 6H); MS(EIS)m/z 477 (M⁺), 479 (M+H⁺).

[0530] 实例例67：(S)-2-(5-(4-(3-(4-氯苯基) 脲基) 苯基) 嗪唑-2-甲酰胺基)-3-甲基丁酸甲酯

[0531] 使用1-氯-4-异氰酸苯和中间体2，以与实例例9类似的方法合成标题化合物。1HNMRSOESO-d₆，300MHz)：δ 8.991 (s, 1H), 8.987 (s, 1H), 8.733-8.710 (d, 1H), 8.353 (s, 1H), 7.730-7.701 (d, J = 8.7Hz, 2H), 7.583-7.554 (d, J = 8.7Hz, 2H), 7.513-7.484 (d, J = 8.7Hz, 2H), 7.355-7.325 (d, J = 9Hz, 2H), 4.324-4.287 (t, J = 7.2, 7.8Hz, 1H), 3.681 (s, 3H), 2.342-2.242 (m, 1H), 0.965-0.923 (d, J = 6.3Hz, 6H); MS(EIS)m/z 487 (M⁺), 489 (M+H⁺).

[0532] 实例例68：(S)-2-(5-(4-(3-(4-氯苯基) 脲基) 苯基) 嗪唑-2-甲酰胺基)-3-甲基丁酸

[0533] 使用(S)-2-(5-(4-(3-(4-氯苯基) 脲基) 苯基) 嗪唑-2-甲酰胺基)-3-甲基丁酸甲酯，以与实例例10类似的方法合成标题化合物。1HNMRSOESO-d₆，300MHz)：δ 12.940 (s, 1H), 9.021 (s, 1H), 8.928 (s, 1H), 8.367-8.346 (d, 1H), 7.730-7.702 (d, J = 8.4Hz, 2H), 7.585-7.556 (d, J = 8.7Hz, 2H), 7.514-7.485 (d, J = 8.7Hz, 2H), 7.355-7.325 (d, J = 9Hz, 2H), 4.334-4.286 (d, J = 4.6Hz, 1H), 2.274-2.252 (m, 1H), 0.964-0.945 (d, J = 5.7Hz, 6H); MS(EIS)m/z 471 (M⁺), 473 (M+H⁺).

[0534] 实例例69：(S)-2-(5-(4-(3-(3-氯苯基) 脲基) 苯基) 嗪唑-2-甲酰胺基)-3-甲基丁酸甲酯

[0535] 使用1-氯-3-异氰酸苯和中间体2，以与实例例9类似的方法合成标题化合物。1HNMRSOESO-d₆，300MHz)：δ 9.337 (s, 1H), 8.741-8.713 (d, 2H), 8.362 (s, 1H), 8.203-8.144 (t, J = 8.7Hz, 1H), 7.744-7.716 (d, J = 8.4Hz, 2H), 7.581-7.552 (d, J = 8.7Hz, 2H), 7.507-7.463 (d, J = 2.7, 1.1Hz, 1H), 7.266-7.237 (d, J = 3.7Hz, 2H), 4.350-4.299 (t, J = 7.5, 7.8Hz, 1H), 3.681 (s, 3H), 2.306-2.238 (m, 1H), 0.965-0.923 (d, J = 6.3Hz, 6H); MS(EIS)m/z 485 (M⁺), 487 (M+H⁺).

[0536] 实例例70：(S)-2-(5-(4-(3-(3-氯苯基) 脲基) 苯基) 嗪唑-2-甲酰胺基)-3-甲基丁酸

[0537] 使用(S)-2-(5-(4-(3-(3-氯苯基) 脲基) 苯基) 嗪唑-2-甲酰胺基)-3-甲基丁酸甲酯，以与实例例10类似的方法合成标题化合物。1HNMRSOESO-d₆，300MHz)：δ 12.959 (s, 1H), 9.354 (s, 1H), 8.722-8.715 (d, 1H), 8.369-8.341 (m, 3H), 8.203-8.144 (d, 2H), 7.734-7.708 (d, J = 8.4Hz, 2H), 7.581-7.552 (d, J = 8.7Hz, 2H), 7.507-7.463 (d, J = 2.7, 1.1Hz, 1H), 7.266-7.237 (d, J = 3.7Hz, 2H), 4.350-4.299 (t, J = 7.5, 7.8Hz, 1H), 3.681 (s, 3H), 2.306-2.238 (m, 1H), 0.965-0.923 (d, J = 6.3Hz, 6H); MS(EIS)m/z 485 (M⁺), 487 (M+H⁺).
J = 8.7, 9 Hz, 1H), 7.457-7.716 (d, J = 8.7 Hz, 2H), 7.582-7.553 (d, J = 8.7 Hz, 2H), 7.506-7.462 (d, J = 2.1 Hz, 1H), 7.266-7.237 (d, J = 8.7 Hz, 1H), 4.333-4.285 (d, J = 2.4 Hz, 1H), 2.217-2.208 (m, 1H), 0.967-0.945 (d, J = 6.6 Hz, 6H); MS (ESI) m/z 471 (M+H), 473 (M+H)

