
SPRUSON & FERGUSON68 3 1 27 AUSTRALIA

PATENTS ACT 1990

PATENT REQUEST: STANDARD PATENT

I/We, the Applicant(s)/Nominated Person(s) specified below, request I/We be
granted a patent for the Invention disclosed in the accompanying standard
complete specification.

[70,71] Applicant(s)/Nomlnated Person(s):

AT&T Corp., incorporated in New York, of 32 Avenue of the Americas,
New York, New York, 10013-2412, UNITED STATES OF AMERICA

[54] Invention Title:
Linear Prediction Coefficient Generation During Frame Erasure or
Packet Loss

[72] lnventor(s):
Peter Kroon

[74] Address for service In Australia:
Spruson & Ferguson, Patent Attorneys
Level 33 St Martins Tower
31 Market Street
Sydney New South Wales Australia (Code SF)

Details of Basic Application (s):
[33] Country: [32] Application Date:

US 14 March 1994

[31] Appl’n No(s):

212,440

DATED this TWENTY THIRD day of FEBRUARY 1995

AT&T Corp.

Registered Patent Attorney

IRN: 294550 INSTR CODE: 63851

$ 053820 070395
5845

I, John Gordon Hinde, of Spruson & Ferguson, St Martins Tower, 31 Market

Street, Sydney, New South Wales 2000, Australia, being the patent attorney for

the Applicant(s)/Nominated Person(s) in respect of an application entitled:

Linear Prediction Coefficient Generation During Frame Erasure or Packet Loss

state the following:-

The Applicant(s)/Nominated Person's) has/have entitlement from the actual

inventor(s) as fol lows :-

Australia

Patents Act 1990

NOTICE OF ENTITLEMENT

SPRUSON & FERGUSON

The Applicant(s)/Nominated Person(s) is/are the assignee(s) of the
actual inventor(s).

The Applicant(s)/Nominated Person(s) is/are entitled to rely on the basic

applicationCs) listed on the Patent Request as follows:

The Applicant(s)/Nominated Person(s) is/are the assignee(s) of the basic

appl1 cant(s).

The basic application(s) listed on the Patent Request is/are the first

application(s) made in a Convention country in respect of the invention.

DATED this TWENTY SECOND day of FEBRUARY 1995

IRN: 294550 INSTR CODE: 63851

665P

AU9513676

(12) PATENT ABRIDGMENT (11) Document No. AU-B-13676/95
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 683127

(54) Title
LINEAR PREDICTION COEFFICIENT GENERATION DURING FRAME ERASURE OR PACKET LOSS

(51)6
International Patent Classiflcatlon(s)
H04L 001/00 H04B 007/26 H04B 014/02 H04L 027/06

(21) Application No.: 13676/95 (22) Application Date: 07.03.95

(30) Priority Data

(31) Number (32) Date (33)
212440 14.03.94

Country
US UNITED STATES OF AMERICA

(43) Publication Date: 21.09.95

(44) Publication Date of Accepted Application : 30.10.97

(71) Applicant(s)
AT&T CORP.

(72) Inventor(s)
PETER KROON

(74) Attorney or Agent
SPRUSON & FERGUSON , GPO Box 3898, SYDNEY NSW 2001

(56) Prior Art Documents
US 5327520
US 5018200
US 4354056

(57) Claim

1. A method of generating linear prediction filter coefficient signals
during frame erasure, the generated linear prediction coefficient signals for use by a
linear prediction filter in synthesizing a speech signal, the method comprising the
steps of:

storing linear prediction coefficient signals in a memory, said linear
prediction coefficient signals generated responsive to a speech signal corresponding
to a non-erased frame; and

responsive to a frame erasure, modifying the stored linear prediction
coefficient signals to expand the bandwidth of one or more peaks in a frequency
response of the linear prediction filter, the modified linear prediction coefficient
signals applied to the linear prediction filter for use in synthesizing the speech signal.

- 1-

LINEAR PREDICTION COEFFICIENT GENERATION
DURING FRAME ERASURE OR PACKET LOSS

Field of the Invention
The present invention relates generally to speech coding arrangements

5 for use in wireless communication systems, and more particularly to the ways in
which such speech coders function in the event of burst-like errors in wireless
transmission.

Background of the Invention
Many communication systems, such as cellular telephone and personal

10 communications systems, rely on wireless channels to communicate information. In
the course of communicating such information, wireless communication channels
can suffer from several sources of error, such as multipath fading. These error
sources can cause, among other things, the problem of frame erasure. An erasure

refers to the total loss or substantial corruption of a set of bits communicated to a
15 receiver. A frame is a predetermined fixed number of bits.

If a frame of bits is totally lost, then the receiver has no bits to interpret.
Under such circumstances, the receiver may produce a meaningless result. If a
frame of received bits is corrupted and therefore unreliable, the receiver may
produce a severely distorted result.

20 As the demand for wireless system capacity has increased, a need has
arisen to make the best use of available wireless system bandwidth. One way to
enhance the efficient use of system bandwidth is to employ a signal compression
technique. For wireless systems which carry speech signals, speech compression (or
speech coding) techniques may be employed for this purpose. Such speech coding

25 techniques include analysis-by-synthesis speech coders, such as the well-known
code-excited linear prediction (or CELP) speech coder.

The problem of packet loss in packet-switched networks employing
speech coding arrangements is very similar to frame erasure in the wireless context.
That is, due to packet loss, a speech decoder may either fail to receive a frame or

30 receive a frame having a significant number of missing bits. In either case, the
speech decoder is presented with the same essential problem -- the need to
synthesize speech despite the loss of compressed speech information. Both "frame
erasure" and "packet loss" concern a communication channel (or network) problem
which causes the loss of transmitted bits. For purposes of this description, therefore,

-2-

the term "frame erasure" may be deemed synonymous with packet loss.
CELP speech coders employ a codebook of excitation signals to encode

an original speech signal. These excitation signals are used to "excite" a linear
predictive (LPC) filter which synthesizes a speech signal (or some precursor to a

5 speech signal) in response to the excitation. The synthesized speech signal is
compared to the signal to be coded. The codebook excitation signal which most
closely matches the original signal is identified. The identified excitation signal’s
codebook index is then communicated to a CELP decoder (depending upon the type
of CELP system, other types of information may be communicated as well). The

10 decoder contains a codebook identical to that of the CELP coder. The decoder uses
the transmitted index to select an excitation signal from its own codebook. This
selected excitation signal is used to excite the decoder’s LPC filter. Thus excited,
the LPC filter of the decoder generates a decoded (or quantized) speech signal — the
same speech signal which was previously determined to be closest to the original

15 speech signal.
Wireless and other systems which employ speech coders may be more

sensitive to the problem of frame erasure than those systems which do not compress
speech. This sensitivity is due to the reduced redundancy of coded speech
(compared to uncoded speech) making the possible loss of each communicated bit

20 more significant. In the context of a CELP speech coders experiencing frame
erasure, excitation signal codebook indices may be either lost or substantially
corrupted. Because of the erased frame(s), the CELP decoder will not be able to
reliably identify which entry in its codebook should be used to synthesize speech.
As a result, speech coding system performance may degrade significantly.

25 As a result of lost excitation signal codebook indicies, normal
techniques for synthesizing an excitation signal in a decoder are ineffective. These
techniques must therefore be replaced by alternative measures. A further result of
the loss of codebook indices is that the normal signals available for use in generating
linear prediction coefficients are unavailable. Therefore, an alternative technique for

30 generating such coefficients is needed.

Summary of the Invention
The present invention generates linear prediction coefficient signals

during frame erasure based on a weighted extrapolation of linear prediction
coefficient signals generated during a non-erased frame. This weighted extrapolation

35 accomplishes an expansion of the bandwidth of peaks in the frequency response of a

-3-

linear prediction filter.
Illustratively, linear prediction coefficient signals generated during a

non-erased frame are stored in a buffer memory. When a frame erasure occurs, the
last "good" set of coefficient signals are weighted by a bandwidth expansion factor

5 raised to an exponent. The exponent is the index identifying the coefficient of
interest. The factor is a number in the range of 0.95 to 0.99.

Brief Description of the Drawings
Figure 1 presents a block diagram of a G.728 decoder modified in

accordance with the present invention.
10 Figure 2 presents a block diagram of an illustrative excitation

synthesizer of Figure 1 in accordance with the present invention.
Figure 3 presents a block-flow diagram of the synthesis mode operation

of an excitation synthesis processor of Figure 2.
Figure 4 presents a block-flow diagram of an alternative synthesis mode

15 operation of the excitation synthesis processor of Figure 2.
Figure 5 presents a block-flow diagram of the LPC parameter bandwidth

expansion performed by the bandwidth expander of Figure 1.
Figure 6 presents a block diagram of the signal processing performed by

the synthesis filter adapter of Figure 1.
20 Figure 7 presents a block diagram of the signal processing performed by

the vector gain adapter of Figure 1.
Figures 8 and 9 present a modified version of an LPC synthesis filter

adapter and vector gain adapter, respectively, for G.728.
Figures 10 and 11 present an LPC filter frequency response and a

25 bandwidth-expanded version of same, respectively.
Figure 12 presents an illustrative wireless communication system in

accordance with the present invention.

Detailed Description

I. Introduction

30 The present invention concerns the operation of a speech coding system
experiencing frame erasure — that is, the loss of a group of consecutive bits in the
compressed bit-stream which group is ordinarily used to synthesize speech. The
description which follows concerns features of the present invention applied
illustratively to the well-known 16 kbit/s low-delay CELP (LD-CELP) speech

-4-

• · ··
• · ·
• ·

• ·

coding system adopted by the CCITT as its international standard G.728 (for the
convenience of the reader, the draft recommendation which was adopted as the
G.728 standard is attached hereto as an Appendix; the draft will be referred to herein
as the "G.728 standard draft"). This description notwithstanding, those of ordinary

5 skill in the art will appreciate that features of the present invention have applicability
to other speech coding systems.

The G.728 standard draft includes detailed descriptions of the speech
encoder and decoder of the standard (See G.728 standard draft, sections 3 and 4).
The first illustrative embodiment concerns modifications to the decoder of the

10 standard. While no modifications to the encoder are required to implement the
present invention, the present invention may be augmented by encoder
modifications. In fact, one illustrative speech coding system described below
includes a modified encoder.

Knowledge of the erasure of one or more frames is an input to the
15 illustrative embodiment of the present invention. Such knowledge may be obtained

in any of the conventional ways well known in the art. For example, frame erasures
may be detected through the use of a conventional error detection code. Such a code
would be implemented as part of a conventional radio transmission/reception
subsystem of a wireless communication system.

20 For purposes of this description, the output signal of the decoder’s LPC
synthesis filter, whether in the speech domain or in a domain which is a precursor to
the speech domain, will be referred to as the "speech signal." Also, for clarity of
presentation, an illustrative frame will be an integral multiple of the length of an
adaptation cycle of the G.728 standard. This illustrative frame length is, in fact,

25 reasonable and allows presentation of the invention without loss of generality. It
may be assumed, for example, that a frame is 10 ms in duration or four times the
length of a G.728 adaptation cycle. The adaptation cycle is 20 samples and
corresponds to a duration of 2.5 ms.

For clarity of explanation, the illustrative embodiment of the present
30 invention is presented as comprising individual functional blocks. The functions

these blocks represent may be provided through the use of either shared or dedicated
hardware, including, but not limited to, hardware capable of executing software. For
example, the blocks presented in Figures 1, 2, 6, and 7 may be provided by a single
shared processor. (Use of the term "processor" should not be construed to refer

35 exclusively to hardware capable of executing software.)

τ
-5-

Illustrative embodiments may comprise digital signal processor (DSP)
hardware, such as the AT&T DSP 16 or DSP32C, read-only memory (ROM) for
storing software performing the operations discussed below, and random access
memory (RAM) for storing DSP results. Very large scale integration (VLSI)

5 hardware embodiments, as well as custom VLSI circuitry in combination with a
general purpose DSP circuit, may also be provided.

II. An Illustrative Embodiment
Figure 1 presents a block diagram of a G.728 LD-CELP decoder

modified in accordance with the present invention (Figure 1 is a modified version of
10 figure 3 of the G.728 standard draft). In normal operation (i.e., without experiencing

frame erasure) the decoder operates in accordance with G.728. It first receives
codebook indices, i, from a communication channel. Each index represents a vector
of five excitation signal samples which may be obtained from excitation VQ
codebook 29. Codebook 29 comprises gain and shape codebooks as described in the

15 G.728 standard draft. Codebook 29 uses each received index to extract an excitation
codevector. The extracted codevector is that which was determined by the encoder
to be the best match with the original signal. Each extracted excitation codevector is
scaled by gain amplifier 31. Amplifier 31 multiplies each sample of the excitation
vector by a gain determined by vector gain adapter 300 (the operation of vector gain

20 adapter 300 is discussed below). Each scaled excitation vector, ET, is provided as an
input to an excitation synthesizer 100. When no frame erasures occur, synthesizer
100 simply outputs the scaled excitation vectors without change. Each scaled
excitation vector is then provided as input to an LPC synthesis filter 32. The LPC
synthesis filter 32 uses LPC coefficients provided by a synthesis filter adapter 330

25 through switch 120 (switch 120 is configured according to the "dashed" line when no
frame erasure occurs; the operation of synthesis filter adapter 330, switch 120, and
bandwidth expander 115 are discussed below). Filter 32 generates decoded (or
"quantized") speech. Filter 32 is a 50th order synthesis filter capable of introducing
periodicity in the decoded speech signal (such periodicity enhancement generally

30 requires a filter of order greater than 20). In accordance with the G.728 standard,
this decoded speech is then postfiltered by operation of postfilter 34 and postfilter
adapter 35. Once postfiltered, the format of the decoded speech is converted to an
appropriate standard format by format converter 28. This format conversion
facilitates subsequent use of the decoded speech by other systems.

-6-

A. Excitation Signal Synthesis During Frame Erasure
In the presence of frame erasures, the decoder of Figure 1 does not

receive reliable information (if it receives anything at all) concerning which vector
of excitation signal samples should be extracted from codebook 29. In this case, the

5 decoder must obtain a substitute excitation signal for use in synthesizing a speech
signal. The generation of a substitute excitation signal during periods of frame
erasure is accomplished by excitation synthesizer 100.

Figure 2 presents a block diagram of an illustrative excitation
synthesizer 100 in accordance with the present invention. During frame erasures,

10 excitation synthesizer 100 generates one or more vectors of excitation signal samples
based on previously determined excitation signal samples. These previously
determined excitation signal samples were extracted with use of previously received
codebook indices received from the communication channel. As shown in Figure 2,
excitation synthesizer 100 includes tandem switches 110, 130 and excitation

15 synthesis processor 120. Switches 110,130 respond to a frame erasure signal to
switch the mode of the synthesizer 100 between normal mode (no frame erasure) and
synthesis mode (frame erasure). The frame erasure signal is a binary flag which
indicates whether the current frame is normal (e.g., a value of "0") or erased (e.g., a
value of" 1"). This binary flag is refreshed for each frame.

20 1. Normal Mode
In normal mode (shown by the dashed lines in switches 110 and 130),

synthesizer 100 receives gain-scaled excitation vectors, ET (each of which comprises
five excitation sample values), and passes those vectors to its output. Vector sample
values are also passed to excitation synthesis processor 120. Processor 120 stores

25 these sample values in a buffer, ETP AST, for subsequent use in the event of frame
erasure. ETP AST holds 200 of the most recent excitation signal sample values (i.e.,

40 vectors) to provide a history of recently received (or synthesized) excitation
signal values. When ETP AST is full, each successive vector of five samples pushed
into the buffer causes the oldest vector of five samples to fall out of the buffer. (As

30 will be discussed below with reference to the synthesis mode, the history of vectors
may include those vectors generated in the event of frame erasure.)

-7-

2. Synthesis Mode
In synthesis mode (shown by the solid lines in switches 110 and 130),

synthesizer 100 decouples the gain-scaled excitation vector input and couples the
excitation synthesis processor 120 to the synthesizer output. Processor 120, in

5 response to the frame erasure signal, operates to synthesize excitation signal vectors.
Figure 3 presents a block-flow diagram of the operation of processor

120 in synthesis mode. At the outset of processing, processor 120 determines
whether erased frame(s) are likely to have contained voiced speech (see step 1201).
This may be done by conventional voiced speech detection on past speech samples.

10 In the context of the G.728 decoder, a signal PTAP is available (from the postfilter)
which may be used in a voiced speech decision process. PTAP represents the
optimal weight of a single-tap pitch predictor for the decoded speech. If PTAP is
large (e.g., close to 1), then the erased speech is likely to have been voiced. If PTAP
is small (e.g., close to 0), then the erased speech is likely to have been non- voiced

15 (i.e., unvoiced speech, silence, noise). An empirically determined threshold, VTH, is
used to make a decision between voiced and non-voiced speech. This threshold is
equal to 0.6/1.4 (where 0.6 is a voicing threshold used by the G.728 postfilter and 1.4
is an experimentally determined number which reduces the threshold so as to err on
the side on voiced speech).

20 If the erased frame(s) is determined to have contained voiced speech, a
new gain-scaled excitation vector ET is synthesized by locating a vector of samples
within buffer ETP AST, the earliest of which is KP samples in the past (see step
1204). KP is a sample count corresponding to one pitch-period of voiced speech.
KP may be determined conventionally from decoded speech; however, the postfilter

25 of the G.728 decoder has this value already computed. Thus, the synthesis of a new
vector, ET, comprises an extrapolation (e.g., copying) of a set of 5 consecutive
samples into the present. Buffer ETP AST is updated to reflect the latest synthesized
vector of sample values, ET (see step 1206). This process is repeated until a good
(non-erased) frame is received (see steps 1208 and 1209). The process of steps

30 1204, 1206,1208 and 1209 amount to a periodic repetition of the last KP samples of
ETP AST and produce a periodic sequence of ET vectors in the erased frame(s)
(where KP is the period). When a good (non-erased) frame is received, the process
ends.

If the erased frame(s) is determined to have contained non-voiced
35 speech (by step 1201), then a different synthesis procedure is implemented. An

illustrative synthesis of ET vectors is based on a randomized extrapolation of groups

-8-

of five samples in ETPAST. This randomized extrapolation procedure begins with
the computation of an average magnitude of the most recent 40 samples of ETPAST
(see step 1210). This average magnitude is designated as AVMAG. AVMAG is
used in a process which insures that extrapolated ET vector samples have the same

5 average magnitude as the most recent 40 samples of ETPAST.
A random integer number, NUMR, is generated to introduce a measure

of randomness into the excitation synthesis process. This randomness is important
because the erased frame contained unvoiced speech (as determined by step 1201).
NUMR may take on any integer value between 5 and 40, inclusive (see step 1212).

10 Five consecutive samples of ETPAST are then selected, the oldest of which is
NUMR samples in the past (see step 1214). The average magnitude of these selected
samples is then computed (see step 1216). This average magnitude is termed
VECAV. A scale factor, SF, is computed as the ratio of AVMAG to VECAV (see

step 1218). Each sample selected from ETPAST is then multiplied by SF. The
15 scaled samples are then used as the synthesized samples of ET (see step 1220).

These synthesized samples are also used to update ETPAST as described above (see

step 1222).
If more synthesized samples are needed to fill an erased frame (see step

1224), steps 1212-1222 are repeated until the erased frame has been filled. If a
20 consecutive subsequent frame(s) is also erased (see step 1226), steps 1210-1224 are

repeated to fill the subsequent erased frame(s). When all consecutive erased frames
are filled with synthesized ET vectors, the process ends.

3. Alternative Synthesis Mode for Non-voiced Speech
Figure 4 presents a block-flow diagram of an alternative operation of

25 processor 120 in excitation synthesis mode. In this alternative, processing for voiced
speech is identical to that described above with reference to Figure 3. The difference
between alternatives is found in the synthesis of ET vectors for non-voiced speech.
Because of this, only that processing associated with non-voiced speech is presented
in Figure 4.

30 As shown in the Figure, synthesis of ET vectors for non-voiced speech
begins with the computation of correlations between the most recent block of 30
samples stored in buffer ETPAST and every other block of 30 samples of ETPAST
which lags the most recent block by between 31 and 170 samples (see step 1230).
For example, the most recent 30 samples of ETPAST is first correlated with a block

35 of samples between ETPAST samples 32-61, inclusive. Next, the most recent block

-9-

of 30 samples is correlated with samples of ETP AST between 33-62, inclusive, and
so on. The process continues for all blocks of 30 samples up to the block containing
samples between 171-200, inclusive

For all computed correlation values greater than a threshold value, THC,
5 a time lag (MAXI) corresponding to the maximum correlation is determined (see

step 1232).
Next, tests are made to determine whether the erased frame likely

exhibited very low periodicity. Under circumstances of such low periodicity, it is
advantageous to avoid the introduction of artificial periodicity into the ET vector

10 synthesis process. This is accomplished by varying the value of time lag MAXI. If
either (i) PTAP is less than a threshold, VTH1 (see step 1234), or (ii) the maximum
correlation corresponding to MAXI is less than a constant, MAXC (see step 1236),
then very low periodicity is found. As a result, MAXI is incremented by 1 (see step
1238). If neither of conditions (i) and (ii) are satisfied, MAXI is not incremented.

15 Illustrative values for VTH1 and MAXC are 0.3 and 3x 107, respectively.

MAXI is then used as an index to extract a vector of samples from
ETP AST. The earliest of the extracted samples are MAXI samples in the past.
These extracted samples serve as the next ET vector (see step 1240). As before,
buffer ETP AST is updated with the newest ET vector samples (see step 1242).

20 If additional samples are needed to fill the erased frame (see step 1244),
then steps 1234-1242 are repeated. After all samples in the erased frame have been
filled, samples in each subsequent erased frame are filled (see step 1246) by
repeating steps 1230-1244. When all consecutive erased frames are filled with
synthesized ET vectors, the process ends.

25 B. LPC Filter Coefficients for Erased Frames
In addition to the synthesis of gain-scaled excitation vectors, ET, LPC

filter coefficients must be generated during erased frames. In accordance with the
present invention, LPC filter coefficients for erased frames are generated through a
bandwidth expansion procedure. This bandwidth expansion procedure helps account

30 for uncertainty in the LPC filter frequency response in erased frames. Bandwidth
expansion softens the sharpness of peaks in the LPC filter frequency response.

Figure 10 presents an illustrative LPC filter frequency response based on
LPC coefficients determined for a non-erased frame. As can be seen, the response
contains certain "peaks." It is the proper location of these peaks during frame

35 erasure which is a matter of some uncertainty. For example, correct frequency

-10-

• ·

response for a consecutive frame might look like that response of Figure 10 with the

peaks shifted to the right or to the left. During frame erasure, since decoded speech

is not available to determine LPC coefficients, these coefficients (and hence the filter

frequency response) must be estimated. Such an estimation may be accomplished

5 through bandwidth expansion. The result of an illustrative bandwidth expansion is

shown in Figure 11. As may be seen from Figure 11, the peaks of the frequency

response are attenuated resulting in an expanded 3db bandwidth of the peaks. Such

attenuation helps account for shifts in a "correct" frequency response which cannot

be determined because of frame erasure.

10 According to the G.728 standard, LPC coefficients are updated at the

third vector of each four-vector adaptation cycle. The presence of erased frames

need not disturb this timing. As with conventional G.728, new LPC coefficients are

computed at the third vector ET during a frame. In this case, however, the ET

• · 15

vectors are synthesized during an erased frame.

