7 Al

—

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

12 July 2001 (12.07.2001) PCT WO 01/50337 Al
(51) International Patent Classification’: GOG6F 17/30 (74) Agent: WATERMARK PATENT & TRADEMARK
ATTORNEYS; 290 Burwood Road, Hawthorn, VIC 3122
(21) International Application Number: PCT/AU00/01236 (AU).
” . o . b (81) Designated States (national): AE, AG, AL, AM, AT, AU,
(22) International Filing Date: 11 October 2000 (11.10.2000) AZ. BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
(25) Filing Language: English HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
(26) Publication Language: English NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW.
(30) Priority Data: . . .
PQ 4924 31 December 1999 (31.12.1999) AU (84) Designated States (regional): ARIPO patent (GH, GM,
PQ 9344 11 August 2000 (11.08.2000) AU KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
£ o patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
(71) Applicant (for all designated States except US): COM- IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
MONWEALTH SCIENTIFIC AND INDUSTRIAL CL CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
RESEARCH ORGANISATION [AU/AU]; Limestone
Avenue, Campbell, ACT 2601 (AU). Published:
— With international search report.
(72) Inventor; and
(75) Inventor/Applicant (for US only): KOSMYNIN, Arkadi For two-letter codes and other abbreviations, refer to the "Guid-

[AU/AU]J; 2/28 Centennial Avenue, Brunswick West, Vic-
toria 3055 (AU).

ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: A METHOD AND SYSTEM FOR COMMUNICATION IN THE USENET

O 66 66 6 6

) c s
S S Origil
ginal
. CLIENT [o} Www c
Web Serve
‘ A v A ver
USER INTERNET E
Usenet Usenet

SNeOs®D

Usenet

Server

=
©

. User accessing WWW using their client (2)
. WWW client, such as Netscape or 1E.
Client Side Catching Agent.
. Usenet server that is locat ta the client.

. Internet, including the WWW and the Usenet

. Server Side Caching Agenet.

. Usenet server that is focal to the original Web server.
. QOriginal server which is accessed by the user.

(57) Abstract: The present invention relates to Internet information services. In particular, the present invention relates to improve-
€7) ments related to and/or use of the Usenet. The present invention also has application to email systems, as well as other electronic
distribution media. In one aspect, the present invention relates to a method and system for communication and/or efficient exchange
and storage of binary objects in the Usenet and similar systems. This aspect may be described as "Advanced News Server" (ANS).
~~ A second aspect of the present invention relates to helping Usenet users make informed decisions on whether or not they want to
download a particular Usenet article. A third aspect of the present invention relates to the distribution, access and/or download speed
of Web objects, and involves a new system design and method of use, providing a Usenet based alternative to the current Web caching
and mirroring solutions. A fourth aspect of the present invention relates to a method that enables relatively transparent encoding
within Web object’s URLs information necessary to locate the object in a Usenet server and retrieve it. The method also allows
transparent retrieving of news cached objects from their original servers.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

1

A METHOD AND SYSTEM FOR COMMUNICATION IN THE USENET
Field of Invention

The present invention relates to Internet information services. In
particular, the present invention relates to improvements related to and / or use of
the Usenet. The present invention also has application to email systems, as well
as other electronic distribution media.

In one aspect, the present invention relates to a method and system for
communication and / or efficient exchange and storage of binary objects in the
Usenet and similar systems. This aspect may be described as “Advanced News
Server” (ANS).

A second aspect of the present invention relates to helping Usenet users
make informed decisions on whether or not they want to downioad a particular
Usenet article.

A third aspect of the present invention relates to the distribution, access
and / or download speed and efficiency of relatively large binary objects, and
involves a new system design and method of use.

A fourth aspect of the present invention relates to a method that enables
relatively transparent encoding within objects’ URLs information necessary to
locate the object in a Usenet server and retrieve it. The method also allows
transparent retrieving of news cached objects from their original servers.
Background

The Usenet is a worldwide bulletin board system that can be accessed
through the Internet or through many online services. The Usenet contains tens
of thousands of forums, called newsgroups, that cover many and varied interest
groups. The Usenet is used daily by millions of people around the worid.

Every Usenet message belongs to a newsgroup. Messages are made
available to users worldwide by means of the UUCP and NNTP protocols (Unix to
Unix Copy Program, and Network News Transport Protocol, respectively).
Individual computing sites appoint somebody to oversee the huge quantity of
incoming messages, and to decide how long messages can be kept before they
must be removed to make room for new ones. Typically, messages are stored

for less than a week. They are made available via a news server.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

2

Users access local newsgroups with a newsreader program. Modern
WWW browsers come with a built-in newsreader. A dedicated newsreader
program can also be used. The newsreader accesses the local (or remote) News
host using the Network News Transfer Protocol (NNTP), enabling a user to pull
down as many newsgroups and their contents as they desire. If there is no local
access to News, there are publicly accessible commercial and free Usenet hosts
that can be accessed.

Users sending Usenet messages must address each message to a
particular newsgroup. There are newsgroups on subjects ranging from education
for the disabled to Star Trek and from environment science to politics in the
former Soviet Union. The quality of the discussion in newsgroups may be
excellent, but this is not guaranteed. Some newsgroups have a moderator who
scans the messages for the group and decides which ones are appropriate for
distribution.

Some of the newsgroups provide a useful source of information and help
on technical topics. Users needing to find out about a subject often send
questions to the appropriate newsgroup, and an expert somewhere in the world
can often provide an answer. Lists of Frequently Asked Questions are compiled
and made available periodically in some newsgroups.

The transmission of Usenet news is cooperative. There are places which
provide feeds for a fee (e.g. UUNET), but the majority of news transmission is
carried out on the basis of peer agreements.

There are two major transport methods, UUCP and NNTP, as previously
noted. The first is mainly modem based and involves the normal charges for
telephone calis. The second, NNTP, is the most used method for distributing
news over the Internet.

With UUCP, news is stored in baiches on a site until the neighbor calls to
receive the arficles, or the feed site happens 1o call. A list of groups which the
neighbor wishes to receive is maintained on the feed site. The Cnews system
compresses its batches, which can dramatically reduce the transmission time

necessary for a relatively heavy newsfeed.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

3

NNTP, on the other hand, offers a little more latitude with how news is
sent. The traditional store-and-forward method (as noted above) is, of course,
available. Given the "real-time" nature of the Internet, though, other methods
have been devised. Programs now keep constant connections with their news
neighbors, sending news nearly instantaneously, and handle dozens of
simultaneous feeds, both incoming and outgoing.

The transmission of a Usenet article is centered around the unique
‘Message-ID:" header. When an NNTP site offers an article to a neighbor, it says
it has that specific Message ID. If the neighbor finds it hasn’t received the article
yet, it tells the feed to send it through; this is repeated for each and every article
that is waiting for the neighbor. Using unique IDs helps prevent a system from
receiving multiple copies of an article from each of its many news neighbors, for
example.

The Usenet was originally designed for exchange of textual information,
but presently the major part of bandwidth and storage resources is consumed by
so called ‘‘binary” newsgroups that mainly carry binary data. In terms of bytes,
the top four newsgroups consume 22% of the entire volume. The top 35 groups
consume 50% of the entire volume.

In relation to the first aspect, many Internet Service Providers do not
service a lot of the binary groups because these binary groups are considered to
send the total volume of news soaring. The total news feed is said o be about 25
to 30 Gb a day.

If otherwise normal text groups get relatively large volumes of binary
objects posted, there is a danger that ISPs will drop them from their news feeds.
To address this, there are approved cancel 'bots’ that remove all messages
containing large binary objects from the main news groups. It is the action of
those people who cancel and the restraint of the majority of users that helps to
keep the newsgroups alive.

The average text message is probably about 2K or less in size (unless it
also contains HTML) but a binary object can easily run from 20K to 250K and
more. For many groups a single binary object can equal the entire day’s text

download.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

4

News articles are stored in news servers to enable users to access them.
But this storage brings about another problem, that being the limited availability of
storage space. To limit amount of disk space occupied by binary newsgroups,
ISPs normally set shorter expiration time limit for binary postings. This helps to
save disk space in short term, but users of popular binary news groups
compensate for this by re-posting popular binary objects regularly, to ensure their
availability. This reduces the effect of the measures taken by ISPs and even
makes the situation worse because:

1) Often a binary object is re-posted by more then one poster and this results
in there being several copies of the binary object stored on the server attached to
different messages, and

2) Regular re-posting of large binary objects is considered to lead to a waste
of bandwidth that should be avoided.

Another problem is being caused by a violation of the Usenet etiquette by
some posters. Because they want as many people as possible to see their
messages, they send the messages to many newsgroups. In exireme cases,
they send messages to newsgroups that are hardly related to the topic.

A major part of storage and ftraffic resources is spent because all
messages, including binary objects, have to be sent and stored in textual format.
There is no compression for textual messages, and binary objects have to be
text-encoded. This does not decrease their size. Quite the opposite, this
increases their size by 33%.

Some attempts have been made in the past to address these problems,
but with limited success.

As described above, some ISPs try to reduce expenses caused by
handling binary attachments by seiting low limit on time that a message with a
binary object will spend in the news pool on their server. However, this is not
considered an effective solution because often the same binary object returns re-
posted with a new message. This increases news feed traffic and leads to
multiple copies of the same object being stored.

News server software that uses UUCP for news feeding (such as the

Cnews program) compresses sets of news messages before transferring them.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

5

Compression allows for a reduction in bandwidth requirements, but most of
binary data (e.g. images and video) is hard to compress without a loss of quality.
This means that compression is considered useful when applied to textual data,
but not considered useful when applied to most kinds of binary data.

News caching is a popular approach. It has been implemented in Dnews
software. This method does not download news messages until a user shows
interest in the newsgroup. Once a user has subscribed to a newsgroup, the
whole newsgroup is downloaded. This method does not avoid problems
associated with duplication of binary objects. Also, if the number of users is
considerably large, this method is unlikely to provide a significant advantage
because most of the newsgroup contents end up being downloaded.

There does exist some patent literature related to the problem of storage
and exchange of information in an electronic environment, but these disclosures
are also not considered to solve the problem(s) noted above. In particular, there
is:

Patent No US 5,771,355 - Title: Transmitting Electronic Mail by Either
Reference or Value at File-Replication Points to Minimise Costs. This patent
covers technology aimed at improving e-mail delivery in certain conditions. E-mail
attachments are delivered by “optimal path”. For example, when the path
includes intermediary points that make it much longer than the distance from the
sender to the receiver, it makes sense to defer sending of attachment until the
receiver requests it and, in this case, send attachment directly from the site
where it is stored to the receiver.

However, the disclosure does not appear to address the Usenet, nor the
duplication problem noted above. Addressing the problem of finding equivalent
objects attached to different messages and posted by different users also does
not appear to be disclosed.

Patent No US 5,908,723 - Title: Method and Apparatus for Transmitting
Electronic Mail Attachments with Attachment References. The disclosure relates
to a modified version of the patent discussed above, but it too does not appear to

address the issues noted above.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

6

Patent No US 5,813,008 - Title: Single Instance Storage of Information.
This patent relates to avoiding storing multiple copies of ‘common portions’ of
information records on a network of storage devices. The disclosure, however,
does not relate to the Usenet, but to email. In the email system disclosed, when a
user's mailbox is moved to a new server, the single-instance identifiers of the
messages in the moved mailbox are compared to a table of single-instance
identifiers associated with messages already stored on the new server. Copies
are made of only the common portions for which a copy is not already stored on
the new server. From this it can be seen that the disclosure relates to avoiding
storing multiple copies within a single server, not within the network as a whole.
Otherwise they would not have to make copies “of only the common portions for
which a copy is not already stored on the new server.”

The disclosed method for finding common portions finds only common
portions created as a result of modifying the same information item (e.g. e-mail
message). In other words, the common portions are inherited by the items from a
common ancestor. However, this does not address problems associated with
finding attachments posted by different users independently, and thus, not having
any common ancestors that could be traced.

Patent No US 5,815,663 - Title: Distributed Posting System Using an
Indirect Reference Protocol. This patent disclosure describes posting marked up
messages to news groups. In this system, a message would look like an HTML
page with various elements (like images) and links to other pages or messages.
The patent describes two ways to give access to the page elements. The first
one is to send them with the message as attachments. The second one is to
provide URL-like references to the elements.

Again, this patent disclosure is not considered to address the problem with
attachments posted by different users independently, or even avoiding storing
same objects posted as attachments by the same user.

Patent No US 5,815,663 - Title: Method and Apparatus for Identifying
Duplicate Data Messages in a Communication System. This patent disclosure is
considered directed at how to determine whether one message is a copy of

another message in an environment where errors are very frequent. In the

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

7

Usenet, however, the environment is relatively error free, and thus the problems
addressed in this disclosure are not considered relevant to the problems of the
present invention.

Publication No 05316143 (Japanese) - Title: Electronic Mail Processor and
Method Therefor. In this disclosure, instead of sending an e-mail message to all
destination mailboxes, it is suggested to send only its id and to keep the message
in a central repository until requested. Again, it appears unrelated to the Usenet.

In relation to the second aspect, as noted above, given large average size
of binary objects, pollution of binary newsgroups by spam and slow speed of
downloading via modem lines, it is very important to help users to make better
decisions on whether to downioad a particular binary object. Because, if this
decision is wrong, they spend resources (their own time, on-line time, traffic) on
downloading an object that they will discard right after downloading and
examining.

In a decentralised, anarchic system, like Usenet, it is important to provide
people with better means of orientation, filtering spam and selection of quality
items. Some attempts have been made in the past to address the problem, but
with limited success.

Currently, almost the only description of an article is its subject. This way
of describing information items is more or less adequate for textual messages
that contain text discussing the subject. For multimedia items, one-line
descriptions can hardly be adequate. Normally, subject contains name of the
collection or short description of the multimedia item, name of file, number of the
part and total number of parts (such as "Persian kitten cats123.jpg (1/1) 35567
bytes"). This format is often used, but many multimedia postings do not have
even that. Often subject lines are quite meaningless, e.g. "My loved kittens".

A still further problem is the relatively large amount of traffic and relatively
slow response times over the Internet. Users feel frustrated if they have to wait a
long time for a response from their Web browser. A relatively fast response has
become absolutely critical for emerging multibillion e-commerce business.

Research shows that a substantial part of users, if idle for more than 8 seconds,

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

8

would exit a site without completing the transaction. Estimated $4.8 billion is lost
annually due to such bail-out behaviour.

Latency time is an effect of delays caused by a number of reasons, such
as there being a: large number of objects to retrieve in order to construct the
page, speed of light delays, connection delays, router delays, server delays and
transmission delays.

Caching is a cheaper alternative to increasing connection bandwidth. The
idea of caching is to move the objecis likely o be requested closer to the
consumer.