[0538] 实施例71:(S)-2-(4-(4-(2-氯-4-(三氟甲基)苯基)脲基)苯基)嘧啶-2-甲酰氨基)-3-甲基丁酸甲酯

[0539] 使用2-氯-4-(三氟甲基)苯基等中间体2, 以与实施例9类似的方法合成标题化合物。HNMN (DMSO-d6, 300MHz): δ 9.860 (s, 1H), 8.747-8.720 (d, 2H), 8.687 (s, 1H), 8.495-8.465 (d, J = 9 Hz, 1H), 8.376 (s, 1H), 7.892 (s, 1H), 7.692-7.741 (d, J = 8.4 Hz, 2H), 7.718-7.688 (d, J = 9 Hz, 1H), 7.611-7.582 (d, J = 8.7 Hz, 2H), 4.351-4.301 (t, J = 7.5 Hz, 1H), 3.682 (s, 3H), 2.285-2.262 (m, 1H), 0.967-0.924 (t, J = 6.6 Hz, 6H); MS (ESI) m/z 555 (M+H)

[0540] 实施例72:(S)-2-(5-(4-(3-2-氯-4-(三氟甲基)苯基)脲基)苯基)嘧啶-2-甲酰氨基)-3-甲基丁酸酯

[0541] 使用(S)-2-(4-(4-(2-氯-4-(三氟甲基)苯基)脲基)苯基)嘧啶-2-甲酰氨基)-3-甲基丁酸甲酯, 以与实施例10类似的方法合成标题化合物。HNMN (DMSO-d6, 300MHz): δ 13.022 (s, 1H), 9.871 (s, 1H), 8.695 (s, 1H), 8.495-8.466 (d, J = 8.7 Hz, 1H), 8.370-8.351 (d, J = 5.7 Hz, 2H), 7.895 (s, 1H), 7.772-7.743 (d, J = 8.7 Hz, 2H), 7.721-7.687 (d, J = 10.2 Hz, 1H), 7.613-7.584 (d, J = 8.7 Hz, 2H), 4.332-4.284 (d, J = 2.1 Hz, 1H), 2.319-2.209 (m, 1H), 0.964-0.942 (t, J = 6.6 Hz, 6H); MS (ESI) m/z 539 (M+H), 541 (M+H)

[0542] 实施例73:(S)-2-(5-(4-(3-(4-氯-2-氟苯基)苯基)苯基)嘧啶-2-甲酰氨基)-3-甲基丁酸甲酯

[0543] 使用2-氯-4-(三氟甲基)苯基等中间体2, 以与实施例9类似的方法合成标题化合物。HNMN (DMSO-d6, 300MHz): δ 9.037 (s, 1H), 8.966 (s, 1H), 8.741-8.713 (d, J = 8.7 Hz, 1H), 8.359 (s, 1H), 7.736-7.708 (m, 3H), 7.590-7.561 (d, J = 8.7 Hz, 2H), 7.317-7.294 (m, 1H), 7.056-7.034 (m, 1H), 4.350-4.300 (t, J = 7.5 Hz, 1H), 3.681 (s, 3H), 2.284-2.261 (m, 1H), 0.966-0.923 (t, J = 6.3 Hz, 6H); MS (ESI) m/z 504 (M+H), 505 (M+H)

[0544] 实施例74:(S)-2-(5-(4-(3-(4-氯-2-氟苯基)苯基)苯基)嘧啶-2-甲酰氨基)-3-甲基丁酸

[0545] 使用(S)-2-(4-(4-(2-氯-4-(三氟甲基)苯基)苯基)嘧啶-2-甲酰氨基)-3-甲基丁酸甲酯, 以与实施例10类似的方法合成标题化合物。HNMN (DMSO-d6, 300MHz): δ 13.002 (s, 1H), 9.045 (s, 1H), 8.976 (s, 1H), 8.369-8.342 (m, 2H), 7.738 (m, 3H), 7.591-7.563 (d, J = 8.4 Hz, 2H), 7.347-7.296 (m, 1H), 7.050-7.028 (m, 1H), 4.335-4.287 (t, J = 2.1 Hz, 1H), 2.320-2.231 (m, 1H), 0.966-0.946 (d, J = 6 Hz, 6H); MS (ESI) m/z 489 (M+H), 491 (M+H)

[0546] 实施例75:(S)-2-(4-(4-(3-(4-氯苯基)苯基)苯基)嘧啶-2-甲酰氨基)-3-甲基丁酸甲酯
使用异氧酸 4- 氯苯酯和中间体 3, 以与实施例 23 类似的方法合成标题化合物。
\(^{1} \text{HNMR} \) (DMSO-\(d_{6} \), 300MHz): \delta 8.912(s, 1H), 8.870(s, 1H), 8.820-8.972(d, 1H), 8.318(s, 1H), 8.052-8.024(d, J = 8.4Hz, 2H), 7.590-7.561(d, J = 8.7Hz, 2H), 7.521-7.492(d, J = 8.7Hz, 2H), 7.356-7.326(d, J = 9Hz, 2H), 4.395-4.343(t, J = 7.8Hz, 1H), 3.700(s, 3H), 2.319-2.273(m, 1H), 1.000-0.953(t, J = 6.9, 7.2Hz, 6H); MS (ESI) m/z 485 (M+H), 487 (M+H).