As shown in Figure 1, the embodiment includes a switch 120, a buffer

110, and a bandwidth expander 115. During normal operation switch 120 is in the

position indicated by the dashed line. This means that the LPC coefficients, a,, are

provided to the LPC synthesis filter by the synthesis filter adapter 33. Each set of

newly adapted coefficients, a,, is stored in buffer 110 (each new set overwriting the

20 previously saved set of coefficients). Advantageously, bandwidth expander 115 need

not operate in normal mode (if it does, its output goes unused since switch 120 is in

the dashed position).

Upon the occurrence of a frame erasure, switch 120 changes state (as

shown in the solid line position). Buffer 110 contains the last set of LPC coefficients

25 as computed with speech signal samples from the last good frame. At the third

vector of the erased frame, the bandwidth expander 115 computes new coefficients,

Figure 5 is a block-flow diagram of the processing performed by the

bandwidth expander 115 to generate new LPC coefficients. As shown in the Figure,

30 expander 115 extracts the previously saved LPC coefficients from buffer 110 (see

step 1151). New coefficients a(are generated in accordance with expression (1):

ai = (BEF)iai> l<i<50, (1)

where BEF is a bandwidth expansion factor illustratively takes on a value in the

range 0.95-0.99 and is advantageously set to 0.97 or 0.98 (see step 1153). These

35 newly computed coefficients are then output (see step 1155). Note that coefficients

-11-

aj are computed only once for each erased frame.

The newly computed coefficients are used by the LPC synthesis filter 32

for the entire erased frame. The LPC synthesis filter uses the new coefficients as

though they were computed under normal circumstances by adapter 33. The newly

5 computed LPC coefficients are also stored in buffer 110, as shown in Figure 1.

Should there be consecutive frame erasures, the newly computed LPC coefficients

stored in the buffer 110 would be used as the basis for another iteration of bandwidth

expansion according to the process presented in Figure 5. Thus, the greater the

number of consecutive erased frames, the greater the applied bandwidth expansion

10 (i.e., for die kth erased frame of a sequence of erased frames, the effective bandwidth
expansion factor is BEFk).

Other techniques for generating LPC coefficients during erased frames

could be employed instead of the bandwidth expansion technique described above.

These include (i) the repeated use of the last set of LPC coefficients from the last

15 good frame and (ii) use of the synthesized excitation signal in the conventional

G.728 LPC adapter 33.

C. Operation of Backward Adapters During Frame Erased Frames
The decoder of the G.728 standard includes a synthesis filter adapter and

a vector gain adapter (blocks 33 and 30, respectively, of figure 3, as well as figures 5

20 and 6, respectively, of the G.728 standard draft). Under normal operation (i.e.,

operation in the absence of frame erasure), these adapters dynamically vary certain

parameter values based on signals present in the decoder. The decoder of the

illustrative embodiment also includes a synthesis filter adapter 33b and a vector gain

adapter 300. When no frame erasure occurs, the synthesis filter adapter 330 and the

25 vector gain adapter 300 operate in accordance with the G.728 standard. The

operation of adapters 330,300 differ from the corresponding adapters 33,30 of

G.728 only during erased frames.

As discussed above, neither the update to LPC coefficients by adapter

330 nor the update to gain predictor parameters by adapter 300 is needed during the

30 occurrence of erased frames. In the case of the LPC coefficients, this is because such

coefficients are generated through a bandwidth expansion procedure. In the case of

the gain predictor parameters, this is because excitation synthesis is performed in the

gain-scaled domain. Because the outputs of blocks 330 and 300 are not needed

during erased frames, signal processing operations performed by these blocks 330,

35 300 may be modified to reduce computational complexity.

-12-

As may be seen in Figures 6 and 7, respectively, the adapters 330 and
300 each include several signal processing steps indicated by blocks (blocks 49-51 in
figure 6; blocks 39-48 and 67 in figure 7). These blocks are generally the same as
those defined by the G.728 standard draft. In the first good frame following one or

5 more erased frames, both blocks 330 and 300 form output signals based on signals
they stored in memory during an erased frame. Prior to storage, these signals were
generated by the adapters based on an excitation signal synthesized during an erased
frame. In the case of the synthesis filter adapter 330, the excitation signal is first
synthesized into quantized speech prior to use by the adapter, In the case of vector

10 gain adapter 300, the excitation signal is used directly. In either case, both adapters
need to generate signals during an erased frame so that when the next good frame

; t · ·, occurs, adapter output may be determined. ’
• · · ·

Advantageously, a reduced number of signal processing operations
; , · ·. normally performed by the adapters of Figures 6 and 7 may be performed during• · · ·
;·.*·. 15 erased frames. The operations which are performed are those which are either (i)• ·

needed for the formation and storage of signals used in fom ing adapter output in a
subsequent good (i.e., non-erased) frame or (ii) needed for the formation of signals

: .". used by other signal processing blocks of the decoder during erased frames. No
. ‘: . additional signal processing operations are necessary. Blocks 330 and 300 perform a

20 reduced number of signal processing operations responsive to the receipt of the
j’.*’; frame erasure signal, as shown in Figure 1, 6, and 7. The frame erasure signal either

prompts modified processing or causes the module not to operate.
·*···· Note that a reduction in the number of signal processing operations in

response to a frame erasure is not required for proper operation; blocks 330 and 300
25 could operate normally, as though no frame erasure has occurred, with their output

signals being ignored, as discussed above. Under normal conditions, operations (i)
and (ii) are performed. Reduced signal processing operations, however, allow the
overall complexity of the decoder to remain within the level of complexity
established for a G.728 decoder under normal operation. Without reducing

30 operations, the additional operations required to synthesize an excitation signal and
bandwidth-expand LPC coefficients would raise the overall complexity of the
decoder.

In the case of the synthesis filter adapter 330 presented in Figure 6, and
with reference to the pseudo-code presented in the discussion of the "HYBRID

35 WINDOWING MODULE" at pages 28-29 of the G.728 standard draft, an illustrative
reduced set of operations comprises (i) updating buffer memory SB using the

-13·

synthesized speech (which is obtained by passing extrapc cd ET vectors through a
bandwidth expanded version of the last good LPC filter) and (ii) computing REXP in
the specified manner using the updated SB buffer.

In addition, because the G.728 embodiment use a postfilter which
5 employs lOth-order LPC coefficients and the first reflection coefficient during erased

frames, the illustrative set of reduced operations further comprises (iii) the
generation of signal values RTMP(l) through RTMP(11) (RTMP(12) through
RTMP(51) not needed) and, (iv) with reference to the pseudo-code presented in the
discussion of the "LEVINSON-DURBIN RECURSION MODULE" at pages 29-30

10 of the G.728 standard draft, Levinson-Durbin recursion is performed from order 1 to
order 10 (with the recursion from order 11 through order 50 not needed). Note that
bandwidth expansion is not performed.

In the case of vector gain adapter 300 presented in Figure 7, an
illustrative reduced set of operations comprises (i) the operations of blocks 67,39,

15 40, 41, and 42, which together compute the offset-removed logarithmic gain (based
on synthesized ET vectors) and GTMP, the input to block 43; (ii) with reference to
the pseudo-code presented in the discussion of the "HYBRID WINDOWING
MODULE" at pages 32-33, the operations of updating buffer memory SBLG with
GTMP and updating REXPLG, the recursive component of the autoconelation

20 function; and (iii) with reference to the pseudo-code presented in the discussion of
the "LOG-GAIN LINEAR PREDICTOR" at page 34, the operation of updating filter
memory GSTATE with GTMP. Note that the functions of modules 44,45,47 and
48 are not performed.

As a result of performing the reduced set of operations during erased
25 frames (rather than all operations), the decoder can properly prepare for the next

good frame and provide any needed signals during erased frames while reducing the
computational complexity of the decoder.

D. Encoder Modification
As stated above, the present invention does not require any modification

30 to the encoder of the G.728 standard. However, such modifications may be
advantageous under certain circumstances. For example, if a frame erasure occurs at
the beginning of a talk spurt (eg., at the onset of voiced speech from silence), then a
synthesized speech signal obtained from an extrapolated excitation signal is
generally not a good approximation of the original speech. Moreover, upon the

35 occurrence of the next good frame there is likely to be a significant mismatch

-14-

between the internal states of the decoder and those of the encoder. This mismatch
of encoder and decoder states may take some time to converge.

One way to address this circumstance is to modify the adapters of the
encoder (in addition to the above-described modifications to those of the G.728

5 decoder) so as to improve convergence speed. Both the LPC filter coefficient
adapter and the gain adapter (predictor) of the encoder may be modified by
introducing a spectral smoothing technique (SST) and increasing the amount of
bandwidth expansion.

Figure 8 presents a modified version of the LPC synthesis filter adapter
10 of figure 5 of the G.728 standard draft for use in the encoder. The modified synthesis

filter adapter 230 includes hybrid windowing module 49, which generates
autocorrelation coefficients; SST module 495, which performs a spectral smoothing
of autocorrelation coefficients from windowing module 49; Levinson-Durbin
recursion module 50, for generating synthesis filter coefficients; and bandwidth

15 expansion module 510, for expanding the bandwidth of the spectral peaks of the LPC
spectrum. The SST module 495 performs spectral smoothing of autocorrelation
coefficients by multiplying the buffer of autocorrelation coefficients, RTMP(l) -
RTMP (51), with the right half of a Gaussian window having a standard deviation of
60Hz. This windowed set of autocorrelation coefficients is then applied to the

20 Levinson-Durbin recursion module 50 in the normal fashion. Bandwidth expansion
module 510 operates on the synthesis filter coefficients like module 51 of the G.728
of the standard draft, but uses a bandwidth expansion factor of 0.96, rather than
0.988.

Figure 9 presents a modified version of the vector gain adapter of figure
25 6 of the G.728 standard draft for use in the encoder. The adapter 200 includes a

hybrid windowing module 43, an SST module 435, a Levinson-Durbin recursion
module 44, and a bandwidth expansion module 450. All blocks in Figure 9 are
identical to those of figure 6 of the G.728 standard except for new blocks 435 and
450. Overall, modules 43,435,44, and 450 are arranged like the modules of Figure

30 8 referenced above. Like SST module 495 of Figure 8, SST module 435 of Figure 9
performs a spectral smoothing of autocorrelation coefficients by multiplying the
buffer of autocoreelation coefficients, R(l) - R(11), with the right half of a Gaussian
window. This time, however, the Gaussian window has a standard deviation of
45Hz. Bandwidth expansion module 450 of Figure 9 operates on the synthesis filter

35 coefficients like the bandwidth expansion module 51 of figure 6 of the G.728
standard draft, but uses a bandwidth expansion factor of 0.87, rather than 0.906.

-15-

E. An Illustrative Wireless System
As stated above, the present invention has application to wireless speech

communication systems. Figure 12 presents an illustrative wireless communication

system employing an embodiment of the present invention. Figure 12 includes a

5 transmitter 600 and a receiver 700. An illustrative embodiment of the transmitter

600 is a wireless base station. An illustrative embodiment of the receiver 700 is a

mobile user terminal, such as a cellular or wireless telephone, or other personal

communications system device. (Naturally, a wireless base station and user terminal

may also include receiver and transmitter circuitry, respectively.) The transmitter

10 600 includes a speech coder 610, which may be, for example, a coder according to

COTT standard G.728. The transmitter further includes a conventional channel

coder 620 to provide error detection (or detection and correction) capability; a

conventional modulator 630; and conventional radio transmission circuitry; all well

known in the art. Radio signals transmitted by transmitter 600 are received by

15 receiver 700 through a transmission channel. Due to, for example, possible

destructive interference of various multipath components of the transmitted signal,

receiver 700 may be in a deep fade preventing the clear reception of transmitted bits.

Under such circumstances, frame erasure may occur.

Receiver 700 includes conventional radio receiver circuitry 710,

20 conventional demodulator 720, channel decoder 730, and a speech decoder 740 in

accordance with the present invention. Note that the channel decoder generates a

frame erasure signal whenever the channel decoder determines the presence of a

substantial number of bit errors (or unreceived bits). Alternatively (or in addition to

a frame erasure signal from the channel decoder), demodulator 720 may provide a

25 frame erasure signal to the decoder 740.

F. Discussion
Although specific embodiments of this invention have been shown and

described herein, it is to be understood that these embodiments are merely

illustrative of the many possible specific arrangements which can be devised in

30 application of the principles of the invention. Numerous and varied other

arrangements can be devised in accordance with these principles by those of ordinary

skill in the art without departing from the spirit and scope of the invention.

For example, while the present invention has been described in the

context of the G.728 LD-CELP speech coding system, features of the invention may

35 be applied to other speech coding systems as well. For example, such coding

systems may include a long-term predictor (or long-term synthesis filter) for

-16-

converting a gain-scaled excitation signal to a signal having pitch periodicity. Or,

such a coding system may not include a postfilter.

In addition, the illustrative embodiment of the present invention is

presented as synthesizing excitation signal samples based on a previously stored

5 gain-scaled excitation signal samples. However, the present invention may be

implemented to synthesize excitation signal samples prior to gain-scaling (i.e., prior

to operation of gain amplifier 31). Under such circumstances, gain values must also

be synthesized (e.g., extrapolated).

In the discussion above concerning the synthesis of an excitation signal

10 during erased frames, synthesis was accomplished illustratively through an

extrapolation procedure. It will be apparent to those of skill in the art that other

synthesis techniques, such as interpolation, could be employed.

As used herein, the term "filter refers to conventional structures for

signal synthesis, as well as other processes accomplishing a filter-like synthesis

15 function, such other processes include the manipulation of Fourier transform

coefficients a filter-like result (with or without the removal of perceptually inelevant

information).

π -

APPENDIX

Draft Recommendation G.728

Coding of Speech at 16 kbii/s
Using

Low-Delay Code Excited Linear Prediction (LD-CELP)

1. INTRODUCTION

This recommendation contains the description of an algorithm for the coding of speech signals
at 16 kbit/s using Low-Delay Code Excited Linear Prediction (LD-CELP). This recommendation
is organized as follows.

, ,, In Section 2 a brief outline of the LD-CELP algorithm is given. In Sections 3 and 4, the LD-
*···.’ CELP encoder and LD-CELP decoder principles are discussed, respectively. In Section 5, the
• ···· computational details pertaining to each functional algorithmic block are defined. Annexes A, B,
·,;*”· C and D contain tables of constants used by the LD-CELP algorithm. In Annex E the sequencing
·*,*·, of variable adaptation and use is given. Finally, in Appendix I information is given on procedures
* * applicable to the implementation verification of the algorithm.

• ·
Under further study is the future incorporation of three additional appendices (to be published

. ., separately) consisting of LD-CELP network aspects, LD-CELP fixed-point implementation
* · ’ · description, and LD-CELP fixed-point verification procedures.
• · · '

♦ · · ■

2. OUTLINE OF LD-CELP

: · : The LD-CELP algorithm consists of an encoder and a decoder described in Sections 2.1 and
2.2 respectively, and illustrated in Figure 1/G.728.

! "’■ The essence of CELP techniques, which is an analysis-by-synthesis approach to codebook
search, is retained in LD-CELP. The LD-CELP however, uses backward adaptation of predictors
and gain to achieve an algorithmic delay of 0.625 ms. Only the index to the excitation codebook
is transmitted. The predictor coefficients are updated through LPC analysis of previously
quantized speech. The excitation gain is updated by using the gain information embedded in the
previously quantized excitation, The block size for the excitation vector and gain adaptation is 5
samples only. A perceptual weighting filter is updated using LPC analysis of the unquantized
speech.

2.1 LD-CELP Encoder .

After the conversion from A-law or μ-law PCM to uniform PCM, the input signal is
partitioned into blocks of 5 consecutive input signal samples. For each input block, the encoder
passes each of 1024 candidate codebook vectors (stored in an excitation codebook) through a gain
scaling unit and a synthesis filter. From the resulting 1024 candidate quantized signal vectors, the
encoder identifies the one that minimizes a frequency-weighted mean-squared error measure with
respect to the input signal vector. The 10-bit codebook index of the corresponding best codebook
vector (or "codevector") which gives rise to that best candidate quantized signal vector is
transmitted to the decoder. The best codevector is then passed through the gain scaling unit and

- 18 -

tile synthesis filter to establish the correct filter memory in preparation for the encoding of the next
‘ signal vector. The synthesis filter coefficients and the gain are updated periodically in a backward

adaptive manner based on the previously quantized signal and gain-scaled excitation.

2.2 LD-CELP Decoder

The decoding operation is also performed on a block-by-block basis. Upon receiving each
10-bit index, the decoder performs a table look-up to extract the corresponding codevector from
the excitation codebook. The extracted codevector is then passed through a gain scaling unit and
a synthesis filter to produce the current decoded signal vector. The synthesis filter coefficients and
the gain are then updated in the same way as in the encoder. The decoded signal vector is then
passed through an adaptive postfilter to enhance the perceptual quality. The postfilter coefficients
are updated periodically using the information available at the decoder. The 5 samples of the

; . . postfilter signal vector are next converted to 5 A-law or μ-law PCM output samples.• · ft ft
• ft
: 3. LD-CELP ENCODER PRINCIPLES
• ··ft · ·
. ’" I ’ o Figure 2/G.728 is a detailed block schematic of the LD-CELP encoder. The encoder in Figure
* ’ 2/G.728 is mathematically equivalent to the encoder previously shown in Figure 1/G.728 but is
* i · * ’ ♦ computationally more efficient to implement

e In the following description,
* ft ·

a. For each variable to be described, k is the sampling index and samples are taken at 125 ps
** ’ intervals.

b. A group of 5 consecutive samples in a given signal is called a vector of that signal. For
* * example, 5 consecutive speech samples form a speech vector, 5 excitation samples form an

excitation vector, and so on.
ft · ft ····
* c. We use π to denote the vector index, which is different from the sample index h .

d. Four consecutive vectors build one adaptation cycle. In a later section, we also refer to
adaptation cycles as frames. The two terms are used interchangably.

The excitation Vector Quantization (VQ) codebook index is the only information explicitly
transmitted from the encoder to the decoder. Three other types of parameters will be periodically
updated: the excitation gain, the synthesis filter coefficients, and the perceptual weighting filter
coefficients. These parameters are derived in a backward adaptive manner from signals that occur
prior to the current signal vector. The excitation gain is updated once per vector, while the
synthesis filter coefficients and the perceptual weighting filter coefficients are updated once every
4 vectors (i.e., a 20-sample, or 25 ms update period). Note that, although the processing sequence
in the algorithm has an adaptation cycle of 4 vectors (20 samples), the basic buffer size is still
only 1 vector (5 samples). This small buffer size makes it possible to achieve a one-way delay
less than 2 ms.

A description of each block of the encoder is given below. Since the LD-CELP coder is
mainly used for encoding speech, for convenience of description, in the following we will assume
that the input signal is speech, although in practice it can be other non-speech signals as well.

- 19 -

3.1 Input PCM Format Conversion

This block converts the input A-law or μ-law PCM signal s0(A) to a uniform PCM signal s„(A).

3.1.1 Internal Linear PCM Levels

In converting from A-law or μ-law to linear PCM, different internal representations are
possible, depending on the device. For example, standard tables for μ-law PCM define a linear
range of -4015.5 to +40153. The corresponding range for A-law PCM is -2016 to +2016. Both
tables list some output values having a fractional part of 0.5. These fractional parts cannot be
represented in an integer device unless the entire table is multiplied by 2 to make all of the values
integers. In fact, this is what is most commonly done in fixed point Digital Signal Processing
(DSP) chips. On the other hand, floating point DSP chips can represent the same values listed in
the tables. Throughout this document it is assumed that the input signal has a maximum range of
-4095 to +4095. This encompasses both the μ-law and A-law cases. In the case of A-law it implies
that when the linear conversion results in a range of -2016 to +2016, those values should be scaled
up by a factor of 2 before continuing to encode the signal· In the case of μ-law input to a fixed
point processor where the input range is converted to -8031 to +8031, it implies that values should
be scaled down by a factor of 2 before beginning the encoding process. Alternatively, these
values can be treated as being in QI format, meaning there is 1 bit to the right of the decimal
point AU computation involving the data would then need to take this bit into account

For the case of 16-bit linear PCM input signals having the full dynamic range of -32768 to
+32767, the input values should be considered to be in Q3 format This means that the inpit
values should be scaled down (divided) by a factor of 8. On output at the decoder the factor of 8
would be restored for these signals.

32 Vector Buffer

This block buffers 5 consecutive speech samples ru(5n), r„(5n+l)......rw(5n+4) to form a 5­
dimensional speech vector j(n)= (ru(5n), ru(5n+l), ··· ,su(5n+4)].

33 Adapter for Perceptual Weighting Filter .

Figure 4/G.728 shows the detailed operation of the perceptual weighting filter adapter (block 3
in Figure 2/G.728). This adapter calculates the coefficients of the perceptual weighting filter once
every 4 speech vectors based on linear prediction analysis (often referred to as LPC analysis) of
unquantized speech. The coefficient updates occur at the third speech vector of every 4-vector
adaptation cycle. The coefficients are held constant in between updates.

Refer .to Figure 4(a)/G,728. The calculation is performed as follows. First, the input
(unquantized) speech vector is passed through a hybrid windowing module (block 36) which
places a window on previous speech vectors and calculates the first 11 autocorrelation coefficients
of the windowed speech signal as the output The Levinson-Durbin recursion module (block 37)
then converts these autocorrelation coefficients to predictor coefficients. Based on these predictor
coefficients, the weighting filter coefficient calculator (block 38) derives the desired coefficients of
the weighting filter. These three blocks are discussed in more detail below.

- 20

First, let us describe the principles of hybrid windowing. Since this hybrid windowing
technique will be used in three different kinds of LPC analyses, we first give a more general
description of the technique and then specialize it to different cases. Suppose the LPC analysis is
to be performed once every L signal samples. To be general, assume that the signal samples
corresponding to the current LD-CELP adaptation cycle are su(m), s„(m+l), sM(m+2),
s„(m+L-l). Then, for backward-adaptive LPC analysis, the hybrid window is applied to all
previous signal samples with a sample index less than m (as shown in Figure 4(b)/G.728). Let
there be N non-recursive samples in the hybrid window function. Then, the signal samples
su(m-l), su(m-2), su(m-N) are all weighted by the non-recursive portion of the window.
Starting withsu(m-N-V), all signal samples to the left of (and including) this sample are weighted
by the recursive portion of the window, which has values b, ba, ba2, ..., where 0 <b < 1 and
0 < a < 1.

At time m, the hybrid window function w„(k) is defined as

/„(!:) = ifk&n-N-l

Sm(A) = —sin[c(Jt—m)J, ,
0 , if£Am

(la)

and the window-weighted signal is

s«(k) = su(k)w„(k) = ' su(k)gM(k)-rSu(k)sin(c(k-m)], if .
0 , if*2m

(lb)

The samples of non-recursive portion g„(k) and the initial section of the recursive portion f„(k} for
different hybrid windows are specified in Annex A. For an M-th order LPC analysis, we need to
calculate Λ/+1 autocorrelation coefficients R„(i) for i = 0, 1, 2,,.., M. The i-th autocorrelation
coefficient for the current adaptation cycle can be expressed as

R«(0 = £^(£)^-0=^.(0 + Σ , (1c)

where
«t-W-l m-W-l

r«(0 = £ *«(£&.(*-0 = Σ su(k)sa(k-i)fm(k)f„(k-i). (Id)

On the right-hand side of equation (lc). the first term r„(0 is the "recursive component" of
R„(i), while the second term is the "non-recursive component". The finite summation of the non­
recursive component is calculated for each adaptation cycle. On ths other hand, the recursive
component is calculated recursively. Tie following paragraphs explain how.

