

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2236615 C 2006/12/12

(11)(21) **2 236 615**

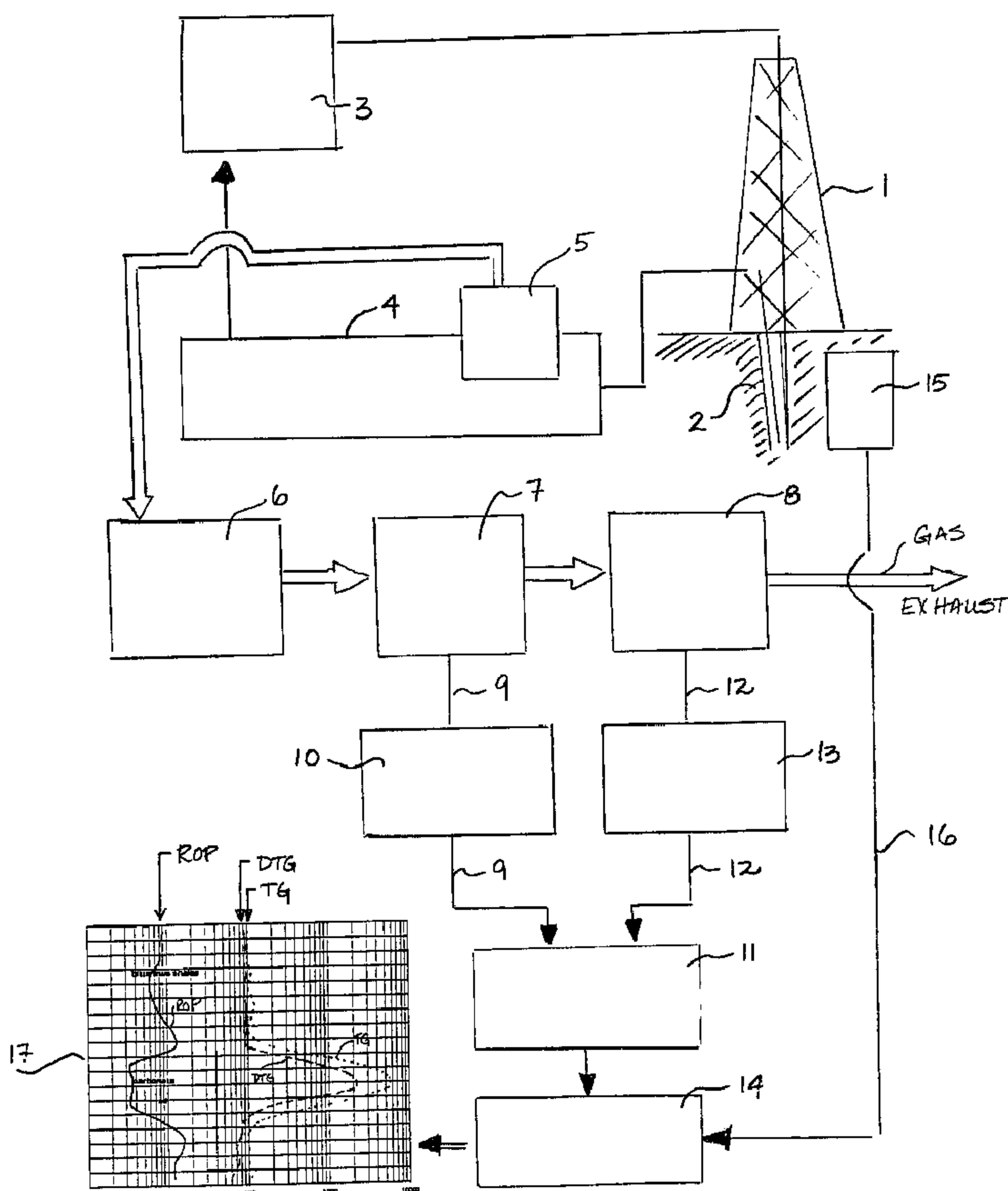
(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(22) Date de dépôt/Filing Date: 1998/04/30

(41) Mise à la disp. pub./Open to Public Insp.: 1999/10/30

(45) Date de délivrance/Issue Date: 2006/12/12


(51) Cl.Int./Int.Cl. *E21B 49/08* (2006.01),
E21B 49/00 (2006.01), *G01N 33/00* (2006.01),
G01N 33/28 (2006.01)

(72) Inventeur/Inventor:
ZAMFES, KOSTA, CA

(73) Propriétaire/Owner:
ZAMFES, KOSTA, CA

(54) Titre : MESURE DIFFERENTIELLE DE LA QUANTITE TOTALE DE GAZ ELIMINEE PENDANT LE FORAGE

(54) Title: DIFFERENTIAL TOTAL-GAS DETERMINATION WHILE DRILLING

(57) Abrégé/Abstract:

Apparatus and process is provided for establishing values of the quality of gaseous hydrocarbons in gas extracted from mud while drilling. Two rare earth sensors, without a coating, are exposed to the extracted gas. The first sensor is pre-calibrated and outputs a signal proportional to the relative concentration of light hydrocarbons. The second sensor is pre-calibrated and outputs a signal

(57) Abrégé(suite)/Abstract(continued):

proportional to the relative concentration of heavy hydrocarbons. Preferably a second sensor is selected which, during calibration outputs a signal which is also proportional to the relative concentration of light hydrocarbons in a light sample gas and outputs a signal which is inversely proportional to the relative concentration of heavy hydrocarbons in a heavy sample gas. The difference of the two signals is obtained and is compared to the first sensor signal as being indicative of the quality of any hydrocarbons present in the extracted gases.

1 **"DIFFERENTIAL TOTAL-GAS DETERMINATION WHILE DRILLING"**

2

3 **ABSTRACT OF THE INVENTION**

4 Apparatus and process is provided for establishing values of the quality
5 of gaseous hydrocarbons in gas extracted from mud while drilling. Two rare earth
6 sensors, without a coating, are exposed to the extracted gas. The first sensor is pre-
7 calibrated and outputs a signal proportional to the relative concentration of light
8 hydrocarbons. The second sensor is pre-calibrated and outputs a signal proportional
9 to the relative concentration of heavy hydrocarbons. Preferably a second sensor is
10 selected which, during calibration outputs a signal which is also proportional to the
11 relative concentration of light hydrocarbons in a light sample gas and outputs a signal
12 which is inversely proportional to the relative concentration of heavy hydrocarbons in
13 a heavy sample gas. The difference of the two signals is obtained and is compared
14 to the first sensor signal as being indicative of the quality of any hydrocarbons present
15 in the extracted gases.

1 **"DIFFERENTIAL TOTAL-GAS DETERMINATION WHILE DRILLING"**
23 **FIELD OF THE INVENTION**4 The invention relates to gas detection of hydrocarbons extracted from
5 mud while drilling. In particular, two or more rare-earth sensors are used
6 simultaneously as gas sensors.
78 **BACKGROUND OF THE INVENTION**9 During the drilling of a well, mud is circulated downhole to carry away
10 drill cuttings. Should gas be encountered, it becomes incorporated with the mud and
11 is conveyed to the surface. In an active mud system, the mud is circulated in a loop;
12 pumped from the mud tank, downhole to the bit, up to the surface, and back to the mud
13 tank.14 As the mud flows to the mud tank, an agitator, placed in the mud stream,
15 causes contained gas to be liberated from the mud.16 The liberated gas is directed past a gas sensor. One type of gas sensor
17 is gas chromatography which produces a record of the constituents of the gas.
18 Unfortunately, chromatography apparatus and methods of using same obtains only
19 discrete analyses of gas in batches. A gas sample is occasionally selected and tested
20 by the chromatograph. By the time the chromatograph is ready for the next sample,
21 the drilling may have travelled a further 10 feet or so and passed through and beyond
22 a formation of interest. When the subsequent sample is obtained, the formation may
23 then be uninteresting.