实施例 76: (S)-2-(4-(4-(3-(4-氯苯基) 膦基) 苯基) 硝唑-2-甲酰氯基)-3-甲基丁酸

使用 (S)-2-(4-(4-(3-(4-氯苯基) 膦基) 苯基) 硝唑-2-甲酰氨基)-3-甲基丁酸甲酯，以与实施例 24 类似的方法合成标题化合物。 \(^{1} \text{HNMR} \) (DMSO-\(d_{6} \), 300MHz): \delta 12.990(s, 1H), 9.039(s, 1H), 9.008(s, 1H), 8.512-8.483(d, J = 8.7Hz, 1H), 8.313(s, 1H), 8.031-8.002(d, J = 8.7Hz, 2H), 7.588-7.559(d, J = 8.7Hz, 2H), 7.519-7.489(d, J = 9Hz, 2H), 7.351-7.321(d, J = 9Hz, 2H), 4.373-4.323(dd, J = 2.4, 6.3Hz, 1H), 2.325-2.258(m, 1H), 0.994-0.971(d, J = 6.9, 7.2Hz, 6H); MS (ESI) 471 (M+H), 473 (M+H).

实施例 77: (S)-2-(4-(4-(3, 2-二氯-1H-茚-5-基) 膦基) 苯基) 硝唑-2-甲酰氨基)-3-甲基丁酸

使用 2.3-二氯-5-异氧酸-1H-茚和中间体 3, 以与实施例 23 类似的方法合成标题化合物。 \(^{1} \text{HNMR} \) (DMSO-\(d_{6} \), 300MHz): \delta 8.817-8.795(d, 2H), 8.578(s, 1H), 8.306(s, 1H), 8.040-8.011(d, J = 8.7Hz, 2H), 7.582-7.553(d, J = 8.7Hz, 2H), 7.401(s, 1H), 7.170-7.104(m, 2H), 4.394-4.342(t, J = 7.5, 8.1Hz, 1H), 3.700(s, 3H), 2.863-2.773(m, 4H), 2.343-2.274(m, 1H), 2.087-1.981(m, 2H), 1.001-0.953(t, J = 7.2Hz, 6H); MS (ESI) m/z 491 (M+H), 493 (M+H).

实施例 78: (S)-2-(4-(4-(3, 2-二氯-1H-茚-5-基) 膦基) 苯基) 硝唑-2-甲酰氨基)-3-甲基丁酸

使用 (S)-2-(4-(4-(3, 2-二氯-1H-茚-5-基) 膦基) 苯基) 硝唑-2-甲酰氨基)-3-甲基丁酸甲酯，以与实施例 24 类似的方法合成标题化合物。 \(^{1} \text{HNMR} \) (DMSO-\(d_{6} \), 300MHz): \delta 13.029(s, 1H), 8.834(s, 1H), 8.592(s, 1H), 8.508-8.480(d, J = 8.4Hz, 1H), 8.304(s, 1H), 8.021-7.992(d, J = 8.7Hz, 2H), 7.581-7.552(d, J = 8.7Hz, 2H), 7.397(s, 1H), 7.142-7.102(m, 2H), 4.374-4.324(dd, J = 2.1, 6.3Hz, 1H), 2.862-2.771(m, 4H), 2.326-2.259(m, 1H), 2.053-1.979(m, 2H), 0.995-0.973(t, J = 6.6Hz, 6H); MS (ESI) m/z 477 (M+H), 479 (M+H).

实施例 79: (S)-2-(4-(4-(3-(3-氯苯基) 膦基) 苯基) 硝唑-2-甲酰氨基)-3-甲基丁酸

使用异氧酸 3-氯苯酯和中间体 3, 以与实施例 23 类似的方法合成标题化合物。 \(^{1} \text{HNMR} \) (DMSO-\(d_{6} \), 300MHz): \delta 8.959(s, 1H), 8.940(s, 1H), 8.826-8.798(d, J = 8.4Hz, 1H), 8.325(s, 1H), 8.058-8.030(d, J = 8.4Hz, 2H), 7.734(s, 1H), 7.596-7.567(d, J = 8.7Hz, 2H), 7.318-7.294(m, 2H), 7.046-7.023(m, 1H), 4.395-4.343(t, J = 7.8Hz, 1H), 3.700(s, 3H), 2.320-2.274(m, 1H), 1.001-0.953(t, J = 6.9, 7.5Hz, 6H); MS (ESI) m/z 485 (M+H), 487 (M+H).
实施例80：(S)-2-(4-(4-(3-(3-三氯苯基)脲基)苯基)噻唑-2-甲酰氨基)苯基)甲基丁酸

使用(S)-2-(4-(3-氯苯基)脲基)苯基)噻唑-2-甲酰氨基)苯基)甲基丁酸甲酯，以及与实施例24类似的方法合成标题化合物。1H NMR (DMSO-d6, 300 MHz): δ 11.177 (s, 2H), 10.303 (s, 2H), 7.990-7.963 (d, J = 8.7 Hz, 2H), 7.186 (s, 1H), 7.747-7.719 (d, J = 8.4 Hz, 2H), 7.443-7.416 (d, J = 8.1 Hz, 1H), 7.310-7.256 (m, J = 8.1 Hz, 1H), 6.987-6.691 (d, J = 7.8 Hz, 1H), 4.309-4.264 (dd, J = 3.3, 5.1 Hz, 1H), 2.305-2.242 (m, 1H), 0.999-0.979 (d, J = 6Hz, 6H) m/z 471(M-H), 473(M+H)+.