One popular approach to improving the Web performance is to deploy
proxy cache servers between clients and content servers. With proxy caching,
most of the client requests can be serviced by the proxy caches, thus reducing
latency delays. Network traffic on_the Internet can also be significantly reduced,
eliminating network congestion. In fact, many commercial companies are
providing hardware and software products and solutions for Web caching, such
as Inktomy, Network Appliance and Akamai Technologies. Some of them are
using geographically distributed data centers for collaborative Web caching.
Namely, many geographically distributed proxies are increasingly used to
cooperate in Web caching.

Analysis of Internet traffic shows that transmission of objects bigger than
1Mb in size takes about 40% of the total Internet traffic, which is a significant
amount, considering that less than 1% of transmitted objects is this size.
According to the same source, transfer error rate increases exponentially as the
object size becomes larger than 10Mb and the error rate of objecis larger than
10Mb is over 80%. This data shows that, first, large objects constitute a
significant amount of Internet traffic. Thus, we can conservatively estimate that
objects larger than 100K in size take at least 70% (or more) of the traffic.
Second, this data shows that large objects are very hard to download, not only
because it is slow, but also because the process of downloading a large object is
more likely to fail. This is thus considered an obstacle to the use of large
multimedia objects on the Web, for example, for e-commerce and remote

education services.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

9

It is an object of the present invention to alleviate at least one problem
associated with the prior art.

In particular, in one aspect of the present invention seeks to address
problems associated with efficient storing and transmitting binary objects in the
Usenet and problem of finding the same object attached to different messages
and posted by different users that also does not appear to be disclosed.

In another aspect, the present invention seeks to provide a better way of
describing multimedia items.

In still another aspect, the present invention seeks to offer a Usenet based
solution to the caching of Web objects.

Summary of Invention
First Aspect

A first aspect of the present invention provides a method of alleviating

storage of duplicate binary objecits, in a Usenet system, the method including:

1. allocating an identifier, such as UBOI or RUBOI to a first binary object,

2. determining whether the system has already stored a second binary object
equivalent to the first binary object, and

3. storing the first binary object if the result of step 2 is negative.

Preferably, the method further includes
4. substituting in the message the first binary object by a reference to it and
storing the message.

Preferably, if the result of step 2 is positive, the message is stored together
with a reference to the second binary object.

The present invention provides also a method of identifying, in a Usenet
system, duplicated binary objects, the method including:

1. making available information identifying a first binary object,

2. determining whether the system has already stored a second binary object
equivalent to the first binary object, and

3. determining that there is a duplication of binary objects if the second object
is equivalent to the first object.

Preferably, the system transfers messages only with binary objects that

are not equivalent to the objects that the receiving side already has.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

10

Preferably, the system transfers information in compressed format, using
invented commands. Further details are outlined in the accompanying
description.

Other features of this aspect of the present invention are also outlined in
the accompanying description and claims.

The present aspect is considered to address the problem of reducing the
cost of transferring and storing Usenet messages that include large binary
objects, such as images, sound, video, executable code, etc. This aspect is
based on the existing Usenet standards and architecture, in particular, the NNTP

protocol although other functionally similar protocols (e.g. SMTP) can be used in

‘a similar way.

The present aspect is based on the recognition that there are a significant
number of duplicates among the posted binary objects:
1) That have been posted to the same group simultaneously by different
posters;
2) That have been posted to different groups simultaneously by the same or
different posters;
3) That have been posted recently and then re-posted.

The present aspect helps to identify the duplicates and to avoid storing
and transferring multiple copies of the same binary object.

In general, a Universal Binary Object Identifier (UBOI) can be considered
a sequence of bytes, or information, that is assigned to binary object in order to
identify it, and that has the following properties:
1. It is significantly smaller than the object it is identifying;
2. The probability of two different objects having the same identifier is
insignificantly low (for practical purposes).
3. It is a function of the object's content and properties. This means, that,
having an object, it is possible to construct UBOI for it using a particular
algorithm. For example, we describe building UBOIs by calculating CRC32 code

of the object and its size.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

11

In general, a Reliable Universal Binary Object ldentifier (RUBOI) can be
considered a sequence of bytes, or information, that is assigned to binary object
in order to identify it, and that has the following properties:

1. It is significantly smaller than the object it is identifying;

2. Two different objects always have different identifiers.

[t is to be noted that it does not matter how the identifier is constructed, as
long as it satisfies the requirements 1, 2 and 3 above for UBOI and 1 and 2 for
UBOI. One simple method of constructing UBOQI is disclosed above, and one
simple method for constructing RUBOI is described below. Other methods as
would be known to those skilled in the art are herein contemplated without
departing from the scope of the present invention.

In general, a “binary object” is a form of data or information communicable
in electronic format. In one form, unlike that of textual objects, their natural
format of presentation and/or processing is not textual. Examples of binary
objects: images, executable code, video files, sound files, even compressed text.

In general, by the term ‘Usenet’, we mean the Usenet or any information
system based on the following principles:

1. There are a number of interacting servers that store information items,

2. The information items are exchanged (preferably automatically) between
the servers and replicated on them.

3. Users (or client programs) typically access the system via a small number
of servers of their choice.

Users (or client programs) can post (contribute) information items to the
system and/or retrieve items, including ones contributed by other people.

If a news server already has the object, the invention considers that there
is no need to transfer and store a new copy of it. A single copy can be shared
among all messages on the server that have this object included. Only a
reference to the shared object has to be stored with each message.

The present invention seeks to identify binary objects by their unique
parameters, such as, but not limited to, CRC32 code plus file size. Thus, if two

messages have attached binary objects that have identical CRC32 codes and

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

12

size, the present invention considers that the binary objects may be the same,
compares them byte-to-byte and, if they are the same, stores only one copy of
them. It is considered that the probability of two different objects having these
two parameters identical is very small, practically zero. In case this level of
reliability is insufficient, one of reliable methods of assigning binary objects
identifiers described below can be used.

In practice, where such reliable methods and reliable identifiers (RUBOI)
are used, the present invention seek to determine that if two objects have the
same RUBOI, they are the same, therefore, there is no need to compare them
and only one of them has to be transferred and stored.

" Unlike in the prior art, where attachments are not considered separately
from messages (news articles) for the purposes of transfer and storage, the
present invention considers messages multipart entities. The current NNTP
protocol has commands that operate by messages’ identifiers in order to enable
the other party to make an accept/reject decision regarding the message. The
NNTP IHAVE command is an example of such a command, where the sender
offers a message to the receiver and sends a message ID to the receiver, for the
receiver to make their accept/reject decision on. If the receiver already has a
message with this ID, it may reject the offer.

As the present invention considers messages complex entities, it
introduces analogs of current NNTP commands. The NNTP extensions give
information not only about the message being available, but about its
attachments as well, and can send any subset of parts of the message on
request. The receiving party may choose to accept only those attachments which
it does not have already.

For the transfer of messages between two ANS-complaint (i.e. supporting
this invention) news servers, the present invention will offer attachment
identification information along with the message identification information
(Message ID) to the receiving server to make the decision whether the attached
binary object has to be transferred. If the receiving server has a copy of the
binary object already, it may decide that no transfer of the binary attachment is

necessary and accept only the textual part of the message.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

13

Another group of NNTP extensions that are introduced in the present
invention, allows transfer of information in compressed (non-textual) format, thus
allowing a saving of transmission time. An example of such a command is
XZIPOVER command that sends group overview information in compressed
format. Sending of an overview is a very expensive operation for large groups,
therefore compression offers substantial savings.

When the sending server is not ANS-complaint (i.e. a server that does not
support this invention) and does not offer object identification information, the
receiving server may accept the beginning of the binary object (that typically
includes file name and a part of the body) and then make decision based on this
incomplete / partial information. For example, if it has already a binary object that
has the same file name and starts with the same sequence of bytes, it is very
probable that it is the same object as the one being received. As a result of the
decision made, the receiving server may decide to interrupt receiving the object.

The same technique may be applied to downloading of binary objects by
ANS-complaint news reader programs (news clients). Binary object identification
information may be included in message headers that users will receive before
downloading the message body. A client program can maintain a database of
descriptions of binary objects that it has downloaded before. Based on the
information in this database and the attachment identification information in the
message header, the client program can advice the user whether this binary
object has been downloaded before, and thus help to avoid downloading
duplicates.

The advantages of the present invention include:

1. Relatively economic use of bandwidith and hard disk space because
duplicated binary objects are shared between messages and usually only one
copy is transferred and stored.

2. Increased performance of software due to dealing with smaller amount of
data (transferring, saving, reading it etc.)

3. Flexibility to configure a system to show the optimal performance in a wide
range of circumstances (see below). The present method allows configuration of

software to save bandwidth at expense of disk space or vice verse, save disk

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

14

space at expense of bandwidth, or adapt to any predetermined or selected
requirement in the range between these two extreme cases.
4. Decreased traffic expenses because the invention does not use texiual
encoding of binary objects when transferring them.
Second Aspect

A second aspect of the present invention provides a method of
coordinating the identification of objects with their associated descriptions
(metadata) in a newsgroup of the Usenet, the method including the steps of:

generating a first tag, the first tag being readable in a manner for the
purposes of identifying a description,

attaching the first tag to a metadata object in the message containing the
description,

determine from the first tag, a second tag, the second tag being adapted
to identify an object,

attaching the second tag to the message containing the object,

posting the messages.

There is also provided a method of downloading messages from the
Usenet, the method including the steps of:

receiving headers or only XOVER information of messages available for
downloading, «

scanning this received information to identify which messages contain
descriptions,

downloading the messages containing descriptions,

representing the descriptions to the user to make a decision regarding the
downloading of associated objects,

if the user wants to download an associated object,

reading a first tag associated with the description, generating a second tag
adapted to identify an object,

scanning the information received from the server in order to locate a tag
equivalent to the second tag, and

downloading the message having the located tag.

Preferably the second tag is the same as the first tag.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

15

This aspect of invention is based on an automatic way of providing a
metadata description for every multimedia item and associating metadata
descriptions with the information items when the information is being presented to
the user during selection process.

It has been realised that images represent a significant part of multimedia
objects posted on the Usenet. Users posting large collections of images (tens or
hundreds of them) often post so called “indices" - images that contain thumbnails
(small copies) of images posted in the collection. This gives to the downloaders
the opportunity to download an "index" image and get a betiter idea about the
images posted in the collection, make better informed decisions whether to
download a particular image and thus save downloading time and money spent
on the Internet session.

This illustrates an approach that uses a different kind of description of an
information item. Naturally, a litile copy of image is a better description of it than
a subject line.

This allows users to save downloading time. To downioad a set of

selected images from a posted collection, the user may perform the following

steps:

. Locate collection articles;

o Locate collection indices;

. Download collection indices;

. View collection indices and memorize (or write down) names of wanted
files;

o Locate articles carrying the wanted files and either mark them for

background downloading or downioad them instantly;

On the other hand, the MIME standard allows incorporation of references
into bodies of the messages and refer to other objects accessible using some
protocol specified by the reference. It has been realised that this feature can be
used to refer to binary objects from their descriptions. A message containing

metadata information (descriptions) should be recognizable by its header.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

16

It allows for establishing connection between messages containing
information items and messages containing descriptions (metadata) of the
information items. It does this by inserting special fields (tags) in message
headers at posting stage. So, at downloading stage, a client program, having
downloaded message headers, can recognise metadata messages by these
special tags in their headers, downioad the metadata messages, and thus obtain
information describing other messages and use this information to better
represent these messages to the user.

The method of the second aspect preferably includes two stages.

Stage 1

A collection of multimedia items and its corresponding description is
posted by poster’s client. A description of the collection is an article or a set of
articles containing a metadata item for every item of the collection. There are
different ways to indicate an association between the multimedia items and
corresponding metadata items. Preferably, certain tags can be provided in the
headers of the item message and MIME headers of the attachment containing
the metadata item.

For example, message carrying file cats123.jpg could contain a header as
shown as follows:

X-meta-tag: <unique-object-id-1-of-cats123.jpg>

In a message carrying multiple attachments, there would be several such
headers, one for each object attached. The corresponding attachment
(metadata item) in the collection description article would contain the following
string in one of its MIME headers:

X-meta-tag: <unique-object-id-1-of-cats123.jpg>

Thus, provided that there is access to headers of coliection articles and to
the body of collection description article, it is possible to match descriptions to
the articles based on identity of the string in correspondent X-meta-tag fields.

To identify collection description articles, it is possible to add a special
header to them, such as

X-metadata: yes

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

17

Stage 2

The downloader’s client downloads headers of all new articles in the
newsgroup. The client identifies collection description articles, automatically
downloads them (if this is allowed by the user) and uses the found metadata
objects (such as thumbnails) to represent the articles they are describing to the
user for selection.

The association between the metadata items (in metadata articles) and the
downloaded headers of the articles they are representing is established based on
correspondent tags. When the client has downloaded a message containing a
metadata item with tag “X-meta-tag: <my unique tag>", it searches for a header
containing a correspondent tag. Once found, this header is considered to belong
to the message that contains the object being described. Thus, a connection has
been established between the metadata object on the screen and the actual
message that this object is representing.

The user considers presented information and either marks some of the
articles to download in batch mode or double clicks on them to download them
immediately.

When the user has selected one or more metadata objects and gives the
command to start downloading, the client uses the established associations
between the metadata objects and articles to download the articles represented
by the metadata objects.

This approach has been found to significantly simplify for users the
process of selecting and downloading of multimedia items. For example, in case
of images, user sees a set of small images (thumbnails) on the screen. Each of
these images represents a "real" large image. To download real images, the
user just has to double click on a thumbnail or select a few of them and then start
batch downloading.

Although this kind of ‘click on link’ interaction is used on the Web, but the
underlying protocol (HTTP) is different. Our invention makes it possible to
achieve the same level of convenience when working with the Usenet-like
systems.

The advantages of the present invention include:

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

18

1) A better representation of available articles during selection stage. This
avoids downloading multimedia objects that are unwanted and will be discarded
later anyway.
2) This invention provides a general, flexible and easily extensible way of
associating of additional information with articles and using this information when
required.
Third Aspect

A third aspect of the present invention provides a method, system and / or
network for transporting of Web objects from the server side (their original server)
to the client side via the Usenet or a Usenet-like system. The method includes:
Constructing/determining/allocating a URL (Uniform Resource Locator) for the
object,

placing the object on the original server in such a way that this URL
a) contains information necessary to find the object in a Usenet server;

b) indicates that the object has been posted to the Usenet and may be found
on a Usenet server; and

C) that the URL can be used to retrieve the object transparently from its
original server.

