

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2015/105375 A1

(43) International Publication Date

16 July 2015 (16.07.2015)

WIPO | PCT

(51) International Patent Classification: H04N 21/236 (2011.01) H04N 21/238 (2011.01)

(74) Agents: LEE, Keon-Joo et al.; Mihwa Bldg., 16 Daehak-ro 9-gil, Chongro-gu, Seoul 110-524 (KR).

(21) International Application Number: PCT/KR2015/000237

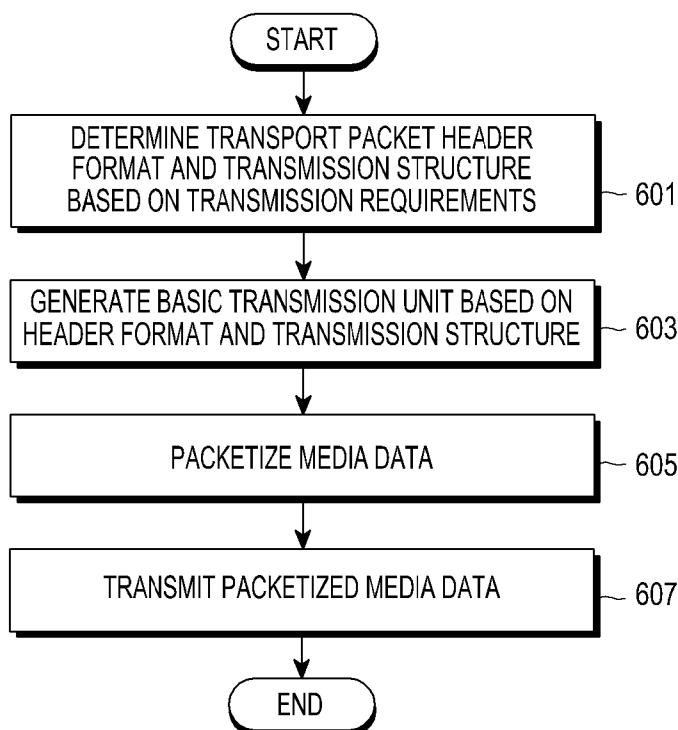
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(22) International Filing Date: 9 January 2015 (09.01.2015)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 10-2014-0003093 9 January 2014 (09.01.2014) KR


(71) Applicant: SAMSUNG ELECTRONICS CO., LTD. [KR/KR]; 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (KR).

(72) Inventors: PARK, Kyung-Mo; #23-1301, Eunma APT., 212, Samseong-ro, Gangnam-gu, Seoul 135-778 (KR). PU, Hyeon-Cheol; #346-1003, Sibeam Daeunmaeul World Meridian Bando Yubora APT., 189, Dongtanjungang-ro, Hwaseong-si, Gyeonggi-do 445-736 (KR). SONG, Jae-Yeon; #105-101, Raemian PentaVille APT., 309, Yeoksam-ro, Gangnam-gu, Seoul 135-795 (KR).

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING MEDIA DATA IN MULTIMEDIA SYSTEM

(57) Abstract: A method for transmitting media data in a multimedia system is provided. The method includes determining a transport packet header format and a transmission structure that are to be generated based on a transmission requirement of a multimedia service configured by the media data, generating a basic transmission unit of the media data based on the determined transport packet header format and the determined transmission structure, packetizing the media data into at least a packet based on the generated basic transmission unit, and transmitting the packetized media data.

Published:

— *with international search report (Art. 21(3))*

Description

Title of Invention: METHOD AND APPARATUS FOR TRANSMITTING AND RECEIVING MEDIA DATA IN MULTIMEDIA SYSTEM

Technical Field

[1] The present disclosure relates to a method and apparatus for transmitting and receiving media data. More particularly, the present disclosure relates to data packet generation, a transmission and reception method and an apparatus for transmitting or receiving media data in a multimedia system.

Background Art

[2] In multimedia services, a hybrid network for connecting to both a broadcast network and a communication network, and Moving Picture Experts Group (MPEG) Media Transport (MMT) technology for providing multimedia data including files such as multimedia data to be transmitted, applications, and web pages have been recently developed.

[3] The term 'multimedia service' refers to an interactive service (e.g., video telephony), a streaming service (e.g., a Video on Demand (VoD) service), and a Multicast and Broadcast Service (MBS). Real-time multimedia services may be divided into a call service, an interactive service, and a streaming service depending on the type of service. In addition, the real-time multimedia services may be divided into a unicast service, a multicast service and a broadcast service depending on the number of participating users, and transmission requirements thereof may vary.

[4] MMT technology, which relates to MPEG-based multimedia transmission technology, may be used in place of an MPEG-2 Transport Stream (TS) for broadcasting and multimedia service to multifunctional smart Television (TV), multi-view TV and N-screen devices, and may provide efficient MPEG transport technology in a multimedia service environment that changes based on an Internet Protocol (IP).

[5] In addition, due to the increase in consumption of multimedia data and the development of technology, changes have been made from the era in which only one or two multimedia sources were used, to the era in which multimedia data including various types of multimedia content such as the above-mentioned multimedia data, applications and files have appeared.

[6] The multimedia data may include various types of multimedia content. During transmission of the multimedia data, the multimedia data may be partitioned or converged into multimedia content, and the multimedia content may be transmitted over the integrated transmission network.

[7] For example, multimedia data consisting of applications such as video, audio and widgets may be configured in a data packet and transmitted, taking into account the characteristics of a video signal transmission method, an audio signal transmission method and a file transmission method. The transmitted data packets may be re-configured into multimedia data in a receiving terminal.

Disclosure of Invention

Technical Problem

[8] If the multimedia data is transmitted over the network that has been discussed and defined up to now, it is difficult to provide an efficient service suitable for the network environment.

[9] Therefore, it is necessary to configure a multimedia data packet that is based on the characteristics of multimedia data in order to provide an efficient service suitable for the network environment, and a technique for composing and decomposing multimedia content is required to provide a multimedia data packet that is based on the characteristics of multimedia data.