实施例81：(S)-2-(4-(3-(2-氯-4-(三氟甲基)苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸

使用2-氯-4-(三氟甲基)-1-异氰酸苯和中间体3，以及与实施例23类似的方法合成标题化合物。1H NMR (DMSO-d6, 300 MHz): δ 9.801 (s, 1H), 8.832-8.804 (d, J = 8.4 Hz, 1H), 8.680 (s, 1H), 8.515-8.486 (d, J = 8.7 Hz, 1H), 8.348 (s, 1H), 8.095-8.067 (d, J = 8.4 Hz, 2H), 7.897-7.893 (d, J = 1.2 Hz, 2H), 7.721-7.686 (dd, J = 1.8, 9 Hz, 1H), 7.621-7.593 (d, J = 8.4 Hz, 2H), 4.410-4.344 (t, J = 8.1 Hz, 1H), 3.702 (s, 3H), 2.351-2.280 (m, 1H), 1.003-0.955 (t, J = 7.2 Hz, 6H) m/z 553(M-H), 555(M+H)+.

实施例82：(S)-2-(4-(3-(3-氯苯基)苯基)甲基)乙基)噻唑-2-甲酰氨基)-3-甲基丁酸

使用(S)-2-(4-(3-(2-氯-4-(三氟甲基)苯基)脲基)苯基)甲基丁酸甲酯，以及与实施例24类似的方法合成标题化合物。1H NMR (DMSO-d6, 300 MHz): δ 13.049 (s, 1H), 9.196 (s, 1H), 8.729 (s, 1H), 8.582-8.480 (dd, J = 2.7, 8.7 Hz, 2H), 8.344 (s, 1H), 8.074-8.045 (d, J = 8.7 Hz, 2H), 7.890-7.885 (d, J = 1.5 Hz, 1H), 7.715-7.681 (dd, J = 1.5, 9 Hz, 1H), 7.626-7.597 (d, J = 8.7 Hz, 2H), 4.378-4.329 (dd, J = 2.1, 6.3 Hz, 1H), 2.326-2.260 (m, 1H), 0.996-0.973 (t, J = 6.9 Hz, 6H) m/z 539(M-H), 541(M+H)+.

实施例83：(S)-2-(4-(3-(4-氯-2-氟苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸

使用4-氯-2-氟-1-异氰酸苯和中间体3，以及与实施例23类似的方法合成标题化合物。1H NMR (DMSO-d6, 300 MHz): δ 9.281 (s, 1H), 8.824-8.796 (d, J = 8.4 Hz, 1H), 8.703 (s, 1H), 8.330 (s, 1H), 8.227-8.168 (t, J = 8.7 Hz, 1H), 8.069-8.040 (d, J = 8.7 Hz, 2H), 7.589-7.560 (s, J = 8.7 Hz, 2H), 7.508-7.463 (d, J = 2.1, 11 Hz, 1H), 7.268-7.238 (d, J = 9 Hz, 1H), 4.395-4.343 (s, J = 7.8 Hz, 1H), 3.700 (s, 3H), 2.341-2.273 (m, 1H), 1.000-0.953 (t, J = 6.9 Hz, 6H) m/z 503(M-H), 505(M+H)+.

实施例84：(S)-2-(4-(3-(4-氯-2-氟苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸

使用(S)-2-(4-(3-(4-氯-2-氟苯基)脲基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯，以及与实施例24类似的方法合成标题化合物。1H NMR (DMSO-d6, 300 MHz): δ 13.009 (s, 1H), 9.351 (s, 1H), 8.733 (s, 1H), 8.511-8.482 (d, J = 8.7 Hz, 1H), 8.325 (s, 1H), 8.222-8.163 (t, J = 8.7 Hz, 1H), 8.048-8.019 (d, J = 8.7 Hz, 2H), 7.589-7.560 (d,
J = 8.7Hz, 2H), 7.501-7.457(dd, J = 2.1, 11.1Hz, 1H), 7.263-7.223(d, J = 9Hz, 1H),
4.374-4.325(dd, J = 2.1, 6.3Hz, 1H), 2.324-2.258(m, 1H), 0.994-0.971(t, J = 6.9Hz, 6H); MS(ESI)m/z 489(M-H), 491(M+H)^+。

[0566] 实施例85:2-(5-(4-(4-(2-氧基丙烷-2-基)苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0567] 将三甲基铝(0.36m1,在甲苯中的2M溶液)加入4-(2-氧基丙烷-2-基)苯甲酸甲酯(中间体5,100mg)和2-(5-(4-(氨基苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯(中间体2,150mg)在甲苯(12ml)中的溶液中。在密闭试管中将该反应混合物加热至80℃,且维持4小时。使反应物冷却至室温,加入水,并用饱和的氢氧化钠溶液中和。向反应物中加二氯甲烷。分离有机层和水层。有机层经1N的HCl,饱和的NaHCO₃和盐水溶液进行连续洗涤,然后经硫酸钠干燥,并被浓缩,以得到深褐色残余物。该深褐色残余物通过在EtOAc-石油醚中硅胶柱层析进行纯化,以得到淡褐色固体。该淡褐色固体在CHCl₃-石油醚中被结晶,以得到为灰白色固体的标题化合物。产率:75mg(33%)。^1H NMR(DMSO-d₆,300MHz): δ 10.49(s, 1H), 8.75(d, 1H), 8.41(s, 1H), 8.04(d, 2H), 7.93(d, 2H), 7.81(d, 2H), 7.71(d, 2H), 4.33(m, 3H), 3.68(s, 3H), 2.27(m, 6H), 0.95(m, 3H); MS(ESI+m/z 505.2(M+H)。)

[0568] 实施例86:2-(5-(4-(4-(2-氧基丙烷-2-基)苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸

[0569] 向在THF(1ml)中的2-(5-(4-(4-(2-氧基丙烷-2-基)苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯(实施例85,65mg)中加入甲醇(1ml)和1M氢氧化锂一水合物(0.51ml),并将该反应混合物在室温搅拌过夜。浓缩有机溶剂,并加入水,在搅拌下加入稀HCl至pH值呈酸性。过滤反应混合物,以得到标题化合物。产率:22mg(35%)。

^1H NMR(DMSO-d₆,300MHz): δ 10.13(s, 1H), 10.49(s, 1H), 8.79(d, 1H), 8.43(d, 2H), 8.27(d, 2H), 7.93(d, 2H), 7.81(d, 2H), 7.71(d, 2H), 4.31(m, 3H), 2.25(m, 3H), 0.97(m, 3H); MS(ESI+m/z 491.2(M+H)。)

[0570] 实施例87:2-(5-(4-(4-(3-氧基戊烷-3-基)苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0571] 使用2-(5-(4-(3-氧基戊烷-3-基)苯甲酸甲酯(中间体6)和中间体2,以与实施例85类似的方法合成标题化合物。^1H NMR(DMSO-d₆,300MHz): δ 10.52(s, 1H), 8.79(d, 1H), 8.41(s, 1H), 8.03(d, 2H), 7.93(d, 2H), 7.81(d, 2H), 7.62(d, 2H), 4.33(m, 3H), 3.68(s, 3H), 2.26(m, 1H), 2.1-2.02(m, 4H), 0.95(t, 6H), 0.81(t, 6H); MS(ESI+m/z 533.2(M+1)。)

[0572] 实施例88:2-(5-(4-(4-(3-氧基戊烷-3-基)苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸

[0573] 使用2-(5-(4-(3-氧基戊烷-3-基)苯甲酰氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯,以与实施例86类似的方法合成标题化合物。^1H NMR(DMSO-d₆,300MHz): δ 10.02(s, 1H), 8.43(s, 1H), 8.03(d, 2H), 7.93(d, 2H), 7.81(d, 2H), 7.62(d, 2H), 4.29(m, 1H), 2.25(m, 1H), 2.12-1.99(m, 4H), 0.96(d, 6H), 0.81(t, 6H); MS(ESI+m/z 519.2(M+1)。)

[0574] 实施例89:2-(5-(4-(苄基氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯

[0575] 向2-(5-(4-(苄基氨基)苯基)噻唑-2-甲酰氨基)-3-甲基丁酸甲酯(中间体2,200mg)
在 DCM (6ml) 中的溶液中加入三乙胺 (0.417ml, 5.0当量 (equiv.)) 和苄基溴 (308mg, 3.0当量), 并将该反应混合物在室温搅拌 2 天。蒸发溶剂, 残余物使用在氯仿中的 1%乙酸乙酯通过柱层析进行纯化, 以得到标题化合物。产量:50mg (20%)。\(^1\)H NMR (CDCl\(_3\); 300MHz):\(^5\) 7.87 (s, 1H), 7.66 (d, 1H), 7.44 (d, 2H), 7.38 (m, 5H), 7.32 (m, 1H), 6.68 (d, 2H), 4.74 (m, 1H), 4.40 (s, 2H), 3.79 (m, 3H), 2.34 (m, 1H), 1.05 (t, 6H); MS (ESI) m/z 424.2 [M+H]^+; 446.1 [M+Na]^+.

[0576] 实施例 90:2-(5-(4-(4-氟苯基)氨基)苯基)噻唑-2-甲酰胺) -3-甲基丁酸甲酯

[0577] 向 2-(5-(4-(氨基苯基)噻唑-2-甲酰胺) -3-甲基丁酸甲酯 (中间体 2, 250mg) 在丙酮 (8ml) 中的溶液中加入碳酸钾 (155mg, 1.5当量) 和 1-(溴代甲基)-4-氟苯 (0.112ml, 1.2当量)。将该反应混合物在 60℃-65℃搅拌 8小时。在反应结束后加入水, 并用乙酸乙酯萃取反应混合物。有机层经水洗涤, 并被浓缩。化合物使用在石油醚中的 10-15%乙酸乙酯通过柱层析进行纯化, 以得到标题化合物。产量:130mg (39%)。\(^1\)H NMR (CDCl\(_3\); 300MHz):\(^5\) 7.87 (s, 1H), 7.66 (d, 1H), 7.44 (d, 2H), 7.37 (m, 2H), 7.08 (t, 2H), 6.68 (d, 2H), 4.74 (m, 1H), 4.37 (s, 2H), 3.79 (m, 3H), 2.37 (m, 1H), 1.05 (t, 6H); MS (ESI) m/z 442.1 [M+H]^+; 464.1 [M+Na]^+.