Furthermore, the method may include:

posting the object on the Usenet;

on the client side, intercepting requests for the object, interpreting them
and using the exiracted information to find the object from a Usenet server and
return it to the client.

A method of associating an URL with a Web object(s) for transport from a
server side (their original server) to a client side via the Usenet or a Usenet-like
system, the method including the steps of:
a. Constructing/determining/allocating a URL (Uniform Resource Locator) for
the object, and
b. placing the object on the original server in such a way that this URL

1. contains information necessary to find the object in a Usenet

server;

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

19
2. indicates that the object has been posted to the Usenet and may be
found on a Usenet server; and
3. can be used to transparently retrieve the object from its original

server.

This aspect also provides a method of transporting Web objeci(s) via a
Usenet, the method including:

associating a URL with the Web object as outlined above,

posting the object on the Usenet;

at a client side, intercepting requests for the object, interpreting them and
using information exiracted, as a result of the interpretation, to locate the object
from a Usenet server.

This aspect also provides a useful method of constructing an URL useful
in accordance with the method as disclosed above.

Still further, the present aspect provides a communication system adapted
to distribute Web objects from a web host server to a client, the system having:

a Web host sever on which the web objects are stored, the web host
server being coupled to the WWW (World Wide Web),

the coupling between the client, the WWW and web host server enabling
bi-directional communication,

The improvement including

providing a first Caching agent intermediate and coupled to the client and
WWW and Usenet, and

providing a second Caching agent intermediate and coupled to the WWW
and the Usenet and the web host server,

wherein the first and second Caching agents enable communication of
objects between the client and the Web host server to be via either the Internet or
the Usenet.

The Internet includes the WWW,

The advantage of this method and system is that Usenet has all the
necessary infrastructure and functionality to be used for distribution of objects

from server side to client side. Usenet replication mechanisms ensure economic

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

20

transmission of messages and replication of messages on servers that are
subscribed to their newsgroup.

Thus, Usenet can be used for automatic replication and mirroring of Web
objects. In context of this task, newsgroups can be seen as subscription
channels to which servers subscribe if their users are likely to retrieve posted
Web objects. One of the examples could be a “Shareware channel’ that would
be automatically mirroring contents of Web shareware servers on the Web.

Periodic re-posting of the objects would be required to ensure their
availability in the Usenet servers, as, depending on the server’s settings, most of
the messages expire within a few days. In the context of old NNTP protocol, this
periodic re-posting would be considered a gross waste of resources. However, if
the first aspect disclosed in this application is also implemented, periodic re-
posting of large binary objects would be reduced to transmitting small textual
parts of the messages. Thus, periodic re-posting of objects, in fact, is reduced to
posting messages that state that this object is current. '

This aspect of invention allows the integration of the Usenet and the Web
in order to use the Usenet as an economical distribution vehicle for Web objects.
Usenet distribution of Web objects brings all the advantages of caching of Web
resources: faster downloading for users, taking the load off the original servers,
and saving the precious Internet bandwidth resources. In this regard, this third
aspect, in one form, is directed to Usenet-based preemptive caching and
relatively automatic mirroring of Web information objects. This uses Usenet
protocols and existing infrastructure to replicate relatively large files/ binary
objects normally stored on and served from Web servers, and moves these files
closer to the likely consumers. Requests are serviced from there, thus évoiding
relatively expensive transmission of large files from their original Web servers to
remote consumers.

The process of delivery (distribution, replication, mirroring, caching) of
large objects should be given importance because it is considered an effective
way to reduce the traffic on the Internet. It is considered that the solution offered
in this aspect would be a relatively simple and cheap alternative to traditional

Web caching solutions available in the prior art. A review of the patent

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

21

disclosures, research papers and methods and products developed by the
leading companies in the area is considered to show that no one considers the
Usenet a suitable venhicle for distribution of pre-cached Web objects.

Fourth Aspect

A fourth aspect of the present invention provides a method of creating a
URL for use in the Web, the method including the steps of:

providing a first field having information sufficient to locate an object on a
web server, and

providing a second field having information sufficient to locate the object
on the Usenet.

In essence, this aspect discloses a method that enables transparent
encoding within objects’ URLs information necessary to locate the object in a
Usenet server and retrieve it. A number of example implementations are
disclosed and any of these (as well as other methods as would be apparent to
the skilled person) may be used in our system. These methods allow transparent
retrieving of news cached objects from their original servers, in case if the objects
could not be found in the Usenet or no Usenet server is available to the client.

Embodiments of the various aspects of the present invention will now be
described with reference to the accompanying drawings, in which:

Figure 1 illustrates schematically differences between the first inventive
aspect and the prior art.

Figure 2 illustrates schematically a 1% method applicable to the first aspect
that can be used to identify binary attachments.

Figure 3 illustrates schematically a 2™ method applicable to the first aspect
that can be used to identify binary attachments.

Figure 4 illustrates schematically a 3 method applicable to the first aspect
that can be used to identify binary attachments.

Figure 5 illustrates schematically macro-architecture of the system
implementing Usenet based caching that is the third aspect of our invention.

First Aspect: First Embodiment
In this embodiment, this invention can be implemented by changing the

way news server stores messages in the database and introducing extended

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

22

analogues of ARTICLE, BODY, IHAVE, NEWNEWS, and POST commands of
the NNTP protocol. We will call them XARTICLE, XBODY, XIHAVE,
XNEWNEWS and XPOST respectively.

This embodiment is not the only form in which the invention can be
performed, and thus the invention should not be limited to the embodiment
disclosed.

In terms of this invention, the server will store message bodies and binary
attachments separately. Only a reference to the binary attachment will be stored
with the message. On the other side, with each binary object an integer number
will be stored with the value equal to the number of messages referring to this
binary object. If this number is zero, no messages in the server's database have
this object as a binary attachment and the object can be safely removed.
However, it can be considered keeping “unattached” objects in the database for a
while, just in case that they will be re-posted with a new message soon.

Fig. 1 illustrates transition from storing binary attachments 1 in messages
2 to storing binary attachments 1A, 1B, etc separately and providing references 3
from the corresponding messages 2A, 2B, etc to their corresponding binary
attachments. There are two different binary attachments in the picture, each is
shared among 3-4 messages. We need to store only one copy of each
attachment in the case of the present invention. The messages 4 do not have
corresponding or attached binary objects.

Extended Commands

The present invention introduces Universal Binary Object Identifier — a
code that describes and uniquely identifies a binary object. This code is
constructed with the purpose of reliably identifying binary objects. As mentioned
above, a pair consisting of a CRC32 checksum and byte size of the object is
considered to be reliable enough identifier for the purpose of this invention. If the
probability of two objects having same size and CRC32 code is not low enough,
other way of constructing UBOI can be chosen to make this probability as low as
desired. For example, we can base UBOI on two CRC32 codes, where the first
one is for the first half of the object, and the second one is for the second half of

the object.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

23

A full description of NNTP protocol is available at the website
http://www.freesoft.org/CIE/RFC/Orig/ric977.txt. In the text below we will only
define extended versions of a few commands that we need for the purpose of our
invention.

XARTICLE Command
XARTICLE <message-id> ["*"] <UBOI,,>, <UBOI>,...]

Send the header, a blank line, then the body (text) of the specified article
with binary attachments replaced by their UBOIls. Then send all binary
attachments if symbol “*” follows the message-id or only those binary
attachments that correspond to UBOlIs listed in the XARTICLE command.

Each binary attachment is sent as a sequence <headers \n\n length \n\n
bytes \n\n> where headers is a set of ASCII text lines separated by new line (\n)
characters. Length is a numeric value of the length of the binary object. Bytes are
bytes of the binary object.

Message-id is the message id of an article as shown in that article's
header. It is anticipated that the client will obtain the message-id and UBOls from
a list provided by the NEWNEWS command, from references contained within
another article, or from the message-id provided in the response to some other
commands.

XBODY Command

XBODY command is identical to the XARTICLE command except that it
does not send the header lines of the message.
XIHAVE Command
XIHAVE <message-id> [<UBOI,>, <UBOI >,...]

The XIHAVE command informs the server that the client has an article
whose id is <message-id> and that includes the listed binary objects. [f the
server desires a copy of that article, it will return a response instructing the client
to send the entire article. If the server does not want the article (if, for example,
the server already has a copy of it), a response indicating that the article is not
wanted will be returned.

Responses
235 article transferred ok

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

24

335 [<UBOI,>, <UBOI,>,...] send the article with the listed binary
attachments

435 article not wanted - do not send it

436 transfer failed - try again later

437 article rejected - do not try again

If transmission of the article is requested, the client should send the article,
including header, body, and requested binary objects in the manner specified for
text transmission from the server (see XARTICLE command above). A response
code indicating success or failure of the transferal of the article will be returned.
XNEWNEWS Command
XNEWNEWS newsgroups date time [GMT] [<distribution>]

For a full description of parameters of this command see description of the
NEWNEWS command at the website:
http://www.freesoft.org/CIE/RFC/Orig/rfc977.&xt . XNEWNEWS sends a list of
message-ids and UBOIs of articles and their attachments posted or received to
the specified newsgroups since "date”. It differs from the NEWNEWS command
only by including UBOIs after message-ids. The format of the listing will be one
message-id per line, as though text were being sent, followed by UBOIs of its
binary attachments. A single line consisting solely of one period followed by CR-
LF will terminate the list.

XPOST Command

XPOST command is similar to XIHAVE command, but it does not include
message-id. [t does include UBOIs, however, and the server may decide that
binary attachments do not have to be transmitted. |
Example of a news transfer session using NNTP protocol and our
extensions

Using the news server to distribute news between systems.

Server: (listens at TCP port 119)
Client: (requests connection on TCP port 119)
Server: 201 Foobar NNTP server ready (no posting)

client asks for new newsgroups since 2 am, May 15, 1985)
Client: NEWGROUPS 850515 020000

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

25
Server 235 New newsgroups since 850515 follow
Server: net.fluff
Server: net.lint
Server:

(client asks for new news articles since 2 am, May 15, 1985)

Client: XNEWNEWS * 850515 020000

Server: 230 New news since 850515 020000 follows
(following article does not have a binary attachment)

Server: <1772 @fo0.UUCP>

(following article does not has a binary attachment with length 230543
bytes and CRC32 code 2938464828)

Server: <87623@baz.UUCP> <230543 2938464828>
(following article has two binary attachments, the first of them the same as

in the previous message)

Server: <17872@GOLD.CSNET> <230543 2938464828> <298799
6534821>
Server:
(client asks for article <1772@fo0.UUCP>)
Client: XARTICLE <1772 @foo.UUCP>
Server: 220 <1772 @foo0.UUCP> All of article follows
Server: (sends entire message)
Server:

(client asks for article <87623 @baz.UUCP> and its binary attachment)
Client: XARTICLE <87623 @baz.UUCP> <230543 2938464828>
Server: 220 <87623 @baz.UUCP> The article and its attachment follow
Server: (sends message body)

Server:
Server: (sends binary attachment)

(client asks for article <17872@GOLD.CSNET> and only the second of its

attachments because it already has the first one)

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

26
Client: XARTICLE <17872@GOLD.CSNET> <298799 6534821>
Server: 220 <17872@GOLD.CSNET> The article and its attachment follow
Server: (sends message body)
Server:
Server: (sends requested binary attachment)

(client offers an article it has received recently)
Client: XIHAVE <4105 @ucbvax.ARPA>
Server: 435 Already seen that one, where you been?

(client offers another article)

Client: XIHAVE <4106@uchvax.ARPA> <378699 666237> <126789
76367>

Server: 335 * Send the articie and all its attachments

Client: (sends textual body of the article)

Client:

Client: (sends first binary attachment)

Client: (sends second binary attachment)

Server: 235 Article transferred successfully. Thanks.

Client: QuIT |

Server: 205 Foobar NNTP server bids you farewell.

First Aspect: Second Embodiment
Global References and Binary Servers

As described above, the present invention stores binary attachments
separately and stores only a reference to the binary attachment with the
message. If we make this reference global, i.e. it can point to a binary object on
another server, it makes it unnecessary to download the attachment until a user
had requested it. More than this, user's client program can be referred to the
actual server that has this binary object stored, so that it can download the binary
object from that server. Thus, there is no need for the local news server to keep
the attachment at all. This role can be appointed to a dedicated server that stores
and serves binary objects to a sharing community of news servers.

This architecture of the system does make it relatively more complicated to

determine that there are no references to a particular binary object in order to

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

27

delete it, as references now can be global. However a heuristic criterion based on
use pattern is available. If there are no requests for the object for a considerable
time interval, it means that it can be safely deleted because, even if the referring
messages have not been removed, users are not interested in this object.

Using global references, we can save local hard drive space at expense of
global traffic. Storing all binary attachments locally, we can save global traffic at
expense of the hard drive space. These are two exireme strategies. The optimal
strategy is somewhere between them. It makes sense to store popular binary
objects locally (cache them) to minimise global traffic, and the rest of binary
objects may be stored on binary servers and referred to by global references.

A ‘global’ system can be implemented in accordance with the way as it has
been described in the first embodiment, with minor changes:

1) store and transmit with each message global references to its binary
attachments,

2) introduce a special command that lets to retrieve binary attachment only,
without any regard to a particular message. We will call this command XBINARY.
[ts syntax is XBINARY <UBOI>. When a server receives this command, it will
return success code followed by the binary object identified by the UBOI or error
code if can not send the object.

First Aspect: Reliable Methods of Identification of Binary Objects ~ Third
Embodiment

No matter how small, there is a probability that two different binary objects
will have identical UBOIs. In case it proves to be important to avoid this
occurrence, the present invention offers a number of reliable methods of
attachment identification. These methods offer reliability at a cost of a small
resource overhead. Please note that these methods are only concerned with
assignment of reliable identifiers (that can be used instead/together with UBOIs)
to binary objects. Storage and exchange of binary objects are implemented in a
way similar to that described above in first or second embodiments. The syntax
and semantics of the introduced protocol commands must be adjusted

correspondingly.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

28

The present invention introduces RUBOI - Reliable Unique Binary Object
Identifier. The difference between RUBOI and UBOI is that, by construction of
RUBQOIs, it is guaranteed that different binary objects have different RUBOIs.
Method A. Identification Request Broadcast

The suggested method is based on requesting of attachment identification
information from other Usenet servers. We describe this method as a sequence
of numbered steps below.

1. Server 1 receives a message containing a binary attachment that does not
have a RUBOI assigned.

2. Server 1 builds UBOI for this attachment and checks if it has other
attachments with this UBOI in its storage.

3. If there are such objects, Server 1 compares them to the new one byte-to-
byte. If any of the old objects is identical to the new one the server uses its
RUBOI. Thus, the attachment has been identified. Go to step 11.