1 For producing a continuous gas trace, it is generally known to use a
2 catalytic, rare earth or hot wire gas sensor. The sensor detects the presence of
3 combustible gases. These devices are also called explosimeters and indicate the
4 relative fraction of volatile hydrocarbons in a gas stream. Often these apparatus are
5 used to determine if a gas mixture may be explosive.

6 The conventional gas sensor is a rare earth (hot-wire) sensor. An
7 electrical current is passed through the sensor. The sensor heats up and dissipates
8 energy dependent upon its ability to exchange energy with the surrounding
9 environment. In these applications it is the gas flow and gas composition which affects
10 the heat dissipation. Heat or power dissipation results in a change in the resistance
11 of the sensor.

12 The sensor is epoxy coated for limiting the sensor from thermal effects
13 and for excluding chemical interaction with the sensor's rare-earth portion.

14 The sensor output is recorded as a trace on a strip chart recorder or
15 digitally on a computer and output for viewing on a screen. The presence of
16 combustible gas shows up as an analog voltage output.

17 The difficulty with the prior art predominately lies in the interpretation
18 of the continuous gas sensor output. This output responds to a high concentration of
19 a predominantly methane gas with an output similar to a lesser amount of a heavier
20 hydrocarbon.

21 There is therefore a demonstrated need for a real-time system which is
22 capable of distinguishing heavier hydrocarbons (indicative of oil) from lighter

1 hydrocarbons (representing coal gas or methane) while drilling, thereby affording the
2 drilling operator an onsite ability to assess the value of the well.

3

4 **SUMMARY OF THE INVENTION**

5 The present invention is based upon a discovery that rare earth sensors
6 are more usefully applied to gas detection, and more generally, fluid identification, if
7 stripped of their epoxy coating. Without the epoxy coating, the rare earth oxides of the
8 sensor are subject to absorption and electrochemical interactions with the measured
9 fluid, in addition to the thermal effects. Stripped of their coatings, individual sensors
10 have individual responses. By carefully selecting certain sensors which respond
11 differently and predictably to known ranges of hydrocarbons, more useful analyses of
12 the relative concentrations within gases can be made.

13 According to one embodiment of the present invention, two rare earth
14 sensors are provided. Each sensor is sensitive to different ranges of hydrocarbons
15 in sampled gases. Changes in relative concentration of the selected hydrocarbon in
16 the sampled gas results in a change in the output of the corresponding sensor. Thus,
17 where the sampled gas is a mixture of light and heavy hydrocarbon gases, the two
18 sensors generally respond differently as the relative concentrations in the mixture
19 change. The different response can be accentuated by obtaining the difference of the
20 two signals. So, as drilling progresses through subterranean zones having different
21 qualities of gases, the gas sensors provide distinctive output dependent upon whether
22 they detect light or heavy hydrocarbons. For the first time, these different gas qualities

1 are distinguishable, whereas previously, one only knew that volatile hydrocarbons
2 merely existed in determinable relative concentrations.

3 Accordingly, in a broad aspect, a novel process is provided for
4 distinguishing the quality of hydrocarbons extracted from gas encountered while
5 drilling, comprising the steps of:

- 6 • providing a first rare-earth metal oxide gas sensor which is sensitive
7 to the concentration of a first group of components in a hydrocarbon
8 mixture;
- 9 • providing a second rare-earth metal oxide gas sensor which is
10 sensitive to the concentration of a second group of components
- 11 • exposing the metal oxide of the first sensor to the extracted gas and
12 outputting a first signal indicative of the concentration of the first
13 group of components in the gas, preferably proportional to the
14 relative concentration of light hydrocarbons;
- 15 • exposing the metal oxide of the second sensor to the extracted gas
16 and outputting a second signal indicative of the concentration of the
17 second group of components in the gas, preferably inversely
18 proportional to the relative concentration of heavy hydrocarbons;
- 19 and
- 20 • obtaining the difference between the first and second signals for
21 establishing a differential third signal which is demonstrative of the
22 quality of the gas extracted from the well.

1 Preferably, the first sensor is sensitive to light hydrocarbons (like
2 methane) but characteristically also responds to any hydrocarbons (total-gas) in the
3 gas sample. The second sensor is sensitive to heavier hydrocarbons (such as ethane
4 through pentane). Further, the first sensor preferably produces an increasing signal
5 at increasing light hydrocarbon content and the second sensor produces a decreasing
6 signal with increasing heavier hydrocarbon content. Accordingly, the difference in
7 quality becomes even more marked as the hydrocarbon content increases. The
8 resultant difference accentuates the quality characteristics of the gas sample rather
9 than speaking merely of quantity or concentration.

10 The apparatus and methods disclosed in the present invention now
11 enables a log analyst to easily visualise, detect and distinguish the distinct nature of
12 a downhole gas event, whether it be the crossing and detection of a coal seam
13 producing light gas, or the crossing of an interface of gas (light hydrocarbons), oil
14 (heavier hydrocarbons), or water (no hydrocarbons).

15

1

BRIEF DESCRIPTION OF THE DRAWINGS

2 Figure 1 is a flow chart of the mud flow system, the gas sampling, the
3 gas detection and the sensor signal output on a strip chart;

4 Figure 2 is a typical graph of voltage versus amperage for a thermistor
5 sensor in a static fluid environment;

6 Figure 3a is a graph depicting the current and voltage response of a
7 total-gas sensor for detecting light hydrocarbons;

8 Figure 3b is a graph depicting the current and voltage response of a
9 differential total-gas sensor for detecting heavier hydrocarbons;

10 Figure 4 is a typical circuit for conditioning the signal from the gas
11 sensors;

12 Figure 5 is a chart trace of the output of the total-gas and differential
13 total-gas sensors, the differential between the sensor signals and the rate of
14 production for drilling through a sandstone formation according to the first example;
15 and

16 Figure 6 is a chart trace for drilling through bituminous shales and
17 carbonates, according to the second example.

18

19

1 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

2 Having reference to Fig. 1, a drilling rig 1 drills a well 2 into a formation.
3 Mud M is used to aid in drilling and conveying cuttings from the well 2 to the surface.
4 Mud M is delivered in a closed loop system comprising a mud pump 3 which circulates
5 mud M to the well 2, out of the well, to a mud tank 4 for separating solids from
6 returning mud M, and back to the mud pump 3. A gas trap 5 separates or extracts gas
7 (GAS) from the mud M. The extracted gas passes through sample drier 6 to produce
8 a dry gas sample.

9 The gas sample GAS is directed through a first gas sensor 7 and
10 through second gas sensor 8. The gas sample GAS is then exhausted to atmosphere
11 (subject to environmental constraints, e.g. if the gas not sour).

12 The first gas sensor 7 is a total-gas (TG) sensor and is sensitive to
13 variable relative concentrations of predominately methane (CH_4) in the gas sample.
14 The TG sensor responds to all hydrocarbons regardless of the weight of the
15 hydrocarbon, producing an output signal as if the sampled gas was equivalent to
16 methane.

