FENESTRATED SWIVEL ANCHOR FOR KNOTLESS FIXATION OF TISSUE

Inventors: Reinhold Schmieding, Naples, FL (US); Peter J. Dreyfuss, Naples, FL (US); John A. Sodeika, Naples, FL (US)

Correspondence Address:
DICKSTEIN SHAPIRO LLP
1825 EYE STREET NW
Washington, DC 20006-5403 (US)

Assignee: Arthrex, Inc.

Filed: Apr. 3, 2009

Related U.S. Application Data
Continuation-in-part of application No. 12/368,946, filed on Feb. 10, 2009, which is a continuation-in-part of application No. 12/043,008, filed on Mar. 5, 2008, which is a continuation-in-part of application No. 11/802,057, filed on May 18, 2007.

Publication Classification
Int. Cl. A61B 17/04 (2006.01)
U.S. Cl. 606/232

ABSTRACT
A method and device for knotless fixation of tissue. A swivel anchor having a rotatable implant is used to capture suture for surgical tissue repair without requiring suture knots. The implant may be provided with a conical metal tip which is self-punching and avoids the need for pre-drilling a hole in bone. The implant includes a closed aperture to allow free sliding of a suture strand. The swivel anchor is secured in a hole in bone by advancing a fenestrated fixation device, such as a cannulated interference screw, over the body of the implant.
FENESTRATED SWIVEL ANCHOR FOR KNOTLESS FIXATION OF TISSUE

[0001] This application is a continuation-in-part of application Ser. No. 12/368,946, filed on Feb. 10, 2009, which is a CIP of application Ser. No. 12/043,008, filed on Mar. 5, 2008, which in turn is a continuation-in-part of application Ser. No. 11/802,057, filed on May 18, 2007, which claims the benefit of Provisional Application Ser. No. 60/801,097, filed on May 18, 2006, the entire disclosures of which are incorporated herein by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to methods and instruments for fixation of sutures and tissue to bone.

BACKGROUND OF THE INVENTION

[0003] When soft tissue tears away from bone, reattachment becomes necessary. Various devices, including sutures, screws, staples, wedges, anchors and plugs have been used in the prior art to secure soft tissue to bone. Surgical methods utilizing suture anchors alone are disadvantageous for reattachment of large areas of detached tissue because they often do not allow good tissue to bone contact.

[0004] Reattachment of soft tissue to bone typically requires the surgeon to pass suture material through selected tissue, form a plurality of surgical knots extracorporeally and then move the knots into position adjacent the desired tissue to be sutured. In such procedures, the surgeon must manually tie the knots on the suture strands after the suture is threaded through the selected tissues to be sutured. Knot tying during surgery, particularly arthroscopic surgery, is tedious and time-consuming. There is also a tendency for the knots to deform or collapse as the surgeon manually forces the knots down into the proper position. Also, the suture knots often are exposed to abrasion or cutting by sharp or rough areas along the walls of the bone canal into which anchors are typically inserted to provide fixation of tendon to bone.

[0005] Accordingly, a need exists for an improved method for attaching soft tissue to bone which does not require multiple suture knots and which allows the tendon to remain securely in place until the ligaments naturally attach to bone. A need also exists for such a knotless method of attaching tissue to bone which employs an implant with a fenestrated configuration that promotes healing of tissue.

SUMMARY OF THE INVENTION

[0006] The instruments and methods of the present invention overcome the disadvantages of the prior art, such as those noted above, by providing a swivel implant at the distal end of a driver that securely engages and locks into a cannulated ribbed body of an interference plug or screw. The swivel implant includes a closed aperture for receiving a strand attached to a graft, such that the strand is able to freely slide through the aperture.

[0007] In one embodiment of the invention, the strand is passed through the graft at desired points. A cannulated plug or screw is pre-loaded onto a driver provided with a swivel lock twist-in anchor at its distal end. The strand attached to the graft is passed through the aperture of the swivel implant located at the distal end of the driver. The distal end of the driver together with the implant is inserted directly into the bone. The driver may be rotated (in a clockwise direction, for example) to advance a screw over the anchor to complete insertion. The cannulated plug or screw is provided with a plurality of openings or fenestrations of various dimensions and geometries to provide multiple pathways through the device (i.e., though the interior of the body and through the fenestrations) to allow blood to flow to increase the healing zone, for example, for rotator cuff repair, while also promoting bone in-growth.

[0008] Other features and advantages of the present invention will become apparent from the following description of exemplary embodiments of the invention described with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] FIGS. 1-6 depict a series of steps of shoulder repair using a plurality of swivel anchor devices according to the present invention.

