FINGER RING HAVING RADially Adjustable Parts

Filed Dec. 23, 1963
This invention relates generally to the jewelry art and is more particularly concerned with ornamental finger rings.

One of the basic problems that has long existed in connection with the manufacture and sale of ornamental finger rings has been the problem of properly sizing the ring to the finger of a prospective purchaser or wearer. Thus, where an ornamental finger ring is being purchased as a gift for another person, it is difficult to know exactly what size ring is necessary, and hence it is the usual practice that after such a ring has been purchased, the intended wearer will have to take the ring back to the seller in order to have it properly sized. Furthermore, sometimes weather conditions, or even the physical condition of the wearer, can affect the wearer's fingers so that a ring which appears to be properly sized when originally purchased may at a subsequent time prove to be difficult to put on and take off.

Even though ornamental finger rings are usually made with different size shanks to fit different size fingers, the above problems still will obviously exist. In addition, having to stock rings of different sizes creates an inventory problem, particularly for the retailer.

In an effort to overcome the above problems, attempts have heretofore been made to provide an ornamental finger ring having an adjustable shank whereby the ring may be readily adjusted to fit any size finger without the necessity of using any special tools or equipment. However, adjustable rings of this type herebefore in existence have encountered certain problems. More specifically, where the adjustable shank construction was of an inexpensive nature so that the ring could be sold at low prices, the construction was either unsightly or not durable and effective in operation, or both. On the other hand, where the adjustable construction of the shank was such that it did not significantly affect the appearance of the ring and was such that the adjustable feature was durable and effective in operation, the manufacturing costs were such that the ring could not be sold at low prices.

Thus, it is a primary object of my invention to provide an adjustable ring which does not detract from the appearance of the overall ring, that is effective and durable in operation, and that is sufficiently easy to manufacture so that the cost of the ring is not materially affected.

A further object of this invention is the provision of an adjustable ring that may be easily adjusted by the wearer without the necessity of any special tools or equipment.

Another object is the provision of a ring of the character described wherein only two separate parts are necessary, aside from the ring ornamentation, and one of said separate parts may comprise a conventional circular ring shank.

Other objects, features and advantages of the invention will become apparent as the description thereof proceeds when considered in connection with the accompanying illustrative drawings.

In the drawings which illustrates the best mode presently contemplated for carrying out the present invention:

FIG. 1 is a perspective view of an adjustable ring construction embodying my invention, with the ornamental portion of the ring shown in broken lines;

FIG. 2 is a plan view of my adjustable ring construction with the ornamental portion shown in section;

FIG. 3 is an enlarged section taken on line 3-3 of FIG. 2;

FIG. 4 is a section taken on line 4-4 of FIG. 3;

FIG. 5 is a plan view, on a reduced scale, of the blank from which the channel portion of my ring construction is formed;

FIG. 6 is a plan view of the blank shown in FIG. 5 after a first operation has been performed thereon;

FIG. 7 is a plan view of the blank shown in FIG. 5 after a second operation has been performed thereon; and

FIG. 8 is a plan view, on an enlarged scale, of the channel member formed from the blank of FIG. 7.

Referring now to the drawings, an ornamental finger ring is shown generally at 10 comprising an ornamental portion 12, a channel member shown generally at 14, and a shank element 16.

The channel member 14 is of a generally elongated arcuate configuration and comprises a top wall 18, a bottom wall 20, and a rear wall 22. As will be seen, the walls 18 and 20 are in spaced parallel relation with respect to each other, and rear wall 22 is curved in cross section, as will be seen most clearly in FIG. 3. The channel member 14 may be made of any suitable material, although I prefer to use a metallic material, such as brass or the like.

The shank element 16, which is a conventional circular ring, preferably metallic, is slidably received within channel 14, it being understood that the space between walls 18 and 20 is sufficient to freely receive the shank. A pair of integral tabs 24 extend integrally from the front inner edge 26 of channel member 24, whereinafter the shank 16 has been slidably inserted into the channel member, as most clearly shown in FIGS. 1 and 2, the tabs 24 may be bent inwardly so as to provide stop means for preventing the shank from being completely removed from the channel. It will now be seen that the front arcuate edge 26 of channel member 14 and the exposed portion of shank 16 define a loop, the size of which may be adjusted by sliding the shank toward and away from rear wall 22 of the channel member.