[10] The above information is presented as background information only to assist with an understanding of the present disclosure. No determination has been made, and no assertion is made, as to whether any of the above might be applicable as prior art with regard to the present disclosure.

[11] Aspects of the present disclosure are to address at least the above-mentioned problems and/or disadvantages and to provide at least the advantages described below. Accordingly, an aspect of the present disclosure is to provide a data packet generation method and apparatus for transmitting media data in a multimedia system.

[12] Another aspect of the present disclosure is to provide a data packet generation method and apparatus for defining information required to transmit Moving Picture Experts Group (MPEG) Media Transport (MMT) packet data header information, payload information and an MMT packet depending on the requirements of a multimedia service.

Solution to Problem

[13] In accordance with an aspect of the present disclosure, a method for transmitting media data in a multimedia system is provided. The method includes determining a transport packet header format and a transmission structure that are to be generated depending on a transmission requirement of a multimedia service configured by the media data, generating a basic transmission unit of the media data based on the determined transport packet header format and the determined transmission structure, packetizing the media data into at least a packet based on the generated basic transmission unit, and transmitting the packetized media data.

[14] In accordance with another aspect of the present disclosure, an apparatus for transmitting media data in a multimedia system is provided. The apparatus includes a data packet generator configured to select a transport packet header format and a transmission structure based on a transmission requirement of a multimedia service configured by the media data, and to generate a basic transmission unit of the media data depending on the selected transport packet header format and the selected transmission structure and a transceiver configured to packetize the media data into at least a packet based on the generated transmission unit, and to transmit the packetized media data.

[15] In accordance with another aspect of the present disclosure, a method for receiving media data in a multimedia system is provided. The method includes receiving a basic transmission unit that is generated by one packet header format selected from among packet header formats that are determined in advance depending on a number of multimedia constituting the media data, determining a header of the basic transmission unit, and obtaining the media data that is packetized based on the basic transmission unit, using information about the determined header.

[16] In accordance with another aspect of the present disclosure, an apparatus for receiving media data in a multimedia system is provided. The apparatus includes a transceiver configured to reconfigure and receive a basic transmission unit including a packet header format constituting the media data, a header detector configured to determine a header of the received basic transmission unit, and a controller configured to receive the media data that is packetized based on the basic transmission unit, using information about the determined header.

[17] Other aspects, advantages, and salient features of the disclosure will become apparent to those skilled in the art from the following detailed description, which, taken in conjunction with the annexed drawings, discloses various embodiments of the present disclosure.

Advantageous Effects of Invention

[18] As is apparent from the foregoing description, in order to configure a data packet for carrying multimedia data, the present disclosure may define a specific transmission structure for composing and decomposing the data depending on the multimedia content, and may transmit and receive a data packet that is configured based on the transmission structure, thereby making it possible to provide an efficient service suitable for the network environment during transmission of multimedia data.

Brief Description of Drawings

[19] The above and other aspects, features, and advantages of certain embodiments of the present disclosure will be more apparent from the following description taken in con-

junction with the accompanying drawings, in which:

- [20] FIG. 1 illustrates layers for processing multimedia content in a Media Transport (MMT) according to an embodiment of the present disclosure;
- [21] FIG. 2 schematically illustrates an apparatus for transmitting a data packet for carrying multimedia data according to an embodiment of the present disclosure;
- [22] FIG. 3 illustrates a data transmission structure that is variable depending on a service according to an embodiment of the present disclosure;
- [23] FIG. 4 illustrates an operation of generating a packet of media data according to an embodiment of the present disclosure;
- [24] FIG. 5 illustrates a structure of an apparatus for receiving multimedia data according to an embodiment of the present disclosure; and
- [25] FIG. 6 illustrates a method for transmitting media data in a transmission apparatus according to an embodiment of the present disclosure.

[26] Throughout the drawings, like reference numerals will be understood to refer to like parts, components, and structures.

Mode for the Invention

- [27] The following description with reference to the accompanying drawings is provided to assist in a comprehensive understanding of various embodiments of the present disclosure as defined by the claims and their equivalents. It includes various specific details to assist in that understanding but these are to be regarded as merely exemplary. Accordingly, those of ordinary skill in the art will recognize that various changes and modifications of the various embodiments described herein can be made without departing from the scope and spirit of the present disclosure. In addition, descriptions of well-known functions and constructions may be omitted for clarity and conciseness.
- [28] The terms and words used in the following description and claims are not limited to the bibliographical meanings, but, are merely used by the inventor to enable a clear and consistent understanding of the present disclosure. Accordingly, it should be apparent to those skilled in the art that the following description of various embodiments of the present disclosure is provided for illustration purpose only and not for the purpose of limiting the present disclosure as defined by the appended claims and their equivalents.
- [29] It is to be understood that the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a component surface” includes reference to one or more of such surfaces.
- [30] By the term “substantially” it is meant that the recited characteristic, parameter, or value need not be achieved exactly, but that deviations or variations, including for example, tolerances, measurement error, measurement accuracy limitations and other factors known to those of skill in the art, may occur in amounts that do not preclude the

effect the characteristic was intended to provide.

- [31] An operation principle according to an embodiment of the present disclosure will be described below with reference to the accompanying drawings.
- [32] Although the Moving Picture Experts Group (MPEG) Media Transport (MMT) technology, one of the technologies to which the present disclosure is applicable, will be described herein by way of example, this is merely for illustrative purposes, and it should be noted that the present disclosure is not necessarily applied only to the MMT technology and can be applied to other similar multimedia transmission technologies.
- [33] Prior to the detailed description, the basic concept of the present disclosure will be briefly described below.
- [34] In embodiments of the present disclosure, a network environment has a connection structure of a server and a client, and refers to an environment in which a dedicated network (hereinafter, referred to as a ‘broadcast network’) for broadcast and a network (hereinafter, referred to as a ‘broadband network’) for Internet communication may be provided to the same client, and the client can receive the service over a plurality of networks. In addition, a plurality of network environments may be configured by connecting the broadcast network and the broadband network in parallel, or configured to include a wired or wireless network.
- [35] Various embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
- [36] Specifically, FIGS. 1 through 6, discussed below, and the various embodiments used to describe the principles of the present disclosure in this patent document are by way of illustration only and should not be construed in any way that would limit the scope of the disclosure. Those skilled in the art will understand that the principles of the present disclosure may be implemented in any suitably arranged communications system. The terms used to describe various embodiments are exemplary. It should be understood that these are provided to merely aid the understanding of the description, and that their use and definitions in no way limit the scope of the present disclosure. Terms first, second, and the like are used to differentiate between objects having the same terminology and are in no way intended to represent a chronological order, unless where explicitly stated otherwise. A set is defined as a non-empty set including at least one element.
- [37] FIG. 1 illustrates layers for processing multimedia content in MMT according to an embodiment of the present disclosure.
- [38] Referring to FIG. 1, an Encapsulation layer (or E layer) is illustrated, where the Encapsulation layer may include one or more of three sub layers. The three sub layers may correspond to a multimedia (media) codec (A) 100, a multimedia (media) codec (B) 101, and an MMT E.3 sub layer 102.