[0010] FIG. 7 illustrates various views of the driver assembly of the present invention.

[0011] FIGS. 8 and 9 illustrate the swivel implant and traction suture.

[0012] FIG. 10 is an enlarged view of the fixation device (cannulated screw) used in the present invention.

[0013] FIG. 11 illustrates various views of a swivel anchor with a metal tip which avoids the need to pre-drill a hole in bone.

[0014] FIGS. 12 and 13 provide additional illustrations of the swivel anchor assembly of the present invention, and the swivel anchor inserted in a bone socket, respectively.

[0015] FIGS. 14-16 illustrate various views of a fixation device with fenestrations and used in conjunction with the swivel anchor assembly of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0016] The present invention provides apparatus and methods for knotless tissue fixation using a swivel anchor device.

[0017] FIG. 1 illustrates a side view of a human shoulder of a patient undergoing a rotator cuff repair in accordance with an exemplary embodiment of the present invention. The patient may be positioned in the beach chair position using the Arthrex Beach Chair Lateral Traction Device or in a lateral decubitus position using the Arthrex 3-Point Shoulder Distraction System. Access to the subacromial space is facilitated with a variety of cannulas.

[0018] First, and as illustrated in FIG. 1, the mobility of the tear is assessed using, for example, a tissue grasper 10 such as the Arthrex KingFisher™ Suture Retriever/Tissue Grasper, to determine whether a U or L-shaped component exists. Where large tears extend to the superior aspect of the glenoid, margin convergence suturing is performed to reduce volume and strain on the repair. Subsequently, the length and width of the rotator cuff footprint is assessed and a bleeding bed for enhanced tendon to bone healing may be formed. This may be accomplished with a burr to perform a light dusting of the greater tuberosity, or by using a chondro pick to microfracture the footprint and maximize vascular channels.

[0019] FIG. 2 illustrates the preparation of two pilot holes for two swivel anchors that will be inserted in the medial row. A punch may be employed adjacent to the articular margin of the humerus and at about 45° angle to form the two pilot holes.
Subsequent to the formation of the pilot holes, and as shown in FIGS. 3 and 4, a swivel implant 30, loaded with a strand of suture tape 40, preferably Arthrex FiberTape, is placed in the medial pre-formed hole 32. Arthrex FiberTape is a high strength suture tape which is braided and rectangular-like in cross section and is disclosed in U.S. Patent Application Publication No. 2005/0192631, the disclosure of which is incorporated by reference herein. However, the anchor of the present invention can be used with any type of flexible mat or suture. The driver is then rotated to advance screw 42 down shaft 20 to secure the implant and suture in the bone hole. More specifically, as shown in FIG. 4a, the screw 42 is advanced by holding thumb pad 50 as the driver handle 22 is turned clockwise. An Arthrex FiberLink and an Arthrex Scorpion suture passer 44, are used to shuttle both tails of the suture tape through the rotator cuff 34 simultaneously. This procedure is followed for both medial swivel anchors.

Referring to FIG. 5, one tail of suture tape 40 from each medial swivel anchor is retrieved and loaded through the eyelet of another swivel implant 30, and that implant is installed in the previously formed lateral bone socket. The tension of the suture tape 40 is adjusted if necessary. The swivel anchor driver is then rotated in clockwise direction as before to advance the screw 42 over the implant to complete insertion. This step is repeated in another lateral bone socket with the other tails of suture tape 40 from each medial anchor. The tails of the suture tape 40 are then cut, one at a time, to complete the construct as shown in FIG. 6. The method is analogous to the method disclosed in U.S. Patent Application Publication No. 2007/0191849, the entire disclosure of which is incorporated by reference herein. FIGS. 12 and 13 provide additional illustrations of the swivel anchor assembly and the anchor inserted in a bone socket, respectively.

The swivel anchor and instruments of the present invention are now described in greater detail. As shown in FIGS. 7(a)-(f), a driver 68 is used to install the knotless fixation devices with a swiveling implant. Driver 68 features a thin cannulated rod 20 passing slidably and rotatably through a cannulated driver assembly. The tip of thin cannulated rod 20 is adapted to accept swivel anchor implant 42 within the cannulation at its tip, preferably via a snap fit. Cannulated rod 20 has a hexagonal outer surface for receiving anchor body (preferably a screw) 42 having a corresponding cannulation. FIG. 10 illustrates a detailed view of the cannulated screw 42.