17 The second gas sensor 8 is sensitive to variable relative concentrations
18 of heavier hydrocarbons such as ethane (C_2H_6) through pentane (C_5H_{12}) in the dried
19 gas GAS. Preferably, when exposed to light hydrocarbons, the second sensor 8
20 behaves similarly to the first sensor, however, when exposed to heavy hydrocarbons,
21 it behaves in an opposite manner as described in greater detail below.

1 The first and second sensors 7,8 are electrically positioned in a
2 Wheatstone bridge 21 (Fig. 4) for applying a voltage across the sensor. Sufficient
3 voltage is applied to heat the sensor. When gases are conducted through the sensors
4 which they are sensitive to, the sensor's resistivity changes and the current flow
5 through the sensor changes. The output from the Wheatstone bridge is a variable
6 voltage output.

7 The first sensor 7 produces a variable voltage signal 9 which passes
8 through a signal conditioner 10 and is routed to an analog-to-digital A/D converter 11.

9 The second sensor 8 produces a signal 12 which passes through a signal conditioner
10 13 and is also routed to an A/D converter 11. A multiplexer or the like (not shown) can
11 be used to handle multiple sensor signals 9,12 with one A/D converter 11. Digital
12 output from the A/D converter 11 is routed to a CPU 14. An electronic depth recorder
13 15 produces a digital depth recorder signal 16 which is also routed to the CPU 14.

14 The CPU 14 processes the sensor signals 9 and 12 and obtains their
15 difference. Specifically, sensor signal 12 is subtracted from sensor signal 9 to produce
16 a value representing a differential total-gas (DTG) signal. The depth recorder signal
17 16 is processed to calculate the rate of penetration (ROP) during drilling.

18 Additional information is processed by the CPU as necessary to
19 calculate other parameters including mud fluid lag. Gas sensor output cannot be
20 directly related to the actual position of the drilling bit due to the lag associated with
21 the return of the mud from the bit to the gas trap and thus to the gas sensor. This

1 information is plotted in a graphical format – depicted in the form of a chart 17 or on
2 a computer screen.

3 The sensors 7,8 are comprised of a rare-earth, transition metal oxide
4 sensors which are sintered and sandwiched between metallized surfaces or
5 electrodes. It is known that the resistivity of the metal oxide to temperature is non-
6 linear which makes the sensor ideal for temperature sensing applications. In this
7 implementation, if current is applied, then the sensor is self-heating. If heat is
8 constantly dissipated then the resistivity remains constant and the voltage across the
9 metal oxide will be constant. Alternatively, if the surrounding environment causes the
10 heat dissipation to vary (as it will if the quality or concentration of hydrocarbon
11 changes) then the current or the voltage will vary.

12 Having reference to Fig. 2, the typical response of an epoxy-coated,
13 bead-type rare-earth sensor is shown as applied in a static fluid environment. Such
14 a sensor is exemplified by a rare-earth thermistor as supplied by BetaTHERM
15 Corporation, Shrewsbury, Massachusetts. As the voltage is varied, the resistivity
16 changes and the current changes accordingly to match the heat dissipation.

17 Also, for the purposes of the present invention, these rare earth sensors
18 are used for both the first and second sensors 7,8. Sufficient variability exists between
19 each commercially available thermistor sensor to enable selection of two having
20 different responses when exposed to different gases.

21 Turning then to Figs. 3a and 3b, current-voltage curves are illustrated
22 for the first and second sensors 7,8 respectively.

1 For both the TG and DTG sensors 7,8 a commercial thermistor sensor
2 is first stripped of its epoxy to expose the metal oxide. The sensor is powered to about
3 40 – 200mV so that it self-heats; the temperature of the sensor approaching about
4 300°C. The sensors resistivity varies with temperature. Various concentrations of a
5 known hydrocarbon gas are passed across the sensor, the sensor dissipates heat, the
6 resistivity changes and the resulting change in current is observed. Currents of about
7 100 mA are typical.

8 Having reference to Fig. 3a, a range of 0 to 100% concentration of
9 methane is passed across an exposed metal oxide sensor for selection and calibration
10 of the first gas sensor 7. The response of a successful first gas sensor 7
11 demonstrates a substantially consistent increase 18 in current for increasing
12 concentrations of methane.

13 In a similar test used for the TG sensor 7, and having reference to Fig.
14 3b, this time two different gas mixtures are passed across an another exposed metal
15 oxide sensor for selection and calibration of the second gas sensor 8. For mixtures
16 containing only methane and ethane (one can used natural gas also), the selected gas
17 sensor 8 demonstrates a substantially consistent increase 19 in current for increasing
18 concentrations of the gas mixture. For propane and butane mixtures (being heavier
19 hydrocarbons) the same selected sensor 8 demonstrates a substantially consistent
20 decrease 20 in current for increasing concentrations of the gas mixture. For a similar
21 range of voltage input, it is desirable to select a second sensor 8 which demonstrates
22 the greatest divergence between the increasing current and decreasing current

1 responses 19,20. Accordingly the second gas sensor responds in two ways on two
2 different mixtures of gas.

3 Fig. 4 illustrates the signal conditioning circuit 10,13 for each sensor 7,8
4 based on Wheatstone bridges 21 for accepting the sensor output current and
5 outputting an electric signal proportional 9,12 to concentration of the gases sensed by
6 the first or second sensors 7,8. A bridge power VCC is operated in the range of 2.5
7 – 5 volts. A balancing sensor 22 is operated on air. The balancing sensor is an
8 unaltered commercial variety of the sensors used for the first and second sensors 7,8.

9 The bridge output 23 passes through an amplifier 24 before directing the sensor
10 millivolt output signals 9, 12, respectively to the A/D converter 11.

11 When exposed to a mixture of gases, generally both sensors 7,8
12 respond with increasing current output 9,12 for the lighter hydrocarbons with a
13 subtraction operation reducing magnitude of the positive value of the resulting DTG
14 output. For gases having high concentration of light hydrocarbons, signal 9 less signal
15 12 can result in a DTG signal pass through zero or even becoming negative. An
16 example is shown in Fig. 5 as negative peak A'.

17 However, as a gas mixture becomes heavier, the DTG sensor 8 cause
18 the current output 12 to drop significantly, with the subtraction operation resulting in
19 an increased net DTG output. An example is shown in Fig. 5 as positive peak B'.

20 The numerical ratio of the values of the TG signal and the DTG signal
21 can also be used as a simple means for establishing the relative concentration of
22 heavy or light hydrocarbons in the extracted gas.

1

2 **EXAMPLES**

3 As an example, in operation on actual wells drilled in Alberta, CANADA,
4 and referring to Fig. 5 and 6, gas was extracted from mud while drilling and was
5 passed through first and second sensors 7,8 selected and operated according to one
6 embodiment of the present invention.

7 In Fig. 5, the first sensor 7 outputs a signal 9 (TG) which is indicative of
8 the concentration of hydrocarbons in the sampled gas GAS (measured as equivalent
9 methane). This TG signal is shown on the strip chart 17, which also happens to be the
10 conventional case in the prior art. In contradistinction with the prior art, the second
11 gas sensor 8 outputs a signal 12 which is indicative of the concentration of heavier
12 hydrocarbons. The signals 9,12 are combined by subtraction to form a differential
13 value (DTG) which is shown on the chart 17. Only the differential value DTG is shown
14 and not the raw signal 12.