[39] The multimedia codec (A) 100 and the multimedia codec (B) 101 may be different from each other in terms of their function.

[40] For example, in an H.264 codec, a Network Adaptation Layer (NAL) unit that provides characteristic information of multimedia and signaling required for decoding to the digital-compressed video multimedia may be an output of the H.264 codec. As another example, in an H.262 codec, only the digital-compressed video multimedia may be an output of the H.262 codec.

[41] For example, the H.264 codec may be used as the multimedia codec (B) 101, and the H.262 codec may be used as the multimedia codec (A) 100. However, in some cases, the H.264 codec may also be used as the multimedia codec (A) 100. Accordingly, an output of the H.264 codec may further include the information generated in the MMT E.3 sub layer 102.

[42] The MMT E.3 sub layer 102 may generate a Media Fragment Unit (MFU) by receiving various types of multimedia as a source. A function of the MFU is similar to a function of the above-described NAL unit, and may include the priority and correlation information (or dependency counter) within the range of a transmission data unit that can be used to configure a transport packet. However, the MFU may be different from the NAL unit in that the MFU can have, as a payload, all types of multimedia sources such as voice, texts, applications and web pages in addition to the video signal. A function of the MMT E.3 sub layer 102 will be described in detail below in connection with FIGS. 2, 3 and 4.

[43] An MMT E.2 sub layer 103, as illustrated in FIG. 1, may configure a Media Processing Unit (MPU) by collecting various types of MFUs provided from one multimedia source. The MMT E.2 sub layer 103 may generate an MMT asset that constitutes the MPU into one stream.

[44] An MMT E.1 sub layer 104, as illustrated in FIG. 1, may configure an MMT package that can be serviced to the user, using a plurality of MMT assets.

[45] A transmission apparatus according to an embodiment of the present disclosure may configure a basic transmission unit for multimedia data transmission with the above-mentioned MPU and MFU, and transmit the basic transmission unit to a reception apparatus after packetizing it.

[46] An MPU may be configured with MFUs which are the consumable minimum units, and if an independent configuration is possible, the MPU may be configured such that the MPU can be consumed by or delivered to the user in the bundle form of a spatial interval unit. Depending on the transmission environment, it is possible to variably adjust the configuration of the MFUs taking into account the transmission efficiency in one MPU.

[47] In the present disclosure, a method for transmitting multimedia data in a transmission

apparatus may include a packet header configuring operation for configuring a packet header and a packet payload configuring operation for configuring a payload of a packet, and the packet header configuring operation and the packet payload configuring operation will be described separately.

[48] A payload of an MMT packet may include a payload header region including configuration information used depending on the transmission environment, and a data region including transmission data. The payload of an MMT packet may be transmitted to a terminal by being included in an MMT transport packet that operates in an environment of Transmission Control Protocol (TCP)/User Datagram Protocol (UDP) which is an Internet Protocol (IP)-based protocol, or by being included in a payload of a Real-time Transport Protocol (RTP) which is an IP.

[49] FIG. 2 schematically illustrates an apparatus for transmitting a data packet for carrying multimedia data according to an embodiment of the present disclosure.

[50] Referring to FIG. 2, a transmission apparatus 200 is illustrated, where the transmission apparatus 200 may include one or more of a transceiver 205, a data packet generator 210 and a controller 215.

[51] The data packet generator 210 may select one of the MFU header formats that are determined in advance depending on the number of multimedia constituting media data, and generate an MFU of the multimedia data in accordance with the selected header format.

[52] The transceiver 205 may packetize the multimedia data depending on the basic MFU (under instruction of the controller 215), and transmit the packetized multimedia data to a reception apparatus.

[53] The controller 215 may determine whether the number of multimedia is less than a first threshold. If the number of multimedia is less than the first threshold, the controller 215 may select a first MFU header. The first MFU header may include one or more of a Start Flag field of a predefined type indicating the start of the MFU, an MFU Type field indicating the type of media included in the MFU, and a Last Flag field indicating whether the MFU is a first MFU (e.g., 'Start') of specific multimedia data, whether the MFU is a last MFU (e.g., 'End'), or whether a new MFU continues after the MFU (e.g., 'Conti').

[54] If the number of multimedia is greater than or equal to the first threshold, then the controller 215 may determine whether the number of multimedia satisfying the predetermined criteria among the multimedia is greater than or equal to a second threshold. If the number of multimedia satisfying the predetermined criteria is not greater than or equal to the second threshold, then the controller 215 may select a second MFU header. The second MFU header may include one or more of a Start Flag field, an MFU Type field and a Last Flag field. The MFU Type field of the second MFU header

may be longer in length than the MFU Type field of the first MFU header.

[55] If the number of multimedia satisfying the predetermined criteria is greater than or equal to the second threshold, then the controller 215 may select a third MFU header. The third MFU header may include one or more of a Start Flag field, an MFU Type field and a Last Flag field, and may further include an MFU Type Extension field. The MFU Type Extension field may indicate the type of media that is included in the MFU by being combined with the MFU Type field of the third MFU header. The Last Flag field of the third MFU header may indicate the presence of the MFU Type Extension field.