During installation of the knotless anchor having a swiveling implant 30, the screw 42 is first inserted onto cannulated rod 20 of the driver 68. As shown in FIGS. 7(a) and (b), screw 42 is loaded onto rod 20 and then fully seated on the shaft end of the driver. FIG. 7(c) illustrates the swivel anchor implant 30. As shown in FIGS. 8-9, traction sutures 71 extending from the proximal end of the swivel anchor implant 30 are threaded through the cannulation of the driver 68 (see also FIG. 7(c)). These traction sutures 71 prevent inadvertent separation of the implant 30 from the driver during insertion, but they can be used subsequently for additional tie-down of the tendon after the driver is removed. Subsequently, the swivel anchor implant 30 is seated on the driver tip and until advanced until it snaps onto place (FIG. 7(d)). A protective tube 94 (FIG. 7(e)) may be placed over the tip of the assembly for shipping purposes. The traction sutures 71 may be looped around the driver handle, as shown in FIGS. 7(f) and (g), and secured in a cleat 98 to prevent the implant 200 from becoming prematurely detached from the driver.

The knotless fixation device of the present invention advantageously minimizes or eliminates the need to tie knots. The use of such a swivel anchor also provides secure fixation of the suture construct—the secure suture construct results from the suture being pushed into a hole and held tightly by an anchors.

In the preferred embodiment of the present invention, as mentioned above, suture tape is used with the swivel anchor to fix tissue to bone. However, the swivel anchor of the present invention can be used with any type of flexible material or suture. In another preferred embodiment, an allograft or biological component may be used instead of suture or tape. The allograft or biological component may be comprised of tendon or pericardium, for example, which provides improved tissue repair. In yet additional embodiments, any combination of suture, suture tape, and allograft or biological component may be employed, depending on the characteristics of the specific surgical repair and/or as desired.

FIG. 11 illustrate a swivel implant 500 which is provided with a pointed metal tip to facilitate insertion of the implant without the need to pre-drill or pre-form a hole in the bone. The conical configuration of the most distal end pointed tip 550 allows the implant to undergo a self-punching operation, eliminating any need to pre-drill a hole in the bone. The conical configuration of the most distal end of the pointed tip implant 550 also provides suture fixation strength, as well as accelerated graft/tendon healing to bone. The pointed tip implant 550 may be detachable from the driver.

As illustrated in FIGS. 11(a)-(e), pointed tip implant 500 is provided with a metal tip 550 and an eyelet or aperture 555 for receiving suture or suture tape. Pointed tip implant 550 is also provided, at its most distal end, with a conical portion 551 which allows direct advancement of the implant (by simply tapping the device with a mallet, for example) without the formation of a pilot hole in bone. Preferably, the conical portion 551 of the implant is formed of titanium or titanium alloy. In a preferred embodiment, eyelet or aperture 555 is also formed of titanium or similar material, to withstand impact forces during the graft fixation procedure.

FIGS. 14-16 illustrate various views of another exemplary fixation device 600 of the present invention that is employed in conjunction with the driver assembly 68 and a swivel anchor or implant of the present invention (such as the swivel anchor implant 30 or the swivel implant 500 described above). The fixation device 600 is similar to the fixation device (swivel anchor implant) 42 of FIG. 10, but differs from it in that the fixation device 600 is provided with a plurality of openings or fenestrations 605 provided on the outer surface of the body of the device. The openings or fenestrations 605 may have various dimensions and geometries provide multiple pathways for blood to pass through the device (i.e., through the fenestrations and up through the cannulation) and, therefore, to the repair site to promote healing. The fenestrations also promote in-growth of bone. The decreased mass of the device 600 (resulting from the fenestrations) further promotes healing and in-growth.

Preferably, the fixation device 600 is preloaded on the driver 68. As described above with reference to the three exemplary embodiments, the fixation device 600 is advanced into the bone socket by holding the thumb pad 50 as the driver handle 22 is turned clockwise. When the fixation device 600 is fully seated, the shaft of the anchor implant 30 or the swivel implant 500 is fully engaged by the fixation device 600 to
optimize the stability of the swivel anchor construct (composed of swivel anchor or implant 30, 500 and fixation device 600).

[0030] As illustrated in FIGS. 14-16, the fixation device 600 includes a cannulated body 612 in the form of a tapered cylinder having a proximal end 613 and a distal end 615. A continuous thread 620 wraps around cannulated body 612 in a clockwise direction, as shown. As shown in FIG. 15, the distal end 615 of the interference screw 600 terminates in an exposed, flat surface provided with an opening 616. The proximal end 613 of the interference screw 600 terminates in a drive socket 617 that allows a driver to seat snugly in the drive socket to allow manipulation and installation of the interference screw into the bone socket, while fully engaging the shaft of the swivel anchor 30 or swivel implant 500 (as detailed above with reference to interference screw 42). As shown in FIG. 16, drive socket 617 may be configured to be used with a traditional hex drive screwdriver. Although the drive socket 617 has been described as having hexagonal shape, the drive socket may also have a Delta drive configuration or a cruciform shape, among others, that allows the driver to rotationally engage the interference screw, to turn simultaneously with the driver.