15 Note that, while the TG signal demonstrates four clear deviations from
16 the background baseline as positive peaks A,B,C, and D, the DTG signal
17 correspondingly demonstrates a negative peak A', two positive peaks B', C', and a last
18 negative peak D'.

19 While the prior art may interpret each of the four peaks A,B,C, and D as
20 being indicative only of the presence of hydrocarbons, the prior art is unable to
21 distinguish the specific nature of hydrocarbon's quality. Using the DTG signal in

1 combination with the TG signal – namely peaks A',B',C' and D', quality is
2 determinable.

3 For the first TG peak A, the deep negative DTG peak A' illustrates the
4 predominance of light hydrocarbons which, in this case, turned out to be coal gas.

5 In the case of the second TG peak B, both the TG curve B and the DTG
6 curve B' were positive indicating a heavier hydrocarbon component which turned out
7 to be wet gas and condensate (oil).

8 For the third TG peak C, both TG and DTG curves C,C' were again
9 positive indicating a heavier hydrocarbon component which turned out to be oil. A
10 sudden negative component C" represents an oil/water interface.

11 Lastly, for the fourth TG peak D, the negative DTG peak D' illustrated
12 the presence once again of a lighter hydrocarbon which turned out to be gas in a
13 sandstone to siltstone transition.

14 Turning to the second example well shown in Fig. 6, representing a well
15 drilled in bituminous shales, note that both the TG and DTG curves became positive
16 through a zone of carbonate oil, properly indicating not only the presence of
17 hydrocarbons (prior art) but has been enhanced to demonstrate the presence of the
18 heavier bituminous hydrocarbon components.

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A process is provided for establishing values of the quality of gaseous hydrocarbons in gas extracted from drilling mud, comprising the steps of:
 - (a) selecting a first rare-earth metal oxide gas sensor which is sensitive to the concentration of a first group of hydrocarbons;
 - (b) selecting a second rare-earth metal oxide gas sensor which is sensitive to the concentration of a second group of hydrocarbons;
 - (c) exposing the metal oxide of the first sensor to the gas so that it outputs a first signal proportional to the relative concentration of the first group of components in the extracted gas;
 - (d) exposing the metal oxide of the second sensor to gas so that it outputs a second signal proportional to the relative concentration of the second group of components in the extracted gas; and
 - (e) obtaining the difference between the first and second signals to establish a differential third signal which is demonstrative of the quality of the extracted gas.

19
20 2. The process as recited in claim 1 wherein the first group of
21 components in the extracted gas are predominantly methane.

1 3. The process as recited in claim 2 wherein the second group of
2 components in the extracted gas are predominately heavier than methane.

3

4 4. The process as recited in claim 3 wherein the second group of
5 components in the extracted gas are predominately ethane through pentane.

6

7 5. The process as recited in claim 1 wherein the sensitivity of the first
8 rare-earth metal oxide gas sensor demonstrates a decreased resistivity under applied
9 voltage for increasing concentrations of methane.

10

11 6. The process as recited in claim 1 wherein the sensitivity of the
12 second rare-earth metal oxide gas sensor:

13 (a) demonstrates a decreasing resistivity under an applied voltage for
14 gases containing increasing concentrations of methane and ethane; and

15 (b) demonstrates an increasing resistivity under an applied voltage for
16 gases containing increasing concentrations of propane and butane.

17

18 7. The process as recited in claim 1 further comprising:

19 processing the first signal through a first bridge circuit so that the
20 processed first signal increases proportionally with increasing concentrations of
21 methane; and

1 processing the second signal through a second bridge circuit so that the
2 processed second signal increases proportionally with increasing concentrations of
3 methane and ethane but decreased proportionally with increasing concentrations of
4 propane and heavier hydrocarbons.

5

6 8. The process as recited in claim 6 wherein the first and second bridge
7 circuits each use a balancing rare-earth metal oxide gas sensor exposed to air.

8

9 9. Apparatus for establishing the quality of gaseous hydrocarbons in
10 gas extracted from drilling mud, comprising:

11 (a) a first rare-earth metal oxide gas sensor which is sensitive to the
12 concentration of a first group of hydrocarbons which, when exposed to the extracted
13 gas, outputs a first signal indicative of the relative concentration of the first group of
14 hydrocarbons in the extracted gas;

15 (b) a second rare-earth metal oxide gas sensor which is sensitive to the
16 concentration of a second group of hydrocarbons which, when exposed to the
17 extracted gas, outputs a second signal indicative of the relative concentration of the
18 second group of hydrocarbons in the extracted gas; and

19 (c) means for obtaining the difference between the first and second
20 signals, the difference being demonstrative of the relative concentrations of first and
21 second groups of hydrocarbons in the extracted gas.

22

1 **10. Apparatus as recited in claim 9 wherein:**

2 the first group of hydrocarbons are light hydrocarbons; and

3 the second group of hydrocarbons are heavy hydrocarbons.

4

5 **11. Apparatus as recited in claim 10 wherein:**

6 the first rare-earth metal oxide gas sensor outputs a first signal which is
7 proportional to the relative concentration of light hydrocarbons in the extracted gas;

8 and

9 the second rare-earth metal oxide gas sensor outputs a second signal
10 which is proportional to the relative concentration of light hydrocarbons in a sample
11 gas, and a second signal which is inversely proportional to the relative concentration
12 of heavier hydrocarbons in a sample gas so that, when exposed to the extracted gas,
13 the second sensor outputs a second signal proportional to the relative concentration
14 of hydrocarbons in the extracted gas.