[56] It will be apparent to those of ordinary skill in the art that the controller 215, the data packet generator 210 and the transceiver 205 should not necessarily be implemented as separate components, and may be implemented as one component in the form of, for example, a single chip and/or software on the single chip.

[57] FIG. 3 illustrates a data transmission structure that is variable depending on a service according to an embodiment of the present disclosure.

[58] Referring to FIG. 3, an MPU file 301 is illustrated, where the MPU file 301 is a file including data that an encapsulation function layer desires to transmit, and an MPU/MFU building block 313 is illustrated, where the MPU/MFU building block 313 corresponds to a data structure for configuring transmission data. The MPU/MFU building block 313 may be referred to as an MPU/MFU packetization block.

[59] The MPU file 301 may include header information such as a File Type (FTYP) box 303 indicating a type of the file, an MPEG Media Processing Unit (MMPU) box 305 indicating the configuration of the MPU, a Movie (MOOV) box 307 indicating the codec configuration information, and a Movie Fragment (MOOF) box 309, and may further include a Media Data (MDAT) box 311 consisting of Video Samples (VSs) and MMT Hint Samples (HSs). The MPU file 301 may include two or more MDAT boxes.

[60] The MMPU box 305 may indicate that the type of the data stored in the MDAT box 311 is MPU, and the MOOV box 307 may contain information about the media frame stored in the MDAT box 311.

[61] The MPU/MFU building block 313 may comprise MPU metadata 315 including one or more of FTYP, MMPU, MOOV and MOOF. Preferably, the MPU metadata 315 may include at least one of FTYP, MMPU and MOOV, thus, MOOF may be included in another metadata (i.e., MOOF metadata). The MPU/MFU building block 313 may comprise and one or more MFUs (e.g., 317, 319 and 321) which are paired with their associated HSs and VSs. For example, HS #1 and VS #1 may be included in one MFU 317, and HS #2 and VS #2 may be included in another MFU 319.

[62] An MMT payload may be configured based on the MPU/MFU building block 313, and may be carried on an MMT packet.

[63] A specific procedure for configuring an MMT payload in a transmission apparatus according to an embodiment of the present disclosure is as follows.

[64] A data packet generator of the transmission apparatus may analyze data of the desired MPU file type, to determine the type, the MPU's configuration information, a codec's setting information, and the data's starting point and size (or length) information, from the header information of the MPU data.

[65] In addition, the data packet generator may analyze the structure of MFUs and MFU HSs constituting MPU data, to determine an MFU header containing the size, mutual priority and interconnection information (e.g., length, etc.) of each MFU, and MFU data which is the actual media data, and may analyze the size of each MFU based on the MFU HS indicating the starting offset and length of each MFU. Based on the analyzed MPU type, the MPU/MFU building block for configuring a transport packet may be configured. The MFU HS may correspond to an MFU header of the building block.

[66] In addition, the data packet generator may configure each MFU as a transmission unit based on the size of each MFU that is analyzed from the MFU HS. Depending on the size of the MFU, one or multiple payloads may be configured. The start, middle and end of each payload may be indicated by a start_end_indicator which are optional bits. The MPU metadata 315 may also be treated as one configuration unit of the MPU/MFU building block 313.

[67] FIG. 4 illustrates an operation of generating a packet of media data according to an embodiment of the present disclosure.

[68] Referring to FIG. 4, in a method of transmitting an MPU of a single size according to an embodiment of the present disclosure, when dividing and transmitting an MPU by analyzing the service requirements, the transmission apparatus may periodically and variably packetize and transmit a control information payload consisting of one or more of FTYP, MMPU, MOOV and MOOF that are necessary for MPU playback. As an example, the control information payload may comprise a MPU metadata including at least one of FTYP, MMPU and MOOV. As another example, the control information payload may comprise a MOOF metadata including MOOF.

[69] As a result, a reception apparatus may play the MPU more quickly. The control information payload may include single information (i.e., a MOOV), and the transmission apparatus may transmit the control information payload by inserting it repeatedly at intervals of one or multiple MFUs.

[70] Variable-length transmission data according to an embodiment of the present disclosure may be divided into a single payload or multiple payloads corresponding to the size of the basic unit depending on the transmission environment, and transmitted on multiple payloads. Each payload may be transmitted by being packetized in its

packet. In addition, for the multiple payloads, their packets may be transmitted over a network channel by being multiplexed.

- [71] In addition, the transmission apparatus may provide the interleaving function in a predetermined unit taking into account a specific transmission function, and the payload may be defined as a possible general unit structure (or a fairly simple unit structure) of the transport layer. Although, as illustrated in FIG. 4, the transmission apparatus may start a packet generation method for receiving a service request for multimedia from a client and transmitting the requested media data in operation 401, the operation 401 may not occur at all times and may be optional.
- [72] In operation 403, the transmission apparatus may perform an operation of analyzing/processing the transmission requirements (e.g., Asset Delivery Characteristics (ADC)) of the requested service.
- [73] In operation 405, as a result of the analysis/processing, the transmission apparatus may determine whether the requested service is a service requiring real-time transmission or a non-real-time service. Optionally, in operation 405, the transmission apparatus may determine whether requested service is a Video on Demand (VoD) service.
- [74] If it is determined in operation 405 that the required service is a non-real-time service, then the transmission apparatus may generate a unit packet of a predetermined size in operation 415.
- [75] If it is determined in operation 405 that the required service is a real-time service (e.g., streaming service), then the transmission apparatus may optionally perform additional determination in operation 407.
- [76] In operation 407, the transmission apparatus may determine whether the required service is a service that should guarantee fast real-time transmission. If the required service is a service requiring fast real-time transmission, then the transmission apparatus may generate at least a packet including a control information payload and perform periodical packet transmission (e.g., at intervals of at least one MFU) in operation 409. As an example, the control information payload, which is transmitted periodically in the packet at such a short interval, may comprise a MPU metadata including at least one of FTYP, MMPU and MOOV. As another Example, the control information payload may comprise a MOOF metadata including MOOF. Preferably, the MPU metadata is needed to transmitted more frequently (i.e., at such a short interval) than the MOOF metadata. If the required service does not require fast real-time transmission though it requires real-time transmission, then the transmission apparatus may analyze the MPU header, generate a packet in units of MPUs and transmit the generated packet including the control information payload in operation 411.