[0578] 实施例 91:2-(5-(4-(4-氟苯基)氨基)苯基)噻唑-2-甲酰胺) -3-甲基丁酸

[0579] 使用 2-(5-(4-(4-氟苯基)氨基)苯基)噻唑-2-甲酰胺) -3-甲基丁酸甲酯, 以与实施例 86 类似的方法合成标题化合物。\(^1\)H NMR (CDCl\(_3\); 300MHz):\(^5\) 7.89 (s, 1H), 7.68 (d, 1H), 7.44 (d, 2H), 7.37 (m, 2H), 7.08 (t, 2H), 6.68 (d, 2H), 4.77 (m, 1H), 4.37 (s, 2H), 2.42 (m, 1H), 1.01 (t, 6H); MS (ESI) m/z 428.1 [M+H]^+; 450.1 [M+Na]^+。

[0580] 实施例 92:2-(5-(4-(二苯基氨基)苯基)噻唑-2-甲酰胺) -3-甲基丁酸甲酯

[0581] 除了使用碱是碳酸钾替代三乙胺，使用的溶剂是丙酮替代 DCM，使用的苄基溴是 1.2当量之外, 以与实施例 89 类似的方法合成标题化合物。\(^1\)H NMR (DMSO-d\(_6\); 300MHz):\(^5\) 8.60 (b, 1H), 8.16 (d, 1H), 7.50 (d, 2H), 7.37 (m, 4H), 7.28 (m, 6H), 6.75 (d, 2H), 4.78 (s, 4H), 4.33 (t, 1H), 3.66 (s, 3H), 2.31 (m, 1H), 0.94 (m, 6H); MS (ESI) m/z 514.2 [M+H]^+; 536.2 [M+Na]^+。

[0582] 实施例 93:2-(5-(4-(二苯基氨基)苯基)噻唑-2-甲酰胺) -3-甲基丁酸

[0583] 使用 2-(5-(4-(二苯基氨基)苯基)噻唑-2-甲酰胺) -3-甲基丁酸甲酯, 以与实施例 86 类似的方法合成标题化合物。\(^1\)H NMR (DMSO-d\(_6\); 300MHz):\(^5\) 8.23 (m, 2H), 7.15 (d, 2H), 7.37 (m, 4H), 7.28 (m, 6H), 6.75 (d, 2H), 4.79 (s, 4H), 4.29 (m, 1H), 2.25 (m, 1H), 0.94 (m, 6H); MS (ESI) m/z 500.2 [M+H]^+。

[0584] 实施例 94:2-(5-(4-(5-丁基吡啶酸氨基)苯基)噻唑-2-甲酰胺) -3-甲基丁酸甲酯

[0585] 将 5-丁基吡啶酸胺 (1mL) 在亚硫酰氯 (24当量) 中的溶液在 60℃-70℃加热 1小时, 以形成 5-丁基吡啶甲酰氯。去除多余的亚硫酰氯。将在 DCM (5mL) 中的 2-(5-(4-氨基苯基)噻唑-2-甲酰胺) -3-甲基丁酸甲酯 (中间体 2, 200mg) 和吡啶 (5mL) 加入 5-丁基吡啶甲酰氯中, 并将该反应混合物在室温搅拌 1小时。去除溶剂, 向其中加入乙醚。溶液经
搅拌、过滤、经水洗涤，且被干燥，以得到标题化合物。¹H NMR (DMSO-d₆; 300MHz) : δ 10.81 (s, 1H), 8.57 (d, 1H), 8.60 (s, 1H), 8.41 (s, 1H), 8.12 (m, 3H), 7.92 (d, 1H), 7.81 (d, 2H), 4.35 (t, 1H), 3.68 (s, 3H), 2.75 (t, 2H), 2.28 (m, 1H), 1.64 (m, 2H), 1.37 (m, 2H), 0.97 (m, 9H); MS (ESI) m/z 495.2 [M+H]⁺.

[0586] 实施例 95:2-(5-(4-(5-丁基吡啶酰氨基) 苯基) 嘧啶-2-甲酰氨基)-3-甲基丁酸

[0587] 使用 2-(5-(4-(5-丁基吡啶酰氨基) 苯基) 嘧啶-2-甲酰氨基)-3-甲基丁酸甲酯，以与实施例 86 类似的方法合成标题化合物。¹H NMR (DMSO-d₆; 300MHz) : δ 12.96 (bs, 1H), 10.81 (s, 1H), 8.59 (s, 1H), 8.40 (d, 2H), 8.07 (m, 3H), 7.92 (d, 1H), 7.80 (d, 2H), 4.30 (t, 1H), 2.73 (m, 2H), 2.27 (m, 1H), 1.61 (m, 2H), 1.33 (m, 2H), 0.94 (m, 9H); MS (ESI) m/z 481.2 [M+H]⁺.

[0588] 药理学数据

[0589] 通过本领域众所周知的许多药理学测试（诸如下述的测试），可以测定本发明的化合物的效力。已经用本发明的化合物进行了在下文中例证的药理学测试。

[0590] 材料：

[0591] 组织培养材料，(Nunc 公司)

[0592] 组织培养基，(Invitrogen (英俊公司)，US(美国))

[0593] 胎牛血清 (FBS)，(Hyclone 公司，US)

[0594] 牛血清白蛋白 (BSA)，(Sigma (西格玛奥德里奇公司)，US)

[0595] sn-1,2-二油酸基甘油 (Sigma 公司，US)

[0596] 蔗糖 (Sigma 公司，US)

[0597] 2-丙醇 (Qualigens 公司，IN(印度))

[0598] 庆烷 (Qualigens 公司，IN)

[0599] ¹⁴C 油酰基辅酶 A(CoA) (GE Healthcare (通用电气医疗集团))

[0600] 从美国典型培养物保藏中心 (ATCC) 得到 Sf9 细胞

[0601] Bradford 试剂 (Sigma 公司，US)

[0602] Cellfectin(Invitrogen, US)