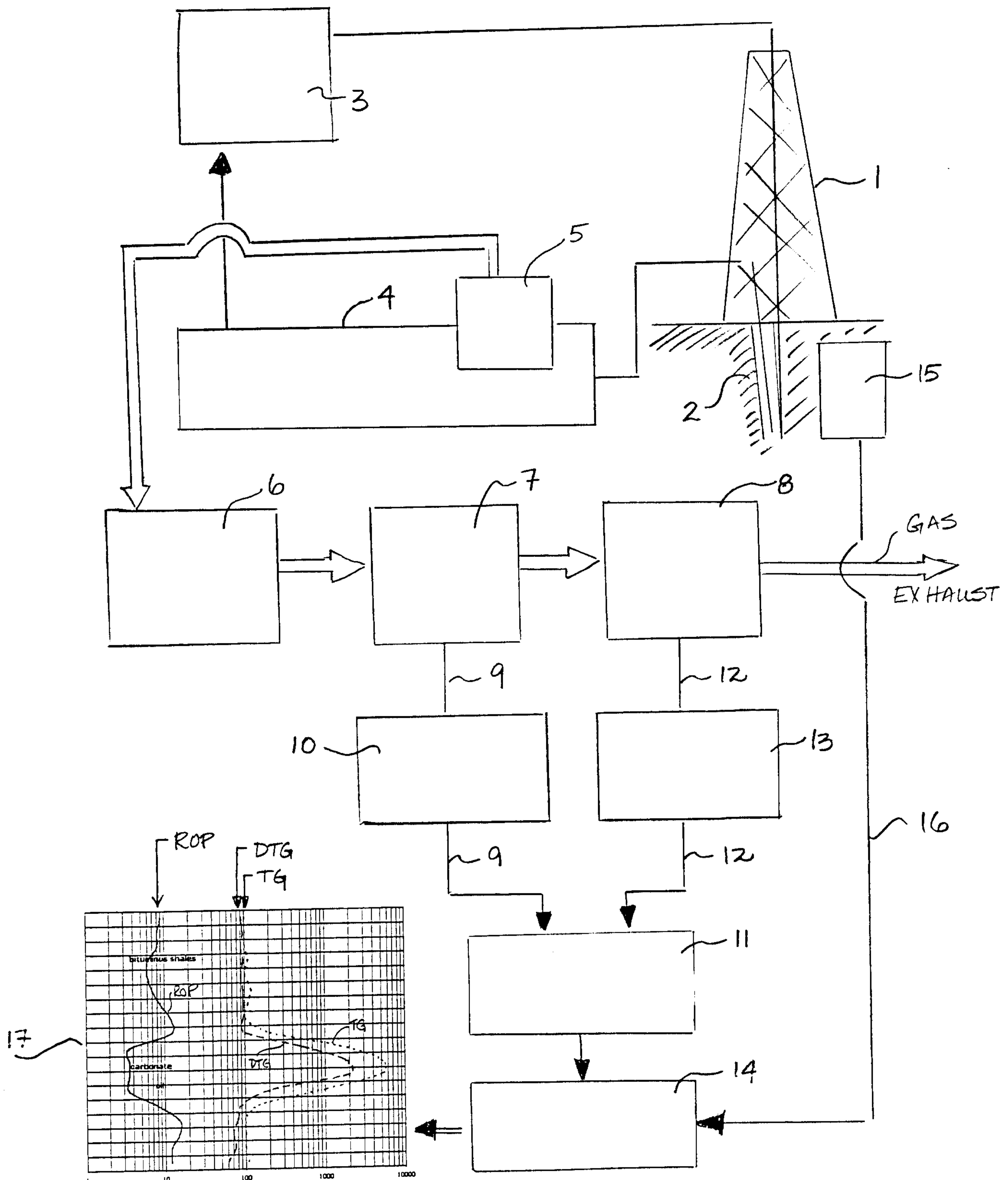
15

16 **12. Apparatus as recited in claim 11 further comprising a first bridge**
17 circuit for processing the first signal and outputting a increasing output signal
18 proportional to increasing relative concentrations of light hydrocarbons.

19

20 **13. Apparatus as recited in claim 12 further comprising a second bridge**
21 circuit for processing the second signal and outputting a output signal which is
22 proportional to increasing relative concentrations of light hydrocarbons and a

1 decreasing output signal proportional to increasing relative concentrations of heavier
2 hydrocarbons.


3

4 **14.** Apparatus as recited in claim 13 wherein the light hydrocarbons are
5 methane and ethane and the heavier hydrocarbons are propane and heavier
6 hydrocarbons.

7

8 **15.** Apparatus as recited in claim 9 or 14 wherein the means for
9 obtaining the difference between the first and second signals comprises a converter
10 for converting the first and second signals from analog to digital; and a digital
11 computer.