[77] If it is determined in operation 405 that the required service is a VoD service, then the transmission apparatus may optionally perform additional determination in operation 413.

[78] In operation 413, the transmission apparatus may determine whether the required service is a service in which Quality of Service (QoS) should be guaranteed. If the required service is a service in which QoS should be guaranteed (e.g., yes in operation 413), then the transmission apparatus may analyze the MPU header, generate a packet in units of MPUs and transmit the generated packet in operation 417. If the required service is not a service in which QoS should be guaranteed (e.g., no in operation 413), then the transmission apparatus may generate a unit packet of a predetermined size and transmit the generated unit in operation 415, as in the case of non-real-time transmission.

[79] FIG. 5 illustrates a structure of an apparatus for receiving multimedia data according to an embodiment of the present disclosure.

[80] Referring to FIG. 5, a reception apparatus 500 is illustrated, where the reception apparatus 500 according to an embodiment of the present disclosure may perform an operation of receiving a basic transmission unit that is generated by one selected from among the header formats that are determined in advance depending on the number of multimedia constituting the media data, an operation of determining a header of the basic transmission unit, and an operation of obtaining the multimedia data that is packetized depending on the basic transmission unit, using the obtained header information.

[81] The reception apparatus 500 may be configured to include at least one of a transceiver 505 for reconfiguring and receiving a basic transmission unit including a header format constituting media data, a header detector 510 for determining a header of the received basic transmission unit, and a controller 515 for receiving the multimedia data that is packetized depending on the basic transmission unit, using the determined header information.

[82] It will be apparent to those of ordinary skill in the art that the controller 515, the header detector 510 and the transceiver 505 should not necessarily be implemented as separate components, and may be implemented as one component in the form of, for example, a single chip and/or software on the single chip.

[83] FIG. 6 illustrates a method for transmitting media data in a transmission apparatus according to an embodiment of the present disclosure.

[84] Referring to FIG. 6, in operation 601, a transmission apparatus may determine a transport packet header format and a transmission structure that are to be generated depending on transmission requirements of multimedia configuring media data.

[85] In operation 603, the transmission apparatus may generate a basic transmission unit

of the media data depending on the determined header format and transmission structure.

[86] In operation 605, the transmission apparatus may packetize the media data depending on the generated basic transmission unit.

[87] In operation 607, the transmission apparatus may transmit the packetized media data.

[88] It should be noted that the layer configuration, the transmission apparatus and reception apparatus, the data transmission structure, the data generation method and the data transmission method illustrated in FIGS. 1 to 6 are not intended to limit the scope of the present disclosure. In other words, all of data units, specific configurations, or operations shown in FIGS. 1 to 6 should not be construed to be essential components for implementation of the present disclosure, and even though only some data units, operations or components are included, the present disclosure may be implemented without departing from the scope and spirit of the disclosure.

[89] The above-described operations may be realized by mounting a memory device storing a program code in a certain component in a transmission apparatus, a server, a reception apparatus or a terminal device of the communication system. In other words, a controller of the transmission apparatus, the sever, the reception apparatus or the terminal device may perform the aforementioned operations by reading and executing the program code stored in the memory device by means of a processor or a Central Processing Unit (CPU).

[90] Various components and modules of the transmission apparatus, the server, the reception apparatus or the terminal device described therein may be operated using a hardware circuit (e.g., a Complementary Metal Oxide Semiconductor (CMOS)-based logical circuit), firmware, software and/or a hardware circuit such as a combination of hardware, firmware and/or software embedded in a machine-readable medium. For example, various electrical structures and methods may be implemented using electrical circuits such as transistors, transistors and Application Specific Integrated Circuits (ASICs).

[91] As is apparent from the foregoing description, in order to configure a data packet for carrying multimedia data, the present disclosure may define a specific transmission structure for composing and decomposing the data depending on the multimedia content, and may transmit and receive a data packet that is configured based on the transmission structure, thereby making it possible to provide an efficient service suitable for the network environment during transmission of multimedia data.

[92] While the present disclosure has been shown and described with reference to various embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure as defined by the appended claims and their

equivalents.

Claims

[Claim 1] A method for transmitting media data in a multimedia system, the method comprising:
determining a transport packet header format and a transmission structure that are to be generated based on a transmission requirement of a multimedia service configured by the media data;
generating a basic transmission unit of the media data based on the determined transport packet header format and the determined transmission structure;
packetizing the media data into at least a packet based on the generated basic transmission unit; and
transmitting the packetized media data.

[Claim 2] The method of claim 1, wherein the transmission requirement includes at least one of a condition in which the multimedia service guarantees a real-time transmission, a condition in which the multimedia service guarantees a non-real-time transmission, and a condition in which the multimedia service is a video on demand (VoD) service.

[Claim 3] The method of claim 2, wherein if the transmission requirement includes the condition in which the multimedia service guarantees the real-time transmission, then the packetizing of the media data includes one of:
packetizing the media data into at least the packet by inserting a first control information payload therein at intervals of at least one media fragment unit (MFU); and
packetizing the media data into at least the packet by inserting a second control information payload therein at intervals of at least one media processing unit (MPU).

[Claim 4] The method of claim 3,
wherein, if the first control information payload is inserted in the packet at the intervals of at least one MFU, then the multimedia service requires a faster real-time transmission that is faster than the real-time transmission, and
wherein, if the second control information payload is inserted in the packet at intervals of at least one MPU, then the multimedia service requires the real-time transmission.

[Claim 5] The method of claim 3, wherein, the packetizing of the media data into at least the packet by inserting the first control information payload

comprises:

generating the packet including the first control information payload; and

performing a periodical transmission at the intervals of at least one MFU.

[Claim 6]

The method of claim 2, wherein, if the transmission requirement includes the condition in which the multimedia service guarantees the non-real-time transmission, then the packetizing of the media data includes packetizing the media data into at least the packet in a predetermined size.