4., If no identical objects found, Server 1 issues a request (system message)
containing the UBOI of the new object and RUBOIs of the objects that have been

compared to the new object, and posts this request in the Usenet.

5. Upon receiving this request, other servers check their sets of stored binary
attachments.
6. If any server finds a binary object that has identical UBOI, and not listed in

the request message, it responds with RUBOIs that have not been listed in the
request message.

7. If after a pre-set waiting time Server 1 does not receive any messages, it
assumes that no other objects with identical UBOI exist, and generates or obtains
from a third party a new RUBOI for the new object. Go to Step 10.

8. If Server 1 receives any response messages, it chooses a set of servers
that covers all RUBOIs that the new object has not been compared to, and sends
the new object to these servers (preferably) or requests binary objects from them
for comparison.

9. They compare the new object to their objects with the same UBOI and
respond with RUBOI of the identical object, if found. In this case Server 1 uses
the found RUBOI. Go to Step 11.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

29

10. A simple method can be used to generate a new RUBOI. For example,
RUBOI may be a string containing host and domain names of the Server 1, day
and time stamp, and sequential number of the binary object from the start of the
day. Alternatively, a new RUBOI can be obtained from a special server (a third
party server that is authorised to generate and issue new RUBOIs).
11. End of work.
Method B. Recognition Event Broadcast

This method is based on broadcasting object equivalence information in
the Usenet. Initially, every binary object that does not have a RUBOI is assigned
a new RUBOI, unless the server that receives it, has this object already and
recognises it. Then the server feeds this object to other servers. When any
server establishes a fact (e.g. by comparison) that two identical objects have
different RUBOIs RUBOI1 and RUBOI2, it posts a system message that notifies
other servers that RUBOI1 is equivalent to RUBOI2. We describe this method as
a sequence of numbered steps below.
1. Server 1 receives a message containing a binary attachment that does not
have a RUBOI assigned, or has a new RUBOI suggested by the client.
2. Server 1 looks for an identical object in its storage. If any of the old objects
is identical to the new one, the server uses its RUBOI. Go to Step 8.
3. If no identical objects found, Server 1 generates a new RUBOI for the
object (or uses the one suggested by the client that posted the message). A
simple method can be used to generate a new RUBOI. For example, RUBOI may
be a string containing host and domain names of the Server 1, day and time
stamp, and sequential number of the binary object from the start of the day.
Alternatively, a new RUBOI can be obtained from a special server (a third party
server that is authorised to generate and issue new RUBOIs).
4. Server 1 feeds the object with new RUBOI1 to the servers it is feeding.
5. After receiving the object, every Server 2 looks in its storage for an
identical object.
6. Iif an object found that is identical, but has a different RUBOI2, Server 2
posts a system message that says that RUBOI1 is equivalent to RUBOI2. All

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

30

servers that receive this message, can use this information later when handling
new objects.
7. Steps 5 and 6 are repeated by every server when receiving the new binary
object.
8. End of work.
Method C. Centralised Identification

This method is based on use of a central server that has the largest
collection of binary objects in the Usenet. It is important (but not critical) that this
server has binary object if any other news server has it. This rule is important to
provide effective identification of binary objects. (If it is not 100% true, the system
will still work, but different RUBOIs will be assigned to some identical binary
objects. This will result in decreased efficiency.) We will call this “"central
identification authority” server Server 0. We describe this method as a sequence
of numbered steps below.
1. Server 1 receives a message containing a binary object that does not have
a RUBOI assigned or has one suggested by the client that has posted the
message.
2. Server 1 checks if it has an identical binary object in its storage.
3. If any of the old objects is identical to the new one, the server uses its
RUBOI1. Go to Step 6.
4. If no identical objects found, Server 1 sends the new object to Server O for
identification. Server 0 looks in its collection for identical objects. If any found,
Server 0 sends its RUBOI1 to Server 1 to use for the new object. Go to Step 6.
5. If no identical objects found, Server 1 generates a new RUBOI1 for the
object or uses the one suggested by the client. A simple method can be used to
generate a new RUBOI. For example, RUBOI1 may be a string containing host
and domain names of the Server 1, day and time stamp, and sequential number
of the binary object from the start of the day. Alternatively, a new RUBOI can be
obtained from a special server (a third party server that is authorised to generate
and issue new RUBOIs).
6. Server 1 feeds the object with RUBOIT to the servers it is feeding.
7. End of work.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

31

Method D. Using Multiple Reliable Identifiers

This method is relatively simple. Each server in the path of the message
containing a binary object adds to the header the RUBOI of this object if an
identical object already exists in the collection of the server and its RUBOI is
different from those that are already in the message header. Thus, the message
will have in its header multiple identifiers for the carried binary object.

When this message is being offered to any server, it rejects the binary
object if it has a binary object known by any one of the RUBOIs in the message
header
First Aspect: Fourth Embodiment

In this embodiment, we disclose a set of commands functionally similar to
the set of commands disclosed in the first embodiment, but adopted to the case
when a reliable method of identification of binary attachments is used, namely,
method D as disclosed in the third embodiment. As in the first embodiment, this
invention can be implemented by changing the way news server stores
messages in the database and introducing exiended analogues of ARTICLE,
BODY, IHAVE, NEWNEWS, STAT, XOVER and POST commands of the NNTP
protocol. We will call them XBINARTICLE, XBINBODY, XBINIHAVE,
XBINNEWNEWS, XBINSTAT, XBINOVER and XBINPOST respectively.

In addition, we are disclosing several new commands that designed to
improve efficiency of the server and convenience of work for the user, namely
XZIPARTICLE, XZIPBODY, XZIPIHAVE, XZIPNEWNEWS, XZIPSTAT,
XZIPOVER, XBINZIPOVER, XLOGbN, XBINSAMPLE and XZIPSAMPLE.

XLOGON command allows to perform user authentication based on their
user name, password and/or IP address provided explicitly. Authentication based
on explicitly provided IP address is useful when the user connects to the server
via a third entity, such as a Web gateway. In this case, all connections come from
the gateway’s IP address, so, the IP address of the user can not be established
based on the connection information.

XBINSAMPLE command allows to retrieve small previews of binary

objects stored in the server in order to examine them before downloading

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

32

decision is made. Thus, users can avoid downloading unwanted large objects
and save time.

XZIPARTICLE, XZIPBODY, XZIPIHAVE, XZIPNEWNEWS, XZIPSTAT,
XZIPOVER, XBINZIPOVER, and XZIPSAMPLE commands allow to request
response sent in compressed format, to save transmission time and bandwidth
resources.

This embodiment is not the only form in which the invention can be
implemented, and thus the invention should not be limited to the embodiment
disclosed.

In terms of this invention, as in the first embodiment, the server will store
message bodies and binary attachments separately. Only a reference to the
binary attachment will be stored with the message. On the other side, with each
binary object an integer number will be stored with the value equal to the number
of messages referring to this binary object. If this number is zero, no messages in
the server's database have this object as a binary attachment and the object can
be safely removed. However, it can be considered keeping “unattached” objects
in the database for a while, just in case that they will be re-posted with a new
message soon.

Fig. 1 illustrates transition from storing binary attachments 1 in messages
2 to storing binary attachments 1A, 1B, etc separately and providing references 3
from the corresponding messages 2A, 2B, etc to their corresponding binary
attachments. There are two different binary attachments in the picture, each is
shared among 3-4 messages. We need to siore only one copy of each
attachment in the case of the present invention. The messages 4 do not have
corresponding or attached binary objects.

Extended Commands

A full description of NNTP protocol is available in [2]. In the text below we
will only define extended versions of a few commands that we need for the
purpose of our invention.

XBINARTICLE Command
XBINARTICLE {<message-id>|nnn} [{"*"| {UBOI,|-} RUBOI, ...}]

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

33

Before each RUBOI in the command, there must be a correspondent
UBOI or ““ if it is omitted. There may be several pairs or UBOls and RUBOIs in
one command.

Send the header, a blank line, then the body (text) of the specified article
with binary attachments replaced by their RUBOIs. The body is terminated by
the sequence “\\n.\n\n” (a single dot in line). If the body is not ordered, this
terminator is not used.

Then send all binary attachments if symbol “*” follows the message-id or
only those binary attachmenis that correspond to RUBOIs listed in the
XBINARTICLE command.

Each binary attachment is sent as a sequence <headers \r\n\r\n length \n\n
bytes \n\n> where headers is a set of ASCII text lines separated by carriage return
and new line (\n\n) characters. 'Length is a numeric value of the length of the
binary object. Bytes are bytes of the binary object.

Message-id is message id of the article as shown in that érticle’s header.
It is anticipated that the client will obtain the message-id, UBOIs and RUBOIs
from a list provided by the XBINNEWNEWS command, from references
contained within another articles, or from the message-id provided in responses
to some other commands, such as XBINSTAT.

After all attachments, a terminating string “\n\n.\n\n is sent.

In detail:

If there is no argument, current article is sent in the following way:

“209 article-number <message-id> article retrieved - body & attachments
follow\r\n”

The article’s body is sent and is terminated by the string “\r\n.\r\n.

If there is a first argument, the specified by it article and attachments are
sent in the following way:

“222 article-number <message-id> article retrieved - body & attachments
follow\n\n”

The article’s body is sent and is terminated by “\r\n.\r\n.

Attachments are sent (see below, it may be that there is no one)

Terminating string “\\n.\n\n is sent.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

34

Sending attachments:

If the second argument is equal to "*", all article attachments are sent,
otherwise for each pair of the command arguments, beginning with the second
argument, attachment is sent that is defined by this arguments pair
(UBOI/RUBOI). The UBOI may be skipped (“-“ in the command instead).

Sending one attachment:

ContentID: <content_id>\\n

FileName: <file_name>\\n

Possibly, more headers...

\nn

length (as characters)\r\n

<body of attachment >

\i\n
XBINBODY Command
XBINBODY {<message-id>|nnn|-} [{"*"| {UBOI |-} RUBOI, ...}]

XBINBODY is a command similar to the XBINARTICLE command. The
only difference is, it allows to skip textual body of the article, if it is not needed,
and retrieve only attachments by their RUBOlIs.

Understandably, if the body of the article is being skipped (nor message-
id, nor article number are specified, there is a “-* instead of them), “” can not be
the second argument, as there is no association with any particular article.

Before each RUBOI in the command, there must be a correspondent
UBOI or “* if it is omitted. There may be several pairs or UBOls and RUBOIs in
one command.

Send the header, a blank line, then the body (text) of the specified article
with binary attachments replaced by their RUBOIs. The body is terminated by
the sequence “\\n.\\n” (a single dot in line). [f the body is not ordered, this
terminator is not used.

Then send all binary attachments if symbol “*” follows the message-id or
only those binary attachments that correspond to RUBOIs listed in the
XBINBODY command.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

35

Each binary attachment is sent as a sequence <headers \r\n\r\n length \r\n
bytes \r\n> where headers is a set of ASCII text lines separated by carriage return
and new line (\n\n) characters. Length is a numeric value of the length of the
binary object. Bytes are bytes of the binary object.

Message-id is message id of the article as shown in that article’s header.
It is anticipated that the client will obtain the message-id, UBOIls and RUBOIs
from a list provided by the XBINNEWNEWS command, from references
contained within another articles, or from the message-id provided in responses
to some other commands, such as XBINSTAT.

After all attachments, a terminating string “\r\n.\n\n is sent.

In detail:

if there is no argument, current article is sent in the following way:

“222 article-number <message-id> article retrieved - body & attachments
follow\r\n”

The article’s body is sent and is terminated by the string “\r\n.\r\n.

If the first argument is not equal to "-", the specified by it article and
attachments are sent in the following way:

“222 article-number <message-id> article retrieved - body & attachments
follow\r\n”

The article’s body is sent and is terminated by “\A\n.\r\n.

Attachments are sent (see below, it may be that there is no one)

Terminating string “\n\n.\r\n is sent.

If the first argument is equal to “-", only the specified attachments are sent
in the following way:

“223 attachments follow\n\n”

Attachments are sent (see below, it may be that there is no one)

Terminating string “\r\n.\r\n is sent.

Sending attachments:

If the second argument is equal to "*", all ariicle attachments are sent,
otherwise for each pair of the command arguments, beginning with the second
argument, attachment is sent that is defined by this arguments pair
(UBOI/RUBOI). The UBOI may be skipped (“-“ in the command instead).

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

36

Sending one attachment:

ContentlD: <content_id>\r\n

FileName: <file_name>\n\n

Possibly, more headers...

\n\n

length (as characters)\r\n

<body of attachment >

\nn
XZIPBODY Command
XZIPBODY {<message-id>|nnn|-} [{"*"| {UBOI,J-} RUBOI, ...}]

XZIPBODY command is analog of the XBINBODY command, but
response is sent in compressed format, except the first (status) line.

In response, server sends the following sequence:

1. Status line is sent in text format, terminated by “\r\n”, such as

“222 article-number <message-id> article retrieved - body & attachments
follow\r\n”

or “222 article-number <message-id> article retrieved - body &
attachments follow\r\n”

or “223 attachments follow\r\n”

2. Length of compressed response body is sent, followed by “\r\n\" followed
by length of uncompressed response body, followed by “\r\n”.
3. Response body is sent in compressed format.

In case of an error, only the status line containing a short description of the

error is sent.
XBINSAMPLE Command
XBINSAMPLE {<message-id>|nnn|-} [{**"| {UBOI,|-} RUBOI, ...]]

XBINSAMPLE command is similar to the XBINBODY command, except
that instead of binary objects, their samples (preview objects, such as thumbnails
for images) are sent. Textual message bodies are not sent.

XZIPSAMPLE Command
XZIPSAMPLE {<message-id>|nnn|-} [{"*"| {UBOI,|-} RUBOI, ...}]

10

15

20

25

3

(@]

WO 01/50337 PCT/AU00/01236

37

XZIPSAMPLE command is analog to the XBINSAMPLE command, except
that response is sent in compressed format.

In response, server sends the following sequence:

1. Status line is sent in text format, terminated by “\n\n”.

2. Length of compressed response body is sent, followed by “\nn\” followed
by length of uncompressed response body, followed by “\n\n”.

3. Response body is sent in compressed format.

In case of an error, only the status line containing a short description of the
error is sent.

XBINIHAVE Command
XBINIHAVE {<message-id>|-} [(UBOI,[RUBOQI,...])...]

The XBINIHAVE command informs the server that the client has an article
whose id is <message-id> and that includes the listed binary object. Every
attachment may have multiple RUBOIs. Information about every attachment is
enclosed in separate “()".

If the server desires a copy of any of the components being offered, , it will
return a response instructing the client to send the wanted components. If the
server does not want the article (if, for example, the server already has a copy of
it), a response indicating that the article is not wanted will be returned.