[0603] 生长培养基: 含有 10% FBS (Hyclone, US) 的格拉斯 (Grace) 氏昆虫培养基

[0604] 缩写：

FBS 胎牛血清

ORF 开放读码框

DAB DGAT 测试缓冲液

AESSM 碱性乙醇终止溶液混合物

[0606]
KH₂PO₄ 磷酸二氢钾
EDTA 乙二胺四乙酸
LB Luria Bertani（贝尔塔尼）
BSA 牛血清白蛋白
PPO 2,5-二苯基噁唑
POPOP 1,4-双(5-苯基噁唑-2-基)苯
EDTA 乙二胺四乙酸

[0607] 实施例 96 :DGAT-1 测试的体外方案

[0608] SF9 的培养和处理

[0609] 在 27℃培养箱中，将 SF9 细胞培养在 T25 培养瓶中，其中所述 T25 培养瓶中含有含 10% 的 FBS (HyClone, US) 且添加了抗生素（100 单位 /ml 青霉素、100μg/ml 硫酸链霉素、0.25μg/ml 作为两性霉素的两性霉素 B）的 Grace 氏昆虫培养基（Invitrogen, US）。

[0610] 病毒原液的制备

[0611] 从德国基因组研究资源中心 (RZPD) 得到 hdGAT-10RF 的表达克隆（在 pDEST 载体中的 RZPDo839C09146）。通过将 hdGAT 表达克隆转化进 DH10Bac 大肠杆菌 (E. coli) 感受态细胞中，以得到 hdGAT-1 杆菌 DNA。使用 Cellfectin (Invitrogen, US) 试剂，将大约 1μg 的 hdGAT-1 杆菌 DNA 转染进 SF9 细胞中。在转染后 5 分钟，在 27℃培养 30 分钟。在转染后 5 分钟，培养基被含有抗生素（100 单位 /ml 青霉素、100μg/ml 硫酸链霉素、0.25μg/ml 作为两性霉素的两性霉素 B）的生长培养基替换，并 SF9 细胞在 27℃培养 2 小时。含有病毒的上清液在 1500g 离心 5 分钟，然后通过 0.22μm 的过滤器，然后被保存在 4℃。通过重复转染 SF9 细胞，病毒又进一步繁殖了 3 次，并通过细胞测试来确定病毒滴度。

[0612] 从 SF9 细胞制备 DGAT-1 微粒体

[0613] 在第 0 天，以 1×10⁶ 的细胞密度将 SF9 细胞接种在悬浮培养瓶 (spinner flask) 中；并在第 1 天，用 hdGAT-1 杆菌病毒以感染因子 (MOI)5 感染 SF9 细胞，且细胞密度为 2×10⁶。在第 3 天（或 66-72 小时）收集细胞，收集的细胞在 2500g 离心 10 分钟。沉淀物被重新悬浮于裂解缓冲液（100mM 蔗糖，50mM KCl, 40mM KH₂PO₄, 30mM EDTA, pH 7.2）中，并通过 21-标准规格的注射针大约 10 次。该混合物在 Sigma 公司的 12158-H 转子中，在 4℃，以 12,000rpm 离心 30 分钟。上清液在 Beckman（贝克曼公司）的 Ti-45 转子中，在 4℃，以 35,000rpm 离心 1 小时。得到的含有微粒体的沉淀物被重新悬浮于 1ml 裂解缓冲液中过夜。使用 Bradford 试剂 (Sigma, US) 估计总蛋白浓度。将微粒体等分，并保存在 -80℃。

[0614] DGAT-1 活性的测量

[0615] 在冰上融化含有微粒体的 hdGAT-1 的冷冻等分样品 (5-10mg/ml 总蛋白)。然后用 DGAT 测试缓冲液 (DAB) 将样品稀释成 1mg/ml 工作储备液。按照在美国专利号 6,607,893 中描述的步骤（经过下述的一些改进）, 进行 DGAT 反应测试。

[0616] DGAT-1 底物混合液的制备：1mL 的 DGAT-1 底物混合物的储备溶液含有 5.6μL¹⁴C 油酰基 CoA (16.8nCi) 和 105μL 1,2-二油酰基-sn- 甘油 (1228.5μM)。
【0617】储备溶液的制备：通过将25mg 1,2-二油酰基-sn-甘油(Sigma, US)溶解在2060μL丙酮中，以制备1,2-二油酰基-sn-甘油储存液(19.5mM)。

【0618】在100μL的反应体积中，一式两份地进行该测试。反应体积由下述物质组成：

【0619】(i)27.5μL DGAT测试缓冲液(0.25M蔗糖,1mMEDTA (pH 8.0),150mMTris-HCl, pH 7.4,1.25mg/mL无脂肪酸的BSA),
(ii)10μL本发明的化合物或标准化合物（溶解在DMSO中，并用DAB稀释至10X，在10μM、5μM和1μM进行筛选）,
(iii)取自1mL储存液(16.8nCi的14C油酰基CoA和1228.5μM的1,2-二油酰基-sn-甘油)的60μL DGAT-1底物混合物，
(iv)2.5的1mg/mL微粒体（测试缓冲液的量随微粒体浓度而发生变化，以将体积补足至100μL）。

【0620】步骤：

【0621】按如下步骤起始反应：将2.5的1mg/mL微粒体(iv)加入混合物中，并在37°C孵育10分钟。按如下步骤终止该反应：加入300μL碱性乙醇终止溶液混合物(AESSM; 12.5%的100%未变性的乙醇,10%去离子水,2.5%的1N NaOH,75%终止溶液(78.4%异丙醇、19.6%正庚烷,2%去离子水))，随后加入600μL正庚烷。涡旋混合物，使形成的甘油三酯被萃取进入有机庚烷相中。250μL庚烷相被加入4mL闪烁鸡尾酒溶液(66.72%甲苯、33.3% TritonX-100,0.5% PPO,0.02% POPP)中，并在液体闪烁计数器上计数1分钟。