[Claim 7]

The method of claim 2, wherein, if the transmission requirement includes the condition in which the multimedia service is the VoD service, then the packetizing of the media data includes one of:
packetizing the media data into at least the packet in a predetermined size; and
packetizing the media data into at least the packet by inserting a control information payload therein at intervals of at least one media processing unit (MPU).

[Claim 8]

The method of claim 7, wherein the packetizing of the media data into at least the packet by inserting the control information payload therein at the intervals of at least one MPU is performed, if the transmission requirement includes a condition in which the multimedia service is a quality of service (QoS) guaranteed VoD service.

[Claim 9]

The method of claim 1, wherein the determined transmission structure includes a structure of one or more payloads that are configured based on a size of a media fragment unit (MFU) constituting a media processing unit (MPU).

[Claim 10]

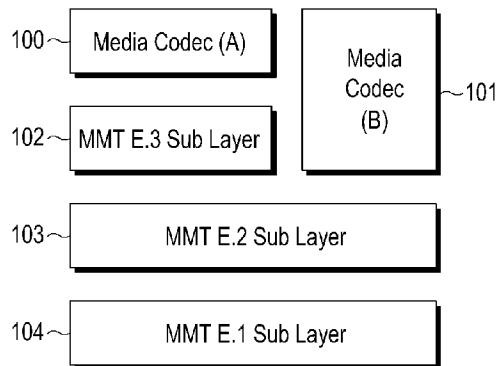
An apparatus for transmitting media data in a multimedia system, the apparatus comprising:

a data packet generator configured to select a transport packet header format and a transmission structure based on a transmission requirement of a multimedia service configured by the media data, and to generate a basic transmission unit of the media data based on the selected transport packet header format and the selected transmission structure; and

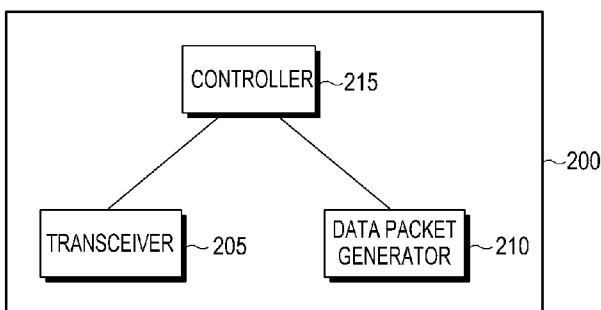
a transceiver configured to packetize the media data into at least a packet based on the generated transmission unit, and to transmit the packetized media data.

[Claim 11] The apparatus of claim 10, wherein the transmission requirement include at least one of a condition in which the multimedia service guarantees a real-time transmission, a condition in which the multimedia service guarantees a non-real-time transmission, and a condition in which the multimedia service is a video on demand (VoD) service.

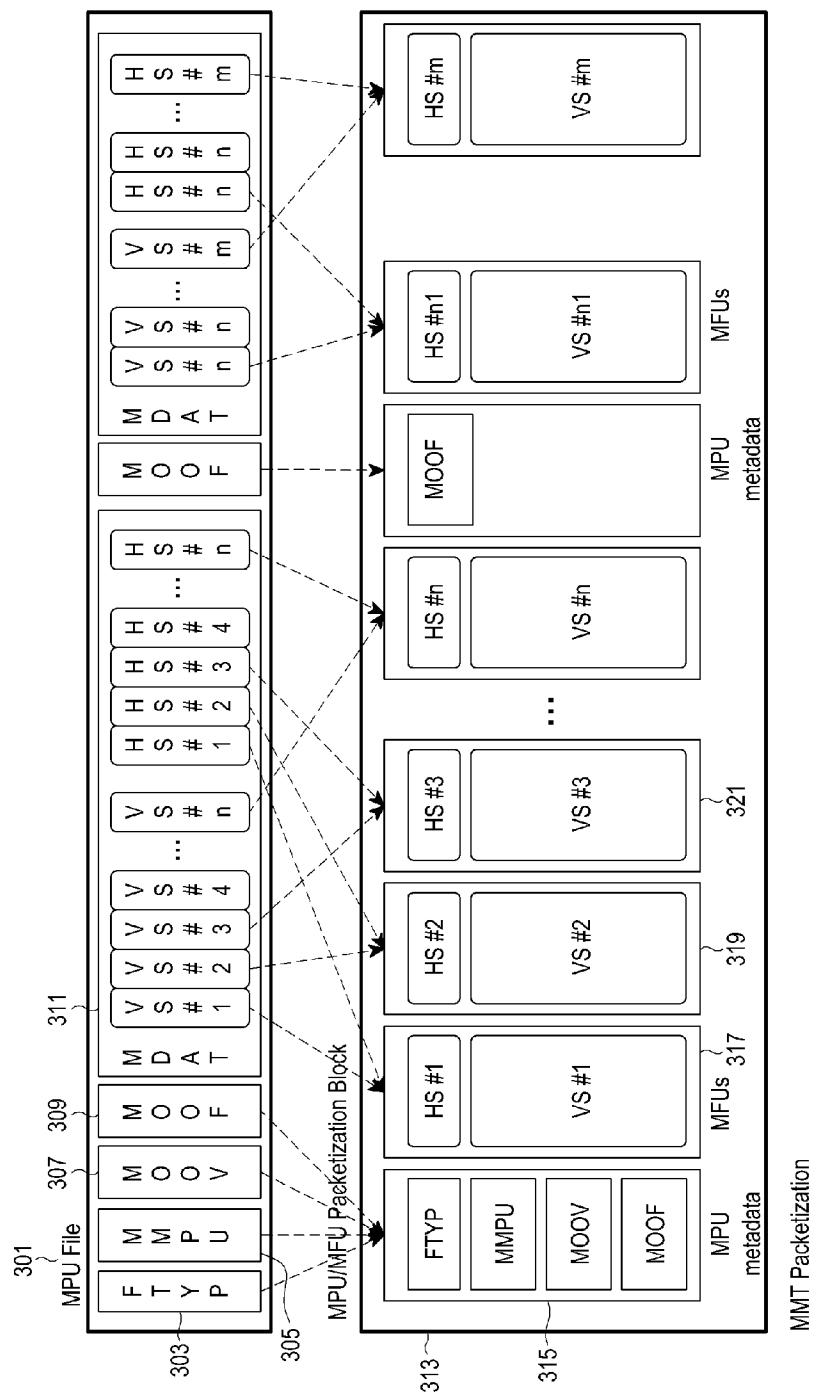
[Claim 12] The apparatus of claim 11, wherein if the transmission requirement includes the condition in which the multimedia service guarantees the real-time transmission, then the transceiver is further configured to perform at least one of packetizing the media data into at least the packet by inserting a first control information payload therein at intervals of at least one media fragment unit (MFU), and packetizing the media data into at least the packet by inserting a second control information payload therein at intervals of at least one media processing unit (MPU).