Responses

235 article transferred ok

335 *send the article with all the binary attachments

335 <message-id> send the article, no attachments wanted

335 <message-id> RUBOI,, ... - send the article and selected attachments

335 - RUBOI,, ... - don’t send the article, only send selected attachments

435 article not wanted - do not send it

436 transfer failed - try again later

437 article rejected - do not try again

If transmission of the article is requested, the client should send the article,
including header, body, and requested binary objects in the manner specified for
text transmission from the server (see XBINBODY command above). A response

code indicating success or failure of the transferal of the article will be returned.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

38

XZIPIHAVE Command
XZIPIHAVE {<message-id>|-} [(UBOI, RUBOI, ...])...]

The XZIPIHAVE command is analog to the XBINIHAVE command, except
if the server wants suggested items and gives Ok to transfer, the client sends
them in compressed mode, as it is described above in XBINBODY command.

In response, client sends the following sequence:

1. Status line is sent in text format, terminated by “\r\n”.

2. Length of compressed response body is sent, followed by “\\n\” followed
by length of uncompressed response body, followed by “\r\n”.

3. Response body is sent in compressed format.

In case of an error, only the status line containing a short description of the
error is sent.

XBINNEWNEWS Command
XBINNEWNEWS newsgroups date time [GMT] [<distribution>]

For a full description of parameters of this command see description of the
NEWNEWS command in definition of NNTP.

XBINNEWNEWS sends a list of message-ids and UBOls and RUBOIs of
articles and their attachments posted or received o the specified newsgroups
since "date" and “time”. [t differs from the NEWNEWS command only by
including UBOIs after message-ids. The format of the listing will be one
message-id per line, as though text were being sent, followed by UBOIs and
RUBOIs of its binary attachments. UBOIls and RUBOIs describing each
attachment are enclosed in a separate pair of “()". A single line consisting solely
of one period followed by CR-LF will terminate the list.

XZIPNEWNEWS Command

XZIPNEWNEWS command is a version of XBINNEWNEWS command
where server’s response is sent in compressed format, in a way described above
for other commands with XZIP prefix in the names.

XBINPOST Command
XBINPOST [(UBOI,[RUBOI....])...]

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

39

XBINPOST command is similar to XBINIHAVE command, but it does not
include message-id. It does include UBOI, (and optionally, RUBOIs) however,
and the server may decide that binary attachments do not have to be transmitted.
Responses

235 article transferred ok

340 *send the article with all binary attachments

341 send the article, no attachments wanted

340 UBOI,, ... - send the article and selected attachments

440 article not wanted - do not send it

436 transfer failed - try again later

If transmission of the article is requested, the client should send the article,
including header, body, and requested binary objects in the manner specified for
text transmission from the server (see XBINBODY command above). A response
code indicating success or failure of the transferal of the article will be returned.

Posting one attachment (similar to XBINBODY):

ContentID: <content_id>\r\n

FileName: <file_name>\r\n

Possibly, more headers...

\n\n

length (as characters)\r\n

<body of attachment >

\r\n
XZIPPOST Command

XZIPPOST command is version of XBINPOST command where client
transfers article and, possibly, attachments, in compressed format in a way
described for XZIPIHAVE command.

XBINSTAT Command
XBINSTAT _ | n | <message_id >

XBINSTAT command returns article status information and a list of its
attachments. Query arguments are identical to that of the command STAT of the
NNTP protocol. XBINSTAT returns status line with error code, then article’s

message-id. Then, for every attachment, a line is formed that consists of

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

40

attachment’'s UBOI, file name, file size and RUBOIs. The response is terminated
by “Afn.Ar\n”.
XZIPSTAT Command

This is version of XBINSTAT command that sends its response in
compressed format, used for other commands with XZIP prefix in names.
XZIPOVER Command

This is version of NNTP XOVER command that sends its response in
compressed format, as it is described for other commands with XZIP prefix in
names.

XBINOVER Command

This is version of NNTP XOVER command that includes in its response
attachment information for every message. It places this information in the
overview field that contains message-ids in the standard NNTP XOVER
command.

In the standard XOVER command, this field has format:
<message-id> [...]

because each message may have several message-ids. We change this
format to
<message-id> [...] [({-|lUBOI} RUBOI...)...]

This means, that this field contains a sequence of message-ids of the
message, followed by a sequence of UBOIs and RUBOIs of each binary
attachment, information about each binary attachment being enclosed in “()”.
XZIPBINOVER Command

This is version of XBINOVER command that sends its response in
compressed format, as it is described for other commands with XZIP prefix in
names.

XLOGON Command
XLOGON <ip_addr> [<user_name> <password>]

XLOGON command establishes a new connection context. It changes
identity of the user associated with this connection. The server performs
authentication check and responds similarly to a connection establishing request

in NNTP. There are three possible server's return codes as the response to this

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

41

command:
281 Authentication ok - if the user is permitted connection
502 Authentication error - if authentication failed

501 command syntax error - if syntax error occurred
Second Aspect: First Embodiment

Practical implementation of this invention does not require changing of
involved standards, such as NNTP, MIME etc. It only requires modification of
posting and downloading news clients so that they would add some extra
information to messages’ and MIME encoded objects’ headers during the posting
stage and could interpret this information during the downloading stage.

To describe how the system works, we will take as a base work of a
standard newsreader e.g. Netscape newsreader that is a part of Netscape
Communicator package, Version 4.06. Those skilled in the art are familiar with
use of a typical news client. We will describe how the client works in our
embodiment. To do this, we will describe what it does differently or additionally to
the Netscape news client.

There are two tasks that are performed differently: posting and
representing. We will describe each of them.
Posting

The task is to post a collection of one or more multimedia objects. The
client does it as normally, with only one difference: if it detects that a message to
be posted contains a multimedia object(s), it generates one header for each
object and inserts it in the head of the message. In this embodiment, the format
of this header is as follows:

X-meta-tag: ‘<'<CRC32 of the object>-<size of the object>-<time stamp>’>’
Where

CRC32 of the object is a numeric CRC32 code of the object;

Size of the object is number of bytes in the object;

Time stamp is time when the header was generated, with milliseconds.

After this the client creates a metadata description item for each multimedia
object in the message and temporarily stores it locally with a tag corresponding to

the string in the X-meta-tag header.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

42

The client automatically creates and posts metadata description messagés
in one or more (this may be controlled by configuration parameters of the client)

of the following events:

1. At the end of the session;

2. Every time when the volume of stored metadata items exceeds some
threshold;

3. At regular time intervals;

4. By explicit user request.

The temporarily stored metadata description items that have not been
posted before are posted in such messages and then deleted. Each metadata
description message is a normal news message containing a set of multimedia
objects that are metadata description items of the multimedia objects posted
before.

Each metadata description message contains a header in format:

X-metadata: yes

This header allows clients to recognise such messages and download
them to present metadata to users for selection.

Each metadata object is MIME encoded and iis encoding contains a
Content-Description header in format:

Content-Description: “X-meta-tag: ‘<'<CRC32>-<size>-<time stamp>'>"

Where the CRC32, size and time stamp values are the same as in the X-
meta-tag header of the message that includes the object described by this
metadata object.

Exampile.
First message:

From: catlover@cats.society.org

Newsgroups: alt.binaries.nospam.cats.sleeping

Subject: Pajama Party! Day 2 by popular demand! - 090pjp.jpg (1/1)

Date: 14 Jul 1999 02:42:34 GMT

X-meta-tag: <098283278219-29875-19990714024234123>

Organization: Cats Society Inc.

Lines: 424

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

43

<message body including the first binary object>

Second message:

From: catlover@ cats.society.org

Newsgroups: alt.binaries.nospam.cats.sleeping

Subject: Pajama Party! Day 2 by popular demand! - 091pjp.jpg (1/1)
Date: 14 Jul 1999 02:45:28 GMT

X-meta-tag: <98273028763-32954-19990714024528265>
Organization: Cats Society Inc.

Lines: 487

<message body including the second binary object>

Metadata description message:

From: catlover@cats.society.org

Newsgroups: alt.binaries.nospam.cats.sleeping
Subject: Collection description message

Date: 14 Jul 1999 03:15:20 GMT

X-metadata: yes

Organization: Cats Society Inc.

Lines: 96

MIME-Version: 1.0

Content-Type: multipart/mixed;

boundary="-~-----=-~-- 5C18B558FFD309376B5A78B9"

This is a multi-part message in MIME format.

-------------- 5C18B558FFD309376B5A78B9

Content-Type: image/jpeg; name="thumbnail-090pjp.jpg"
Content-Transfer-Encoding: base64

Content-Disposition: inline; filename="thumbnail-090pjp.jpg"
Content-Description: “X-meta-info: <098283278219-29875-

19990714024234123>"

<thumbnail of the image 090pjp.jpg>

.............. 5C18B558FFD309376B5A78B9
Content-Type: image/jpeg; name="thumbnail-091pjp.jpg"
Content-Transfer-Encoding: base64

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

44

Content-Disposition: inline; filename="thumbnail-091pjp.jpg"

Content-Description: “X-meta-info: <98273028763-32954-
19990714024528265>"

<thumbnail of the image 091pjp.jpg>

-------------- 5C18B558FFD309376B5A78B9--

Representing

The task is to represent available news articles to the end user using
available metadata to make a better representation. E.g., normally, only such
information as subject, size, poster, date and time of posting is represented about
each article, but for multimedia objects this is clearly not enough. If an image
thumbnail is available for image that is contained in article, this thumbnail should
be found and used for article representation because in most cases it describes
the image better than words of the subject line.

The client accomplishes this task in the following way. The client
downloads heads of available news articles as normally. It searches the heads to
find ones that contain header “X-metadata: yes”. When such header is found,
the client automatically downloads the message, parses it (as normally for MIME
formatted messages), extracts metadata description items and temporarily stores
them with the tags that are found in their “Content-Description” headers.

When building a list of available articles for the user to select from, the
client checks each article head whether it contains an “X-meta-tag” header. If
yes, the client searches for a stored metadata item that has a correspondent “X-
meta-tag” stored with it.

If a correspondent metadata item found, the client uses it to represent the
article it relates to. For example, an image thumbnail is used to represent an
article that contains the image, a movie clip can be used in representation of an
article that contains a movie attached etc. The client also memorizes the
association between the metadata item and the article it represents to use it to
download articles represented by metadata items selected by the user.

The user than can make a better informed downloading decision if they

have better described atrticles to select from.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

45

Once metadata objects are selected, the arlicles are established via
associations with metadata objects, the articles are downloaded and presented in
a normal way.

Second Aspect: Second Embodiment

The difference between first and second embodiments of this aspect is
that the second embodiment uses an alternative way of embedding information
about associations between metadata containing messages (indexes) and the
objects being described by the metadata information.

This method has an advantage that information allowing to establish these
associations is contained in parts of headers that are retrieved as a result of
XOVER command. Thus, additional retrieval of message headers is not needed
and this may be a very substantial saving when newsgroup is very large.

As in the first embodiment, to describe how the system works, we will take
as a base work of a standard newsreader e.g. Netscape newsreader that is a part
of Netscape Communicator package, Version 4.06. Those skilled in the art are
familiar with use of a typical news client. We will describe how the client works in
our embodiment. To do this, we will describe what it does differently or
additionally to the Netscape news client.

There are two tasks that are performed differently: posting and
representing. We will describe each of them.

Posting

The task is to post a collection of one or more multimedia objects.

First, the client generates a unique for this poster collection id — an integer
number, say, within range between 0 and 65535. A simple practical way to
generate this number is to number posted collections sequentially, starting with 0.
It is highly unlikely that anyone would post more than 65535 coliections in their
entire life. Even if this happens, they can change one character in their poster
name and start collection count from 0 again.

Then the client starts pdsting collection messages and counting posted
multimedia objects. If it detects that a message to be posted contains a

multimedia object(s), it increases the counter of objects by 1 and appends a

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

46

string containing its value to the subject of the message, along with the collection
number.

If there are several multimedia objects posted in a single message, they
are numbered sequentially, and instead of one value, a range is placed in the
subject.

For example, let collection number be 123, object numbers 45, 46, 47 and
48, and original subject of the message, “Cute kittens number one, two, free and
four”. In the process of posting, the client will modify the subject in the following
way, “Cute kittens number one, two, three and four id=123:45-48".

Here appended to the subject string contains information that this
message contains objects 45, 46, 47 and 48 from the collection number 123.
Along with the poster and other fields, also available from the XOVER command,
this information is sufficient to establish associations between the objects and the
metadata.

After this the client creates a metadata description item for each
multimedia object in the message and temporarily stores it locally with a tag
corresponding to the number of the object.

The client automatically creates and posts metadata description messages in
one or more (this may be controlled by configuration parameters of the client) of

the following events:

1. At the end of the session;

2. Every iime when the volume of stored metadata items exceeds some
threshold;

3. At regular time intervals;

4. By explicit user request.

The temporarily stored metadata description items that have not been
posted before are posted in such messages and then deleted. Each metadata
description message is a normal news message containing a set of multimedia
objects that are metadata description items (for example, thumbnails for images)

of the multimedia objects posted before.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

47

Each metadata description message contains a subject in which there is
the number of the collection it describes, for example, “Cute kittens collection
index id=123".

A string in form “collection index id=number’ allows clients to recognize
collection description messages and download them to present metadata to
users for selection.

Each metadata object is MIME encoded and its encoding contains a
Content-Description header in format:

Content-Description: “Object id=number”

Example.
First message:

From: catlover@ cats.society.org

Newsgroups: alt.binaries.nospam.cats.sleeping

Subject: Pajama Party! Day 2 by demand! -090pjp.jpg (1/1) id=2:1

Date: 14 Jul 1999 02:42:34 GMT

Organization: Cats Society Inc.

Lines: 424

<message body including the first binary object>
Second message:

From: catlover@cats.society.org

Newsgroups: alt.binaries.nospam.cats.sleeping

N

Subject: Pajama Party! Day 2 by demand! - 091pjp.jpg (1/1) id=2:
Date: 14 Jul 1999 02:45:28 GMT
Organization: Cats Society Inc.
Lines: 487
<message body including the second binary object>
Metadata description message:
From: catlover@cats.society.org
Newsgroups: alt.binaries.nospam.cats.sleeping
Subject: Collection description message index id=2
Date: 14 Jul 1999 03:15:20 GMT

Organization: Cats Society inc.

5

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

48

Lines: 96

MIME-Version: 1.0

Content-Type: multipart/mixed;

boundary="-------=---- 5C18B558FFD309376B5A78B9"

This is a multi-part message in MIME format.