Suppose we have calculated and stored all r«(0’s for the current adaptation cycle and want to
go on to the next adaptation cycle, which starts at sample su(m+L). After the hybrid window is
shifted to the right by L samples, the new window-weighted signal for the next adaptation cycle
becomes

21 -

s„.t.(k) = su(k)wm,L(k) =
su(k)f„+l® = sMfm(k)aL. if k <m +L-N-1
sdk)g„+L(k) = -5u(/)sin[c (k-m-L)]. if m+L-N<k<m+L-l.
0 , iik'im+L·

(le)

The recursive component of can be written as
m+L-W-1

Gm+£.O) “
m-W-l m+t-AM

k^—·* ktsm-N

m-W-t= Σ sMfm(k)aLsa(k-i)fM(k-i)aL + £ sa+L(k)sn.L(k-i) (If)
jtss-w ksm-ft

or
« +6-//-1

r„+L(i) = a2Lr„(i)+ Σ ^^(k}s„.L(k-i) . (lg)
t=m-N ’

Therefore, rm+t(i) can be calculated recursively from r„(i) using equation (lg). This newly
calculated rm+£,(i) is stored back to memory for use in the following adaptation cycle. The
autocorrelation coefficient/?m+£(i) is then calculated as

M+Z.-1
^m+£.(0 ·

k*m +L-N

(lh)

·· ··
• · ·
• «

So far we have described in a general manner the principles of a hybrid window calculation
procedure. The parameter values for the hybrid'windowing module 36 in Figure 4(a)/G,728 are M

f "\-*rI ^rr
Xi= 10, L = 20.//= 30. anda = = 0.982820598 (so that α2ί = y).

• · · · ·

Once the 11 autocorrelation coefficients /?(/), i = 0, 1........10 are calculated by the hybrid
windowing procedure described above, a "white noise correction" procedure is applied. This is
done by increasing the energy R (0) by a small amount:

/?(0)«- Λ(0) (Π)

This has the effect of filling the spectral valleys with white noise so as to reduce the spectral
dynamic range and alleviate ill-conditioning of the subsequent Ixvinson-Durbin recursion. The
white noise correction factor (WNCF) of 257/256 corresponds to a white noise level about 24 dB
below the average speech power.

Next, using the white noise corrected autocorrelation coefficients, the Levinson-Durbin
recursion module 37 recursively computes the predictor coefficients from order 1 to order 10. Let
the j-th coefficients of the i-th order predictor be af1. Then, the recursive procedure can be
specified as follows:

E(0)=/?(0) (2a)

- 22 -

=_____________________
«■> ‘ £(/-1)

a^lq

a}'5 = a/-0 + Α,αίΐ)0, 15/5/-1

£(/)=(1-#)£(/-!)·

(2b)

(2c)

(2d)

(2e)

. Equations (2b) through (2e) are evaluated recursively for i = 1, 2,.... 10, and the final solution is
given by

q; - aJl0), 15/510. (2f)

If we define q0 = 1, then the 10-th order "prediction-error filter" (sometimes called "analysis
filter") has the transfer function

(3a)

and the corresponding 10-th order linear predictor is defined by the following transfer function

ί»ύ

10 .
β(ί) = -2^2-1 ·

<«1
(3b)

The weighting filter coefficient calculator (block 38) calculates the perceptual weighting filter
coefficients according to the following equations:

, l-Gfr/Yi) n
(4a)

10
fi(z/7t) = -Σ^ϊι* V.

<“!

‘ (4b)

and

β(ζ/%)=-ΣίΦΎζ’)*·4· (4c)

The perceptual weighting filter is a 10-th order pole-zero filter defined by the transfer function
W(z) in equation (4a). The values of Yi and ft are 0.9 and 0.6, respectively.

Now refer to Figure 2/G.728. The perceptual weighting filter adapter (block 3) periodically
updates the coefficients of W(z) according to equations. (2) through (4), and feeds the coefficients
to the impulse response vector calculator (block 12) and the perceptual weighting filters (blocks 4
and 10).

3.4 Perceptual Weighting Filter .

In Figure 2/G.728, the current input speech vector r(n) is passed through the perceptual
weighting filter (block 4), resulting in the weighted speech vector v(n). Note that except during
initialization, the filter memory (i.e., internal state variables, or the values held in the delay units
of the filter) should not be reset to zero at any time. On the other hand, the memory of the

- 23 -

perceptual weighting filter (block 10) will need special handling as described later.

3.4.1 Non-speech Operation

For modem signals or other non-speech signals, CCITT test results indicate that it is desirable
to disable the perceptual weighting filter. This is equivalent to setting W(z)=l. This can most
easily be accomplished if 7i and % in equation (4a) are set equal to zero. The nominal values for
these variables in the speech mode are 0.9 and 0.6, respectively.

35 Synthesis Filter

In Figure 2/G.728, there are two synthesis filters (blocks 9 and 22) with identical coefficients.
Both filters are updated by the backward synthesis filter adapter (block 23). Each synthesis filter
is a 50-th order all-pole filter that consists of a feedback loop with a 50-th order LPC predictor in

·,·’’· the feedback branch. The transfer function of the synthesis filterisf(z)= 1/[1-P(z)], where?(z)
i’.... is hie transfer function of the 50-th order LPC predictor.

·,;*** After the weighted speech vector v(n) has been obtained, a zero-input response vector r(n)
;·.··. will be generated using the synthesis filter (block 9) and the perceptual weighting filter (block 10).
’ I To accomplish this, we first open the switch 5, i.e., point it to node 6. This implies that the signal
·’ ’· going from node 7 to the synthesis filter 9 will be zero. We then let the synthesis filter 9 and the

perceptual weighting filter 10 "ring" for 5 samples (1 vector). This means that we continue the
filtering operation for 5 samples with a zero signal applied at node 7. The resulting output of the

.··;·. perceptual weighting filter 10 is the desired zero-input response vector r(n).
• 9 9

Note that except for tlie vector right after initialization, the memory of the filters 9 and 10 is in
:·.··. general non-zero; therefore, the output vector r(n) is also non-zero in general, even though the
* * filter input from node 7 is zero. In effect, this vector r(n) is the response of the two filters to

previous gain-scaled excitation vectors e(n-l), e(n-2), ... This vector actually represents the
J ***’ effect due to filter memory up to time (n-1).

3.6 VQ Target Vector Computation

This block subtracts the zero-input response vector r(n) from the weighted speech vector v(n)
to obtain the VQ codebook search target vector x (n).

3.7 Backward Synthesis Filter Adapter

This adapter 23 updates the coefficients of the synthesis filters 9 and 22. It takes the quantized
(synthesized) speech as input and produces a set of synthesis filter coefficients as output Its
operation is quite similar to the perceptual weighting filter adapter 3.

A blown-up version of this adapter is shown in Figure 5/G.728. The operation of the hybrid
windowing module 49 and the Levinson-Durbin recursion module 50 is exactly the same as their
counter parts (36 and 37) in Figure 4(a)/G.728, except for the following three differences:

a. The input signal is no w the quantized speech rather than the unquantized input speech.

b. The predictor order is 50 rather than 10.

- 24 -

c. The hybrid window parameters are different: N= 35, a= = 0.992833749.

Note that the update period is still L = 20, and the white noise correction factor is still 257/256 =
1.00390625.

Let P(z) be the transfer function of the 50-th order LPC predictor, then it has the form
soA

(5)

where ά,-’s are the predictor coefficients. To improve robustness to channel errors, these
coefficients are modified so that the peaks in the resulting LPC spectrum have slightly larger
bandwidths. The bandwidth expansion module 51 performs this bandwidth expansion procedure
in the following way. Given the LPC predictor coefficients α,-’s, a new set of coefficients α,-’s is
computed according to

(6)

where λ is given by

α,· = λ'α(· , / = 1,2..........50,

(7)

• · · ·

• · · ·

This has the effects of moving all the poles of the synthesis filter radially toward the origin by a
factor of λ. Since the poles are moved away from the unit circle, the peaks in the frequency
response are widened.

• · ·

After such bandwidth expansion, the modified LPC predictor has a transfer function of

• · 50
(8)

The modified coefficients are then fed to the synthesis filters 9 and 22. These coefficients are also
fed to the impulse response vector calculator 12.

The synthesis filters 9 and 22 both have a transfer function of

Similar to the perceptual weighting filter, the synthesis filters 9 and 22 are also updated once
every 4 vectors, and the updates also occur at the third speech vector of every 4-vector adaptation
cycle. However, the updates are based on the quantized speech up to the last vector of the
previous adaptation cycle. In other words, a delay of 2 vectors is introduced before the updates
take place. This is because the Levinson-Durbin recursion module 50 and the energy table
calculator 15 (described later) are computationally intensive. As a result, even though the
autocorrelation of previously quantized speech is available at the first vector of each 4-vector
cycle, computations may require more than one vector worth of time. Therefore, to maintain a
basic buffer size of 1 vector (so as to keep the coding delay low), and to maintain real-time
operation, a 2-vector delay in filter updates is introduced in order to facilitate real-time
implementation.

- 25 -

3.8 Backward Vector Gain Adapter

This adapter updates the excitation gain σ(π) for every vector time index n. The excitation
gain σ(π) is a scaling factor used to scale the selected excitation vector y(n). The adapter 20 takes
the gain-scaled excitation vector e(/t) as its input, and produces an excitation gain σ(η) as its
output Basically, it attempts to "predict" the gain of e (n) based on the gains of e (n -1), e (n -2),...
by using adaptive linear prediction in the logarithmic gain domain. This backward vector gain
adapter 20 is shown in more detail in Figure 6/G.728.

Refer to Fig 6/G.728. This gain adapter operates as follows. The 1-vector delay unit 67
makes the previous gain-scaled excitation vector e(n-l) available. The Root-Mean-Square
(RMS) calculator 39 then calculates the RMS value of the vector <·(η-1). Next, the logarithm
calculator 40 calculates the dB value of the RMS of e(n-1), by first computing the base 10
logarithm and then multiplying the result by 20.

In Figure 6/G.728, a log-gain offset value of 32 dB is stored in the log-gain offset value holder
41. This values is meant to be roughly equal to the average excitation gain level (in dB) during
voiced speech. The adder 42 subtracts this log-gain offset value from the logarithmic gain
produced by the logarithm calculator 40. The resulting offset-removed logarithmic gain δ(η-1) is
then used by the hybrid windowing module 43 and the Levinson-Durbin recursion module 44.
Again, blocks 43 and 44 operate in exactly the same way as blocks 36 and 37 in the perceptual
weighting filter adapter module (Figure 4(a)/G.728), except that the hybrid window parameters are
different and that the signal under analysis is now the offset-removed logarithmic gain rather than
the input speech. (Note that only one gain value is produced for every 5 speech samples.) The

GH
= 0.96467863.hybrid window parameters of block 43 are M = 10, N = 20, L = 4, a=

The output of the Levinson-Durbin recursion module 44 is the coefficients of a 10-th order
line?. pi idictor with a transfer function of

- 10 „ .
Λ(ζ)=-Σα.·^·

ί»1
(10)

The bandwidth expansion module 45 then moves the roots of this polynomial radially toward the
z-plane original in- a way similar to the module 51 in Figure 5/G.728. The resulting bandwidth-
expanded gain predictor has a transfer function of

RU^-ZaiZ-1. (11)
i-1

where the coefficients α,-’s are computed as
(29 Y ·
~ 0, = (0.90625)1¾ . · (12)

Such bandwidth expansion makes the gain adapter (block 20 in Figure 2/G.728) more robust to
channel errors. These eq’s are then used as the coefficients of the log-gain linear predictor (block
46 of Figure 6/G.728).

- 26 -

This predictor 46 is updated once every 4 speech vectors, and the updates take place at the
second speech vector of every 4-vector adaptation cycle. The predictor attempts to predict δ(η)
based on a linear combination of δ(π-1), 5(λ-2) δ(π-10). The predicted version of δ(π) is
denoted as 8(n) and is given by

io
3(n)=-£a,5(n-r) .

i«l
(13)

After 8(n) has been produced by the log-gain linear predictor 46, we add back the log-gain
offset value of 32 dB stored in 41. The log-gain limiter 47 then checks the resulting log-gain value
and clips it if the value is unreasonably large or unreasonably small The lower and upper limits
are set to 0 dB and 60 dB, respectively. The gain limiter output is then fed to die inverse
logarithm calculator 48, which reverses the operation of the logarithm calculator 40 and converts
the gain from the dB value to the linear domain. The gain limiter ensures that the gain in the

•.; ’ * · linear domain is in between 1 and 1000.
:’·’·· 3.9 Codebook Search Module

In Figure 2/G.728, blocks 12 through 18 constitute a codebook search module 24. This
: ' ! module searches through the 1024 candidate codevectors in the excitation VQ codebook 19 and
·;···· identifies the index of the best codevector which gives a corresponding quantized speech vector

that is closest to the input speech vector.

To reduce the codebook search complexity, the 10-bit, 1024-entiy codebook is decomposed
.··;·. into two smaller codebooks: a 7-bit "shape codebook" containing 128 independent codevectors
” * and a 3-bit "gain codebook" containing 8 scalar values that are symmetric with respect to zero

.. .. (i.e., one b’t for sign, two bits for magnitude). The final output codevector is the product of the
: : best shape codevector (from the 7-bit shape codebook) and the best gain level (from the 3-bit gain

codebook). The 7-bit shape codebook table and the 3-bit gain codebook table are given in Annex
B.

3.9.1 Principle of Codebook Search

In principle, the codebook search module 24 scales each of the 1024 candidate codevectors by
the current excitation gain σ(η) and then passes the resulting 1024 vectors one at a time through a
cascaded filter consisting of the synthesis filter F(t) and the perceptual weighting filter W (z). The
filter memory is initialized to zero each time the module feeds a new codevector to the cascaded
filter with transfer function //(z)=F(z)H'(*)·

The filtering of VQ codevectors can be expressed in terms of matrix-vector multiplication.
Let yj be the j-th codevector in the 7-bit shape codebook, and let & be the i-th level in the 3-bit
gain codebook. Let (ft (n)} denote the impulse response sequence of the cascaded filter. Then,
when the codevector specified by the codebook indices i and j is fed to the cascaded filter H(z), the
filter output can be expressed as

ίν = Ησ(η)giy} , (14)

where

27 -

Ο

Ο

ο

Α(0) Ο Ο

Λ(I) Λ(Ο) Ο
Η= Α(2) Α(1) /1(0)

λ (3) /1(2) /1(1) Λ(0)

Ο
Ο

Ο

Ο
(15)

h (4) λ(3) λ (2) λ(1) Λ (0)

Since the term II χ(π) II2 and the value of cFfn) are fixed during the codebook search,
minimizing D is equivalent to minimizing

D = -2gipT(.n)yj + g]E} .

where

p(n) = Hrx(«) ,

and

E}= II Hy; II2.

The codebook search module 24 searches for the best combination of indices i and J which
minimizes the following Mean-Squared Error (MSE) distortion.

ΙΙχ(λ)-χ(; II 2 = o2(n) llx(n)-g;Hy; II2 , (16)

where x(n) =χ(η)/σ(η) is the gain-normalized VQ target vector. Expanding the terms gives us
• D = <?(/!)[||χ(η) II 2-2&xr(n)Hyy + g? II ||2] . (17)

(18)

(19)

(20)

Note that £) is actually the energy of the /-th filtered shape codevectors and does not depend
on the VQ target vector x(n). Also note that the shape codevector yj is fixed, and the matrix H
only depends on the synthesis filter and the weighting filter, which are fixed over a period of 4
speech vectors. Consequently, Ej is also fixed over a period of 4 speech vectors. Based on this
observation, when the two filters are updated, we can compute and store the 128 possible energy
terms Ej, j = 0, 1, 2........ 127 (corresponding to the 128 shape codevectors) and then use these
energy terms repeatedly for the codebook search during the next 4 speech vectors. This
arrangement reduces the codebook search complexity.

For further reduction in computation, we can precompute and store the two arrays

^ = 28ί (21)

and

ct=«? (22)

fori = 0,1,.... 7. These two arrays are fixed since g.'s are fixed. We can now express D as

b=-biP} + CiEj , (23)

where Pj=pT(n)yj.

Note that once the £}, bit and c,· tables are precomputed and stored, the inner product term
Pj - pT(n)y;, which solely depends on /, takes most of the computation in determining D. Thus,

- 28

the codebook search procedure steps through the shape codebook and identifies the best gain
’ index i for each shape codevectory}.

There are several ways to find the best gain index i for a given shape codevectory,·.

a. The first and the most obvious way is to evaluate the 8 possible D values corresponding to
the 8 possible values of i, and then pick the index i which corresponds to the smallest D.
However, this requires 2 multiplications for each/.

b. A second way is to compute the optimal gain g = Pj/Ej first, and then quantize this gain g to
one of the 8 gain levels {g0,.,,g7} in the 3-bit gain codebook. The best index i is the index
of the gain level gf which is closest to g. However, this approach requires a division
operation for each of the 128 shape codevectors, and division is typically very inefficient to
implement using DSP processors.

c· A third approach, which is a slightly modified version of the second approach, is
particularly efficient for DSP implementations. The quantization of g can be thought of as a

I .. series of comparisons between g and the "quantizer cell boundaries", which are the mid-
.····* points between adjacent gain levels. Let d; be the mid-point between gain level gt and gi+I
t * ! that have the same sign. Then, testing "g < </,·?" is equivalent to testing ”Pj < d;E[>".

·;···· Therefore, by using the latter test, we can avoid the division operation and still require only
one multiplication for each index i. This is the approach used in the codebook search. The

. .. gain quantizer cell boundaries < ’s are fixed and can be precomputed and stored in a table.
’ For the 8 gain levels, actually only 6 boundary values </0, di,d2. d4, d5, and d6 are used.

• · ·
** * Once the best indices i and J are identified, they are concatenated to form the output of the

t i t codebook search module — a single 10-bit best codebook index.
• · ·

3.9.2 Operation of Codebook Search Module

With the codebook search principle introduced, the operation of the codebook scan 5 module
’ 24 is now described below. Refer to Figure 2/G.728. Every time when the synthesis filter 9 and

the perceptual weighting filter 10 are updated, the impulse response vector calculator 12 computes
the first 5 samples of the impulse response of the cascaded filter F(z)W(z). To compute the
impulse response vector, we first set the memory of the cascaded filter to zero, then excite the filter
with an input sequence {1,0,0,0,0}. The corresponding 5 output samples of the filter are A (0),
Λ (1)...... A (4), which constitute the desired Impulse response vector. After this impulse response
vector is computed, it will be held constant and used in the codebook search for the following 4
speech vectors, until the filters 9 and 10 are updated again.

Next, the shape codevector convolution module 14 computes the 128 vectors Hyy, j = 0,1.2.
.... 127. In other words, it convolves each shape codevector yh J=0,1,2.......127 with the impulse
response sequence A(0), A(l),.,, A (4), where the convolution is only performed for the first 5
samples. The energies of the resulting 128 vectors are then computed and stored by the energy
table calculator 15 according to equation (20). The energy of a vector is defined as the sum of the
squared value of each vector component

Note that the computations in blocks 12.14, and 15 are performed only once every 4 speech
vectors, while the other blocks in the codebook search module perform computations fo,r each

- 29 -

speech vector. Also note that the updates of the E; table is synchronized with the updates of the
synthesis filter coefficients. That is. the new E} table will be used starting from the third speech
vector of every adaptation cycle. (Refer to the discussion in Section 3.7.)

The VQ target vector normalization module 16 calculates the gain-normalized VQ target
vector x(n)=x(n)/o(n). In DSP implementations, it is more efficient to first compute 1/σ(η), and
then multiply each component of x(n) by 1/σ(«).

Next, the time-reversed convolution module 13 computes the vector p(n) = Hrx(n). This
operation is equivalent to first reversing the order of the components of x(n), then convolving the
resulting vector with the impulse response vector, and then reverse the component order of the
output again (and hence the name "time-reversed convolution").

Once Ej, bh and c,· tables are precomputed and stored, and the vector p (n) is also calculated,
then the error calculator 17 and the best codebook index selector 18 work together to perform the
following efficient codebook search algorithm.

a. Initialize to a number larger than the largest possible value of D (or use the largest
possible number of the DSP’s number representation system).

b. Set the shape codebook index)=0

c. Compute the inner product Pj-p'(nty.

d. If Pj < 0, go to step h to search through negative gains; otherwise, proceed to step e to
search through positive gains.

e. If Pj < d0Ej, set i = 0 and go to step k; otherwise proceed to step f.

f. If Pj<d i Ε}, set i = 1 and go to step k; otherwise proceed to step g.

g. Iff; < d2Ej, set i = 2 and go to step k; otherwise set / = 3 and go to step k.

h. If Pj > dAE}, set i = 4 and go to step k; otherwise proceed to step i.

i. Iff; > d5Ej, set ί = 5 and go to step k; otherwise proceed to step j.

j. If f;> defy set/ = 6; otherwise set/ = 7.

k. ComputeD=-i;f;+ c,E;

l. lfD<Daia,thaisetbaia = b,imia = i,3iidJmia=j.

m. If j < 127, set j=j+1 and go to step 3; otherwise proceed to stepn.

n. When the algorithm proceeds to here, all 1024 possible combinations of gains and shapes
have been searched through. The resulting imin, and Jmia are the desired channel indices for
the gain and the shape, respectively. The output best codebook index (10-bit) is the
concatenation of these two indices, and the corresponding best excitation codevector is
y(n) = The selected 10-bit codebook index is transmitted through the
communication channel to the decoder:

30 -

3.10 Simulated Decoder

• · ·
β · · ·

• ·
• ···«

• ft ft
• · ·
• · ft ·

• ft ·
• ft
• e ·

• · · ft• ·• ft

ft ft

• ·
• · · ft ·

Although the encoder has identified and transmitted the best codebook index so far, some
additional tasks have to be performed in preparation for the encoding of the following speech
vectors. First, the best codebook index is fed to the excitation VQ codebook to extract the
corresponding best codevector y(n)This best codevector is then scaled by the current
excitation gain σ(«) in the gain stage 21. The resulting gain-scaled excitation vector is
e(n) = o(n)y(n).

This vector e (n) is then passed through the synthesis filter 22 to obtain the current quantized
speech vector Note that blocks 19 through 23 form a simulated decoder 8. Hence, the
quantized speech vector ^(n) is actually the simulated decoded speech vector when there are no
channel errors. In Figure 2/G.728, the backward synthesis filter adapter 23 needs this quantized
speech vector sq(n) to update the synthesis filter coefficients. Similarly, the backward vector gain
adapter 20 needs the gain-scaled excitation vector e(n) to update the coefficients of the log-gain
linear predictor.

One last task before proceeding to encode the next speech vector is to update the memory of
the synthesis filter 9 and the perceptual weighting filter 10. To accomplish this, we first save the
memory of filters 9 and 10 which was left over after performing the zero-input response
computation described in Section 3.5, We then set the memory of filters 9 and 10 to zero and
close the switch 5, i.e., connect it to node 7. Then, the gain-scaled excitation vector e (n) is passed
through the two zero-memory filters 9 and 10. Note that since «(n) is only 5 samples long and the
filters have zero memory, the number of multiply-adds only goes up from 0 to 4 for the 5-sample
period. This is a significant saving in computation since there would be 70 multiply-adds per
sample if the filter memory were not zero. Next, we add the saved original filter memory back to
the newly established filter memory after filtering e(n). This in effect adds the zero-input
responses to the zero-state responses of the filters 9 and 10. This results in the desired set of filter
memory which will be used to compute the zero-input response during the encoding of the next
speech vector. .

Note that after the filter memory update, the top 5 elements of the memory of the synthesis
filter 9 are exactly the same as the components of the desired quantized speech vector s?(n).
Therefore, we can actually omit the synthesis filter 22 and obtain i,(n) from the updated memory
of the synthesis filter 9. This means an additional saving of 50 multiply-adds per sample.