Friction means are desirable in order to releasably maintain the shank 16 and channel 14 in a desired position of adjustment. In order to effect this desired frictional engagement, opposed depressions or indentations 28 are provided in the walls 18 and 20, preferably at the central portion thereof. The depressions 28 are of elongated configuration and extend from adjacent the front edge 26 of channel 14 toward the rear wall 22 thereof.

As will be apparent, the depressions 28 impart a frictional drag which opposes the sliding movement of shank 16 within the channel 14 whereupon when the desired position of adjustment is obtained, said desired position will be frictionally maintained.

It will be understood that the ornamental portion 12 may comprise any desired design and is attached to the outer surface of channel 14 by any suitable means, such as soldering or the like. Preferably, the ornamental portion 12 will be shaped and configured so as to obscure the channel 14 as much as possible.

Although the channel member 14 may be constructed by any suitable manufacturing technique, it has been found that this member may be made simply and inexpensively by first blanking a sheet 30 having the configuration illustrated in FIG. 5. The next step is to strike notches 32 from the blank 30, as illustrated in FIG. 6, after which the depressions 28 are formed by any suitable punch means. The blank 30 is then bent, by suitable tools, so as to provide the channel member 14, is being understood that the notches 32 enable the arcuate configuration of the channel member to be obtained. When the channel
member is in its finished form, as illustrated in FIG. 8, the notches 32 have been closed so as to form slits 34 in the finished channel. It will be understood that once the channel 14 has been formed, the shank 16 is slidably engaged therein, after which the tabs 24 are bent into their operative position. It is important to note that the depth of the channel 14, from front edge 26 toward rear wall 22, determines the degree of adjustability that can be obtained with respect to the ring, although it will be understood that a great deal of relative movement between shank 16 and channel 14 is not necessary to obtain the range of adjustability that is necessary in a finger ring of this type.

It will be understood that in operation and use, the ring will normally be maintained in its largest position of adjustment, whereupon the wearer may easily slip the ring on his or her finger, and then simply by exerting pressure with his or her free hand, the wearer can force the shank 16 toward rear wall 22 of the channel member until the most desirable and comfortable adjustment is obtained. The frictional engagement of depressions 28 with shank 16 will releasably maintain the ring in the selected position of adjustment.

While there is shown and described herein certain specific structure embodying the invention, it will be manifest to those skilled in the art that various modifications and rearrangements of the parts may be made without departing from the spirit and scope of the underlying inventive concept and that the same is not limited to the particular forms herein shown and described except insofar as indicated by the scope of the appended claims.

What is claimed is:

1. An adjustable ring comprising an elongated channel having spaced parallel top and bottom walls forming the channel sides and a rear wall, and being open along its front edge, said front edge being of arcuate configuration, generally circular shank extending through said channel, said shank being slidably in said channel in a direction radially of said ring from said rear wall toward said front edge thereof, whereby the loop defined by said front arcuate edge and the exposed portion of said shank may be selectively adjusted as to size, stop means located radially inwardly of said shank adjacent said front edge for preventing said shank from being removed from said channel, and means secured to said channel frictionally gripping said shank to releasably maintain said shank and channel in a selected one of a plurality of positions of adjustment along a radius of said ring.

2. The adjustable ring of claim 1 further characterized in that said stop means comprises at least one tab extending integrally from said front edge across said channel sufficiently to obstruct same.

3. The adjustable ring of claim 1 further characterized in that said friction means comprises an indentation in at least one of the channel sides, the inner surface of said indentation projecting interiorly of said channel.

4. The adjustable ring of claim 3 further characterized in that said indentation extends linearly from a point adjacent said front edge to a point adjacent said rear wall.

References Cited by the Examiner

UNITED STATES PATENTS
263,935 9/1882 Melendy.
2,511,110 6/1950 Huester.
2,743,591 5/1956 Graf 63—15.6
2,961,855 11/1960 Newman 63—15.65

FOREIGN PATENTS
455,952 8/1913 France.

RICHARD C. PINKHAM, Primary Examiner.
F. BARRY SHAY, Examiner.