-------------- 5C18B558FFD309376B5A78B9

Content-Type: image/jpeg; name="thumbnail-090pjp.jpg"

Content-Transfer-Encoding: base64

Content-Disposition: inline; filename="thumbnail-090pjp.jpg"

Content-Description: “Object id=2:1"

<thumbnail of the image 090pjp.jpg>

-------------- 5C18B558FFD309376B5A78B9

Content-Type: image/jpeg; name="thumbnail-091pjp.jpg"

Content-Transfer-Encoding: base64

Content-Disposition: inline; filename="thumbnail-091pjp.jpg"

Content-Description: “Object id=2:2"

<thumbnail of the image 091pjp.jpg>

-------------- 5C18B558FFD309376B5A78B9--

Representing

The task is to represent available news articles to the end user using
available metadata to make a better representation. E.g., normally, only such
information as subject, size, poster, date and time of posting is represented about
each article, but for multimedia objects this is clearly not enough. If an image
thumbnail is available for image that is contained in article, this thumbnail should
be found and used for article representation because in most cases it describes
the image better than words of the subject line.

The client accomplishes this task in the following way. The client requests
XOVER information about available news articles as normally. It searches the
subjects to find ones that contain string “index id=number’. When such subject is
found, the client automatically downloads the message, parses it (as normally for
MIME formatted messages), extracts metadata description items and temporarily

stores them with the tags that are found in their “Content-Description” headers.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

49

When building a list of available articles for the user to select from, the
client checks each article subject whether it contains a “id=number:number’
string. If yes, the client searches for a stored metadata item that has a
correspondent tag stored with it and is posted by the same poster.

If a correspondent metadata item found, the client uses it to represent the
article it relates to. For example, an image thumbnail is used to represent an
article that contains the image, a movie clip can be used in representation of an
article that contains a movie attached etc.

The user than can make a better informed downloading decision if they
have better described articles to select from.

Once selected, the articles are downloaded and presented in a normal way.

Third Aspect: First Embodiment
Architecture of the System

In this embodiment, our system includes the following components, as it is
shown in the Figure 5:
1. User accessing WWW using their client (2) .
2. WWW client, such as Netscape or IE.
3. Client Side Caching Agent — a program that performs client side paris of

our method.

4. Usenet server that is local to the client.

5. Internet.

6. Server Side Caching Agent — a program that performs server side parts of
our method.

7. Usenet server that is local to the original Web server.

8. Web server — the original server that contains resources that the user

wants to download.

CSCA must be placed on the TCP/IP path from the client to the Web
server, or from the client to the client's cache engine. This placement is
important to ensure that all requests from the client to the Web are passed
through the CSCA.

CSCA performs the following functions:

Analyses Web requests containing URLs of required objects.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

50

Based on the URL, decides, whether an object has been posted to the
Usenet by its original server and thus, may be found in the Usenet.

If the object has not been posted to the Usenet, CSCA passes the request
further for normal processing by the original Web server or cache engine. .

If the object has been posted to the Usenet:

Based on its configuration information, CSCA selects one or more
available Usenet servers and tries to find the required object on them.

if the object is found, CSCA retrieves it and returns to the client.

If the object is not available, CSCA passes the request for further
processing by the original server or a caching engine.

SSCA must be placed on the path connecting the original server with the
Internet, before server side cache engines and/or the server. This placement is
important to ensure that all requests from clients to the server first reach the
SSCA and then the server or its server side cache engines.

SSCA performs the following functions:

1. Intercepts all requests to the server and identifies those that are
requesting Usenet posted objects. If such a request is found, the SSCA cleans
up its URL, removing its part that concerns newsgroups. This function is optional
because the required information can be included in the URL and combined with
object placement in such a way, that no cleaning is necessary. (This will be
discussed below.) Once cleaned, the URL is passed further for processing by the
server or server side cache engine.

2. Traces events of modification of the server objects that are to be, or have
been posted to the Usenet. If an object has been modified (or created), the SSCA
cancels its previous versions, if necessary (by canceling previously posted
messages) in the Usenet and posts a new digitally signed one.

3. SSCA may also periodically re-post objects to the Usenet fo ensure their
availability.

The only mandatory function of SSCA is ensuring availability of the objects
in the Usenet. However, this function can be performed by CSCAs on behalf of
the original server, as discussed below. Thus, SSCA is not an essential element

of the system, but its availability makes easier implementation of certain features:

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

51

validation of objects, access control and traffic billing, without modifying Web
servers.

Obviously, CSCA and SSCA can be independent applications, or CSCA
can be built into client and/or client side cache engine, and SSCA can be built
into Web server and/or server side cache engine.

The described above system is functional, but it can be improved in
several aspecits.

Validation and Availability of Objects

When a client requests an object, it must receive its current, valid version.
This is not hard to ensure using validation requests in step 6 of CSCA actions. If
the object is found, CSCA sends its version information, such as UBOI, to the
SSCA, or a standard HTTP validation request to the original server. If the object
is current, and only if, it will be send to the client. So, the problem of validation is
not a hard one. Given that most Usenet cached objects are large, expenses on
their validation are negligible compared to the transmission cost.

If the object is not found on available Usenet server, or its version is not
current, CSSA may perform the following actions:

1. Retrieve the object from the original server.

2. Receive digitally signed by the SSCA permission to post it on behalf of the
original server and to cancel the expired version, if any.

3. Send this permission to one or more of local Usenet servers and post the
object.

The advantage of doing this is that outdated versions of Usenet cached
objects will be promptly replaced by current versions, possibly, almost
simultaneously in many Usenet servers. Thus, changes would propagate very
fast. The other advantage is that even no posting is necessary because, if the
object is to be cached, it will be retrieved by CSSAs and posted by them on
behalf of the server. This ensures wide availability of current objects and fast
propagation of changes.

Access Control
It is not hard to ensure access control as well. When a CSCA requests

object validation information, it can also ask for a permission to serve this object

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

52

to the client that requested it. If permission is granted, the CSCA sends it to the
Usenet server when retrieving the object from there.
Billing and Paying for Resources

Establishing a traffic billing system can represent a problem in such
anarchic environment as the Internet. However, it is practical fo do in the system
being invented.

Each message in the Usenet has so called Path header. In this Path,
there are listed all servers that the message came through. This information can
be used to establish the servers participated in transmission in order to share
awards.

It seems to be practical to implement it in the following way:

A participating Usenet server, having received from a CSCA a digitally
signed by the original server permission to receive an object, takes Path
information from the correspondent message, appends it to the permission, and
sends up the Path (to the previous server in the Path). Each server in the Path
does it until the “bill” reaches the original Web server. At this time, each
participant knows what was the size of the object and what was the way the
object has passed before reaching its destination, and based on this information,
they can do the billing.

URL Encoding of Usenet Information

We will disclose below three methods that allow to transparently encode in
objects’ URLs information necessary to locate the object in a Usenet server and
retrieve it. Any of these methods may be used in our system. These methods
allow transparent retrieving of news cached objects from their original servers, in
case if no CSCA is installed on the client side and no SSCA is installed on the
server side. If we can assume that at least one of these agents is always
installed, it can perform URL translation (for example, clear URLs of Usenet
related parameters), and the problem discussed here becomes trivial.

These methods allow retrieving of the objects by standard HTTP requests

even if there is no SSCA installed in the server’s front end.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

53

The problem to be solved: we want to post a Web object to the
newsgroups and place it on a Web server in such a way, that its URL on the Web
server would also unambiguously identify it in the Usenet
Method of Encoding Message-Id in Specific Directory Name

This method is based on constructing and using specific directory names
for news cached objects, so, that there is a one-to-one mapping between the
object's path on the Web server and its newsgroup and message-id in the
Usenet.

Step 1.
Input:

Construct message-id — message-id to be assigned to the message that
will contain the object.

All characters in the message-id, that are not allowed in directory names or
in URLs, are substituted with their ASCIl codes in hexadecimal notation,
preceded by an underscore. All underscores are replaced by double
underscores.

Result:

Encoded-message-id that does not contain characters illegal for directory
names or URLs.
Step 2.

Input:

The original URL of the object identifying the place where the object is
now.

Encoded-message-id.

In the URL, at the end of the path (right before the object’s file name)
insert the following string, “usenetcached/encoded-message-id’.

Result:

Modified URL that contains information that the object has been posted to
the Usenet (this conclusion can is made based on presence in the URL of the
special string “usenetcached”), and name of its message-id is available after
decoding — a process that is reverse to the process of encoding described in step
1.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

54

Step 3.

In the current directory of the project on the Web server, create a
subdirectory with name “usenetcached/encoded-message-id’ and move the
object there.

Step 4.

Use XBINUPDATE command as described below, or its analogs to post
the message to the required newsgroup with the required message-id.
Method of Using the URL as Message-ld

This method is based on constructing and using specific directory names
for news cached objects, so, that there is a one-to-one mapping between the
object's path on the Web server and its newsgroup and message-id in the
Usenet.

Step 1.
Input:

The original URL of the object identifying the place where the object is
now.

Iin the URL, at the end of the path (right before the object’s file name)
insert the following string, “usenetcached/".

Resuli:

Modified URL that shows that this object has been posted to the Usenet.
Step 2.

In the current directory of the object on the Web server, create a
subdirectory with name “usenetcached” and move the object there.

Step 3.
Input:

Modified URL — result of the step 1.

All characters in the URL, that are not allowed in message-ids, are
substituted with their ASCIl codes in hexadecimal notation, preceded by an
underscore. All underscores are replaced by double underscores.

Result:
Encoded-URL that does not contain characters illegal for Usenet

message-ids.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

55

Step 4.
Now the encoded-URL may be (optionally) modified to look like a usual

message-id, for example, from profocol/hostname:port/path to path-port-

protocol@host. Protocol and port are omitted if they are hitp and/or 80
respectively. This modification is optional for this method. However, if it is
implemented, it is important that it becomes a part of convention, CSCA is aware
of it and is able to transform URL to a message-id in equivalent way.

Use XBINUPDATE command as described below, or its analogs to post
the message to the required newsgroup with the <encoded-URL> (or its
modification) as the message-id.

Method of Encoding Message-Id in URL Query Parameters

This method id based on passing the information in the query part of the
URL. Because we are retrieving a file, this part would normally be ignored by
Web servers. Even if we were retrieving a dynamic object that required passing
query parameters, extra parameters are also normally ignored by CGI scripts
processing queries.

Step 1.
Input:

Construct message-id — message-id to be assigned to the message that
will contain the object.

All characters in the message-id, that are not allowed in URLs, are
substituted with their ASCII codes in hexadecimal notation, preceded by an
underscore. All underscores are replaced by double underscores.

Resulit:

Encoded-message-id that does not contain characters illegal for URLs.
Step 2.

Input:

The original URL of the object identifying the place where the object is
now.

Encoded-message-id.

If the URL already contains character “?” followed by a query, append the

following string at its end, “&ucached_id=encoded-message-id’.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

56

Else add the following string, “?ucached_id=encoded-message-id’.
Result:

Modified URL that contains information that the object has been posted to
the Usenet (this conclusion can be made from presence in the URL of the special
string “ucached_id="), and name of its message-id is available after decoding — a
process that is reverse to the process of encoding described in step 1.

Step 3.

Use XBINUPDATE command as described below, or its analogs to post
the message to the required newsgroup with the required message-id.
NNTP Extensions Sufficient to Implement the System

We disclose a set of NNTP extensions that are sufficient (together with the
first aspect of invention and properly implemented SSCA and CSCA modules) to
build a system that implements Usenet-based caching of Web objects.

We do not describe syntax of all commands, messages, message
headers, electronic signatures, certificates and bills because there are many
ways syntax may be agreed upon, this issue is trivial for a person skilled in the
art, and detailed description of it only makes understanding of this invention
harder.

Therefore, we are concentrating on disclosing of things that are less trivial.
Protecting Access to the Messages

When posting messages, original servers can explicitly mark them as
write-protected and/or read-protected. By default, all messages are write-
protected, but not read-protected. Access protection information is contained in
invented by us header with name X-Access-Protection. If this header has string
“write=n0”, it changes write protection of the message from the default mode. If
this header has string “read=yes”, it changes read protection of the message from
the default mode.

This header can also contain strings “write=yes” and “read=no”, but they
do not change default protection mode and therefore may be omitted as well as
the whole header if massage has defaulit protection.

If the message is write-protected, it may not be modified or deleted by

commands coming from anyone but the original poster or trusted Usenet servers.

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

57

Other agents have to supply an explicit digitally signed by the original poster
certificate that states that they have permission to modify or cancel this message,
before they can do so.

If the message is read-protected, its contents may not be served to
anyone but trusted Usenet servers. Other agents have to supply an explicit
digitally signed by the original poster certificate that states that they have
permission to receive this message, before they can do so.

XBINUPDATE Command
XBINUPDATE <message-id> [(UBOI,[RUBOI,...])...]

This command is similar to the XBINIHAVE command described above in
the fourth embodiment of the first aspect. Syntactically, the difference is that the
message-id parameter is compulsory.

This command updates the message on the receiving side.

If the message is write-protected and the client is not the original poster or
a trusted Usenet server, the server responds with code that requests a digitally
signed by the original poster permission to modify the message.

If the client has the permission, it sends it to the server.

The receiver (the server) checks whether it has a message with such
message-id and attachments. If there is no such message or it has a different set
of attachments, the server accepts the message and/or those attachments that
don’t match, and substitutes with them the existing message and attachments (if
any).

The resulting message on the server is now identical to the message that
was offered by the sender. The server attempts to distribute it to the servers it
feeds.

XZIPUPDATE Command

XZIPUPDATE command is an analog of the XBINUPDATE command, but
the information is transferred in compressed format, as in other XZIP commands
described above.

XBINGET Command
XBINGET <message-id> [{"*"| {UBOI,|-} RUBOI, ...}]

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

58

This command is similar to the XBINBODY command described above in
the fourth embodiment of the first aspect. Syntactically, the difference is that the
message-id parameter is compulsory.

This command retrieves the message and required attachments.

If the message is read-protected and the client is not the original poster or
a trusted Usenet server, the server responds with code that requests a digitally
signed by the original poster permission to access the message.

If the client has the permission, it sends it to the server.

The receiver (the server) checks whether it has a message with such
message-id and attachments. If there is one, it sends the requested message
and attachments to the client.

The server may also be configured to ask a digitally signed receipt from
the client, certifying that the client received the message.

XZIPGET Command

XZIPGET command is an analog of the XBINGET command, but the
information is transferred in compressed format, as in other XZIP commands
described above.

XBILL Command

This command is used to send signed receipts upstream.
XBILL

The command consists of the command line “XBILL\\n” followed by text of
receipt terminated by “\r\n.\r\n”.

The receiving server may request to repeat the command if tfransmission
has failed for any reason.