The encoder operation described so far specifies the way to encode a single input speech
vector. The encoding of the entire speech waveform is achieved by repeating the above operation
for every speech vector.

3 JI Synchronization & In-band Signalling

In the above description of the encoder, it is assumed that the decoder knows the boundaries of
the received 10-bit codebook indices and also knows when the synthesis filter and the log-gain
predictor need to be updated (recall that they arc updated once every 4 vectors). In practice, such
synchronization information can be made available to the decoder by adding extra
synchronization bits on top of the transmitted 16 kbit/s bit stream. However, in many applications
there is a need to insert synchronization or in-band signalling bits as part of the 16 kbit/s bit

- 31 -

stream. This can be done in the following way. Suppose a synchronization bit is to be inserted
once every N speech vectors: then, for every //-th input speech vector, we can search through only
half of the shape codebook, and produce a 6-bit shape codebook index. In this way, we rob one bit
out of every //-th transmitted codebook index and insert a synchronization or signalling bit
instead.

It is important to note that we cannot arbitrarily rob one bit out of an already selected 7-bit
shape codebook index, instead, the encoder has to know which speech vectors will be robbed one
bit and then search through only half of the codebook for those speech vectors. Otherwise, the
decoder will not have the same decoded excitation codevectors for those speech vectors.

Since the coding algorithm has a basic adaptation cycle of 4 vectors, it is reasonable to let/V be
a multiple of 4 so that the decoder can easily determine the boundaries of the encoder adaptation
cycles. For a reasonable value of // (such as 16, which corresponds to a 10 milliseconds bit
robbing period), the resulting degradation in speech quality is essentially negligible. In particular,
we have found that a value of //=16 results in little additional distortion. The rate of this bit
robbing is only 100 bits/s.

If the above procedure is followed, we recommend that when the desired bit is to be a 0, only
the first half of the shape codebook be searched, i.e. those vectors with indices 0 to 63. When the
desired bit is a 1, then the second half of the codebook is searched and the resulting index will be
between 64 and 127. The significance of this choice is that the desired bit will be the leftmost bit
in the codeword, since the 7 bits for the shape codevector precede the 3 bits for the sign and gain
codebook. We further recommend that the synchronization bit be robbed from the last vector in a
cycle of 4 vectors. Once it is detected, the next codeword received can begin the new cycle of
codevectors.

Although we state that synchronization causes very little distortion, we note that no formal
testing has been done on hardware which contained this synchronization strategy. Consequently,
the amount of the degradation has not been measured.

However, we specifically recommend against using the synchronization bit for
synchronization in systems in which the coder is turned on and off repeatedly. For example, a
system might use a speech activity detector to turn off the coder when no speech were present
Each time ths encoder was turned on, the decoder would need to locate the synchronization
sequence. At 100 bits/s, this would probably take several hundred milliseconds. In addition, time
must be allowed for the decoder state to track the encoder state. The combined result would be a
phenomena known as front-end clipping in which the beginning of the speech utterance would be
lost If the encoder and decoder are both started at the same instant as the onset of speech, then no
speech will be lost This is only possible in systems using external signalling for the start-up
times and external synchronization.

32 -

4. LD-CELP DECODER PRINCIPLES ‘

Figure 3/G.728 is a block schematic of the LD-CELP decoder. A functional description of
each block is given in the following sections.

4.1 Excitation VQ Codebook

This block contains an excitation VQ codebook (including shape and gain codebooks)
identical to the codebook 19 in the LD-CELP encoder. It uses the received best codebook index
to extract the best codevectory(n) selected in the LD-CELP encoder.

42 Gain Scaling Unit

This block computes the scaled excitation vector e (λ) by multiplying each component of y (n)
by the gain σ(η). ·

43 Synthesis Filter

This filter has the same transfer function as the synthesis filter in the LD-CELP encoder
(assuming error-free transmission). It filters the scaled excitation vector e(«) to produce the
decoded speech vector sd(n). Note that in order to avoid any possible accumulation of round-off
errors during decoding, sometimes it is desirable to exactly duplicate the procedures used in the
encoder to obtain sq(n). If this is the case, and if the encoder obtains s/n) from the updated
memory of the synthesis filter 9, then the decoder should also compute sd(n) as the sum of the
zero-input response and the zero-state response of the synthesis filter 32, as is done in the encoder.

4.4 Backward Vector Gain Adapter

The function of this block is described in Section 3.8.

45 Backward Synthesis Filter Adapter

The function of this block is described In Section 3.7.

4.6 Postfilter

This block filters the decoded speech to enhance the perceptual quality. This block is further
expanded in Figure 7/G.728 to show more details. Refer to Figure 7/G.728. The postfilter
basically consists of three major parts: (1) long-term postfilter 71, (2) short-term postfilter 72, and
(3) output gain scaling unit 77. The other four blocks in Figure 7/G.728 are just to calculate the
appropriate scaling factor for use in the output gain scaling unit 77.

The long-term postfilter 71, sometimes called the pitch postfilter, is a comb filter with its
spectral peaks located at multiples of the fundamental frequency (or pitch frequency) of the speech
to be postfiltered. The reciprocal of the fundamental frequency is called the pitch period. The
pitch period can be extracted from the decoded speech using a pitch detector (or pitch extractor).
Let p be the fundamental pitch period (in samples) obtained by a pitch detector, then the transfer
function of the long-term postfilter can be expressed as

Hfa^gdfi + bz-?). (24)

where the coefficients gt, b and the pitch period p are updated once every 4 speech vectors (an
adaptation cycle) and the actual updates occur at the third speech vector of each adaptation cycle.

- 33 -

For convenience, we will from now on call an adaptation cycle a frame. The derivation of b,
and p will be described later in Section 4.7.

The short-term postfilter 72 consists of a lOth-order pole-zero filter in cascade with a first-
order all-zero filter. The lOth-order pole-zero filter attenuates the frequency components between
formant peaks, while the first-order all-zero filter attempts to compensate for the spectral tilt in the
frequency response of the lOth-order pole-zero filter.

Let 5f, i = 1,2,...,10 be the coefficients of the lOth-order LPC predictor obtained by backward
LPC analysis of the decoded speech, and let k t be the first reflection coefficient obtained by the
same LPC analysis. Then, both 5,’s and k\ can be obtained as by-products of the 50th-order
backward LPC analysis (block 50 in Figure 5/G.728). All we have to do is to stop the 50th-order
Levinson-Durbin recursion at order 10, copy itI and ax, 52,..., a 10, and then resume the Levinson-
Durbin recursion from order 11 to order 50. The transfer function of the short-term postfilter is

10
ι-ΣΑζ-4·

u ri i ii --1i (25)
i-Σ^·

where

1=1

6,=5,-(0.65)7/=1.2.... 10, (26)

and

5,- = 5,-(0.75)7/ = 1,2.... 10, (27)

μ=(0.15)*! (28)

The coefficients 5,’s, 6/s, and μ are also updated once a frame, but the updates take place at the
first vector of each frame (i.e. as soon as afs become available).

In general, after the decoded speech is passed through the long-term postfilter and the short­
term postfilter, the filtered speech will not have the same power level as the decoded (unfiltered)
speech. To avoid occasional large gain excursions, it is necessary to use automatic gain control to
force the postfiltered speech to have roughly the same power as the unfiltered speech. This is
done by blocks 73 through 77.

The sum of absolute value calculator 73 operates vector-by-vector It takes the current
decoded speech vector j^n) and calculates the sum of the absolute values of its 5 vector
components. Similarly, the sum of absolute value calculator 74 performs the same type of
calculation, but on the current output vector r/n) of the short-term postfilter. The scaling factor
calculator 75 then divides the output value of block 73 by the output value of block 74 to obtain a
scaling factor for the current s/λ) vector. This scaling factor is then filtered by a first-order
lowpass filter 76 to get a separate scaling factor for each of the 5 components of z/n). The first-
order lowpass filter 76 has a transfer function of 0.01/(1-0.99z“l). The lowpass filtered scaling
factor is used by the output gain scaling unit 77 to perform sample-by-sample scaling of the
short-term postfilter output Note that since the scaling factor calculator 75 only generates one
scaling factor per vector, it would have a stair-case effect on the sample-by-sample scaling

- 34 -

operation of block 77 if the lowpass filter 76 were not present The lowpass filter 76 effectively
smoothes out such a stair-case effect

• ·• ·• · · ·
• · · e

e ·• ·• · · ·
• · ·• ·

• · ·
• · ·
• · · ·

• · · ·
• · ·

·· ··
• · ·
• ·

• ·· · ·

(29)

4.6.1 Non-speech Operation CCITT objective test results indicate that for some non-speech
signals, the performance of the coder is improved when the adaptive postfilter is turned off. Since
the input to the adaptive postfilter is the output of the synthesis filter, this signal is always
available. In an actual implementation this unfiltered signal shall be output when the switch is set
to disable the postfilter.

4.7 Postfilter Adapter

This block calculates and updates the coefficients of the postfilter once a frame. This postfilter
adapter is further expanded in Figure 8/G.728.

Refer to Figure 8/G.728. The lOth-order LPC inverse filter 81 and the pitch period extraction
module 82 work together to extract the pitch period from the decoded speech. In fact, any pitch
extractor with reasonable performance (and without introducing additional delay) may be used
here. What we described here is only one possible way of implementing a pitch extractor.

The lOth-order LPC inverse filter 81 has a transfer function of
_ io
A(z)=l-£^.

i-l

where the coefficients 5,’s are supplied by the Levinson-Durbin recursion module (block 50 of
Figure 5/G.728) and are updated at the first vector of each frame. This LPC inverse filter takes the
decoded speech as its input and produces the LPC prediction residual sequence (4(/:)) as its
output We use a pitch analysis window size of 100 samples and a range of pitch period from 20
to 140 samples. The pitch period extraction module 82 maintains a long buffer to hold the last
240 samples of the LPC prediction iesiduaL For indexing convenience, the 240 LPC residual
samples stored in the buffer are indexed as 4(-139), </(-138),„.,</(100).

The pitch period extraction module 82 extracts the pitch period once a frame, and the pitch
period is extracted at the third vector of each frame. Therefore, the LPC inverse filter output
vectors should be stored into the LPC residual buffer in a special order the LPC residual vector
corresponding to the fourth vector of the last frame is stored as 4(81), 4(82), „.,4 (85), the LPC
residual of the first vector of the current frame is stored as d (86), d (87),..., d (90), the LPC residual
of the second vector of the current frame is stored as d (91), d (92),.... d (95), and the LPC residual of
the third vector is stored as 4(96), 4(97),..., 4(100). The samples 4(-139), 4(-138),..„4(80) are
simply the previous LPC residual samples arranged in the correct time order.

Once the LPC residual buffer is ready, the pitch period extraction module 82 works in the
following way. First, the last 20 samples of the LPC residual buffer (4(81) through 4(100)) are
lowpass filtered at 1 kHz by a third-order elliptic filter (coefficients given in Annex D) and then
4:1 decimated (i.e. down-sampled by a factor of 4). This results in 5 lowpass filtered and
decimated LPC residual samples, denoted 4(21), 4(22),4(25), which are stored as the last 5
samples in a decimated LPC residual buffer. Besides these 5 samples, the other 55 samples
4(-34), 4(-33).... 4(20) in the decimated LPC residual buffer are obtained by shifting previous
frames of decimated LPC residual samples. The /-th correlation of the decimated LPC residual

- 35 -

samples are then computed as

' Ρ(Ο=Σ5(π)5(λη) (30)
Λ al

for time lags i = 5, 6, 7......35 (which correspond to pitch periods from 20 to 140 samples). The
time lag τ which gives the largest of the 31 calculated correlation values is then identified. Since
this time lag τ is the lag in the 4:1 decimated residual domain, the corresponding time lag which
gives the maximum correlation in the original undecimated residual domain should lie between
4τ-3 and 4τ+3. To get the original time resolution, we next use the undecimated LPC residual
buffer to compute the correlation of the undecimated LPC residual

100
C(i)=z<W)W-V (31)

t=l

for 7 lags i = 4τ-3,4τ-2..... 4τ+3. Out of the 7 tlr.; lags, the lag p0 that gives the largest correlation
i is identified.ft ·· ft

The lag Pq found way may out t0 a multiple of the true fundamental pitch
\·**. period. What we need in the long-term postfilter is the true fundamental pitch period, not any
;·.··, multiple of it Therefore, we need to do more processing to find the fundamental pitch period. We
* * make use of the fact that we estimate the pitch period quite frequently — once every 20 speech

samples. Since the pitch period typically varies between 20 and 140 samples, our frequent pitch
estimation means that, at the beginning of each talk spurt, we will first get the fundamental pitch
period before the multiple pitch periods have a chance to show up in the correlation peak-picking

.····. process described above. From there on, we will have a chance to lock on to the fundamental
*’ * pitch period by checking to see if there is any correlation peak in the neighborhood of the pitch

period of the previous frame.
ft ft ft
* * Let p be the pitch period of the previous frame. If the time lag p0 obtained above is not in the
, „ neighborhood of p, then we also evaluate equation (31) for i = p-6, p-5 p+5, p+6. Out of these
ί “ * ’ 13 possible time lags, the time lag p i that gives the largest correlation is identified. We then test

to see if this new lag p! should be used as the output pitch period of the current frame. First, we
compute .

100
Σ4(*)4(*-ρ0)

' = -----------------------------· <32>

£rf(^o)4(*-Po) ·

which is the optimal tap weight of a single-tap pitch predictor with a lag of po samples. The value
of βο is then clamped between 0 and 1, Next, we also compute

too
ZdikMk-pO

' · <33>

t,d(k-pl)d(k-px)

t=i

which is the optimal tap weight of a single-tap pitch predictor with a lag of p t samples. The value

- 36 -

of β1 is then also clamped between 0 and 1. Then, the output pitch period p of block 82 is given
by

>o ΐίβι ^Ο.4βο

Pi ΐίβι>0.4βο (34)

After the pitch period extraction module 82 extracts the pitch period p, the pitch predictor tap
calculator 83 then calculates the optimal tap weight of a single-tap pitch predictor for the decoded
speech. The pitch predictor tap calculator 83 and the long-term postfilter 71 share a long buffer of
decoded speech samples. This buffer contains decoded speech samples sX-239), sX-238),
sX-237) srf(4), sj(5), where jrf(l) through jrf(5) correspond to the current vector of decoded
speech. The long-tenn postfilter 71 uses this buffer as the delay unit of the filter. On the other
band, the pitch predictor tap calculator 83 uses this buffer to calculate

Σ ^)sj(k-p)

Σ s/k-p}sd(k-p)
k*-99

The long-term postfilter coefficient calculator 84 then takes the pitch period p and the pitch
predictor tap β and calculates the long-tenn postfilter coefficients b and gt as follows.

b =

0 ifp<0.6
0.15 β ■ if 0.6 S β S 1
0.15 ifp>l

(36)

In general, the closer β is to unity, the more periodic the speech waveform is. As can be seen
in equations (36) and (37), if β < 0.6, which roughly corresponds to unvoiced or transition regions
of speech, then b = 0 and gt = 1, and the long-term postfilter transfer function becomes Hfa) = 1,
which means the filtering operation of the long-tenn postfilter is totally disabled. On the other
hand, if 0.6ίβ£ 1, the long-tenn postfilter is turned on, and the degree of comb filtering is
determined by β. The more periodic the speech waveform, the more comb filtering is performed.
Finally, if β > 1, then b is limited to 0.15; this is to avoid too much comb filtering. The coefficient
gt is a scaling factor of the long-term postfilter to ensure that the voiced regions of speech
waveforms do not get amplified relative to the unvoiced or transition regions. (If gi were held
constant at unity, then after the long-tenn postfiltering, the voiced regions would be amplified by a
factor of 1+6 roughly. This would make some consonants, which correspond to unvoiced and
transition regions, sound unclear or too soft)

The short-term postfilter coefficient calculator 85 calculates the short-term postfilter
coefficients afs, 6,’s, and μ at the first vector of each frame according to equations (26), (27), and
(28).

- 37 -

4.8 Output PCM Format Conversion

’ This block converts the 5 components of the decoded speech vector into 5 corresponding A-
law or μ-law PCM samples and output these 5 PCM samples sequentially at 125 gs time intervals.
Note that if the internal linear PCM format has been scaled as described in section 3.1.1, the
inverse scaling must be performed before conversion to A-law or μ-law PCM.

5. COMPUTATIONAL DETAILS

This section provides the computational details for each of the LD-CELP encoder and decoder
elements. Sections 5.1 and 5.2 list the names of coder parameters and internal processing
variables which will be referred to in later sections. The detailed specification of each block in
Figure 2/G.728 through Figure 6/G.728 is given in Section 5.3 through the end of Section 5. To
encode and decode an input speech vector, the various blocks of the encoder and the decoder are
executed in an order which roughly follows the sequence from Section 5.3 to the end.

• ·• ·
• · · · 5.7 Description of Basic Coder Parameters
«••a

.. The names of basic coder parameters are defined in Table 1/G.728. In Table 1/G.728, the first
‘ · · · column gives the names of coder parameters which will be used in later detailed description of the

* ' LD-CELP algorithm. If a parameter has been referred to in Section 3 or 4 but was represented by
·;···· a different symbol, that equivalent symbol will be given in the second column for easy reference.

Each coder parameter has a fixed value which is determined in the coder design stage. The third
. .., column shows these fixed parameter values, and the fourth column is a brief description of the

coder parameters.
• · ·«· · ■

• · « ·
• a a
a a

a a a a ·

- 38 -

Table 1/G.728 Basic Coder Parameters of LD-CELP

Name Equivalent
Symbol Value Description

AGCFAC 0.99 AGO adaptation speed controlling factor
FAC λ 253/256 Bandwidth expansion factor of synthesis filter
FACGP 29/32 Bandwidth expansion factor of log-gain predictor
DIMINV 02 Reciprocal of vector dimension
IDIM 5 Vector dimension (excitation block size)
GOFF 32 Log-gain offset value
KPDELTA 6 Allowed deviation from previous pitch period
KPMIN 20 Minimum pitch period (samples)
KPMAX 140 Maximum pitch period (samples)
LPC 50 Synthesis filter order ,
LPCLG 10 Log-gain predictor order
LPCW 10 Perceptual weighting filter order
NCWD 128 Shape codebook size (no. of codevectors)
NFRSZ 20 Frame size (adaptation cycle size in samples)
NG 8 Gain codebook size (no. of gain levels)
NONR 35 No. of non-recursive window samples for synthesis filter
NONRLG 20 No. of non-recursive window samples for log-gain predictor
NONRW 30 No. of non-recursive window samples for weight- g filter
NPWSZ ίύΌ Pitch analysis window size (samples)
NUPDATE 4 Predictor update period (in terms of vectors)
PPFTH 0.6 Tap threshold for turning off pitch postfilter
PPFZCF 0.15 Pitch postfilter zero controlling factor
SPFPCF 0.75 Short-term postfilter pole controlling factor
SPFZCF 0.65 Short-term postfilter zero controlling factor
TAPTH 0.4 Tap threshold for fundamental pitch replacement
T1LTF 0.15 Spectral tilt compensation controlling factor
WNCF 257/256 White noise correction factor
WPCF ■ft 0.6 Pole controlling factor of perceptual weighting filter
WZCF ft 0.9 Zero controlling factor of perceptual weighting filter

52 Description of Internal Variables

The internal processing variables of LD-CELP are listed in Table 2/G.728, which has a layout
similar to Table 1/G.728. The second column shows the range Of index in each variable array. The
fourth column gives the recommended initial values of the variables. The initial values of some
arrays are given in Annexes A, B or C. It is recommended (although not required) that the
internal variables be set to their initial values when the encoder or decoder just starts running, or
whenever a reset of coder states is needed (such as in DCME applications). These initial values
ensure that there will be no glitches right after start-up or resets.

Note that some variable arrays can share the same physical memory locations to save memory
space, although they are given different names in the tables to enhance clarity.

As mentioned in earlier sections, the processing sequence has a basic adaptation cycle of 4
speech vectors. The variable ICOUNT is used as the vector index. In other words, ICOUNT = n
when the encoder or decoder is processing the n-th speech vector in an adaptation cycle.

- 39 -

Table 2/G.728 LD-CELP Internal Processing Variables

* NR = Max(LPCWLPCLG) > IDIM
ΙΡΙΝΓΤ = NPWSZ-NFRSZ+IDIM

Name Array Index
Range

Equivalent
Symbol

Initial
Value Description

A 1 toLPC+1 -α,-ι 1.0.0,... Synthesis filter coefficients
AL Lto3 Annex D 1 kHz lowpass filter denominator coeff.
AP Ito 11 -^i-l 1,0,0,... Short-term postfilter denominator coeff.
APF Ito 11 -5,--1 1,0,0,.,. lOth-order LPC filter coefficients
ATMP 1 toLPC+1 -α,·_ι Temporary buffer for synthesis filter coeff.
AWP ItoLPCW+l 1.0.0,... Perceptual weighting filter denominator coeff.
AWZ ItoLPCW+l 1.0,0,... Perceptual weighting filter numerator coeff.
AWZTMP ItoLPCW+l 1,0,0,... Temporary buffer for weighting filler coeff.
AZ 1 to 11 -A-i 1,0.0,... Short-term postfilter numerator coeff.
B 1 b 0 Long-term postfilter coefficient
BL 1 to 4 Annex D 1 kHz lowpass filter numerator coeff.
DEC -34 to 25 d(n) 0,0-..,0 4:1 decimated LPC prediction residual
D -139 to 100 d(k) 0,0,....0 LPC prediction residual
ET ItoIDIM e(n) 0,0,...,0 Gain-scaled excitation vector
FACV 1 toLPC+1 λ1’-1 AnnexC Synthesis filter BW broadening vector
FACGPV Ito LPCLG+1 λ;-> Annex C Gain predictor BW broadening vector
G2 Ito NG bi Annex B 2 times gain levels in gain codebook
GAIN 1 σ(η) Excitation gain
GB ItoNG-l d; Annex B Mid-point between adjacent gain levels
GL 1 gl 1 Long-term postfilter scaling factor
GP Ito LPCLG+1 -Oi-l 1,-1,0,0,... log-gain linear p redactor coeff.
GPTMP Ito LPCLG+1 -W-i temp, array for log-gain linear predictor coeff.
GQ 1 to NG gi Annex B Gain levels in the gain codebook
GSQ Ito NG Ci Annex B Squares of gain levels in gain codebook
GSTATE 1 toLPCLG δ(η) -32,-32,...,-32 Memory of the log-gain linear predictor
GTMP 1 to4 -32,-32,-32,-32 Temporary log-gain buffer
H ItoIDIM Λ(η) 1,0,0,0,0 Impulse response vector of F (z)W(z)
ICHAN 1 Best codebook index to be transmitted
ICOUNT 1 Speech vector counter (indexed from 1 to 4)
IG 1 i Best 3-bit gain codebook index
IP 1 1ΡΙΝΓΓ** Address pointer to LPC prediction residual
IS 1 .