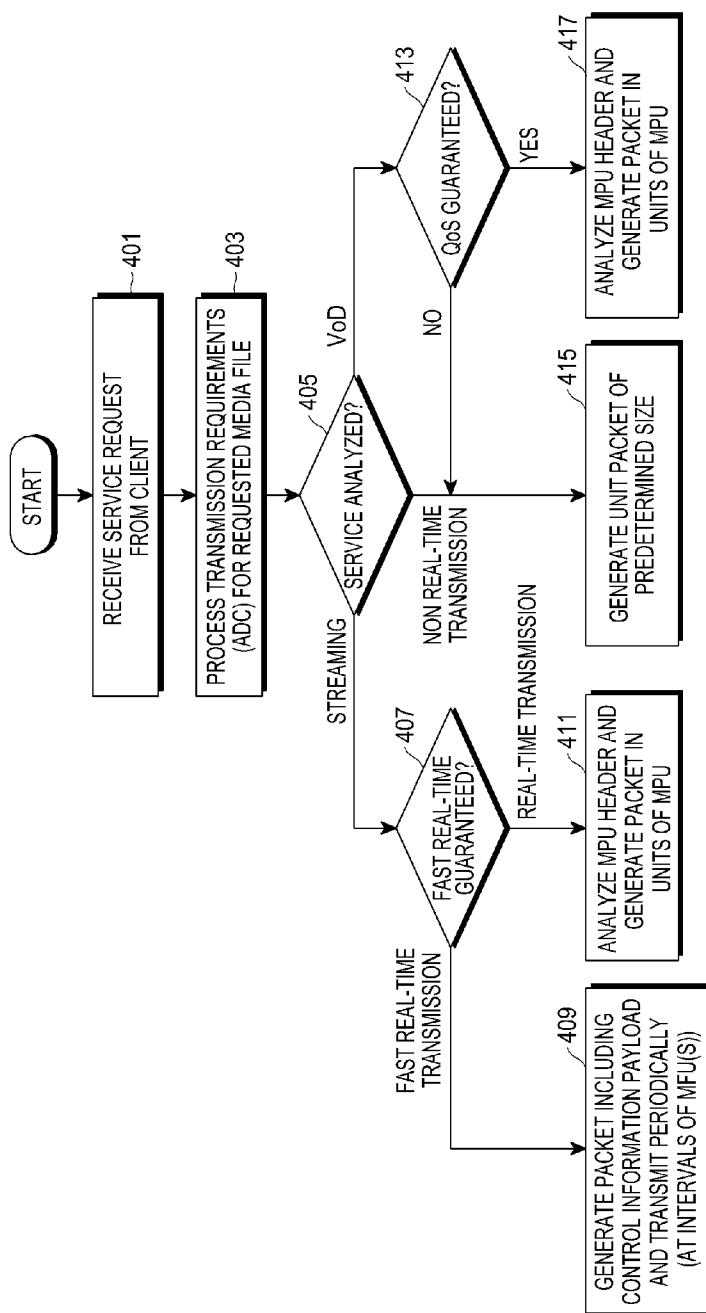

[Claim 13] The apparatus of claim 12,
wherein, if the first control information payload is inserted in the packet at the intervals of at least one MFU, then the multimedia service requires a faster real-time transmission that is faster than the real-time transmission, and
wherein, if the second control information payload is inserted in the packet at intervals of at least one MPU, then the multimedia service requires the real-time transmission.

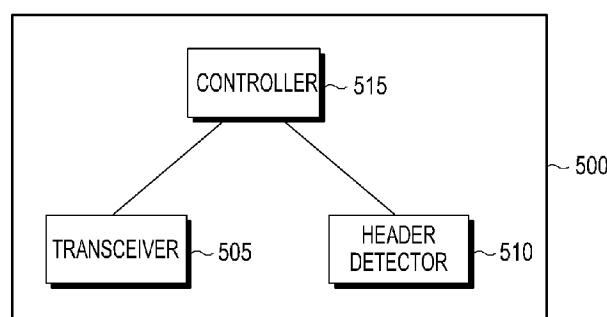
[Claim 14] A method for receiving media data in a multimedia system, the method comprising:
receiving a basic transmission unit that is generated by one packet header format selected from among packet header formats that are determined in advance based on a number of multimedia constituting the media data;
determining a header of the basic transmission unit; and
obtaining the media data that is packetized based on the basic transmission unit, using information about the determined header.

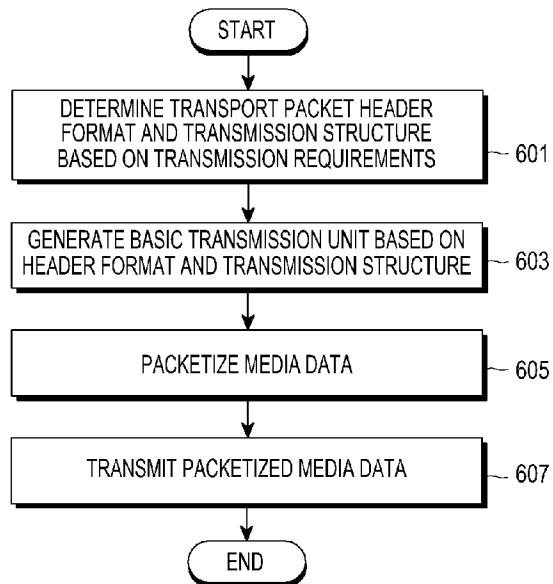

[Claim 15] An apparatus for receiving media data in a multimedia system, the apparatus comprising:
a transceiver configured to reconfigure and receive a basic transmission unit including a packet header format constituting the media data;
a header detector configured to determine a header of the received basic transmission unit; and

a controller configured to receive the media data that is packetized based on the basic transmission unit, using information about the determined header.