Fig. 1

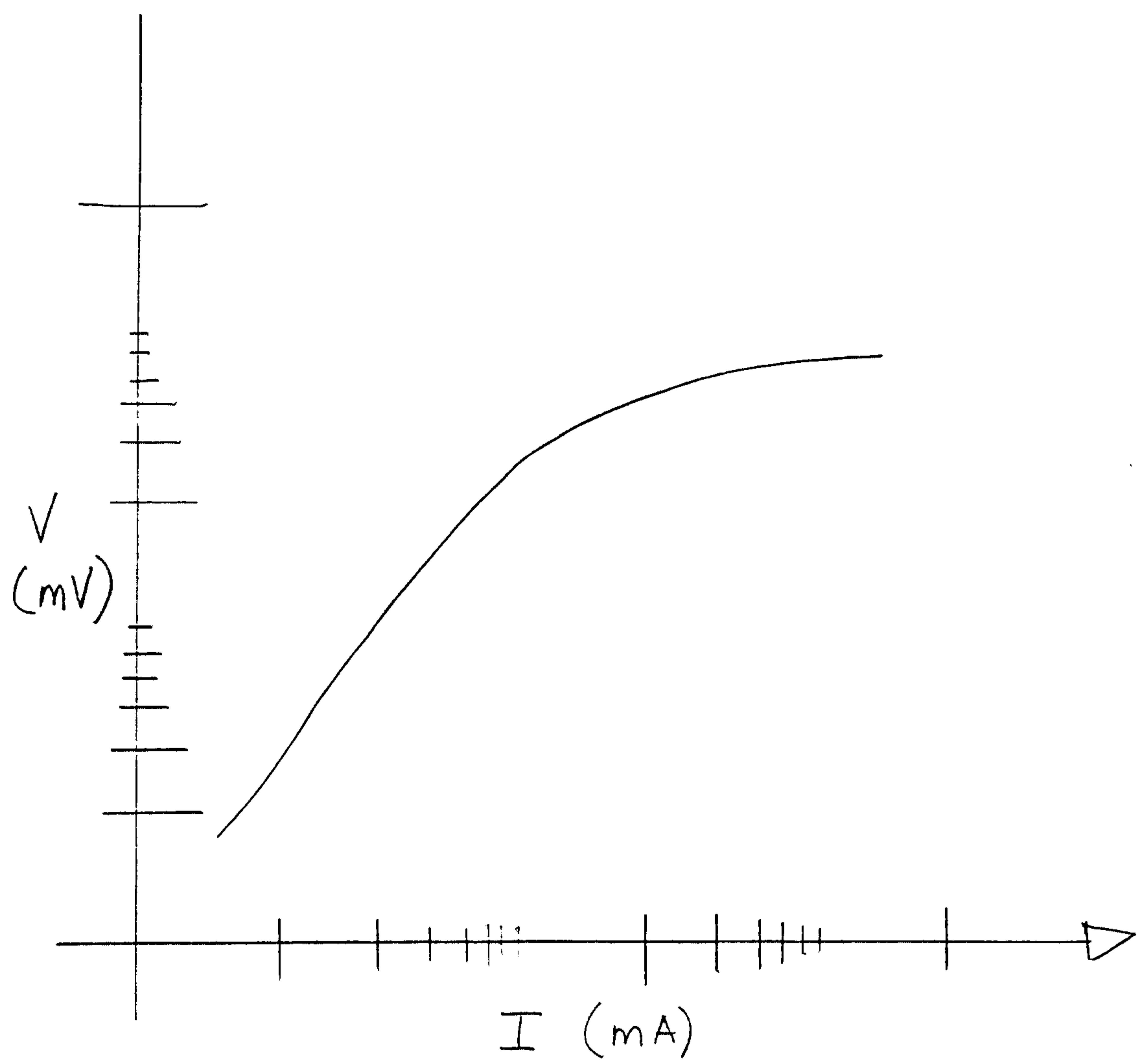


Fig. 2

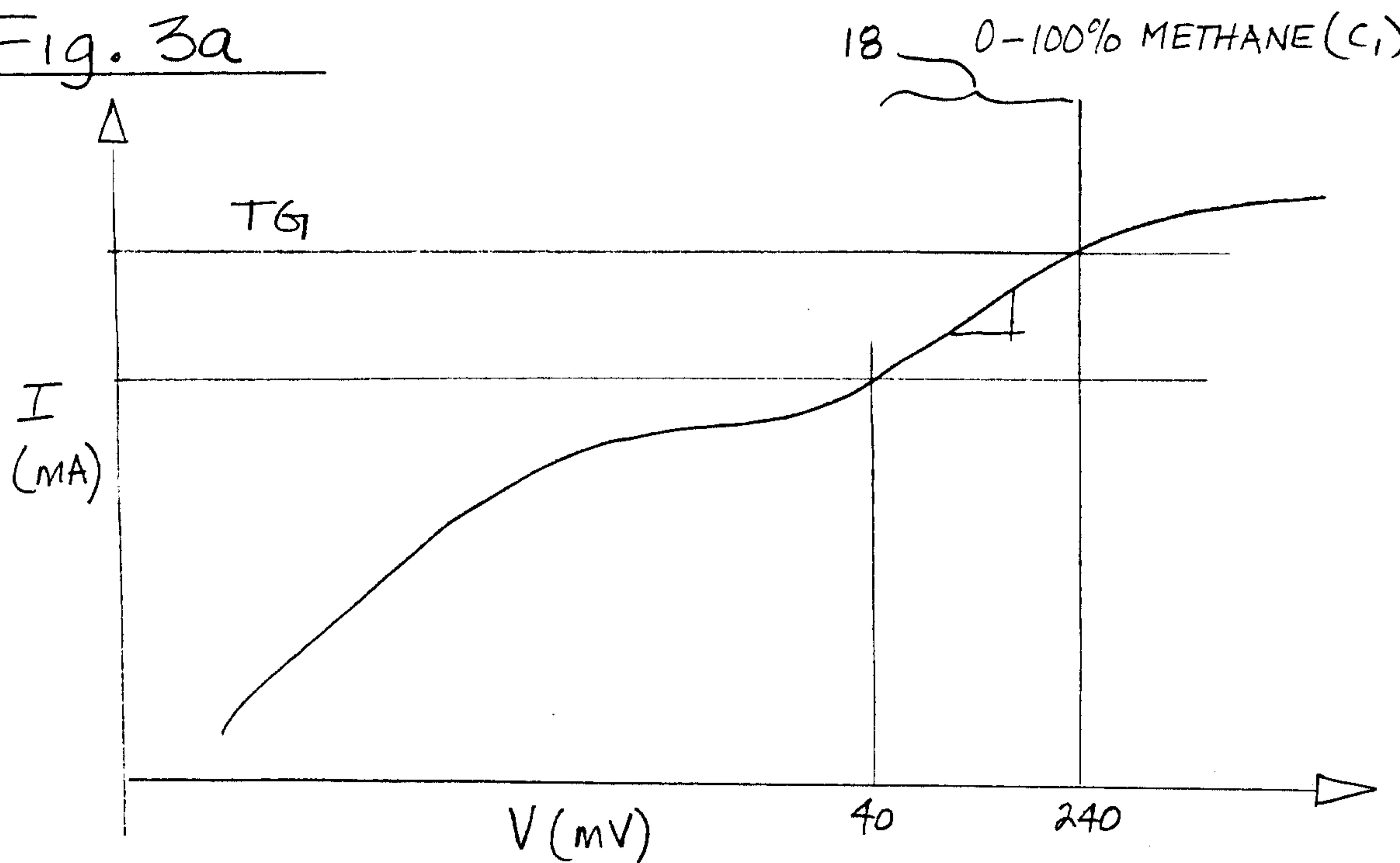