J Best 7-bit shape codebook index
KP 1 P Pitch period of the current frame
KPI 1 P 50 Pitch period of the previous frame
PN ItoIDIM Pin) Correlation vector for codebook search
°TAP 1 β Pitch predictor tap computed by block 83
R ltoNR+1* Autocorrelation coefficients
RC Ito NR* Reflection coeff.. also as a scratch array
RCTMP Ito LPC Temporary buffer for reflection coeff.
REXP 1 toLPC+1 0,0-,0 Recursive part of autocorrelation, syn. filter
REXPLG Ito LPCLG+1 0,0-..,0 Recursive part of autocorrelation, log-gain pref.
REXPW ItoLPCW+l 0,0-..,0 Recursive part of autocorrelation, weighting filter

40

Table 2/G.728 LD-CELP Internal Processing Variables (Continued)

Name Array Index
Range

Equivalent
Symbol

Initial
Value Description

RTMP
S

ItoLPC+l
Ito IDIM s(n) 0.0—.0

Temporary buffer for autocorrelation coeff.
Uniform PCM input speech vector

SB 1 VuS* 0,0,....0 Buffer for previously quantized speech
SBLG I .’.,34 0,0,....0 Buffer for previous log-gain
SBW ltu» 0,0-,0 Buffer for previous input speech
SCALE
SCALEFIL

I
1 1

Unfiltered postfilter scaling factor
Lowpass filtered postfilter scaling factor

SD Ito IDIM *«(*) Decoded speech buffer
SPF
SPFPCFV

1 to IDIM
1 toll SPFPCF^ AnnexC

Postfiltered speech vector
Short-tenn postfilter pole controlling vector

SPFZCFV Ito 11 SPFZCF‘-' AnnexC Short-term postfilter zero controlling vector
SO 1 A-law or μ-law PCM input speech sample
su 1 su(k) Uniform PCM input speech sample
ST -239 to IDIM S,(n) 0,0,...,0 Quantized speech vector
STATELPC Ito LPC 0,0,...,0 Synthesis filter memory
STLPCI Ito 10 0.0—0 LPC inverse filter memory
STLPF lto3 0,0,0 1 kHz lowpass filter memory
STMP lto4*IDIM 0,0,..,0 Buffer for per. wt filter hybrid window
STPFFIR Ito 10 0,0-,0 Short-term postfiltcr memory, all-zero section
STPFUR 10 0,0.... 0 Short-term postfilter memory, all-pole section
SUMFIL
SUMUNFEL
SW

1
1

Ito IDIM v(n) ’

Sum of absolute value of postfiltered speech
Sum of absolute value of decoded speech
Perceptually weighted speech vector

TARGET Ito IDIM ί(η)^(η) (gain-normalized) VQ target vector
TEMP
TELTZ

Ito IDIM
I μ 0

scratch array for temporary working space
Short-term postfilter tilt-compensation coeff.

WFER ItoLPCW 0,0,...,0 Memory of weighting filter 4, all-zero portion
WIIR ItoLPCW 0,0—.0 Memory of weighting filter 4, all-pole portion
WNR 1 to 105 w„(k) Annex A Window function for synthesis filter
WNRLG Ito 34 *«(*) Annex A Window function for log-gain predictor
WNRW Ito 60 w„(k) Annex A Window function for weighting filter
WPCFV ltoLPCW+1 ΫΓ* Annex C Perceptual weighting filter pole controlling vector
WS
WZCFV

Ito 105
ltoLPCW+1 yr* AnnexC

Work Space array for intermediate variables
Perceptual weighting filter zero controlling vector

Y ltoIDIM*NCWD Annex B Shape codebook array
Y2 ItoNCWD Ei Energy of y; Energy of convolved shape codevector
YN 1 to IDIM y(«) Quantized excitation vector
ZIRWF1R ItoLPCW 0,0,..,0 Memory of weighting filter 10, all-zero portion
ZIRWIIR ItoLPCW 0.0—,0 Memory of weighting filter 10, all-pole portion

It should be noted that, for the convenience of Levinson-Durbin recursion, the first element of
A, ATMP, AWP, AWZ, and GP arrays are always 1 and never get changed, and, for iS2, the Mh
elements are the (t-l)-th elements of the corresponding symbols in Section 3.

In the following sections, the asterisk * denotes arithmetic multiplication.

*5

- 41 -

53 Input PCM Format Conversion (block 1)

Input: SO

Output: SU

Function: Convert A-law orp-law or 16-bit linear input sample to uniform PCM sample.

Since the operation of this block is completely defined in CCITT Recommendations G.721 or
G.7U, we will not repeat it here. However, recall from section 3.1.1 that some scaling may be
necessary to conform to this description’s specification of an input range of -4095 to +4095.

5.4 Vector Buffer (block 2)

Input: SU
• · · ■

Output:S• · · · * *
. · ·. Function: Buffer 5 consecutive uniform PCM speech samples to form a single 5-dimensional

Γ" speech vector.
• ·

• " '■ ' · ■■■.■ --- . ■ - ΙΓ-Ι--Ι11—. ■ mnrm. I mrr -- · ■ -.. . - ■ ·. i

’ ’ 5.5 Adapter for Perceptual Weighting Filter (block 3, Figure 4 (a)lG.728)

• ·• ·
”.. * The three blocks (36,37 and S8) in Figure 4 (a)/G.728 are now specified in detail below.
• · · .

HYBRID WINDOWING MODULE (block 36)• · ·
’ ; Input: STMP

. Output: R• · · · ·
Function: Apply the hybrid window to input speech and compute autocorrelation coefficients.

The operation of this module is now described below, using a "Fortran-like” style, with loop
boundaries indicated by indentation and comments on the right-hand side of ” I The following
algorithm is to be used once every adaptation cycle (20 samples). The STMP array holds 4
consecutive input speech vectors up to the second speech vector of the current adaptation cycle.
That is, STMP(l) through STMP(5) is the third input speech vector of the previous adaptation
cycle (zero initially), STMP(6) through STMP(IO) is the fourth input speech vector of the
previous adaptation cycle (zero initially), STMP(ll) through STMP(15) is the first input speech
vector of the current adaptation cycle, and STMP(16) through STMP(20) is the second input
speech vector of the current adaptation cycle.

- 42 -

N1=LPCW+NFRSZ ' | compute some constants (can be
N2=LPCW+NONRW | precomputed and stored in memory)
N3 =LPCW+NFRSZ+NONRW

For N=l,2,...,N2, do the next line
SBW(N)=SBW(N+NFRSZ) | shift the old signal buffer;

For N=l, 2,...,NFRSZ, do the next line
SBW(N2+N)=STMP(N) I shift in the new signal;

I SBW(N3) is the newest sample
K=1
For N=N3,N3-1,...,3,2,1, do the next 2 lines

WS(N)=SBW(N) * *WNRW(K) I multiply the window function
K=K+1

For 1=1,2,...,LPCW+1, do the next 4 lines
TMP=0.
For N=LPCW+1,LPCW+2.... Nl, do the next line

TMP=TMP+WS(N)*WS(N+1-I)
REXPW(I)=(l/2)*REXPW(I)+TMP I update the recursive component

For 1=1, 2,...,LPCW+1, do the next 3 lines
R(I)=REXPW(I)
For N=N1+1,Nl+2,...,N3, do the next line

R(I) =Rd)+WS(N) *WS(N+l-I) | add the non-recursive component

R(l)=R(1)*WNCF I white noise correction

:’·”·* LEVINSON-DURBIN RECURSION MODULE (block 37)

• ·
: Input: R (output of block 36)

Output AWZTMP

Function: Convert autocorrelation coefficients to linear predictor coefficients.

This block is executed once every 4-vector adaptation cycle. It is done at IC0UNT=3 after the
processing of block 36 has finished. Since the Levinson-Durbin recursion is well-known prior art,
the algorithm is given below without explanation.

- 43 -

If R(LPCW+1) - 0, go to LABEL

If R(l) < 0, go to LABCL

RC(1)=-R(2)/R(1)
AWZTMP(1)=1.
AWZTMP(2)=RC(1)
ALPHA=R(1)+R(2)*RC(1)
If ALPHA £ 0, go to LABEL

I Skip if zero
I
I Skip if zero signal.
I

I O
I First-order predictor
I
I Abort if ill-conditioned

For MINC=2,3,4,...,LPCW, do the following
SUM=0.
For IP=1,2,3,...,MINC, do the next 2 lines

Nl=MINC-IP+2
SUM=SUM+R(N1)’AWZTMP(IP)

I
RC(MINC)=-SUM/ALPHA I Reflection coeff.
MH=MINC/2+l I
For IP=2,3,4, ..., MH, do the next 4 lines

IB=MINC-IP+2
AT=AWZTMP(IP)+RC(MINC)’AWZTMP(IB) I
AWZTMP(IB)=AWZTMP(IB)+RC(MINC)’AWZTMP(IP) | Predictor coeff.
AWZTMP(IP)=AT |

AWZTMP(MINC+1)=RC(MINC)
ALPHA=ALPHA+RC(MINC)’SUM
If ALPHA £ 0, go to LABEL

Repeat the above for the next MINC

Exit this program

I Prediction residual energy.
I Abort if ill-conditioned.

I Program terminates normally
I if execution proceeds to
I here.

LABEL: If program proceeds to here, ill-conditioning had happened,
then, skip block 38, do not update the weighting filter coefficients
(That is, use the weighting filter coefficients of the previous
adaptation cycle.)

WEIGHTING FILTER COEFFICIENT CALCULATOR (block 38)

Input: AWZTMP

Output: AWZ, AWP

Function: Calculate the perceptual weighting filter coefficients from the linear predictor
coefficients for input speech.

This block is executed once every adaptation cycle. It is done at ICOUNT=3 after the processing
of block 37 has finished. , ■

- 44 -

»

» For 1=2,3,...,LPCW+1, do the next line |
AWP(I)=WPCFV(I)*AWZTMP(I) 1 Denominator coeff.

For 1=2,3,...,LPCW+1, do the next line |
AWZ(I)=WZCFV(I)»AWZTMP(I) 1 Numerator coeff.

5.6 Backward Synthesis Filter Adapter (block 23, Figure 5IG.728)

The three blocks (49,50, and 51) in Figure 5/G.728 are speci fled below.

• · 0
0 0 0

0 · 00

0 0
0 0 0 0 0
0

• 0 9
9 9 9

9 99 9

9 9 9 9
9 9 9
9 9

9

9 9

HYBRID WINDOWING MODULE (block 49)

Input: STTMP

Output RTMP

Function: Apply the hybrid window to quantized speech and compute autocoreelation
coefficients.

9 9 9
9 9 9
9 9 9 0

0 0 0 0
• 0 0

9 9 9

The operation of this block is essentially the same as in block 36, except for some
substitutions of parameters and variables-, for the sampling instant when the autocorrelation
coefficients are obtained. As described in Section 3. the autocorrelation coefficients are computed

9 9 9 9
9 9 9
9 9

based on the quantized speech vectors up to the last vector in the previous 4-vector adaptation
cycle. In other words, the autocorrelation coefficients used in the current adaptation cycle are
based on the information contained in the quantized speech up to the last (20-th) sample of the

9 9
9 9 99 9
9

previous adaptation cycle. (This is in fact how we define the adaptation cycle.) The STTMP array
contains the 4 quantized speech vectors of the previous adaptation cycle.

45

N1=LPC+NFRSZ | compute some constants (can be
N2=LPC+NONR | precomputed and stored in memory)
N3 =LPC+NFRSZ+NONR

For N=l,2,...,N2, do the next line
SB(N)=SB(N+NFRSZ) | shift the old signal buffer;

For N=l, 2,...,NFRSZ, do the next line
SB(N2+N)=STTMP(N) | shift in the new signal;

I SB(N3) is the newest sample
K=1
For N=N3,N3-1,...,3,2,1, do the next 2 lines

WS (N) =SB (N) *WNR(K) | multiply the window function
K=K+1

For 1=1,2,...,LPC+1, do the next 4 lines
TMP=0.
For N=LPC+1,LPC+2,...,N1, do the next line

TMP=TMP+WS(N)*WS(N+l-I) ,
REXP(I)=(3/4)*REXP(I)+TMP I update the recursive component

For 1=1, 2,...,LPC+1, do the next 3 lines
RTMP(I)=REXP(I)
For N=Nl+l,Nl+2, . ·. ,N3, do the next line

RTMP(I)=RTMP(I)+WS(N) *WS(N+1-1)
I add the non-recursive component

RTMP(1)=RTMP(1)*WNCF · | white noise correction

LEVINSON-DURBIN RECURSION MODULE (block 50) .

Input: RTMP

Output: ATMP

Function: Convert autocorrelation coefficients to synthesis filter coefficients.

The operation of this block is exactly the same as in block 37. except for some substitutions of
parameters and variables. However, special care should be taken when implementing this block.
As described in Section 3, although the autocorrelation RTMP array is available at the first vector
of each adaptation cycle, the actual updates of synthesis filter coefficients will not take place until
the third vector. This intentional delay of updates allows the real-time hardware to spread the
computation of this module over the first three vectors of each adaptation cycle. While this
module is being executed during the first two vectors of each cycle, the old set of synthesis filter
coefficients (the array "A") obtained in the previous cycle is still being used. This is why we need
to keep a separate array ATMP to avoid overwriting the old "A" array. Similarly, RTMP,
RCTMP, ALPHATMP, etc. are used to avoid interference to other Levinson-Durbin recursion
modules (blocks 37 and 44).

- 46 -

If RTMP(LPC+1) = 0, go to LABEL Skip if zero

If RTMP(l) 0, go to LABEL Skip if zero signal.

• ·• ·• 0 ··
• ••0
• 0• ·0 0 0 0

0 0 00 0

• ♦ ·• 0• · e
• · · ·• ·

RCTMP(l)=-RTMP(2)/RTMP(l)
ATMP{1)=1.
ATMP(2)=RCTMP(1)
ALPHATMP=R1MP(1)+RTMP(2)»RCTMP(1)
if ALPHATMP S 0, go to LABEL

First-order predictor

Abort if ill-conditioned

For MINC=2,3,4,...,LPC, do the following
SUM=0.
For IP=1,2,3,...,MINC, do the next 2 lines

Nl=MINC-IP+2
SUM=SUM+RTMP(Nl)*ATMP(IP)

RCTMP(MINC)=-SUM/ALPHATMP
MH=MINC/2+l
For IP=2,3,4,...,MH, do the next 4 lines

IB=MINC-IP+2
AT=AIMP(IP)+RCTMP(MINC)*ATMP(IB)
ATMP(IB)=ATMP(IB)+RCTMP(MINC)*ATMP(IP)
ATMP(IP)=AT

Reflection coeff.

Update predictor coeff.

ATMP(MINC+1)=RCTMP(MINC)
ALPHATMP=ALPHATMP+RCTMP (MINC)*SUM
If ALPHATMP SO, go to LABEL

Pred.
Abort

residual energy,
if ill-conditioned.

Repeat the above for the next MINC
Recursion completed normally
if execution proceeds to
here.

LABEL: If program proceeds to here, ill-conditioning had happened,
then, skip block 51, do not update the synthesis filter coefficients
(That is, use the synthesis filter coefficients of the previous
adaptation cycle.)

Exit this program

·.

• ·

• · · · • 0 ·• 0

• ·• · · · 0

BANDWIDTH EXPANSION MODULE (block 51)

Input: ATMP

Output: A

Function: Scale synthesis filter coefficients to expand the bandwidths of spectral peaks.

This block is executed only once every adaptation cycle. It is done after the processing of block
50 has finished and before, the execution of blocks 9 and 10 at ICOUNT=3 take place. When the
execution of this module is finished and ICOUNT=3, then we copy the ATMP array to the "A"
array to update the filter coefficients. »

■x

- 47 -

For 1=2,3,...,LPC+1, do the next line
ATMP(I)=FACV(I)* *ATMP (I)

Wait until IC0UNT=3, then
for 1=2,3,...,LPC+1, do the next line

A(I)=ATMP(I)

I scale coeff.

I Update coeff. at the third
I vector of each cycle.

5.7 Backward Vector Gain Adapter (block 20, Figure 6/G.728)

The blocks in Figure 6/G.728 are specified below. For implementation efficiency, some
blocks are described together as a single block (they are shown separately in Figure 6/G.728 just

*j’’· to explain the concept). All blocks in Figure 6/G.728 are executed once every speech vector,
j ·.... except for blocks 43,44 and 45, which are executed only when IC0UNT=2.
• · ·

I-VECTOR DELAY, RMS CALCULATOR, AND LOGARITHM CALCULATOR
: (blocks 67,39, and 40)

Input: ET• ··
Output ETRMS• · · ■ '• ♦ β
Function: Calculate the dB level of the Root-Mean Square (RMS) value of the previous gain­

.. ,, scaled excitation vector. .• · ·• · ■
When these three blocks are executed (which is before the VQ codebook search), the ET array
contains the gain-scaled excitation vector determined for the previous speech vector. Therefore,
the 1-vector delay unit (block 67) is automatically executed. (It appears in Figure 6/G.728 just to
enhance clarity.) Since the logarithm calculator immediately follow the RMS calculator, the
square root operation in the RMS calculator can be implemented as a "divide-by-two" operation to
the output of the logarithm calculator. Hence, the output of the logarithm calculator (the dB
value) is 10 * logio (energy of ET / IDIM). To avoid overflow of logarithm value when ET = 0
(after system initialization or reset), the argument of the logarithm operation is clipped to 1 if it is
too small Also, we note that ETRMS is usually kept in an accumulator, as it is a temporary value

_ which is immediately processed in block 42.

ETRMS = ET(1)*ET(1) I
For K=2,3, ...,IDIM, do the next line I Compute energy of ET.

ETRMS = ETRMS + ET(K)*ET(K)

ETRMS = ETRMS »DIMINV
If ETRMS < 1., set ETRMS = 1.
ETRMS = 10 * logic (ETRMS)

I Divide by IDIM.
I Clip to avoid log overflow.

I Compute dB value.

- 48 -

LOG-GAIN OFFSET SUBTRACTOR (block 42)

Input: ETRMS, GOFF

Output: GSTATE(1)

Function: Subtract the log-gain offset value held in block 41 from the output of block 40 (dB
gain level).

GSTATE(l) = ETRMS - GOFF

• 99
9 9 9

99 99

9 9
• ·· ··
•

• »·
9 9 9

9999

9 9 9 9
9 9 9
9 9

•

• ·

HYBRID WINDOWING MODULE (block 43)

Input: GTMP

Output: R

Function: Apply the hybrid window to offset-subtracted log-gain sequence and compute
autocorrelation coefficients.

0 · ·
• · ·
• · · ·

• * · ·
• · ·

• · ·

The operation of this block is very similar to block 36, except for some substitutions of
parameters and variables, and for the sampling instant when the autocorrelation coefficients are
obtained.

• ■ · ©
• · ·
• 4

An important difference between block 36 and this block is that only 4 (rather than 20) gain
sample is fed to this block each time the block is executed.

β ·
• · ·· ·
•

The log-gain predictor coefficients are updated at the second vector of each adaptation cycle.
The GTMP array below contains 4 offset-removed log-gain values, starting from the log-gain of
the second vector of the previous adaptation cycle to the log-gain of the first vector of the current
adaptation cycle, which is GTMP(1). GTMP(4) is the offset-removed log-gain value from the first
vector of the current adaptation cycle, the newest value.

- 49

• ·
• ·

β ·· ·

• 0 0 0

9 ·
• ·
• 0 ·

• ·
• ·

000000
• ·

0 0 ·
• · · ·

• 0 · ·
0 0 0

N1=LPCLG+NUPDATE
N2=LPCLG+NONRLG
N3 =LPCLG+NUPDATE+NONRLG

compute some constants (can be
precomputed and stored in memory)

For

For

K=1
For

For

For

N=l,2,...,N2, do the next
SBLG(N)=SBLG(N+NUPDATE)
N=l,2,...,NUPDATE, do the
SBLG(N2+N)=GTMP(N) the new signal;

is the newest sample

N=N3,N3-1,..., 3,2,1, do the next 2 lines
WS(N)=SBLG(N)*WNRLG(K) | multiply
K=K+1

the window function

1=1,2,...,LPCLG+1, do the next 4 lines
TMP=0.
For N=LPCLG+1, LPCLG-i 2, . . . ,N1, do the next line

TMP=TMP+WS(N)*WS(N+1-I)
REXPLG(I)=(3/4)*REXPLG(I)+TMP I update the recursive component

1=1,2,...,LPCLG+1, do the next 3 lines
R(I)=REXPLG(I) .
For N=N1+1,Nl+2,...,N3, do the next line

R(I)=R(I)+WS(N)*WS(N+l-I) I add the non-recursive component

R(1)=R(1)*WNCF I white noise correction

LEVINSON-DURBIN RECURSION MODULE (block 44)
• > «
» 0

00
• 0000
0

Input: R (output of block 43)

Output: GPTMP

Function: Convert autoconelation coefficients to log-gain predictor coefficients.

The operation of this block is exactly the same as in block 37, except for the substitutions of
parameters and variables indicated below: replace LPCW by LPCLG and AWZ by GP. This
block is executed only when IC0UNT=2, after block 43 is executed. Note that as the first step,
the value of R(LPCLG+1) will be checked. If it is zero, we skip blocks 44 and 45 without
updating the log-gain predictor coefficients. (That is, we keep using the old log-gain predictor
coefficients determined in the previous adaptation cycle.) This special procedure is designed to
avoid a very small glitch that would have otherwise happened right after system initialization or
reset In case the matrix is ill-conditioned, we also skip block 45 and use the old values.

BANDWIDTH EXPANSION MODULE (block 45)

Input: GPTMP

«

- 50 -

Function: Scale log-gain predictor coefficients to expand the bandwidths of spectral peaks.

Output: GP

This block is executed only when ICOUNT=2, after block 44 is executed.

For 1=2,3,...,LPCLG+1, do the next line
GP(I)=FACGPV(I)»GPTMP(I)

LOG-GAIN LINEAR PREDICTOR (block 46)

« ·
999·

• · · 9

• ·
• ·

9 999

• 9 ·

Input: GP.GSTATE

Output: GAIN

Function: Predict the current value of the offset-subtracted log-gain.

β

• ·

• ·
• ·

• · ·

« · · ·
• ·

• ® ·

GAIN = 0.
For I=LGLPC,LPCLG-1,...,3,2, do the next 2 lines

GAIN = GAIN - GP(I+1)«GSTATE(I)
GSTATE(I) = GSTATE(I-l)

GAIN = GAIN - GP(2)*GSTATE(1)
• · ·
• ·

• ·
• · · · ·

LOG-GAIN OFFSET ADDER (between blocks 46 and 47)

Input: GAIN, GOFF

Output: GAIN

Function: Add the log-gain offset value back to the log-gain predictor output

GAIN = GAIN +‘GOFF

LOG-GAIN LIMITER (block 47)

Input: GAIN

Output Cain

Function: Limit the range of the predicted logarithmic gain.

- 51

If GAIN <0., set GAIN = 0. | Correspond to linear gain 1.
If GAIN > 60,, set GAIN = 60, | Correspond to linear gain 1000.

INVERSE LOGARITHM CALCULATOR (block 48)

Input: GAIN

Output GAIN

Function: Convert the predicted logarithmic gain (in dB) back to linear domain.

GAIN = 10 (GA1Nn·^

• 90«

• 9

1 ···· 5 § Perceptual Weighting Filter
9 9 9
9 9 9

9 9 9 9
9 · 9 9
9 9 9
9 9

9
PERCEPTUAL WEIGHTING FILTER (block 4)

9 9 9
Input: S, AWZ, AWP

9 9 9
• 99 9

9 9 9 ·
• 9 9

Output SW
• 9 9

Function: Filter the input speech vector to achieve perceptual weighting.
• 9 9 9
9 9 9
• 9

• ·
9 9 9 9 9
•

For K=l,2,...,IDIM, do the following
SW(K) = S(K)
For J=LPCW, LPCW-1, .. .,3,2, do the next 2 lines

SW(K) = SW(K) + WFIR(J)’AWZ(J+1)
WFIR(J) = WFIR(J-l)

I All-zero part
I of the filter.