【0622】在下表中显示了本发明的代表性实施例在1μM时对hDGAT-1的%抑制。
<table>
<thead>
<tr>
<th>实施例编号</th>
<th>在 1μM 时对 hDGAT-1 的%抑制</th>
<th>实施例编号</th>
<th>在 1μM 时对 hDGAT-1 的%抑制</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>++</td>
<td>22</td>
<td>++</td>
</tr>
<tr>
<td>4</td>
<td>++</td>
<td>24</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>++</td>
<td>26</td>
<td>+</td>
</tr>
<tr>
<td>8</td>
<td>++</td>
<td>28</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>++</td>
<td>30</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>++</td>
<td>32</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>++</td>
<td>34</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>++</td>
<td>36</td>
<td>+</td>
</tr>
<tr>
<td>18</td>
<td>++</td>
<td>38</td>
<td>+</td>
</tr>
<tr>
<td>20</td>
<td>++</td>
<td>40</td>
<td>++</td>
</tr>
<tr>
<td>42</td>
<td>++</td>
<td>44</td>
<td>++</td>
</tr>
<tr>
<td>46</td>
<td>+</td>
<td>48</td>
<td>++</td>
</tr>
<tr>
<td>50</td>
<td>++</td>
<td>52</td>
<td>++</td>
</tr>
<tr>
<td>54</td>
<td>++</td>
<td>56</td>
<td>++</td>
</tr>
<tr>
<td>58</td>
<td>++</td>
<td>62</td>
<td>++</td>
</tr>
<tr>
<td>64</td>
<td>++</td>
<td>68</td>
<td>++</td>
</tr>
<tr>
<td>70</td>
<td>++</td>
<td>72</td>
<td>++</td>
</tr>
<tr>
<td>74</td>
<td>++</td>
<td>86</td>
<td>++</td>
</tr>
<tr>
<td>88</td>
<td>++</td>
<td>91</td>
<td>+</td>
</tr>
<tr>
<td>93</td>
<td>+</td>
<td>95</td>
<td>++</td>
</tr>
</tbody>
</table>

[0627] 抑制范围（以 μM 为单位）

[0628] + > 0% 抑制 ≤ 50

[0629] ++ > 50% 抑制 ≤ 100

[0630] 体内方案

根据印度泰米尔纳德邦（Tamil Nadu）的 CPCSEA（动物实验控制和监督委员会）公布且生效的指导准则来饲养和照料动物。使用实验动物的步骤已得到印度孟买的皮拉马
尔生命科学有限公司（Piramal Life Sciences Limited）研究中心的 IAEC（机构动物伦理
委员会）的批准。

[0632] 实施例 97：用于筛选小鼠中脂肪耐量实验（fTT）中的化合物的研究方案

[0633] 选择 4-5 周龄、且体重在 25-30g 之间的瑞士白变种小鼠（Swiss mice）用于进行
研究。过夜禁食以后，基于血浆甘油三酯水平（具有相同的均值和变化），将动物分成 3 组。
向动物施用媒介物（在 0.5%羧甲基纤维素中的 1%吐温 80）或本发明的化合物（3mg/kg，
p.o.（口服））。本发明的化合物被制备成在具有 1% 吐温 80 的 0.5%羧甲基纤维素 (CMC)
中的悬浮液。在治疗后 30 分钟，给予橄榄油载量（10ml/kg, p.o.）。在给予脂肪（橄榄油）载量以后的 1h、2h、3h 和 4h 时，收集血液样品。分离血浆，并使用可商业得到的试剂盒
（Diasys（德赛公司），德国）测定甘油三酯水平。通过将媒介物组的曲线面积（AUC）0-4h
作为 100%，计算出实验化合物曲线下面积（AUC_{0-4h}）的下降百分比。
[0635] %下降（血浆甘油三酯）的评分细节

<table>
<thead>
<tr>
<th>实施例编号</th>
<th>%下降（血浆甘油三酯）</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>+</td>
</tr>
<tr>
<td>10</td>
<td>++</td>
</tr>
<tr>
<td>12</td>
<td>++</td>
</tr>
<tr>
<td>14</td>
<td>++</td>
</tr>
<tr>
<td>16</td>
<td>++</td>
</tr>
<tr>
<td>18</td>
<td>++</td>
</tr>
<tr>
<td>20</td>
<td>++</td>
</tr>
<tr>
<td>22</td>
<td>++</td>
</tr>
</tbody>
</table>

[0636] + > 0%下降 ≤ 50

[0637] ++ > 50%下降 ≤ 100

[0638] 体内方案的参考文献

[0642] 应当指出，在本说明书和所附权利要求书中使用的单数形式“一 (a/an)”和“所述 (the)”包括复数所指，除非所述内容另外明确指出。因而，例如，提及的含有“一种化合物”的组合物包括两种或两种以上化合物的混合物。还应当指出，术语“或”通常以包括“和 / 或”的含义使用，除非所述内容另外明确指出。

[0643] 在本说明书中的所有出版物和专利申请指示本发明所属领域的普通技术水平。

[0644] 已经参照不同的具体且优选的实施方式和技术描述了本发明。但是，应当理解，可以在保持在本发明的精神和范围内的同时进行各种变化和更改。