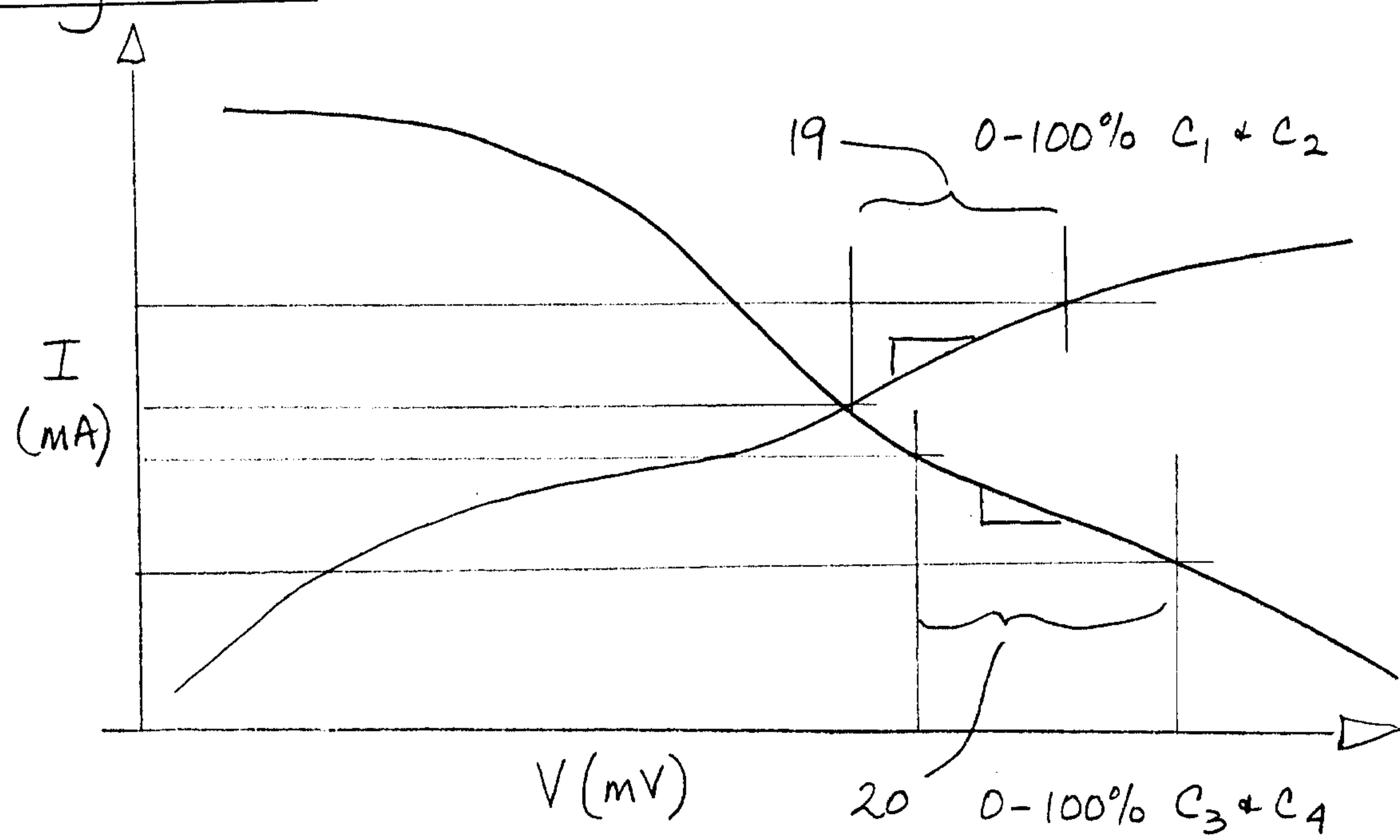
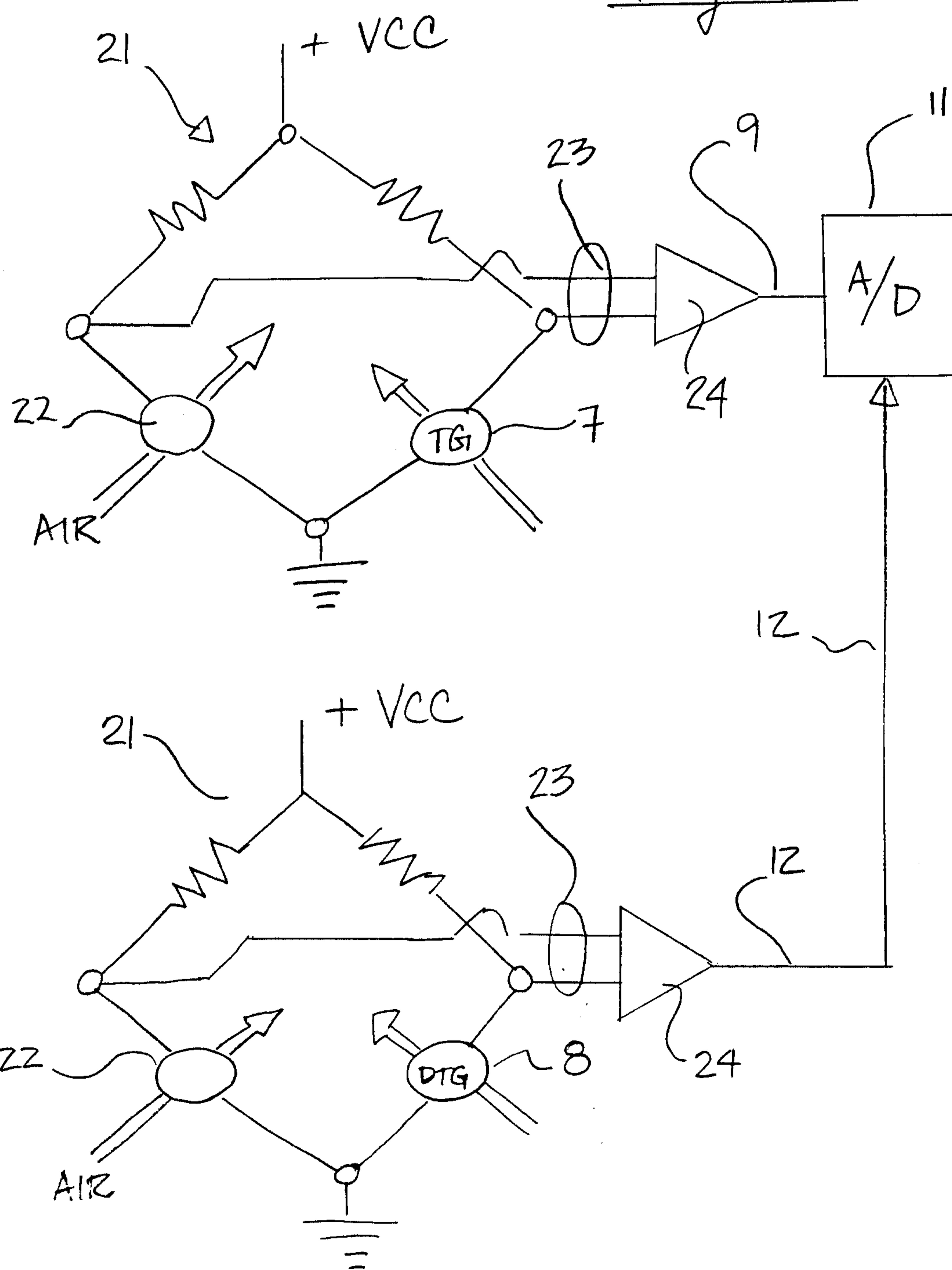