SW(K) = SW(K) + WFIR(l) *AWZ(2)
WFIR(l) = S(K)

1 Handle last one
I differently.

For J=LPCW,LPCW-1,...,3,2, do the next 2 lines
SW(K1=SW(K)-WIIR(J)*AWP(J+1)
WIIR(J)=WIIR(J-1)

1 All-pole part
I of the filter.

SW(K) =SW(K) -WIIR(l) *AWP(2)
WIIR(l) =SW(K)

I Handle last one
I differently.

Repeat the above for the next K

- 52 -

5.9 Computation of Zero-Input Response Vector·

Section 3.5 explains new a "zero-input response vector" r(«) is computed by blocks 9 and 10.
Now the operation of these ';wo blocks during this phase is specified below. Their operation
during the "memory update phase" will be described later.

SYNTHESIS FILTER (block 9) DURING ZERO-INPUT RESPONSE COMPUTATION

* · · ·
• · ·

Input: A, STATELPC

Output: TEMP
• · 9
• · ·
• · 6 ·

• ·

Function: Compute the zero-input response vector of the synthesis filter.
9 · · · ·
•

• 9 9
• 9 9 For K=l,2,...,IDIM, do the following

• 999

• · · « TEMP(K)=0.
9 9 0
9 9 For JsLPC,LPC-l,__ .3,2, do the next 2 lines

9 TEMP (K)=TEMP(K)-STATEDPC (J) *A(J+1) 1 Multiply-add.
STATEDPC(J)=STATELPC(J-1) Memory shift.

9 9 9
9 9 9
99 9 9

TEMP(K)=TEMP(K)-STATELPC(1)*A(2) Handle last one
9 99 9

9 9 9
9 9 ·

STATELPC(1)=TEMP(K) ' differently.

Repeat the ibove for the next K

PERCEPTUAL WEIGHTING FILTER DURING ZERO-INPUT RESPONSE COMPUTATION
(block 10)

Input: AWZ, AWP, ZIRWFIR, ZIRWIIR, TEMP computed above

Output: ZIR

Function: Compute the zero-input response vector of the perceptual weighting filter.

53 -

For K=l,2,...,IDIM, do the following
TMP = TEMP(K) '

For J=LPCW,LPCW-1,...,3,2, do the next 2 lines
TEMP’(K) = TEMP(K) + ZIRWFIR(J)*AWZ(J+1) | All-zero part
ZIRWFIR(J) = ZIRWFIR(J-l) 1 of the filter,

ΦΕΜΡ(Κ) = TEMP(K) + ZIRWFIR(l)*AWZ(2) | Handle last one
ZIRWFIR(l) = TMP

For J=LPCW,LPCW-1,...,3,2, do the next 2 lines
TEMP(K) =TEh.?(K)-ZIRWIIR(J)*AWP(J+1) | All-pole part
ZIRWIIR(J)=ZIRWIIR(J-1) 1 of the filter.

ZIR(K)=TEMP(K)-ZIRWIIR(l)*AWP(2) 1 Handle last one
ZIRWIIR(1)=ZIR(K) 1 differently.

• · ·
• · ·
• ο · ·

• ·

Repeat the above for the next X

e» ·*··

β · ·
• · ·
• · · ·

* a> · ·
5.10 VQ Target Vector Computation

• a

«

• 0

VQ TARGET VECTOR COMPUTATION (block 11)

• ·»
• · ·
• · · ·

··»·
» · *
• · ·

• · · ·

Input: SW, ZIR

Output:, TARGET

Function: Subtract the zero-input response vector from the weighted speech vector.
0 · ·
a a

Note: ZIR(K)=ZIRWIIR(IDIM+1-K) from block 10 above. It does not require a separate storage

a a
a a a a a
a

location.

For K=l,2,...,IDIM, do the next line
TARGET(K) = SW(K) - ZIR(K)

5.11 Codebook Search Module (block 24)

The 7 blocks contained within ihs codebook search module (block 24) are specified below.
Again, some blocks are described as a single block for convenience and implementation
efficiency. Blocks 12, 14, and 15 are executed once every adaptation cycle when ICOUNT=3,
while the other blocks are executed once every speech vector. ·

IMPULSE RESPONSE VECTOR CALCULATOR (block 12)

- 54 -

Input: A. AWZ, AWP

Output: H

Function: Compute the impulse response vector of (he cascaded synthesis filter and perceptual
weighting filter.

This block is executed when IC0UNT=3 and after the execution of block 23 and 3 is completed
(i.e., when the new sets of A, AWZ, AWP coefficients are ready).

TEMP(1)=1. I TEMP = synthesis filter memory
RC(1)=1. I RC = W(z) all-pole part memory
For K=2,3,...,IDIM, do the following

A0=0.
Al=0.
A2=0. '
For I=K,K-l,...,3,2, do the next 5 lines

TEMP(1)=AO
RC(1)=AO+A1+A2

Repeat the above indented section for the next K

TEMP(I)=TEMP(I-1)
RC(I)=RC(I-1)
A0=A0-A(I)*TEMP(I)
A1=A1+AWZ(I)‘TEMP(I)
A2=A2-AWP(I)*RC(I)

1
(Filtering.
1

·· ··
• · ·
• · ITMP=IDIM+1 .

For K=l,2,...<IDTM, do the next line
Η(K)=RC(XTMP-K)

···«

I Obtain h(n) by reversing
I the order of the memory of
I all-pole section of W(z)

SHAPE CODEVECTCR CONVOLUTION MODULE AND ENERGY TABLE CALCULATOR
(blocks 14 and 15)

Input: Η, Y

Output: Y2

Function: Convolve each shape codevector with the impulse response obtained in block 12,
then compute and store the energy of the resulting vector.

This block is also executed when IC0UNT=3 after the execution of block 12 is completed.

- 55 -

For J=l,2,...,NCWD, do the following
J1=(J-1)«IDIM
For K=l, 2, ...,IDIM, do the next 4 lines

K1=J1+K+1
TEMP(K)=0.
For 1=1,2,...,K, do the next line

TEMP(K)=TEMP(K)+H(I)»Y(K1-I)
Repeat the above 4 lines for the next K

I One codevector per loop.

I Convolution.

Y2(J)=0.
For K=l,2,...,IDIM, do ths next line

Y2 (J)=Y2(J)+TEMP(K)*TEMP(K) I Compute energy.

Repeat the above for the next J

J — VQ TARGET VECTOR NORMALIZATION (block 16)• · · · ·
• · ·
J::: ‘ Input: TARGET. GAIN
• e ·
........: Output TARGET
• ·

Function: Normalize the VQ target vector using the predicted excitation gain.
• · ·• · ·• · · ·
.··;·. TMP = 1. / GAIN .
” * For K=l,2,...,IDIM, do the next line

TARGET(K) = TARGET(K) * TMP

TIME-REVERSED CONVOLUTION MODULE (block 13)

Input H, TARGET (output from block 16)

Output PN

Function: Perform time-reversed convolution of the impulse response vector and the
norm alized VQ target vector (to obtain the vectorp (n)).

Note: The vector PN can be kept in temporary storage.

For K=l,2,...,IDIM, do the following
K1=K-1
PN(K)=0.
For J=K,K+l,...,IDIM, do the next line

PN(K)=PN(K)+TARGET(J)*H(J-Kl)

Repeat the above for the next K

V

56 -

ERROR CALCULATOR AND BEST CODEBOOK INDEX SELECTOR (blocks 17 and 18)

Input: PN, Y, Y2, GB, G2, GSQ

Output: IG, IS, ICHAN

Function: Search through the gain codebook and the shape codebook to identify the best
combination of gain codebook index and shape codebook index, and combine the two to obtain
the 10-bit best codebook index.

Notes: The variable COR used below is usually kept in an accumulator, rather than storing it in
memory. The variables IDXG and J can be kept in temporary registers, while IG and IS can be
kept in memory.

Initialize DISTM to the largest number representable in the hardware
Nl=NG/2
For J=l,2,...,NCWD, do the following

Jl=(J-l)*IDIM
COR=0.
For K=l,2,...,IDIM, do the next line (

COR=COR+PN{K)*Y(Jl+K) I Compute inner product Pj.

If COR > 0., then do the next 5 lines
IDXG=N1
For K=l, 2, ... ,N1-1, do the next 'if* statement

If COR < GB(K}*Y2(J), do the next 2 lines
IDXG=K I Best positive gain found.
GO TO LABEL

If COR 5 0., then do the next 5 lines
IDXG=KG
For K=Nl+l,Nl+2,...,NG-1, do the n^xt *if“ statement

If COR > GB(K)*Y2(J), do the next 2 li .s
IDXG=K I Best negative gain found.
GO TO LABEL

LABEL: D=-G2 (IDXG) *COR+GSQ(IDXGJ »Y2 (J) I Compute distortion D.

If D < DISIM, do the next 3 lines
DISTM=D ·
IG=IDXG
IS=J

I Save the lowest distortion
I and the best codebook
I indices so far.

Repeat the above indented section for the next J

ICHAN = (IS - 1) * NG + (IG - 1) I Concatenate shape and gain
I codebook indices.

Transmit ICHAN through communication channel. ■
For serial bit stream transmission, the most significant bit of ICHAN should be transmitted first.

- 57

If ICHAN is represented by the 10 bit word bgbtbibebsb^bibibiba, then the order of the
transmitted bits should be h9, and then bit and then bi, and finally b0. (bg is the most
significant bit.)

5.12 Simulated Decoder (block 8)

Blocks 20 and 23 have been described earlier. Blocks 19,21, and 22 are specified below.

EXCITATION VQ CODEBOOK (block 19)

Input: IG, IS

Output: YN

Function: Perform table look-up to extract the best shape codevector and the best gain, then
multiply them to get the quantized excitation vector.

NN = (IS-1)*IDIM
For K=l,2,...,IDIM, do the next line

YN(K) = GQ(IG) * Y(NN+K)

GAIN SCALING UNIT (block 21)

Input: GAIN, YN

Output: ET

Function: multiply the quantized excitation vector by the excitation gain.

For K=l,2,...,IDIM, do the next line
ET(K) = GAIN * YN(K)

SYNTHESIS FILTER (block 22)

Input: ET, A

Output ST

Function: Filter the gain-scaled excitation vector to obtain the quantized speech vector 1

As explained in Section 3, this block can be omitted and the quantized speech vector can be

- 58 -

obtained as a by-product of the memory update procedure to be described below. If, however, one
wishes to implement this block, anyway, a separate set of filter memory (rather than STATELPC)
should be used for this all-pole synthesis filter.

5.13 Filter Memory Update for Blocks 9 and 10

The following description of the filter memory update procedures for blocks 9 and 10 assumes
that the quantized speech vector ST is obtained as a by-product of the memory updates. To
safeguard possible overloading of signal levels, a magnitude limiter is built into the procedure so
that the filter memory clips at MAX and MIN, where MAX and MIN are respectively the positive
and negative saturation levels of A-law or μ-law PCM, depending on which law is used.

• ·
• ·
• · β

FILTER MEMORY UPDATE (blocks 9 and 10)

• · · 0

• ·
• ·
• · ·

• ·
• ·

β

•

•

Input: ET, A, AWZ, AWP, STATELPC, ZIRWFIR, ZIRWIIR

Output: ST, STATELPC, ZIRWFIR. ZIRWIIR

Function: Update the filter memory of blocks 9 and 10 and also obtain the quantized speech

• ·
• ·

• · ·

vector.

- 59 -

ZIRWFIR(1)=ET(1)
TEMP(1)=ET(1)
For K=2,3,...,IDIM, do. the following

A0=ET(K)
Al=0.
A2=0.

I ZIRWFIR now a scratch array.

For I=K,K-1,...,2,do the next 5
ZIRWFIR(I)=ZIRWFIR(I-1)
TEMP(I)=TEMP(1-1)
A0=A0-A(I)*ZIRWFIR(I)
A1=A1+AWZ'I) *ZIRWFIR(I)
A2 =A2-AWP(I)*TEMP(I)

ZIRWFIR(1)=A0
TEMP(1)=AO+A1+A2

lines

I
I Compute zero-state responses
I at various stages of the
I cascaded filter.

Repeat the above indented section for the next K

I Now update filter memory by adding
I zero-state responses to zero-input
I responses

For K=l,2,...,IDIM, do the next 4 lines·
STATELPC(K)=STATELPC(K)+ZIRWFIR(K)
If STATELPC(K) > MAX, set STATELPC(K) =MAX I Limit the range.
If STATELPC(K) < MIN, set STATELPC(K)=MIN I
ZIRWIIR (K) sZIRWIIR (K) +TEMP (K)

For 1=1,2,...,LPCW, do the next line
ZIRWFIR(I)=STATELPC(I)

I=IDIM+1
For K=l,2,...,IDIM, do the next line

ST (K)=STATELPC(I-K)

I Now set ZIRWFIR to the
I right value.

I Obtain quantized speech by
I reversing order of synthesis
I filter memory.

5.14 Decoder (Figure 3/G.728)

The blocks in the decoder (Figure 3/G.728) are described below. Except for the output PCM
format conversion block, all other blocks are exactly the same as the blocks in the simulated
decoder (block 8) in Figure 2/G.728.

The decoder only uses a subset of the variables in Table 2/G.728. If a decoder and an encoder
are to be implemented in a single DSP chip, then the decoder variables should be given different
names to avoid overwriting the variables used in the simulated decoder block of the encoder. For
example, to name the decoder variables, we can add a prefix "d" to the corresponding variable
names in Table 2/G.728. If a decoder is to be implemented as a stand-alone unit independent of
an encoder, then there is no need to change the variable names.

- 60 -

The following description assumes a stand-alone decoder. Again, the blocks are executed in
' the same order they are described below.

DECODER BACKWARD SYNTHESIS FILTER ADAPTER (block 33)

Input: ST

Output: A

Function: Generate synthesis filter coefficients periodically from previously decoded speech.

The operation of this block is exactly the same as block 23 of the encoder.

• · ·
• · · - . , - . . . -- . - . - . .
«90* ' ' ;

·· '

ί DECODER BACKWARD VECTOR GAIN ADAPTER (block 30)
• 99 <
• · · 9

» 9 9 9 .

J ‘ : Input: ET

Output: GAIN

«t ’ * · Function: Generate the excitation gain from previous gain-scaled excitation vectors.
9*09 .

'* ’ The operation of this block is exactly the same as block 20 of the encoder.

DECODER EXCITATION VQ CODEBOOK (block 29) ·

Input: ICHAN

Output: YN

Function: Decode the received best codebook index (channel index) to obtain the excitation
vector. .

This block first extracts the 3-bit gain codebook index IG and the 7-bit shape codebook index IS
from the received 10-bit channel index. Then, the rest of the operation is exactly the same as
block 19 of the encoder.

61 -

ITMP = integer part of (ICHAN / NG) | Decode (IS-1).
IG = ICHAN - ITMP * NG + 1 | Decode IG.

NN = ITMP * IDIM
For K=l,2,...,IDIM, do the next line

YN(K) = GQ(IG) * Y(NN+K)

DECODER GAIN SCALING UNIT (block 31)

Input: GAIN, YN

Output: ET
• · ·
• · »
0·β·

Function: Multiply the excitation vector by the excitation gain.
ο ·
• · · · «

• · ·
• · ·

® · · β

ο · · ·
• · ·

The operation of this block is exactly the same as block 21 of the encoder.

•

• ·

DECODER SYNTHESIS FILTER (block 32)
• · ·
• · ·
• 9 · ·

• · 9 ·
9 9 9

9 · ·

Input: ET, A, STATELPC

Output: ST
• · · ·
9 9 ·
• · Function: Filter the gain-scaled excitation vector to obtain the decoded speech vector.

• ·
• · · · ·
•

This block can be implemented as a straightforward all-pole filter. However, as mentioned in
Section 4.3, if the encoder obtains the quantized speech as a by-product of filter memory update
(to save computation), and if potential accumulation of round-off error is a concern, then this
block should compute the decoded speech in exactly the same way as in the simulated decoder
block of the encoder. That is, the decoded speech vector should be computed as the sum of the
zero-input response vector and the zero-state response vector of the synthesis filter. This can be
done by the following procedure.

V

- 62 -

A A
A A

AAAA

A
• A A A

A A
• ·

• AAA

A

A

• ·■ · ·

A A A ·
A · A

For K=1,2,...,IDIM, do the next 7 lines
TEMP(K)=0.
For J=LPC,LPC-1,...,3,2, do the next 2

TEMP(K)=TEMP(K)-STATELPC(J)*A(J+1)
STATELPC(J)=STATELPC(J-l)

TEMP(K)=TEMP(K)-STATELPC(1)*A(2)
STATELPC(1)=TEMP(K)

Repeat the above for the next K

TEMP(1)=ET(1)
For K=2,3,...,IDIM, do the next 5 lines

A0=ET(K)
For I=K,K-l,...,2, do the next 2 lines

TEMP(I)=TEMP(I-1)
A0=A0-A(I)*TEMP(I) | Com:

TEMP(1)=AO

Repeat the above 5 lines for the next K

lines
• I

Now update
zero-state
responses
lines

Zero-input response.

Handle last one
differently.

zero-state response

filter memory by adding
responses to zero-input

I
I
I

For K=l,2,...,IDIM, do the next 3
STATELPC(K)=STATELPC(K)-TEMP(K)
If STATELPC(K) > MAX, set STATELPC(K)=MAX
If STATELPC(K) < MIN, set STATELPC(K)=MIN

I ZIR + ZSR
I Limit the range.
I

I=IDIM+1
For K=l, 2, ..., IDIM, do the next line | Obtain quantized speech by

ST(K)=STATELPC(I-K) I reversing order of synthesis
’ I filter memory.

lOth-ORDER LPC INVERSE FILTER (block 81)

This block is executed once a vector, and the output vector is written sequentially into the last 20
samples of the LPC prediction residual buffer (i.e. D(81) through D(100)). We use a pointer IP to
point to the address of D(K) array samples to be written to. This pointer IP is initialized to
NPWSZ-NFRSZ+IDIM before this block starts to process the first decoded speech vector of the
first adaptation cycle (frame), and from there on IP is updated in the way described below. The
lOth-order LPC predictor coefficients APF(I)'s are obtained in the middle of Levinson-Durbin
recursion by block 50, as described in Section 4.6. It is assumed that before this block starts
execution, the decoder synthesis filter (block 32 of Figure 3/G.728) has already written the current
decoded speech vector into ST(1) through ST(IDIM).

- 63

TMP=0
For N=l,2,...,NPWSZ/4, do the next line

TM?=TMP+DEC(N)*DEC(N-J) I
If TMP > CORMAX, do the next 2

CORMAX=TMP |
KMAX=J |

For N=-M2+l,-M2+2,...,
DEC(N)=DEC(N+IDIM)

TMP = correlation in decimated domain
lines
find maximum correlation and
the corresponding lag.

(NPWSZ-NFRSZ)/4, do the next line
I shift decimated LPC residual buffer.

Ml=4*KMAX-3 I start correlation peak-picking in undecimated domain
M2=4*KMAX+3
If Ml < KPMIN, set Ml = KPMIN. I check whether Ml out of range.
If M2 > KPMAX, set M2 = KPMAX. I check whether M2 out of range.
CORMAX = most negative number of the machine
For J=M1,Ml+1,..., M2 , do the next 6 lines

TMP=0.
For K=l,2,...,NPWSZ, do the ne

TMP=TMP+D(K)*D(K-J) I
If TMP > CORMAX, do the next 2

CORMAX-TMP I
KP=J I

Ml = KPI - KPDELTA I
M2 = KPI + KPDELTA I
If KP < M2+1, go to LABEL. I
If Ml < KPMIN, set Ml = KPMIN. 1
CMAX = most negative number of th

For ... ,M2, do the ne

:t line
correlation in undecimated domain,
lines
find maximum correlation and
the corresponding lag.

determine the range of search around
the pitch period of previous frame.
KP can't be a multiple pitch if true,
check whether Ml out of range.

> machine
st 6 lines

TMP=0.
For K=l,2,...,NPWSZ, do the next line

TMP=TMP+D(K) *D (K-J) I correlation in undecimated domain.
If TMP > CMAX, do the next 2 lines

CMAX=TMP I ■ find maximum correlation and
KPTMP=J I the corresponding lag.

SUM=0.
tmp=0. I start confuting the tap weights
For K=l,2,...,NPWSZ, do the next 2 lines

SUM = SUM + D(K-KP) *D(K-KP)
TMP = TMP + D(K-KPTMP)*D(K-KPTMP)

If SUM=0, set TAP=0; otherwise, set TAP=CORMAX/SUM.
If TMP=0, set TAP1=O; otherwise, set TAP1=CMAX/TMP.
If TAP > 1, set TAP = 1. I clamp TAP between 0 and 1
If TAP < 0, set TAP = 0.
If TAPI > 1, set TAPI = 1. I clamp TAPI between 0 and 1

- 64 -

Input: ST. APFOutput D
Function: Compute the LPC prediction residual for the current decoded speech vector.

If IP = NPWSZ, then set IP = NPWSZ - NFRSZ check & update IP

next 7 lines

the next 2 lines

• · β
• · ·

• · · ·

• ·
• · · β β

For K=l,2.... IDIM, do the
ITMP=IP+K
D(ITMP) = ST(K)
For J=10,9,...,3,2, do

D(ITMP) = D(ITMP) + STLPCI(J)*APF(J+l)
STLPCI(J) = STLPCI(J-l)

D(ITMP) = D(ITMP) + STLPCI(1)*APF(2)
STLPCI(1) = ST(K)

FIR filtering.
Memory shift.
Handle last one.
shift in input.

• · ·
• · ·
····

e · « ·
• ■ β
• ·

······

IP = IP + IDIM update IP.

PITCH PERIOD EXTRACTION MODULE (block 82)

• · ·
• ·

• · · ·

This block is executed once a frame at the third vector of each frame, after the third decoded
speech vector is generated. .

Input: D

Output KP

• · · · ·
Function: Extract the pitch period from the LPC prediction residual

If ICOUNT * 3, skip the execution of this block;
Otherwise, do the following.

I lowpass filtering & 4:1 downsampling.
For K=NPWSZ-NFRSZ+1, ...,NPWSZ, do the next 7 lines
TMP=D(K) -STLPF (1) *AL (1)-STLPF (2) *AL(2) -STLPF(3) ‘AL (3) I HR filter
If K is divisible by 4, do the next 2 lines

N=K/4 I do FIR filtering only if needed.
DEC (N) =TMP‘BL(1) + STLPF (1) *BL (2) +STLPF (2) *BL (3) + STLPF (3) ‘BL (4)

STLPF(3)=STLPF(2)
STLPF(2)=STLPF(1)
STLPF(1)=TMP

I shift·lowpass filter memory.

Ml = KPMIN/4
M2 = KPMAX/4
CORMAX = most negative number of the machine
For J=M1,M1+1,...,M2, do the next 6 lines

I start correlation peak-picking m
I the decimated LPC residual domair.

- 65 -

If TAPI < 0, set TAPI = 0.
I Replace KP with fundamental pitch if
I TAPI is large enough.

If TAPI > TAPTH * TAP, then set KP = KPTMP.

LABEL: KPI = KP I update pitch period of previous frame
For K=-KPMAX+1,-KPMAX+2, . . .,NPWSZ-NFRSZ, do the next line

D(K) = D(K+NFRSZ) I shift the LPC residual buffer

PITCH PREDICTOR TAP CALCULATOR (block 83)

This block is also executed once a frame at the third vector of each frame, right after the execution
of block 82. This block shares the decoded speech buffer (ST(K) array) with the long-term
postfilter 71, which takes care of the shifting of the array such that ST(1) through ST(IDIM)
constitute the current vector of decoded speech, and ST(-KPMAX-NPWSZ+1) through ST(0) are
previous vectors of decoded speech. ■

Input: ST, KP

Output: PTAP

Function: Calculate the optimal tap weight of the single-tap pitch predictor of the decoded
speech.