Receipts are digitally signed confirmations of receiving objects by the
clients. The server that sends an object to a client on request, may request a
receipt. Servers may be configured not to do it. There are conditions in which
receipts are not needed, for example, in systems functioning internally within a
single organization, or where traffic payment is not implemented, or billing
arrangements do not require exact information on transporting a serving objects

(e.g. traffic payment is flat or included in other payments).

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

59

When a server receives a receipt from a client, it appends to the receipt
the contents of the Path header of the served message and digitally signs the
result. Then the server sends the receipt to the previous server in the path and
saves a copy in its own-archive. This procedure is repeated until the receipt
reaches the original server.

Examples of Interaction between Components of the System in the Process
of Delivery of a Web Object

Example 1. A Server Side Caching Agent Updates an Object Posted Before
to the Usenet

We call an object “Usenet-cached” or “news-cached” if it is distributed
using this invention. In a preferred case, SSCA must be able to detect events of
change of Usenet-cached objects. This is not hard to achieve using such
techniques as:

1. SSCA may have a list of all Usenet-cached objects and periodically checks
dates and times of their last changes. 4

2. All Usenet-cached objects are stored in a few dedicated directories, SSCA
“knows” these directories and periodically checks dates and times of last changes
of all the objects in the directories.

3. If the operating system supports this feature, SSCA subscribes to
modification events and receives notification of changes of all the objects.

For the purpose of this example, suppose that we are using the method of
using URL as a message Id (described above in 3.9.5.2) and URL of the object is
http://www.myserver.com/usenetcached/thatmovie.mpg.

This object has been modified at 9.33.17 on 7.8.2000. The SSCA has

detected the fact of the modification using one of the methods above and now

has to update the object in the Usenet.

First, it constructs a message-id for the message to be posted.
Transformation of the URL to a message-id gives resuit
<usenetcached/thatmovie.mpg @ www.myserver.com>.

Second, SSCA constructs RUBOI for the modified object. This RUBOI is
required to uniquely identify this object in the Usenet. Therefore, we will use its

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

60

URL and date and time of modification to construct the RUBOIL:
<09331707082000-usenetcached/thatmovie.mpg @ www.myserver.com>.

Third, SSCA constructs a UBOI for the object from its file size and CRC32
code. Suppose, it is <1234567, 890>.

Fourth, SSUCA constructs a Usenet message with constructed message-
id and containing a copy of the object as a binary attachment. If reading access
to the object is limited, SSCA places header “X-Access-Protection: read=yes” in
the message.

Fifth, SSCA uses XBINUPDATE (or XZIPUPDATE) command to send the
new copy of the object to the Usenet. |
XBINUPDATE <usenetcached/thatmovie.mpg@www.myserver.com> (<1234567,
890> <09331707082000-usenetcached/thatmovie.mpg@www.myserver.com:)
AAn\n\n”

Please note that, by construction, all previous versions of the object were

posted with the same message-id, but with different attachments. Consequently,
the XBINUPDATE command will cause replacement of previous versions of the
object (if any) with the new one.
Example 2. A Client Side Caching Agent Retrieves an object from the
Usenet

Client Side Caching Agent sits in the way between Web client and its
Internet connection or cache engine. Therefore, all Web requests of the client go
through the CSCA and it can detect those of them that request Usenet-cached
objects. Suppose it has received a request to retrieve object with URL

hitp://www.myserver.com/useneicached/thatmovie.mpg.

By the presence of string “usenetcached” in the URL, the agent sees that
this object may be found in the Usenet. Therefore, the agent does not pass this
request through, but attempts to retrieve the object from the Usenet.

First, the agent transforms the URL in the same way as the SSCA did, to
construct the object's message id. The resulting message id is
<usenetcached/thatmovie.mpg @ www.myserver.coms.

Second, the agent sends XBINSTAT

<usenetcached/thatmovie.mpg@www.myserver.com> command to its local

10

15

20

25

30

WO 01/50337 PCT/AU00/01236

61

Usenet server, to check whether the message is there and retrieve attachment
version information.

Third, if version validation is needed, the agent coniacis SSCA of the
original server and sends there a validation request with message id, UBOI and
RUBOI returned by the XBINSTAT command. SSCA responds whether the
version is current and sends access permission, if needed. We do not detail here
syntax of the request and format and content of the permission. These are trivial
issues. If access is granied, the client receives a digitally signed by the server
permission.

~ Suppose that the version is current. If it is not, the agent acts as if the
object were not found. This scenario is described in Example 3.,

Now the agent contacts its local Usenet server to retrieve the message
using XBINGET or XZIPGET. Suppose that the message is read protected and
can be accessed only with original server permission. The Usenet server returns
code that says, “message access requires permission”.

The agent sends the permission received from the original server to the
Usenet server. In exchange, the server returns the requested object. The client
sends to the Usenet server a digitally signed receipt.

The Usenet server signs the receipt and sends it upstream using the
XBILL command. This procedure is repeated until the receipt reached SSCA of
the original server. (Thus, it has to support XBILL command and put itself first in
the Path header of the message).

Example 3. A Client Side Caching Agent attempts to retrieve and object
from the Usenet, but does not find it

Suppose CSCA has received a request to retrieve object with URL

http://www.myserver.com/usenetcached/thatmovie.mpq.

By the presence of siring “usenetcached” in the URL, the agent sees that
this object may be found in the Usenet. Therefore, the agent does not pass this
request through, but attempts to retrieve the object from the Usenet.

First, the agent transforms the URL in the same way as the SSCA did, to
construct the object's message id. The resulting message id is

<usenetcached/thatmovie.mpg @ www.myserver.coms>.

10

15

20

WO 01/50337 PCT/AU00/01236

62

Second, the agent contacts its local Usenet server to retrieve the message
using XBINGET or XZIPGET. The Usenet server returns code that says, “this
message is not found”.

Depending on implementation of the system and configuration, the agent
may do one of the following:

1. Just pass the request in order to process it as other requests for objects
that are not Usenet-cached. This case is trivial and ends processing of this
request by the agent.

2. Attempt to retrieve the object from its original server and post it to the
Usenet. This may be more optimal for the system as it would facilitate fast
propagation of Usenet —~cached objects to remote parts of the Usenet.

The first option is trivial. Suppose that the agent is configured to choose
the second option. It contacts the original server (or its SSCA, on behalf of the
server) and retrieves the object and receives permission to post it to the Usenet.

The agent returns the object to the client and posts it to the Usenet using
XBINUPDATE command. To do that, it constructs the message id, RUBOI and
UBOI exactly as it was done by the SSCA in example 1.

Now all billing information is coming to the SSCA via this agent, and it can
have part of the reward for retrieving the object and making it available in this
remote part of the Usenet. CSCA must support XBILL command and be on-line
most of the time. Alternatively, the system may be implemented in such a way,
that billing information will be routed to SSCA by the first Usenet server where the

message was posted to (in this case, the local server of the client).

WO 01/50337 PCT/AU00/01236

63

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS

1. A method of alleviating storage of duplicate binary objects, in a Usenet
system, the method including:

a. allocating an identifier, such as UBOI or RUBOI to a first binary
object,

b. determining whether the system has already stored a second binary

object equivalent to the first binary object, and

C. storing the first binary object if the result of step 2 is negative.
2. A method as claimed in claim 1, further including the step of
d. substituting in the message the first binary object by a reference to

it and storing the message.

3. A method as claimed in claim 1 or 2, wherein the binary object is text or

encoded in text, compressed or uncompressed.
4, A method as claimed in claim 1, 2 or 3, wherein, if the result of step b is
positive, the message is stored together with a reference to the second binary

object.

5. A method as claimed in claim 1, 2, 3 or 4, in which the determining step b

is executed via NNTP protocol.

6. In the Usenet system, an identifier, such as a UBOI or RUBOI.

7. An identifier as claimed in claim 6, wherein the identifier includes a

checksum and byte size identifier, an extended analogue.

8. An identifier as claimed in claim 7, wherein the identifier includes CRC32

checksum and an indicator of size of the object.

WO 01/50337 PCT/AU00/01236

64

9. An identifier as claimed in claim 7, wherein the identifier includes a

combination of a number of CRC32 codes or checksums.

10. A Usenet component adapted to operate in accordance with any one of

claims 1 to 5.

11. A Usenet component using including an identifier as claimed in any one of

claims 6 to 9.

12. A Usenet server and client as claimed in claim 10 or 11, adapted to use
any one or a combination of commands described above as XARTICLE, XBODY,
XIHAVE, XNEWNEWS, XBINARY, XBINSTAT, XBINOVER, XBINPOST,
XBINARTICLE, XZIPARTICLE, XZIPBODY, XZIPIHAVE, XZIPNEWNEWS,
XZIPSTAT, XZIPOVER, XBINZIPOVER, XLOGON, XBINIHAVE,
XBINNEWNEWS, XZIPOST, XZIPBINOVER, XBINSAMPLE, XZIPSAMPLE and /
or XPOST.

13. A method of operating a Usenet component in accordance with any one or
a combination of commands XARTICLE, XBODY, XIHAVE, XNEWNEWS,
XBINARY, XBINSTAT, XBINOVER, XBINPOST, XBINARTICLE, XZIPARTICLE,
XZIPBODY, XZIPIHAVE, XZIPNEWNEWS, XZIPSTAT, XZIPOVER,
XBINZIPOVER, XLOGON, XBINIHAVE, XBINNEWNEWS, XZIPOST,
XZIPBINOVER, XBINSAMPLE, XZIPSAMPLE and / or XPOST as herein

disclosed.

14. A method of transferring messages between at least two ANS-complaint
news servers, being a receiving server and a sending server, the method
comprising the steps of:

a. forwarding attachment identification information along with the

message identification information (Message ID) to a receiving server,

WO 01/50337 PCT/AU00/01236

65

b. the receiving server determining whether the attached binary object
is to be transferred in accordance with establishing whether the receiving server
has a copy of the binary object already, and

C. if the receiving server does have already a copy of the binary
object, indicating to the sender server that no transfer of the binary attachment is

necessary but that transferring only the textual part of the message is required.

15. A method of transferring messages between a first ANS-compliant server
and a second non-ANS-complaint server which does not offer object identification
information, the method including the steps of:

a. accepting a beginning portion of the binary object by the first server,

b. determining, based on the beginning portion, whether the first
server already has stored a copy of the binary object by comparing the beginning
portion with other binary objects already stored, and

C. if the determination is that a binary object is already stored,

requesting the second server to send the textual part of the message.

16. A method as claimed in claim 15, in which the beginning portion includes

file name and a portion of the body.

17. A method as claimed in claim 15, in which the beginning portion includes

the whole body of the binary object.

18. A method as claimed in claim 15, in which the first server is a receiving

server, and the second server is a sending server.

19. A method as claimed in any one of claims 14 to 17, in which when only the
textual part of the message is sent, the textual part is stored together with a

reference to the already stored binary object.

20. A Usenet component adapted to operate in accordance with any one of

claims 13 to 19.

WO 01/50337 PCT/AU00/01236

66

21. In aUsenet system, a Reliable Universal Binary Object Identifier (RUBOI).

22. A method of assigning RUBOIs to objects, including the steps of:

a. server that received an object that does not have a RUBOI
assigned broadcasting in an identification request UBOI of the object and
RUBOIs of objects that are known to have identical UBOls, but are different,

b. servers having objects with this UBOI and different RUBOIs
responding by sending the RUBOIs to the first server,

C. first server submitting the object to the servers for comparison and
identification,

d. in case of failed identification, generating and assigning of a new
RUBOI to the object,

e. in case of successful identification, assigning existing RUBOI to the

object.

23. A method of assigning RUBOIs to objects, including the steps of:

a. server that received a binary object that does not have a RUBOI
assigned generating a new RUBOI and assigning it to the object,

b. server that receives an object that is, in fact, identical to an object
with a different RUBOI, broadcasting the fact of equivalence of their RUBOIs,

C. all other servers remembering the fact of equivalence and using it

when making decisions based on comparing RUBOIs.

24. A method of assigning RUBOIs to objects, including the steps of:

a. server that received an object that does not have a RUBOI
assigned submitting the object to a central “authority” server for identification,

b. if the authority server can not identify the object, it generates a new
RUBOI, assigns it to the object and sends back to the first server,

C. if the authority server can identify the object, it sends its RUBOI to
the first server,

d. the first server uses the object with the RUBOI it has received from

the “naming authority” server.

WO 01/50337 PCT/AU00/01236

67

25. A method of assigning multiple RUBOIs to objects, including the steps of:

a. server that received an object checks whether it has an identical
object already,

b. if yes, the server adds RUBOI of the old object to the header of the
received message,

C. else, if the received object does not have a RUBOI yet, the server
generates a new RUBOI and assigns it to the object,

d. when identified based on RUBOIs, binary objects are considered

identical if they have at least one pair of identical RUBOiIs.

26. A method of alleviating storage of duplicate objects, in a Usenet system,
the method including:

a. allocating a Reliable Universal Binary Object Identifier (RUBOI) to a
binary object, using one of the methods claimed in claims 22, 23 , 24 and 25,

b. determining whether the system has already stored a binary object
with such RUBOI,

C. storing the binary object if the result of step b is negative, and

d. substituting in the message the binary object by a reference to it

and storing the message.

27. A method as claimed in claim 26 where the binary object is text or

encoded in text, compressed or uncompressed.

28. A method as claimed in claim 26 or 27, wherein, if the result of step b is
positive, the message is stored together with a reference to the already stored

binary object.

29. A method as claimed in claim 26, 27 or 28, in which the determining step b

is executed via NNTP protocol.

30. A Usenet component adapted to operate in accordance with the method of

any one of claims 22 to 29.

WO 01/50337 PCT/AU00/01236

68

31. A Usenet component as claimed in claim 30, adapted to operatively
respond to any one or a combination of commands described above as
XARTICLE, XBODY, XIHAVE, XPOST, XNEWNEWS, XBINARY, XBINSTAT,
XBINOVER, XBINPOST, XBINARTICLE, XZIPARTICLE, XBINBODY,
XZIPBODY, XZIPIHAVE, XZIPNEWNEWS, XZIPSTAT, XZIPOVER,
XBINZIPOVER, XLOGON, XBINIHAVE, XBINNEWNEWS, XBINPOST,
XZIPOST, XZIPBINOVER, XBINSAMPLE, XZIPSAMPLE and / or XPOST where
RUBOIs are used instead of UBOls.

32. A method of operating a Usenet in accordance with any one or a
combination of commands XARTICLE, XBODY, XIHAVE, XPOST, XNEWNEWS,
XBINARY, XBINSTAT, XBINOVER, XBINPOST, XBINARTICLE, XZIPARTICLE,
XBINBODY, XZIPBODY, XZIPIHAVE, XZIPNEWNEWS, XZIPSTAT, XZIPOVER,
XBINZIPOVER, XLOGON, XBINIHAVE, XBINNEWNEWS, XBINPOST,
XZIPOST, XZIPBINOVER, XBINSAMPLE, XZIPSAMPLE and / or XPOST as

herein disclosed and where RUBOIs are used instead of UBOls.