Fig. 3aFig. 3b

Fig. 4

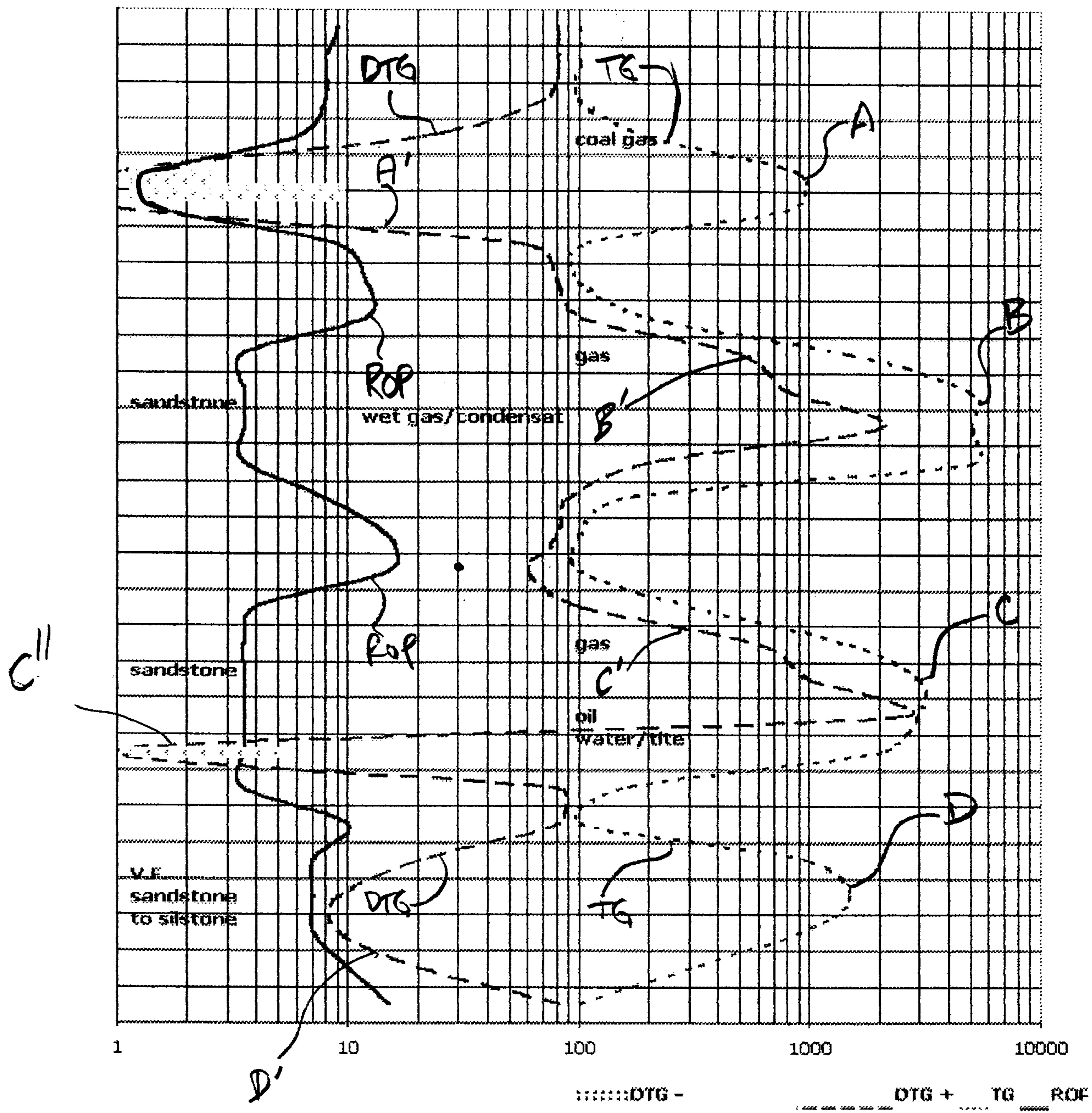


Fig. 1

Fig. 5

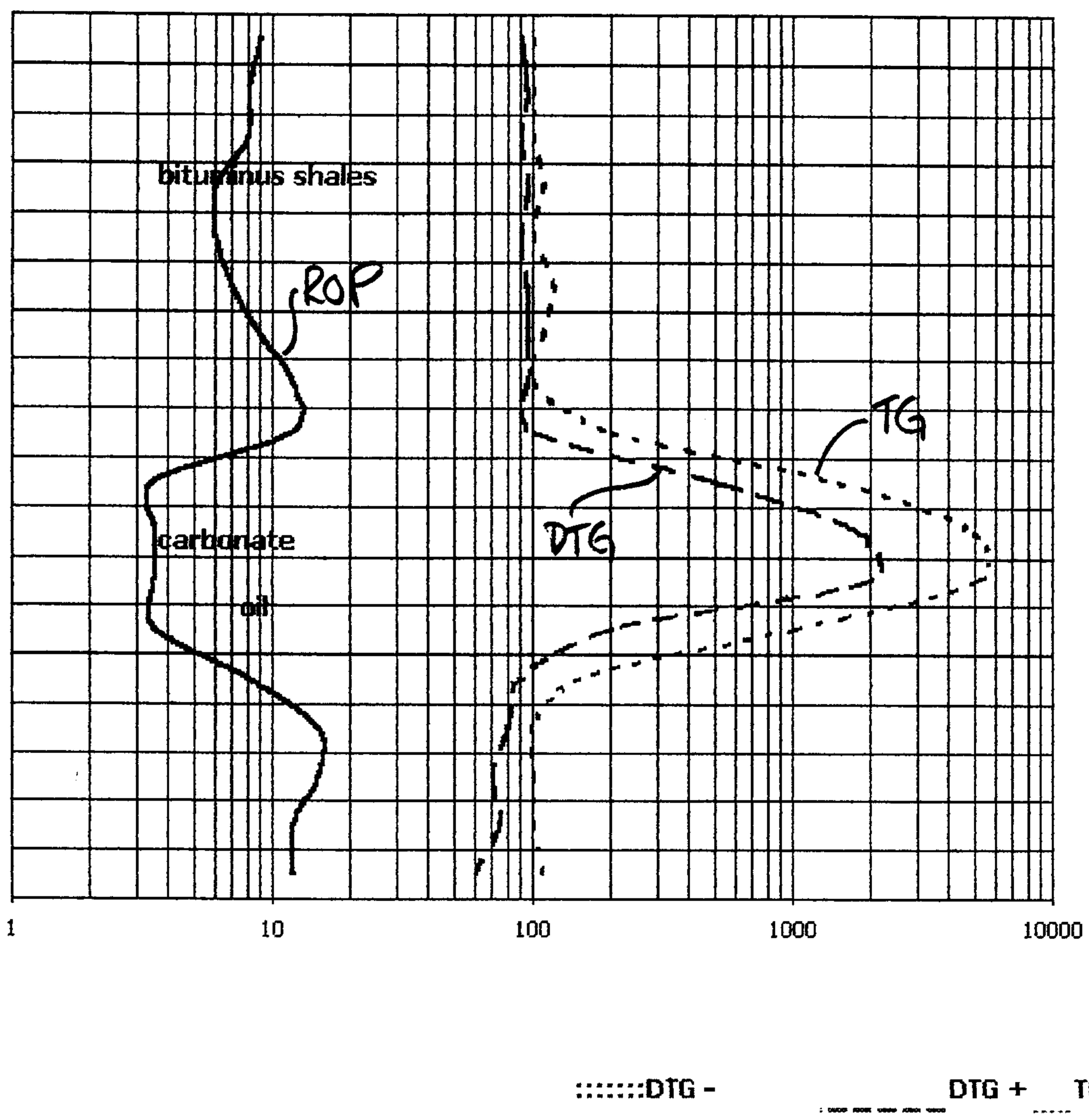
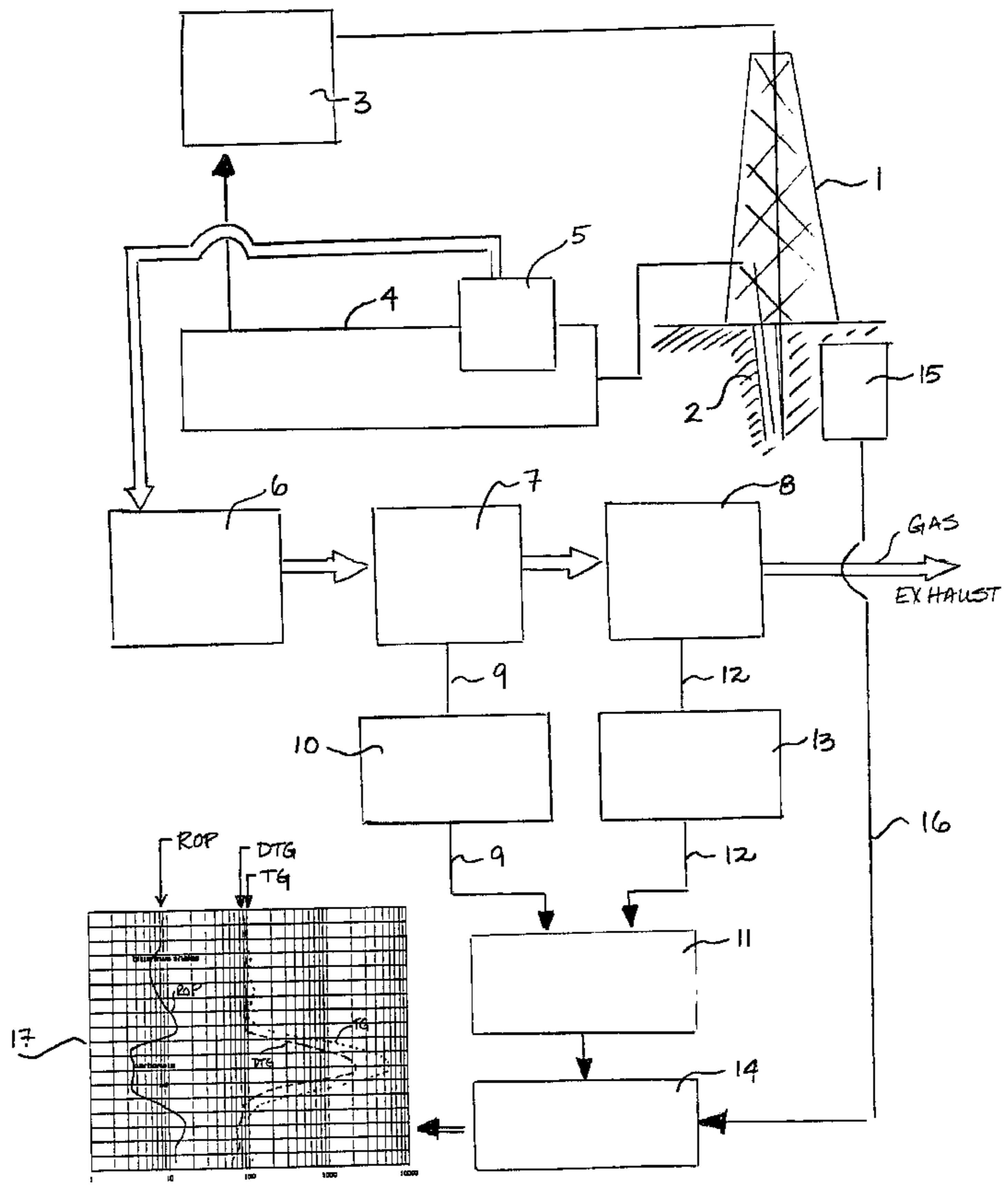



Fig.2

Fig. 6.