If ICOUNT * 3, skip the execution of this block;
Otherwise, do the following. ·

SUM=0.
TMP=0.
For K=-NPWSZ+1,-NPWSZ+2,...,0, do the next 2 lines

SUM = SUM + ST(K-KP)*ST(K-KP)
TMP = TMP + ST(K)«ST(K-KP)

If SUM=0, set PTAP=0; otherwise, set PTAP=TMP/SUM.

LONG-TERM POSTFILTER COEFFICIENT CALCULATOR (block 84)

This block is also executed once a frame at the third vector of each frame, right after the execution
of block 83.

Input: PTAP

Output: B, GL

Function: Calculate the coefficient b and the scaling factory of the long-term postfilter.

- 66 -

Otherwise, do the following.
If PTAP > 1, set PTAP = 1.
If PTAP < PPFTH, set PTAP = 0

If ICOUNT * 3, skip the execution of this block;

I clamp PTAP at 1.
I turn off pitch postfilter if
I PTAP smaller than threshold.

B = PPFZCF * PTAP
GL = 1 / (Ϊ+Β)

SHORT-TERM POSTFILTER COEFFICIENT CALCULATOR (block 85)

This block is also executed once a frame, but it is executed at the first vector of each frame.

• ·«
• · ·
9 9 9 9

9 9 9 9
9 9 9

Input: APF, RCTMP(l) '

Output: AP, AZ. TILTZ

Function: Calculate the coefficients of the short-term postfilter.

If ICOUNT * 1, skip the execution of this block;
Otherwise, do the following.

For 1=2,3,...,11, do the next 2 lines |
AP(I)=SPFPCFV(I)*APF(I) I scale denominator coeff.
AZ(I)=SPFZCFV(I)*APF(I) ■ I scale numerator coeff.

TILTZ=TILTF*RCTMP(1) I tilt compensation filter coeff.

9 *

9

9 9
9 9 9 9 9

LONG-TERM POSTFILTER (block 71)

This block is executed once a vector.

Input: ST, B, GL, KP

Output: TEMP

Function: Perform filtering operation of the long-term postfilter.

For K=l,2, ...,IDIM, do the next line
TEMP(K)=GL*(ST(K)+B*ST(K-KP)) I long-term postfiltering.

For K=-NPWSZ-KPMAX+1,...,-2,-1, 0, do the next line
ST(K)=ST(K+IDIM) I shift decoded speech buffer.

SHORT-TERM POSTFILTER (block 72)

- 67

This block is executed once a vector right after the execution of block 71.

Input: AP, AZ, TILTZ, STPFFIR, STPFIIR, TEMP (output of block 71)

Output: TEMP

Function: Perform filtering operation of the short-term postfilter.

For K=l,2,...,IDIM, do the following
TMP = TEMP(K) ‘

For J=10,9,...,3,2, do the next 2 lines
TEMP(K) = TEMP(K) + STPFFIR(J)»AZ(J+l)
STPFFIR(J) = STPFFIR(J-l)

TEMP(K) = TEMP(K) + STPFFIR(l)*AZ(2)
STPFFIR(1) = TMP

9 9
9 9 9 9

All-zero part
of the filter.
Last multiplier.

• 999

• 9
9

• •99

• · e

For J=10,9,...,3,2, do the next 2 lines
TEMP(K) = TEMP(K) - STPFIIR(J)*AP(J+l)
STPFIIR(J) = STPFIIR(J-l)

TEMP(K) = TEMP(K) - STPFIIR(l)*AP(2)
STPFIIR(l) = TEMP(K)

TEMP(K) = TEMP(K) + STPFIIR(2)*TILTZ

All-pole part
of the filter.
Last multiplier.

Spectral tilt com­
pensation filter.

9

• 9 9
9 9 9
4 · · ·

• · · ·
• · 9
• · · SUM OF ABSOLUTE VALUE CALCULATOR (block 73)

• · · ·
9 9 ·
9 9

This block is executed once a vector after execution of block 32.

• ·
9 Input: ST

Output: SUMUNFIL

Function: Calculate the sum of absolute values of the components of the decoded speech
vector.

SUMUNFIL=O.
FOR K=l,2,__ , IDIM, do the next line

SUMUNFIL = SUMUNFIL + absolute value of ST(K)

SUM OF ABSOLUTE VALUE CALCULATOR (block 74)

This block is executed once a vector after execution of block 72.

- 68 -

Input: TEMP (output of block 72)

Output: SUMFIL

Function: Calculate the sum of absolute values of the components of the short-term postfilter
output vector.

SUMFIL=0.
FOR K=l,2,...,IDIM, do the next line

SUMFIL = SUMFIL + absolute value of TEMP(K)

• ··
• 0 ·

SCALING FACTOR CALCULATOR (block 75)

• ·
0 · · · ·
•

• 0 0
• 0 0

0 0 0 0

0 0 0 0
0 0 0
0 9

9

0 0

This block is executed once a vector after execution of blocks 73 and 74.

Input: SUMUNFIL, SUMFIL

Output SCALE

♦ 00
0 0 0
0 0 0 0

0 0 0 0
0 0·
• 0 t

Function: Calculate the overall scaling factor of the postfilter

If SUMFIL > 1, set SCALE = SUMUNFIL / SUMFIL;

0 0 0 0
9 9 9
• 0

Otherwise, set SCALE = 1.

0 «
• ····
•

FIRST-ORDER LOWPASS FILTER (block 76) and OUTPUT GAIN SCALING UNIT (block 77)

These two blocks are executed once a vector after execution of blocks 72 and 75. It is more
convenient to describe the two blocks together.

Input SCALE, TEMP (Output of block 72)

Output SPF

Function: Lowpass filter the once-a-vector scaling factor and use the filtered scaling factor to
scale the short-term postfilter output vector.

For K=l,2,...,IDIM, do the following
SCALEFIL = AGCFAC*SCALEFIL + (1-AGCFAC)‘SCALE 1 lowpass filtering
SPF(K) = SCALEFIL*TEMP(K) 1 scale output.

OUTPUT PCM FORMAT CONVERSION (block 28)

- 69

Input: SPF

Output: SD

Function: Convert the 5 components of the decoded speech vector into 5 corresponding A-law
or μ-Iaw PCM samples and put them out sequentially at 125 ps time intervals.

The conversion rules from uniform PCM to A-law or μ-law PCM are specified in
Recommendation G.711.

~ 70

' ANNEXA
(to Recommendation G.728)

HYBRID WINDOW FUNCTIONS FOR VARIOUS LPC ANALYSES IN LD-CELP

In the LD-CELP coder, we use three separate LPC analyses to update the coefficients of three
filters: (1) the synthesis filter, (2) the log-gain predictor, and (3) the perceptual weighting filter.
Each of these three LPC analyses has its own hybrid window. For each hybrid window, we list the
values of window function samples that are used in the hybrid windowing calculation procedure.
These window functions were first designed using floating-point arithmetic and then quantized to
the numbers which can be exactly represented by 16-bit representations with 15 bits of fraction.
For each window, we will first give a table containing the floating-point equivalent of the 16-bit
numbers and then give a table with corresponding 16-bit integer representations.

A.1 Hybrid Window for the Synthesis Filter

The following table contains the first 105 samples of the window function for the synthesis
filter. The first 35 samples are the non-recursive portion, and the rest are the recursive portion.
The table should be read from left to right from the first row, then left to right for the second raw,
and so on Oust like the raster scan line).

• ·
• ····

0.047760010
0.282775879
0.501739502
0.692199707
0.843322754
0.946533203
0.996002197
0.988861084
0.953948975
0.920227051
0.887725830
0.856384277
0.826141357
0.796936035
0.768798828
0.741638184
0.715454102
0.690185547
0.665802002
0.642272949
0.619598389

0.095428467
0.328277588
0.542480469
0.725891113
0.868041992
0.9601/6465
0.999114990
0.981781006
0,947082520
0.913635254
0.881378174
0.850250244
0.820220947
0.791229248
0.763305664
0.736328125
0.710327148
0.685241699
0.661041260
0.637695313
0.615142822

0.142852783
0.373016357
0.582000732
0.757904053
0.890747070
0.973022461
0.999969482
6.974731445'
0.940307617
0.907104492
0.875061035
0.844146729
0.814331055
0.785583496
0.757812500
0.731048584
0.705230713
0.680328369
0.656280518
0.633117676
0.610748291

0.189971924
0.416900635
0.620178223
0.788208008
0.911437988
0.982910156
0.998565674
0.967742920
0.933563232
0.900604248
0.868774414
0.838104248
0,808502197
0.779937744
0.752380371
0.725830078
0.700164795
0.675445557
0.651580811
0.628570557
0.606384277

0.236663818
0.459838867
0.656921387
0.816680908
0.930053711
0.990600586
0.994842529
0.960815430
0.926879883
0.894134521
0.862548828
0.832092285
0.8027C3857
0.774353027
0.747009277
0.720611572
0.695159912
0.670593262
0.646911621
0.624084473
0.602020264

- 71

The next table contains the corresponding 16-bit integer representation. Dividing the table entries
by 215 = 32768 gives the table above.

1565 3127 4681 6225 7755
9266 10757 12223 13661 15068

16441 17776 19071 20322 21526
22682 23786 24835 25828 26761
27634 28444 29188 29866 30476
31016 31486 31884 32208 32460
32637 32739 32767 32721 32599
32403 32171 31940 31711 31484
31259 31034 30812 30591 30372
30154 29938 29724 29511 29299

29089 28881 28674 28468 28264
28062 27861 27661 27463 27266
27071 26877 26684 26493 26303
26114 25927 25742 25557 25374
25192 25012 24832 24654 24478
24302 24128 23955 23784 23613
23444 23276 23109 22943 22779
22616 22454 22293 22133 21974
21817 21661 21505 21351 21198
21046 20896 20746 20597 20450
20303 20157 20013 19870 19727

., A J Hybrid Window for the Log-Gain Predictor
t «μ»
a

The following table contains the first 34 samples of the window function for the log-gain
predictor. The first 20 samples are the non-recursive portion, and the rest are the recursive
portion. The table should be read in the same manner as the two tables above.

0.092346191 0.183868408 0.273834229 0.361480713 0.446014404
0.526763916 0.602996826 0.674072266 0.739379883 0.798400879
0.850585938 0.895507813 0.932769775 0.962066650 0.983154297
0.995819092 0.999969482 0.995635986 0.982757568 0.961486816
0.932006836 0.899078369 0.867309570 0.836669922 0.807128906
0.778625488 0.751129150 0.724578857 0.699005127 0.674316406
0.650482178 0.627502441 0.605346680 0.583953857

The next table contains the corresponding 16-bit integer representation. Dividing the table
entries by 215 = 32768 gives the table above.

- 72 -

3026 6025 8973 11845 14615
17261 19759 22088 24228 26162
27872 29344 30565 31525 32216
32631 32767 32625 32203 31506
30540 29461 28420 27416 26448
25514 24613 23743 22905 22096
21315 20562 19836 19135

- 73 -

A.3 Hybrid Window for the Perceptual Weighting Filter

The following table contains the first 60 samples of die window function for the perceptual
weighting filter. The first 30 samples are the non-recursive portion, and the rest are the recursive
portion. The table should be read in the same manner as the four tables above.

0.059722900 0.119262695 0.178375244 0.236816406 0.294433594
0.351013184 0.406311035 0.460174561 0.512390137 0.562774658
0.611145020 0.657348633 0.701171875 0.742523193 0.781219482
0.817108154 0.850097656 0.880035400 0.906829834 0.930389404
0.950622559 0.967468262 0.980865479 0.990722656 0.997070313
0.999847412 0.999084473 0.994720459 0.986816406 0.975372314
0.960449219 0.943939209 0.927734375 0.911804199 0.896148682
0.880737305 0.865600586 0.850738525 0.836120605 0.821746826
0.807647705 0.793762207 0.780120850 0.766723633 0.753570557
0.740600586 0.727874756 0.715393066 0.703094482 0.691009521
0.679138184 0.667480469 0.656005859 0.644744873 0.633666992
0.622772217 0.612091064 0.601562500 0.591217041 0.581085205

The next table contains the corresponding 16-bit integer representation. Dividing the table
entries by 215 = 32768 gives the table above. .'

1957 3908 5845 7760 9648
11502 13314 15079 16790 18441
20026 21540 22976 24331 25599
26775 27856 28837 29715 30487
31150 31702 32141 32464 32672
32763 32738 32595 32336 31961
31472 30931 30400 29878 29365
28860 28364 27877 27398 26927
26465 26010 25563 25124 24693
24268 23851 23442 23039 22643
22254 21872 21496 21127 20764
20407 20057 19712 19373 19041

- 74 -

ANNEXΒ
(to Recommendation G.728)

EXCITATION SHAPE AND GAIN CODEBOOK TABLES

This appendix first gives the 7-bit excitation VQ shape codebook table. Each row in the table
specifies one of the 128 shape codevectors. The first column is the channel index associated with
each shape codevector (obtained by a Gray-code index assignment algorithm). The second
through the sixth columns are the first through the fifth components of the 128 shape codevectors
as represented in 16-bit fixed point To obtain the floating point value from the integer value,
divide the integer value by 2048. This is equivalent to multiplication by 2-11 or shifting the binary
point 11 bits to the left

Channel Codevector
Index Components

0 668 -2950 -1254 -1790 -2553
1 -5032 -4577 -1045 2908 3318
2 -2819 -2677 -948 -2825 -4450
3 -6679 -340 1482 -1276 1262
4 -562 -6757 1281 179 -1274
5 -2512 -7130 -4925 6913 2411
6 -2478 -156 4683 -3873 0
7 -8208 2140 -478 -2785 533
8 1889 2759 1381 -6955 -5913
9 5082 -2460 -5778 1797 568

10 -2208 -3309 -4523 -6236 -7505
11 -2719 4358 -2988 -1149 2664
12 1259 995 2711 -2464 -10390
13 1722 -7569 -2742 2171 -2329
14 1032 747 -858 -7946 -12843
15 3106 4856 -4193 -2541 1035
16 1862 -960 -6628 410 5882
17 -2493 -2628 -4000 -60 7202
18 -2672 1446 1536 -3831 1233
19 -5302 6912 1589 -4187 3665
20 -3456 -8170 -7709 1384 4698
21 -4699 -6209 -11176 8104 16830
22 930 7004 1269 -8977 2567
23 4649 11804 3441 -5657 1199
24 2542 -183 -8859 -7976 3230

75

25 -2872 -2011 -9713 -8385 12983
• 26 3086 2140 -3680 -9643 -2896

27 -7609 6515 -2283 -2522 6332
28 -3333 -5020 -9130 -11131 5543
29 -407 -6721 -17466 -2889 11568
30 3692 6796 -262 -10846 -1856
31 7275 13404 -2989 -10595 4936
32 244 -2219 2656 3776 -5412
33 -4043 -5934 2131 863 -2866
34 -3302 1743 -2006 -128 -2052
35 -6361 3342 -1583 -21 1142
36 -3837 -1831 6397 2545 -2848
37 -9332 -6528 5309 1986 -2245

0 · ·
• · · 38 -4490 748 1935 -3027 -493
• ·
• · ® · · 39 -9255 5366 3193 -4493 1784
•

• · · 40 4784 -370 1866 1057 -1889
• · ·

• · · β 41 7342 -2690 -2577 676 -611
• · ·
• · 42 -502 2235 -1850 -1777 -2049

• ini1 3880 -2465 2209 -152
• ·

44 2592 2829 5588 2839 -7306
a · · 45 -3049 -4918 5955 9201 -4447
β · ·
• · · · 46 697 3908 5798 -4451 -4644
• · ·

• · · 47 -2121 5444 ■ -2570 321 -1202
48 2846 -2086 3532 566 -708

β · · ·
• · · 49 -4279 950 4980 3749 452
• ·

50 -2484 3502 1719 -170 238
51 -3435 263 2114 -2005 2361

• ·
• · · · ·
• 52 -7338 · -1208 9347 -1216 -4013

53 -13498 -439 8028 -4232 361
54 -3729 5433 2004 -4727 -1259
55 -3986 7743 8429 -3691 -987

56 5198 -423 1150 -1281 816

57 7409 4109 -3949 2690 30

58 1246 3055 -35 -1370 -246

59 • -1489 5635 -678 -2627 ' 3170

60 4830 -4585 2008 -1062 799
61 -129 717 4594 14937 10706
62 417 ’ 2759 1850 -5057 -1153
63 -3887 7361 -5768 4285 666

64 1443 -938 20 -2119 -1697

65 -3712 -3402 -2212 110 2136

66 -2952 12 -1568 -3500 -1855

67 -1315 -1731 1160 -558 1709

68 88 -4569 194 -454 -2957

- 76 -

69 -2839 -1666
70 -189 -2376
71 -2842 -1369
72 1517 79
73 1913 -2493
74 -2903 -3324
75 -2913 -1547
76 1844 -1834
77 467 -4256
78 -127 -994
79 873 -2045
80 2311 -1817
81 641 1194
82 -45 1198

• · β 83 -2004 1713
a · β

a a a · 84 2936 -3968
a · · ··
• 85 2827 8
a a a

i a a a
a a a a 86 3199 -816

a a a a
a a a 87 2948 4029
a a

a
a a a a a a

88 4286 51
• · 89 3903 5646

90 -606 1234
a a a
a a ·
a a a a 91 -525 3620

a a a a
a at 92 4297 -3251

a a a

93 5765 528
94 2735 1241

a a a
a a 95 4033 1648

96 74 918
a a
a a a a a 97 -2496 -1605
a

98 -2168 2037
99 -3552 1530

100 -2613 -2338
101 -1747 81
102 -1019 867
103 -1684 2816
104 2707 504
105 2517 -1487
106 -148 2206
107 -527 1243
108 2149 -1501
109 3306 -3369
110 2574 2513
111 814 1826
112 1664 -220

-273 2084 -155
1663 -1040 -2449
636 -248 -2677

-3013 -3669 -973
-5312 -749 1271
-3756 -3690 -1829 . '/'.J

-2760 -1406 1124 ■ 4 ' v

456 706 -4272
-1909 1521 1134
-637 -1491 -6494

-3828 -2792 -578
2632 -3052 1968
1893 4107 6342
2160 -1449 2203
3518 2652 4251
1280 131 -1476

-1928 2658 3513
2687 -1741 -1407

394 -253 1298
-4507 -32 -659
-5588 -2592 5707
-1607 -5187 664
-2192 -2527 1707
-2283 812 -2264
-3287 1352 1672
-1103 -3273 -3407
-2965 -1174 1444
1999 915 -1026
2034 2950 229

15 -1264 -208
581 1491 962

3621 -1488 -2185
5538 1432 -2257
214 -2284 -1510

-229 2551 -1389
479 2783 -1009

-1596 621 1929
-4288 1292 -1401
-2731 1909 1280 ■' ' '■ ■' ' ■■

3688 610 -4591 ' ■ ■ '■ ■■■·!

1875 3636 -1217
1449 -3074 -4979

-2497 4234 -4077
3418 1002 1115

77 -

113 781 1658 3919 6130 3140
114. 1148 4065 1516 815 199
115 1191 2489 2561 2421 2443
116 770 -5915 5515 -368 -3199
117 1190 1047 3742 6927 -2089
118 292 3099 4308 -758 -2455
119 523 3921 4044 1386 85
120 4367 1006 -1252 -1466 -1383
121 3852 1579 -77 2064 868
122 5109 2919 -202 359 -509
123 3650 3206 2303 1693 1296
124' 2905 -3907 229 -1196 -2332
125 5977 -3585 805 3825 -3138
126 3746 -606 53 -269 -3301
127 606 2018 -1316 4064 398

Next we give the values for the gain codebook. This table not only includes the values for GQ,
but also the values for GB, G2 and GSQ as well. Both GQ and GB can be represented exactly in
16-bit arithmetic using QI3 format. The fixed point representation of G2 is just the same as GQ,
except the format is now Q12. An approximate representation of GSQ to the nearest integer in
fixed point Q12 format will suffice.

Array
Index

1 2 3 . 4 5 6 7 8

GQ** 0J15625 0.90234375 1.579101563 2.763427734 -GQ(1) -00(2) -GQ(3) -GQ(4)
GB 0.708984375 1.240722656 2.171264649 * -GB(1) -GB(2) -GB(3) *

G2 1.03125 1.8046875 3.158203126 5.526855468 -G2(l) -G2(2) -G2(3) -G2C4)
GSQ 026586914 0.814224243 2.493561746 7.636532841 GSQ(1) GSQ<2) GSQ(3) GSQ(4)

* Can be any arbitrary value (not used).
** Note that GQ(1) = 33/64, and GQ(i>(7/4)GQ(i-l) for 1=2,3,4.

Table
Values of Gain Codebook Related Arrays

78

ANNEXC
(to Recommendation G.728)

VALUES USED FOR BANDWIDTH BROADENING

The following table gives the integer values for the pole control, zero control and bandwidth
broadening vectors listed in Table 2. To obtain the floating point value, divide the integer value
by 16384. The values in this table represent these floating point values in the Q14 format, the
most commonly used format to represent numbers less than 2 in 16 bit fixed point arithmetic.

i FACV FACGPV WPCFV WZCFV SPFPCFV SPFZCFV
1 16384 16384 16384 16384 16384 16384
2 16192 14848 9830 14746 12288 10650
3 16002 13456 5898 13271 9216 6922
4 15815 12195 3539 11944 6912 4499
5 15629 11051 2123 10750 5184 2925
6 15446 10015 1274 9675 3888 1901
7 15265 9076 764 8707 2916 1236
8 15086 8225 459 7836 2187 803
9 14910 7454 275 7053 1640 522

10 14735 6755 165 6347 1230 339
11 14562 6122 99 5713 923 221
12 14391
13 14223
14 14056
15 13891
16 13729
17 13568
18 13409
19 13252
20 13096
21 12943
22 12791
23 12641
24 12493
25 12347
26 12202
27 12059
28 11918
29 11778
30 11640
31 11504
32 11369
33 11236

- 79 -

34 11104
35 10974
36 10845
37 10718
38 10593
39 10468
40 10346
41 10225
42 10105
43 9986
44 9869
45 9754
46 9639
47 9526
48 9415
49 9304
50 9195
51 9088

• · ·
« · · ·

• · ·
• ·

• · ·
• ·

• · · · ·

- 80 -

. ANNEX D
(to Recommendation G.728)

COEFFICIENTS OF THE I kHz LOWPASS ELLIPTIC FILTER
USED IN PITCH PERIOD EXTRACTION MODULE (BLOCK 82)

The 1 kHz lowpass filter used in the pitch lag extraction and encoding module (block 82) is a
third-order pole-zero filter with a transfer function of '

9
• 9 9

L(z) =
i=O

1 + Σα/

i=l

where the coefficients a,-’s and b;'s are given in the following fables.

i a.· b;

0 __ _ 0.0357081667
1 -2.34036589’ ■Ό.0069956244
2 2.01190019 -0.0069956244
3 -0.614109218 0.0357081667

e e
o ····

- 81 -

ANNEXE
(to Recommendation G.728)

TIME SCHEDULING THE SEQUENCE OF COMPUTATIONS

AU of the computation in the encoder and decoder can be divided up into two classes.
Included in the first class are those computations which take place once per vector. Sections 3
through 5.14 note which computations these are. Generally they are the ones which involve or
lead to the actual quantization of the excitation signal and the synthesis of the output signal.
Referring specificaUy to the block numbers in Fig. 2, this class includes blocks 1,2,4,9, 10, 11,
13, 16, 17, 18t 21. and 22. in Fg. 3, this class includes blocks 28.29, 31. 32 and 34. In Fig. 6,

. this class includes blocks 39,40.41,42.46,47,48. and 67. (Note that Fig. 6 is applicable to both
:,.··. block 20 in Fig. 2 and block 30 in Fig. 3. Blocks 43,44 and 45 of Fig. 6 are not part of this class.