[Fig. 1]


[Fig. 2]


[Fig. 3]


[Fig. 4]

[Fig. 5]

[Fig. 6]

INTERNATIONAL SEARCH REPORT

International application No.
PCT/KR2015/000237

A. CLASSIFICATION OF SUBJECT MATTER

H04N 21/236(2011.01)i, H04N 21/238(2011.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H04N 21/236; G06F 15/16; H04J 1/00; H04N 7/16; H04Q 11/00; H04L 12/50; H04N 7/00; H04N 21/238

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: multimedia, media data, packet header format, structure, requirement, real-time, non-real-time, video on demand (VoD)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 2009-0260041 A1 (COLLEEN J. MCGINN et al.) 15 October 2009 See paragraphs [0009], [0060], [0071], [0102]-[0110]; claims 1, 37; and figures 10-14.	14-15
Y		1-2, 10-11
A		3-9, 12-13
Y	US 2007-0204050 A1 (SHENG LIU et al.) 30 August 2007 See paragraphs [0064]-[0071]; claims 17, 20-21; and figure 11.	1-2, 10-11
A	US 2006-0072559 A1 (DANIEL LECOMTE et al.) 06 April 2006 See paragraphs [0031]-[0040]; claims 1-3; and figure 1.	1-15
A	US 2007-0058680 A1 (DONG-JOON CHOI et al.) 15 March 2007 See paragraphs [0007]-[0010], [0108]-[0112]; claims 1-3; and figures 15-16.	1-15
A	US 2007-0003251 A1 (HYUN-KWON CHUNG et al.) 04 January 2007 See paragraphs [0066]-[0069]; claims 1-4; and figure 4.	1-15

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	
"A" document defining the general state of the art which is not considered to be of particular relevance	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international filing date	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"O" document referring to an oral disclosure, use, exhibition or other means	"&" document member of the same patent family
"P" document published prior to the international filing date but later than the priority date claimed	

Date of the actual completion of the international search 23 February 2015 (23.02.2015)	Date of mailing of the international search report 24 February 2015 (24.02.2015)
Name and mailing address of the ISA/KR International Application Division Korean Intellectual Property Office 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea Facsimile No. +82 42 472 3473	Authorized officer LEE, Jin Ick Telephone No. +82-42-481-5770

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/KR2015/000237

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2009-0260041 A1	15/10/2009	AT 542352 T CN 101904149 A CN 102084635 A CN 102084635 B CN 102090010 A CN 102090010 B CN 102090034 A CN 102090040 A CN 102090040 B CN 104202617 A EP 2183898 A2 EP 2297881 A2 EP 2301222 A2 EP 2301222 B1 EP 2321920 A1 EP 2324607 A1 EP 2439904 A1 EP 2439904 B1 EP 2654265 A1 EP 2654266 A1 JP 04945011 B2 JP 05226123 B2 JP 05260731 B2 JP 05312456 B2 JP 05443480 B2 JP 2010-532649 A JP 2011-523305 A JP 2011-524671 A JP 2011-525315 A JP 2011-526746 A JP 2013-150341 A US 2009-0013356 A1 US 2009-0235141 A1 US 2009-0262839 A1 US 2009-0288121 A1 US 2013-263203 A1 US 8151305 B2 US 8332896 B2 US 8347339 B2 US 8358705 B2 US 8489762 B2 WO 2009-006593 A2 WO 2009-006593 A3 WO 2009-146374 A1 WO 2009-146419 A2 WO 2009-146419 A3 WO 2009-146444 A1 WO 2009-149383 A2 WO 2009-149383 A3	15/02/2012 01/12/2010 01/06/2011 07/05/2014 08/06/2011 05/03/2014 08/06/2011 08/06/2011 22/10/2014 10/12/2014 12/05/2010 23/03/2011 30/03/2011 18/01/2012 18/05/2011 25/05/2011 11/04/2012 15/01/2014 23/10/2013 23/10/2013 06/06/2012 03/07/2013 14/08/2013 09/10/2013 19/03/2014 07/10/2010 04/08/2011 01/09/2011 15/09/2011 13/10/2011 01/08/2013 08/01/2009 17/09/2009 22/10/2009 19/11/2009 03/10/2013 03/04/2012 11/12/2012 01/01/2013 22/01/2013 16/07/2013 08/01/2009 08/04/2010 03/12/2009 03/12/2009 18/02/2010 03/12/2009 10/12/2009 18/03/2010

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/KR2015/000237

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 2007-0204050 A1	30/08/2007	AU 2003-264323 A1 CN 100454859 C CN 1820461 A WO 2005-027417 A1	06/04/2005 21/01/2009 16/08/2006 24/03/2005
US 2006-0072559 A1	06/04/2006	EP 1621009 A1 FR 2854530 A1 FR 2854530 B1 MX PA05011744 A US 2010-0017498 A1 US 7613181 B2 US 8270402 B2 WO 2004-100532 A1	01/02/2006 05/11/2004 22/07/2005 30/03/2006 21/01/2010 03/11/2009 18/09/2012 18/11/2004
US 2007-0058680 A1	15/03/2007	KR 10-0697974 B1 US 7961754 B2	23/03/2007 14/06/2011
US 2007-0003251 A1	04/01/2007	BR PI0409996 A CA 2524279 A1 CN 1784737 A CN 1784737 C0 EP 1623424 A1 EP 1623424 A4 JP 2006-526245 A KR 10-2004-0096718 A RU 2005134850 A RU 2328040 C2 WO 2004-100158 A1	09/05/2006 18/11/2004 07/06/2006 07/06/2006 08/02/2006 24/05/2006 16/11/2006 17/11/2004 27/04/2006 27/06/2008 18/11/2004