[0031] The fixation device 600 of the present invention may be formed of a biocompatible and/or biodegradable material. Preferably, screw 600 is formed of a biodegradable material, such as poly-(L-lactide) (PLLA), poly(D,L-lactide), and polymeric acid (PGA), for example, or other biodegradable, non-metallic materials, which may be especially tailored for hardness, tensile strength and compressive strength. Alternatively, fixation device 600 may be formed of titanium, titanium alloy, stainless steel or stainless steel alloy. Other biocompatible materials which could be used include plastics, allograft bone and inert bone substitute materials.

[0032] A growth material may be advanced through the cannulated driver and into the screw 600 by employing a plunger, for example. As the driver is pulled out, the plunger pushes the flow material through the cannulation of the driver and into the body of the screw 600. The growth material will subsequently harden to allow better fixation of the interference screw 600 against the bone and the shaft of the swivel anchor 30 or swivel implant 500.

[0033] The growth material may be any solid, semi-solid, viscous, flowable, gel or elastic composition or mixture that allows its easy manipulation and insertion into the body 612 of the interference screw 600. The growth material may contain growth factors such as autogenous growth factors, for example platelet-rich plasma (PRP), optionally in combination with hyaluronic acid (HYA) and/or with a coagulant such as thrombin.

[0034] The term “growth factor” as used in the present application is intended to include all factors, such as proteinaceous factors, for example, which play a role in the induction or conduction of growth of bone, ligaments, cartilage or other tissues associated with bone or joints. In particular, these growth factors include bFGF, aFGF, EGF (epidermal growth factor), PDGF (platelet-derived growth factor), IGF (insulin-like growth factor), TGF-β, TGF-β-1 through 13, including the TGF-β superfamily (BMP-1 through 12, GDF-1 through 12, Dpp, 60A, BIP, OF).

[0035] Optionally, the growth material may comprise additional osteoconductive bone adhesives, calcium carbonate, fatty acids, lubricants, antiseptic chemicals and/or antibiotics. In this case, other solution excipients such as buffer salts, sugars, anti-oxidants and preservatives to maintain the bioactivity of the growth material and a proper pH of the growth material may be also employed. The additional lubricants and/or the antiseptic and/or the antibiotic will typically be present in the growth material in a predetermined concentration range, which will be dependent upon the particular bone site and application, as well as the specific activity of the antiseptic and/or the antibiotic.

[0036] Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein.

What is claimed as new and desired to be protected by Letters Patent of the United States is:

1. A method of tissue fixation comprising:
 providing a suture;
 securing the suture to the tissue to be fixedated; and
 anchoring the suture into the bone socket using a swivel implant and a fixation device provided with side fenestrations, thereby providing tissue fixation.

2. The method of claim 1, wherein the fixation device is an cannulated interference screw or a cannulated plug.

3. The method of claim 1, wherein the swivel implant has a conical portion terminating at a pointed tip at its most distal end.

4. The method of claim 1, wherein the swivel implant has a closed aperture at its distal end.

5. The method of claim 1, further comprising the step of capturing the suture attached to the graft with the swivel implant.

6. The method of claim 5, wherein the step of capturing the suture further comprises passing the suture through a closed aperture of the swivel implant.

7. The method of claim 6, wherein the closed aperture has an eyelet configuration.

8. The method of claim 1, further comprising the steps of preloading the fixation device on a driver and, subsequently, providing the swivel implant at a distal end of the driver.

9. A suture anchor comprising:
 an anchor body provided with side fenestrations; and
 an anchor tip rotatably attached to the anchor body.

10. The suture anchor of claim 9, wherein the anchor tip has a closed aperture.

11. The suture anchor of claim 9, wherein the anchor tip is a metal tip.

12. The suture anchor of claim 9, wherein the suture anchor is configured to allow rotational insertion without causing excessive twisting and knotting of a suture captured in the anchor tip.

13. The suture anchor of claim 9, wherein the anchor tip is configured to capture a suture.

14. The suture anchor of claim 9, wherein the anchor body has a cylindrical configuration.

15. The suture anchor of claim 9, wherein the anchor tip is detachable.

16. The suture anchor of claim 9, further comprising a fixation device for securing the suture anchor in bone.

17. The suture anchor of claim 16, wherein the fixation device is a cannulated interference screw or a plug.

18. The suture anchor of claim 17, wherein the fixation device is a cannulated device.