Thus, blocks 20 and 30 are part of both classes.)
•

In the other class are those computations which are only done once for every four vectors.
;·,··. Once more referring to Figures 2 through 8, this class includes blocks 3,12, 14,15,23,33.35,36,
’ * 37. 38.43,44,45,49,50,51, 81,82, 83, 84, and 85. All of the computations in this second class
’·’**· are associated with updating one or more of the adaptive filters or predictors in the coder. In the

encoder there are three such adaptive structures, the 50th order LPC synthesis filter, the vector
J ^. · ·. gain predictor, and the perceptual weighting filter. In the decoder there are four such structures, the

synthesis filter, the gain predictor, and the long term and short tenn adaptive postfilters. Included
* * * in the descriptions of sections 3 through 5.14 are the times and input signals for each of these five

. adaptive structures. Although it is redundant, this appendix explicitly lists all of this timing
:’· information in one place for the convenience of the reader. The following table summarizes the

five adaptive structures, their input signals, their times of computation and the time at which the
updated values are first used. For reference, the fourth column in the table refers to the block

’ numbers used in the figures and in sections 3,4 and 5 as a cross reference to these computations.

By far. the largest amount of computation is expended in updating the 50th order synthesis
filter. The input signal required is the synthesis filter output speech (ST). As soon as the fourth
vector in the previous cycle has been decoded, the hybrid window method for computing the
autocorrelation coefficients can commence (block 49). When it is completed, Durbin’s recursion
to obtain the prediction coefficients can begin (block 50). In practice we found it necessary to
stretch this computation over more than one vector cycle. We begin the hybrid window
computation before vector 1 lias been fully received. Before Durbin’s recursion can be fully
completed, we must interrupt it to encode vector 1. Durbin’s recursion is not completed until
vector 2. Finally bandwidth expansion (block 51) is applied to the predictor coefficients. The
results of this calculation are not Used until the encoding or decoding of vector 3 because in the
encoder we need to combine these updated values with the update of the perceptual weighting
filter and codevector energies. These updates are not available until vector 3.

The gain adaptation precedes in two fashions. The adaptive predictor is updated once every
four vectors. However, the adaptive predictor produces a new gain value once per vector. In this
section we are describing the timing of the update of the predictor.· To compute this requires first
performing the hybrid window method on the previous log gains (block 43), then Durbin’s

- 82 -

Timing of Adapter Updates

Adapter Input
Signals)

First Use
of Updated
Parameters

Reference
Blocks

Backward
Synthesis
Filter
Adapter

Synthesis
filter output
speech (ST)
through
vector 4

Encoding/
Decoding
vector 3

23,33
(49,50,51)

Backward
Vector
Gain
Adapter

Log gains
through
vector 1

Encoding/
Decoding
vector 2

20.30
(43.44,45)

Adapter for
Perceptual
Weighting
Flter & Fast
Codebook Search

Input
speech (S)
through
vector 2

Encoding
vector 3

3
(36,37.38)
12,14,15

Adapter for
Long Term
Adaptive
Postfilter

Synthesis
filter output
speech (ST)
through
vector 3

Synthesizing
postfiltered
vector 3

35
(81-84)

Adapter for
Short Term
Adaptive
Postfilter

Synthesis
filter output
Speech (ST)
through
vector 4

Synthesizing
postfiltered
vector 1

35
(85)

recursion (block 44), and bandwidth expansion (block 45). All of this can be completed during
vector 2 using the log gains available up through vector 1. If the result of Durbin's recursion
indicates there is no singularity, then the new gain predictor is used immediately in the encoding
of vector 2.

The perceptual weighting filter update is computed during vector 3. The first part of this
update is performing the LPC analysis on the input speech up through vector 2. We can begin this
computation immediately after vector 2 has been encoded, not waiting for vector 3 to be fully
received. This consists of performing the hybrid window method (block 36), Durbin’s recursion
(block 37) and the weighting filter coefficient calculations (block 38). Next we need to combine
the perceptual weighting filter with the updated synthesis filter to compute the impulse response
vector calculator (block 12). We also must convolve every shape codevector with this impulse
response to find the codevector energies (blocks 14 and 15). As soon as these computations are

- 83 -

completed, we can immediately use all of the updated values in the encoding of vector 3. (Note:
Because the computation of codevector energies is fairly intensive, we were unable to complete
the perceptual weighting filter update as part of the computation during the time of vector 2, even
if the gain predictor update were moved elsewhere. This is why it was deferred to vector 3.)

The long term adaptive postfilter is updated on the basis of a fast pitch extraction algorithm
which uses the synthesis filter output speech (ST) for its input Since the postfilter is only used in
the decoder, scheduling time to perform this computation was based on the other computational
loads in the decoder. The decoder does not have to update the perceptual weighting filter and
codevector energies, so the time slot of vector 3 is available. The codeword for vector 3 is
decoded and its synthesis filter output speech is available together with all previous synthesis
output vectors. These are input to the adapter which then produces the new pitch period (blocks

, .. 81 and 82) and long-term postfilter coefficient (blocks 83 and 84). These new values are
immediately used in calculating the postfiltered output for vector 3.

• e

J ’*’* The short term adaptive postfilter is updated as a by-product of the synthesis filter update.
*.!..· Durbin’s recursion is stopped at order 10 and the prediction coefficients are saved for the postfUter

update. Since the Durbin computation is usually begun during vector 1, the short term adaptive
.....: postfilter update is completed in time for the postfiltering of output vector I.

• · · ·

• · · · ·

- 84 -

• ·

• · · ·

64 kbit/s

LD-CELP Encoder

64 kbit/s
A-law or mu-law

LD-CELP Decoder

Figure 1/G.728 Simplified Block Diagram of LD-CELP Coder

- 85 -

• ·

• ··

• · · ·
• · ·

Channel

Figure 2/G.728 LD-CELP Encoder Block Schematic

86

Codebook
Index 64fcbrtA

A·!»* ortwlaw
pCMOutupc

Spori>

lOthxxrkr LPC predictor ooeffident*

and fim reflection cocffiaat

Figure 3/G.728 LD-CELP Decoder Block Schematic

• · · ·

Input Speech

- 87

• 9

9 9 99

9 9 99

9 9
0

9 99 9

• ·
9

Perceptual

Weighting

Filter

Coefficients

Figure 4(a)/G.728 Perceptual Weighting Filter Adapter

- 88 -

Figure 4(b)/G.728 Illustration of a hybrid window

- 89 -

Quantized Speech

Synthesis

filter

Coefficients

Figure 5/G.728 Backward Synthesis Filter Adapter

90

Gain-Scaled
Excitation

Vector

Excitation
Gain

Figure 6/G.728 Backward Vector Gain Adapter

91

From Potrfitter Adapter (block 35)

Figure 7/G.728 Postfilter Block Schematic

- 92 -

To
Short-Term Postfilter

To
Long-Term Postfilter

First
Reflection
Coefficient

lOth-order LPC
Predictor Coefficients

Figure 8/G.728 Postfilter Adapter Block Schematic

- 93

APPENDIX 1
(to Recommendation G.728)

IMPLEMENTATION VERIFICATION

A set of verification tools have been designed in order to facilitate the compliance verification
of different implementations to the algorithm defined in this Recommendation. These verification
tools are available from the ITU on a set of distribution diskettes.

• ·
• ····

- 94

. Implementation verification

This Appendix describes the digital test sequences and the measurement software to be used for implementation
verification. These verification tools are available from the ITU on a set of verification diskettes.

1.1 Verification principle

The LD-CELP algorithm specification is formulated tn a non-bitexact manner to allow for simple implementation
on different kinds of hardware. This implies that the verification procedure can not assume the implementation under test
to be exactly equal to tn reference implementation. Hence, objective measurements are needed to establish the degree of
deviation between test reference. If this measured deviation is found to be sufficiently small, the test implementation
is assumed to be interoperable with any other implementation passing the test Since no finite length test is capable of
testing every aspect of an implementation. 100% certainty that an implementation is correct can never be guaranteed. Ho­
wever. the test procedure described exercises all main parts of the LD-CELP algorithm and should be a valuable tool for

implementor.

·*···· The verification procedures described in this appendix have been designed with 32 bit floating-point implementa-
. .«oris in mind. Although they could be applied to any LD-CELP implementation. 32 bit floating-point format will probably
* · J .be* needed to fulfill the test requirements. Verification procedures that could permit a fixed-point algorithm to be realized
j ·. ‘its currently under study.

•···«··
• 1.2 Test configurations

, .. This section describes bow the different tea sequences and measurement programs should be used together to
:.: perform the verification tests. The procedure is based on black-box testing at the interfaces SU and ICHAN of the test
. · · Jtfocoder and ICHAN and SPF of the test decoder. The signals SU and SPF are represented in Ιό bits fixed point precision
’ * as* described in Section L4.2. A possibility » rum off the adaptive postfiltcr should be provided in the tested decoder tm-

plementauon. All test sequence processing should be started with the test implementation in the initial reset state, as defi-
;·.·««! by the LD-CELP recommendation. Three measurement programs, CWCOMP. SNR and WSNR. are needed to per·
* fdhn the test output sequence evaluations. These programs are further described in Section 13. Descriptions of the

different test configurations to be used are found in the following subsections (12.1-1.2.4).
* *• · · · ·

1.2.1 Encoder test

The basic operation of the eacotes is tested with the configuration shown in Figure I-1/G.728. An input signal
rest sequence, IN, is xppikd to the e&xxier under tea. The output codewords are compared directly to the reference co­
dewords, £NCW, by using the CWCOMP program.

INCW Requirements

•.'FIGURE I-IA3.728

Encoder test configuration (1)

- 95 -

12 2 Decoder test

The Isaac operation of the decoder is tested with the configuration in Figure 1-2/0.728. A codeword test sequen­
ce. CW. is applied to the decoder under test with the adaptive posdilter turned off. The output signal is then compared to
the re-erence output signal, OUT A. with the SNR program.

OUTA Requirements

FIGURE 1-2/0.728

Decoder test configuration (2)

12 J Percept sal weighting filler test

The encoder perceptual weighting filter is tested with the configuration in Figure I-3/G.728. An input signal test
sequence. IN. Is passed through the encoder under test, and the quality of the output codewords are measured with the
WSNR program. The WSNR program also needs the input sequence to compute the correct distance measure.

• · ·
• ·

IN Requirements

J·.··. FIGURE I-3/G.728• ·
Decoder test eoofiguratio· (3)

• «• · · · ·

1.2.4 Postfiller test

The decoder adaptive pottfilter is tested with the configuration in Figure I-4/0.728. A codeword test str <'.ce.
CW, is applied to th«c decoder under fcst with the adaptive postfillcr turned oa. The output signal is then comparea to the
reference output signal. OUTB, with the SNR program.

OUTB Requirements

FIGURE I-4/G.728

Decoder test configuration (4)

- 96 -

13 Verification programs

This sec non describes the programs CWCOMP, SNR and WSNR. refer: i the test configuration section, is
well as the program LDCDEC provided as an implementors debugging tool.

The verification software is written in Fortran and is kept as close to the ANSI Fottran 77 standard as possible.
Double precision floating point resolution is used extensively to minimize numerical error in the reference LD-CELP mo­
dules. The programs have been compiled with a commercially available Fortran compiler to produce executable versions
for 386/87-based PC's. The READ.ME file in the distribution describes how to create executable programs on other com­
puters.

13.1 CWCOMP

The CWCOMP program is a simple tool to compare the content of two codeword files. The user is prompted for
two codeword file names, the reference encoder output (filename in last column of Table I- l/G.728) and the test encoder
output. The program compares each codeword in these files and writes the comparison result to terminal. The requirement
for test configuration 2 is that no different codewords should exist

13 2 SNR

J ,· ·. The SNR program implements a signal-to-noise ratio measurement between two signal files. The first is a refe·
"" rente file provided by the reference decoder progam. and the second is the test decoder output file. A global SNR. GLOB.

• ···· js computed as the tool file signal-to-noise ratio. A segmental SNR, SEG256, is computed as the average signal-to-noise
• .··, ratio of ail 256-sample segments with reference signal power above a certain threshold. Minimum segment SNRs are
*····’ found for segments of length 256,128,64,32,16,8 and 4 with power above the same threshold.
• · · ·
* * · To run the SNR program, the user needs lo eater names of two input files. The first is the reference decoder out·
..... 1 put file as described in the last column of Table I-3/G.728. The second is the decoded output file produced hy the decoder

under test After processing the files, the program outputs the different SNRs to terminal. Requirement values for the test
configurations 2 and 4 are given in terms of these SNR numbers.

• · ·• · ·

,··♦·, 133 WSNR
99 ·

The WSNR algorithm is based oa a reference decoder and distance measure implementation to compute the mean
.. .. perceptually weighted distortion of a codeword sequence. A logarithmic signal-to-distortion ratio is computed for every
! · 5-sample signal vector, and the ratios are averaged over all signal vectors with energy above a certain threshold.

To run the WSNR program, the user needs to enter names of two input files. The first is the encoder input signal
•.. t e β file (first column of Table I-153.728) and the second is the encoder output codeword file. After processing the sequence.
• * ’ * ’ WSNR writes the output WSNR value B aaminaL The requirement value for test configuration 3 is given in terms of this

WSNR number.

13.4 LDCDEC

In addition to the three measurement programs, the distribution also includes a reference decoder deinonstrauon
program. LDCDEC This program is based on the same decoder subroutine as WSNR and could be modified to monitor
variables in the decoder for debugging purpoaca. The user is prompted for the input codeword file, the output signal file
and whether io include the adaptive poatiSter or not.

- 97 -

14 Test sequences

The following is a description of the test sequences to be applied. The description includes the specific require­
ments for each sequence.

1.4.1 Naming conventions

The test sequences are numbered sequentially, with a prefix that identifies the type of signal:

All test sequence files have the extension ’.BIN.

IN: encoder input signal
INCW: encoder output codewords
CW: decoder input codewords
OUTA:
OUTB:

decoder output signal without postfilter
decoder output signal with postfilter

1.42 File formats

The signal files, according to the LD-CELP interfaces SU and SPF (file prefix IN. OUT A and OUTB) are all in
2's complement 16 bit binary format and should be interpreted to have a fixed binary point between bit »1 and #3. as
shown in Figure I-5/G.728. Note that all the 16 available bits must be used to achieve maximum precision in the test mea­
surements.

• ··
• · ·
·· · ·

G · · ·
• ♦ ·
• ♦

«·····
« ·

The codeword files (LD-CELP signal ICHAN, file prefix CW or INCW), are stored in the same 16 bit binary
format as the signal files. The least significant 10 bits of each 16 bit word represent the 10 bit codeword, as shown in
Figure I-5/G.728. The other bits (#12-#15) are set to zero.

Both signal and codeword files are stored in the tow-byte first word storage format that is usual on IBM/DOS and
VAX/VMS computers. For use on other platforms, such as most UNIX machines, this ordering may have to be changed
by a byteswap operation.

Signal:

Codeword:

Bit #: 15 (MSB/sign bit) 0(LSB)

+/- 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
" ----------- T'S

fixed binary point

- - - - - - 9 8 7 6 5 4 3 2 1 0

FIGURE I-5/G.728

Signal and codeword binary file format

1.4 J Test sequences and requirements

The tables in this ,*χόοη describe the complete set of tests to be performed to verify that an implementation of
LD-CELP follows the specification and is interoperable with other correct imptementadons. Table I-l/G.728 is a summary
of the encoder tests sequences. The corresponding requirements sre expressed in Table I-2/G.728. Table 1-3/G.728- and
I-4/G.728 contain the decoder test sequence summary and requirements.

- 98 -

TABLE I-1X3,728

Encoder tests

Input
signal

Length,
vectors

Description of test Test
config.

Output
signal

INI 1536 Test that all 1024 possible codewords are proper­
ly implemented

1 INCWl

IN2 1536 Exercise dynamic range of log-gain autocorrela­
tion function

1 INCW2

IN3 1024 Exercise dynamic range of decoded signals auto-
correlanon function

1 INCW3

• · 0
0 0 O

0000

* 0

DN4 10240 Frequency sweep through typical speech pitch
range

1 INCW4

0 0 0 0 0
0

0 00
0 0 0

0000

IN5 84480 Real speech signal with different input levels and
microphones

3 .

00 00
• · 0
• 0

0

IN6 256 Test encoder limiters I 1NCW6

000000
• 0

TABLE L2XJ.728

Encoder test requirements

• 0 00
» · 0
0 0 Input

signal
Output
signal

Requirement

0 0
t 0000
0 INI INCWl 0 different codewords detected by CWCOMP

IN2 INCW2 0 different codewords detected by CWCOMP

1N3 INCW3 0 different codewords detected by CWCOMP

1N4 INCW4 0 different codewords detected by CWCOMP

INS - WSNR > 2O5S dB

IN6 INCW6 0 different codeword? detected by CWCOMP

- 99 -

TABLE I-3/G.728

Decoder tests

Input
signal

Length,
vectors

Description of test Test
config.

Output
signal

CWl 1536 Test that all 1024 possible codewords are proper­
ly implemented

2 OUTAl

CW2 1792 Exercise dynamic range of log-gain autocorrela­
tion function

2 0UTA2

CW3 1280 Exercise dynamic range of decoded signals auto­
correlation function

2 OUTA3

CW4 10240 Test decoder with frequency sweep through typi­
cal speech pitch range

2 OUTA4

CW4 10240 Test postfilter with frequency sweep through allo­
wed pitch range

4 OUTB4

CW5 84480 Real speech signal with different input levels and
microphones

2 0UTA5

CW6 256 Test decoder limiters 2 OUTA6

, .. TABLE I-4/G.728
»9 9
99» 9

Decoder tut requiremeoa

Output
filename

Requirements (minimisn values for SNR, in dB)
SEG256 GLOB MIN256 MIN 128 MIN64 WIN32 MIN 16 MIN8 MU44

OUTAl 75.00 74.00 68.00 68.00 67.1» 64.00 55.00 50.00 41.00

OUTA2 94.00 85.00 67.00 58.00 55.00 50.00 48.00 44.00 41.00

OUTA3 79.00 76.00 70Ό0 28.00 29.00 31.00 37.00 29.00 26.00

OUTA4 60.00 58.00 51.00 511» 49.00 46.00 40.00 35.00 28.00

OUTB4 59Λ0 57.00 50.00 50.00 49.00 46.00 40.00 34.00 26.00

OUT AS 59X0 61.00 411» 39.00 39.00 34.00 35.00 30.00 26.00

0UTA6 69.00 67.00 6640 64.00 63.00 63.00 62.00 61.00 60.00

- 100

/5 Verification tools distribution '

All the fiks in the distribution are stored in two 1.44 Mbyte 3.5" DOS diskettes. Diskette copies can be ordered
from the iTU at the following address:

ITU General Secretariat
Sales Service
Place du Nations ·
CH-1211 Geneve 20
Switzerland

A README file is included on diskette #1 to describe the content of each file and the procedures necessary to
compile and link the programs. Extensions are used to separate different file types. ’.FOR files are source code for the
fortran programs, ·ΈΧΕ files are 386/87 executables and ‘.BIN are binary test sequence files. The content of each disket­
te is listed in Table I-5/G.728.

TABLE I-5/G.728

Dlstributioa directory

·«
• ·

• 0 · · Disk Filename Number of bytes
•

Diskette #1 READ.ME 10430
99

• · CWCOMPJPOR 2642
···« Total size: CWCOMPDXE 25153
• · ·
• 0

•
1 289 859 bytes SNR FOR 5536

• SNRFXE 36524
• · WSNRFOR 3554

WSNR-EXE 103892
• · · LDCDECFOR 3016
• · ·
• 0 · · LDCDECDXE 101080
• 0 · ·

• · · LDCSUBFOR 37932
0· 0

FELSUBJFOR 1740
DSTRUCTJTOR 2968

·· 99 INl-BIN 15360
• · INLBIN 15360

IN3B1N 10240
• e IN53IN 844300
• 0 · 00
0 IN631N 2560

INCW1JB1N 3072
INCW2BIN 3072
INCW3JBIN 2048
INCW63IN 512
CW13IN 3072
CW2J3IN 3584
CW3BIN 2560
CW6BIN 512
0UTA1BIN 15360
0UTA23IN 17920
0UTA3BIN 12800
OUT A6 BIN 2560

Diskette »2 IN4B1N 102400
. INCW4.BIN 20480

Total size: CW4BIN 20480
1361920 bytes CW5JBEN 168960

OUTA4J3IN 102400
0UTB4.BIN 102400
0UTA53IN 844800

- 101 -
The claims defining the Invention are as follows;.

»

ft ft
ft ft

ft···
ft
• «•ft

• ft
ft ·

ft···
• ·Ο

• 0 ·
··· ·
• ••ft

• ft ft
9ft ·

ee

• i8Ct

—GteHHSi-

1. A method of generating linear prediction filter coefficient signals
during frame erasure, the generated linear prediction coefficient signals for use by a
linear prediction filter in synthesizing a speech signal, the method comprising the

i steps of:
storing linear prediction coefficient signals in a memory, said linear

prediction coefficient signals generated responsive to a speech signal corresponding
to a non-erased frame; and

responsive to a frame erasure, modifying the stored linear prediction
' coefficient signals to expand the bandwidth of one or more peaks in a frequency

response of the linear prediction filter, the modified linear prediction coefficient
signals applied to the linear prediction filter for use in synthesizing the speech signal.

5

10

15

2. The method of claim 1 wherein the step of modifying the stored linear
prediction coefficient signals comprises the step of scaling one or more of said stored
linear prediction coefficient signals by a scale factor raised to an exponent, said scale
factor being less than 1 and said exponent indexing the stored linear prediction
coefficients.

AT&T Corp.Patent Attorneys for the Applicant SPRUSON & FERGUSON

•i

Γ

LINEAR PREDICTION COEFFICIENT GENERATION
DURING FRAME ERASURE OR PACKET LOSS

Abstract
A speech coding system robust to frame erasure (or packet loss) is

5 described. Illustrative embodiments are directed to a modified version of CCITT
standard G.728. In ihe event of frame erasure, vectors of an excitation signal are
synthesized based on previously stored excitation signal vectors generated during
non-erased frames. This synthesis differs for voiced and non-voiced speech. During
erased frames, linear prediction filter coefficients are synthesized as a weighted ’

10 extrapolation of a set of linear prediction filter coefficients determined during non­
erased frames. The weighting factor is a number less than 1. This weighting
accomplishes a bandwidth-expansion of peaks in the frequency response of a linear
predictive filter. Computational complexity during erased frames is reduced through
the elimination of certain computations needed during non-erased frames only. This

15 reduction in computational complexity offsets additional computation required for
excitation signal synthesis and linear prediction filter coefficient generation during
erased frames.

I

• 9
9 9 99 9

• · · · ·

PTAP

?Z
0£

/

2/7

FIG. 3

1222

3/7

FIG. 4

"NO" BRANCH FROM
DECISION 1201

• · · ·
• · ·

0/7

FIG. 5

FIG. 6

FILTER COEFFICIENTS

5/7

FIG. 7

G
A
IN

-S
CA

LE
D
 EX

CI
TA

TI
O
N
 VE

CT
O
R

6/7

FIG. 9
EXCITATION GAIN

G
A
IN

-S
CA

LE
D
 EX

CI
TA

TI
O
N
 VE

CT
O
R

FIG. 10

7/7

····

FIG. 11

FIG. 12

CODEBOOK