33. A method of transferring messages between at least two ANS-complaint
news servers, being a receiving server and a sending server, the method
comprising the steps of:

a. forwarding attachment identification information (where RUBOIs are
used for identification) along with the message identification information
(Message ID) to a receiving server,

b. the receiving server determining whether the attached binary object
is to be transferred in accordance with establishing whether the receiving server
has a copy of the binary object aiready, and

C. if the receiving server does have already a copy of the binary
object, indicating to the sender server that no transfer of the binary attachment is

necessary but that transferring only the textual part of the message is required.

WO 01/50337 PCT/AU00/01236

34.

69

A method as claimed in claims 33, in which when only the textual part of

the message is sent, the textual part is stored together with a reference to the

already stored binary object.

35.

A Usenet component adapted to operate in accordance with any one of

claims 30 to 33.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

47.

48.

An identification request broadcast method as herein disclosed.
A recognition event broadcast method as herein disclosed.
A centra]ised identification method as herein disclosed.

A multiple reliable identifier method as herein disclosed.

A XARTICLE command as herein disclosed.

A XBODY command as herein disclosed.

A XIHAVE command as herein disclosed.

A XNEWNEWS commanld as herein disclosed.

A XBINARY command as herein disclosed.

A XPOST command as herein disclosed.

A XBINSTAT command as herein disclosed.

A XBINOVER command as herein disclosed.

A XBINPOST command as herein disclosed.

WO 01/50337 PCT/AU00/01236

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

70

A XBINARTICLE command as herein disclosed.
A XZIPARTICLE command as herein disclosed.

A XZIPBODY command as herein disclosed.

A XZIPIHAVE command as herein disclosed.

A XZIPNEWNEWS command as herein disclosed.
A XZIPOST command as herein disclosed.

A XBINNEWNEWS command as herein disclosed.
A XZIPSTAT command as herein disclosed.

A XZIPOVER command as herein disclosed.

A XBINZIPOVER command as herein disclosed.
A XLOGON command as herein disclosed.

A XBINIHAVE command as herein disclosed.

A XZIPBINOVER command as herein disclosed.
A XBINSAMPLE command as herein disclosed.

A XZIPSAMPLE command as herein disclosed.

A Usenet/system/apparatus as herein disclosed.

WO 01/50337 PCT/AU00/01236

71

65. A method of coordinating the identification of objects with their associated
descriptions (metadata) in a newsgroup of the Usenet, the method including the
steps of:

generating a first tag, the first tag being readable in a manner for the
purposes of identifying a description,

attaching the first tag to a metadata object in the message containing the
description,

determine from the first tag, a second tag, the second tag being adapted
to identify an object,

attaching the second tag to the message containing the object,

posting the messages.

66. A method of downloading messages from the Usenet, the method
including the steps of:

receiving headers or only XOVER information of messages available for
downloading,

scanning this received information to identify which messages contain
descriptions,

downloading the messages containing descriptions,

representing the descriptions to the user to make a decision regarding the
downloading of associated objects,

if the user wants to download an associated object,

reading a first tag associated with the description, generating a second tag
adapted to identify an object,

scanning the information received from the server in order to locate a tag
equivalent to the second tag, and

downloading the message having the located tag.

67. A method as claimed in claim 65 or 66, wherein the second tag is the

same as the first tag.

WO 01/50337 PCT/AU00/01236

72

68. A method as claimed in claim 65, 66 or 67, wherein at least one of the first

and second tags is provided in a Header of the message.

69. A method as claimed in claim 68, wherein the at least one of the first and
second tags is also provided with MIME Headers of the attachment containing a

metadata item.

70. A method as ciaimed in 65 or 66, including the further step of:
displaying visually a representation of each available article for selection,
in which the visual representation is based on metadata objects, such as

thumbnails.

71A method as claimed in claim 70, wherein the step of displaying is provided by
an association based on corresponding tags being established between
metadata items (in metadata articles) and downloaded headers of the articles
visually represented.

72. A method as claimed in claim 70, wherein the step of displaying is
provided by an association based on -corresponding tags being established
between metadata items (in metadata articles) and downloaded XOVER

descriptions of articles visually represented.

73. A method of associating an URL with a Web object(s) for transport from a
server side (their original server) to a client side via the Usenet or a Usenet-like
system, the method including the steps of:

a. Constructing/determining/allocating a URL (Uniform Resource

Locator) for the object, and

b. placing the object on the original setrver in such a way that this URL

1. contains information necessary to find the object in a Usenet
server;

2. indicates that the object has been posted to the Usenet and may be

found on a Usenet server; and

WO 01/50337 PCT/AU00/01236

73

3. can be used io transparenily retrieve the object from its original

server.

74. A method of transporting Web object(s) via a Usenet, the method
including:

associating a URL with the Web object as claimed in claim 73,

posting the object on the Usenet;

at a client side, intercepting requests for the object, interpreting them and
using information extracted, as a result of the interpretation, to retrieve the object

from a Usenet server.

75. A method as claimed in claim 74, further including the step of:
if the object is not found posted on the Usenet , or its version is not
current:

retrieving the object from the original server.

76. A method as claimed in claim 75, further including the steps of:

, receiving digitally signed permission to post the object on behalf of the
server and to cancel the expired version, if any, and

, fransmitting this permission to one or more of Usenet servers along with

the object.

77. A URL useful in accordance with the method of any one of claims 73 to 76.

78. A communication system adapted to distribute Web objects from a web
host server to a client, the system having:

a Web host server on which the web objects are stored, the web host
server being coupled to the WWW,

the coupling between the client, the WWW and web host server enabling

bi-directional communication,

WO 01/50337 PCT/AU00/01236

74

the improvement including

providing a first Caching agent intermediate and coupled to the client and
WWW and Usenet, and

providing a second Caching agent intermediate and coupled to the WWW
and the Usenet and the web host server,

wherein the first and second Caching agents enable communication of
objects between the client and the Web host server to be via either the Internet or

the Usenet.

79. A system as claimed in claim 78, wherein the first Usenet agent is an
application located on the TCP/IP path from the client to the Web cache.

80. A system as claimed in claim 78 or 79, wherein the first Usenet agent
performs at least some of the following functions:

analyses Web requests containing URLs of required objects,

based on the URL, decides, whether an object has been posted to the
Usenet by its original server and thus, may be found in the Usenet,

if the object has not been posted to the Usenet, the first agent passes the
request further for normal processing by the Web server or cache engine,

if the object has been posted to the Usenet:

based on its configuration information, the first agent selects one or more
available Usenet servers and tries to find the required object on them,

if the object is found, the first agent retrieves it and returns to the client,
and/ or ’

if the object is not available, the first agent passes the request for further

processing by the original server or a caching engine.

81. A sysitem as claimed in claim 78, 79 or 80, wherein the seéond Usenet

agent is located intermediate the web host server and the Internet.

WO 01/50337 PCT/AU00/01236

75

82. A system as claimed in claim 81, wherein the second Usenet agent
performs at least some of the following functions:

intercepts requests to the server and identifies those that are requesting
Usenet posted objects,

if such a request is found, the second agent cleans up its URL, removing
its part that concerns newsgroups or including the required information in the
URL and combining it with object placement in such a way, that no further
cleaning is necessary,

once cleaned, the URL is passed further for processing by the server or
server side cache engine,

tracing events of modification of the server objects that are to be, or have
been posted to the Usenet,

if an object has been modified (or created), the second agent cancels its
previous versions, if necessary in the Usenet and posts a new digitally signed
one, and / or

periodically re-posts objects to the Usenet to ensure their availability.

83. A method of creating a URL for use in the Web, the method including the
steps of:

providing a first field having information sufficient to locate an object on a
web server, and

providing a second field having information sufficient to locate the object

on the Usenet.

84. A method as claimed in claim 83, wherein the first field includes an initial

URL, and the second field includes a Usenet message ID.

85. A method as claimed in claim 83, wherein the first and second fields are

the same and include a Usenet message ID.

86. A method as claimed in claim 85, wherein the message ID is encoded in

URL query parameters.

WO 01/50337 PCT/AU00/01236

76

87. A method as claimed in any one of claims 83 to 86, wherein the URL is
created in a manner where a relatively simple and relatively unambiguous

reverse transformation exists.

88. An instruction set (protocol) adapted to implement a method according to
any one of claims 14 to 19, the instruction set including commands that include:

a first portion providing information about a message being available,

a second portion providing information about attachments, if any, associated with

the message

89. An instruction set as claimed in claim 88, enabling, upon request, transfer
of the requested information items (message and/or attachments) in a

compressed (non-textual) format.

90. An instruction set as claimed in claim 88 or 89, being any one or a
combination of XARTICLE, XBODY, XIHAVE, XNEWNEWS, XBINARY,
XBINSTAT, XBINOVER, XBINPOST, XBINARTICLE, XZIPARTICLE,
XZIPBODY, XZIPIHAVE, XZIPNEWNEWS, XZIPSTAT, XZIPOVER,
XBINZIPOVER, XLOGON, XBINIHAVE, XBINNEWNEWS, XZIPOST,
XZIPBINOVER, XBINSAMPLE, XZIPSAMPLE and / or XPOST.

RCS/SH

PCT/AU00/01236

WO 01/50337

WO 01/50337 PCT/AU00/01236

2/6

Fig 2a.

v

Server 1:
Receive a message with binary attachment from a client.
Build a UBOI for the binary object.

Server 1:
Is any object in the storage
identical to the new one?

Server 1:
Use its RUBOI for the new object in further work.

Server 1:
Post a system message containing UBOI of the new object
and RUBOIs of all old objects that have been compared
to it and are not identical.

v

Server N:
Receive the system message from Server 1.

v

Server N:
Does any object in the storage
have this UBOI ?

Server N:
Is any of them not in the list of checked
ones in the message?

Yes

Server N:
Send its RUBOI to Server 1 in response to its system message.

& ®

WO 01/50337 PCT/AU00/01236

3/6

Fig 2b.

®

Server 1:
Are there any responses to the
system message?

Server 1:
Choose a set of servers (Servers X) that together have all of
unchecked objects with given UBOI and send the new object
to each of them for identification.

v

Server X:
Receive identification request from Server 1. Compare the
new obiject to all objects in the storage with its UBOI.

Server X:
Is an identical object found?

Server X:
Send its RUBOI to Server 1.

Server 1:
Any response to the
identification request
received?

Server 1:
Assign the RUBOI from it to the new object.

Server 1:
Generate or obtain a new RUBOI and assign it to the new object.

(e e

WO 01/50337 PCT/AU00/01236

o 4/6
o Comr>

Server 1:
Receive a message with a binary attachment that
does not have a ROBOI assigned.

Server 1:
Is any object in the storage
identical to the new one?

Server 1:
Use its RUBOI for the new object in further work

Server 1:
.| Generate or obtain a new ROBUI (ROBUI1) and assign it to the
new object. Feed the new object to the other servers.

.

Server N(all other news servers):
Receive the new binary object.

'

Server N:
Is any object in the storage
identical to the new one?

Server N:
Substitute the new object with the reference to the object (RUBOI2).
Post a system message stating that RUBOI1 is equivalent to RUBOI2

WO 01/50337 PCT/AU00/01236

5/6

Fig 4. Comar

Server 1:
Receive a message with a binary attachment that
does not have a ROBOI assigned.

Server 1:
Is any object in the storage
identical to the new one?

No

Server 1:

Use its RUBOI for the new object in further work

Server 1:
Send the new object to the identification server (Server 0) to identify.

v

Server 0: Receive the binary object from Server 1.

v

Server 0:
Is there an identical object in the storage?

No

Server 0: Send its RUBOI to Server 1

!

: Server 1:
Substitute new object with reference to the existing object.
Use it RUBOI in further work.

—> Server 0: Reply to Server 1 that no identical object is found

v

Server 1:
Generate a new RUBOI and assign to the new object.

€Ds

PCT/AU00/01236

WO 01/50337

6/6

=

JOAIBS oM
leuiblo

1osn oYy} Aq pesseooe s) yaiym Jaales eulbup
"1oAI9S g\ [eulbLio 8y 0} |00 S ey} Jonias Jaussn
"1ousby Buiyoen apig Jenleg

18uUas) 8yl pue MMM Ui Buipnjoul ‘1eulsiu|

"Jusljo 8y} 01 [8a0] SI Jeyl Jenias jpuesn

ueby Bulyored epis 1usi|)

"3 Jo edeosiaN Sse yons ‘usio MMM

(2) welo aivyl Buisn pAMM Buissedoe tesn

® ®
— —

JOAIRS JoNnIeg
loussn lauasn

—aA O ON®

NDWOK

OCmwOK
1

IN3ITO

435N

®

W

'S 31

INTERNATIONAL SEARCH REPORT

_ International application No.
PCT/AU00/01236

A CLASSIFICATION OF SUBJECT MATTER

Int. CL "> GO6F 17/30

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC: AS ABOVE

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPAT,IEEE, Internet (usenet,binary,object,identifier,cache)

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X "A cache architecture for modemizing the Usenet infrastructure " (Gschwind 78,80,81
et al.) Proc. of 32 Hawaii Int. Conference on System Sciences - 1999
5-8 January 1999 pp 1-9, Whole document

X US 5 815 663 (Uomini) 29 September 1998 73,83
‘WHobole document

X WO 99/16226 (Hughes Electronics Corporation) 1 April 1999 6

Y Whole document, especially page 8, line 24 to page 9, line 33, Fig. 10 78

Further documents are listed in the continuation of Box C See patent family annex

* Special categories of cited documents:

"AY document defining the general state of the art which is
not considered to be of particular relevance

"B" earlier application or patent but published on or after
the international filing date
"L document which may throw doubts on priority claim(s)

or which is cited to establish the publication date of
another citation or other special reason (as specified)

"o document referring to an oral disclosure, use,
exhibition or other means
'p* document published prior to the international filing

date but later than the priority date claimed

“Tll

IIX"

|IY|I

‘ "&I!

later document published after the international filing date or
priority date and not in conflict with the application but cited to
understand the principle or theory underlying the invention
document of particular relevance; the claimed invention carnot
be considered novel or cannot be considered to involve an
inventive step when the document is taken alone

document of particular relevance; the claimed invention cannot
be considered to involve an inventive step when the document is
combined with one or more other such documents, such
combination being obvious to a person skilled in the art
document member of the same patent family

Date of the actual completion of the international search

.Date of mailing of the interna%scarch report

30 NOV

E-mail address: pet@ipaustralia.gov.au
Facsimile No. (02) 6285 3929

21 November 2000
Name and mailing address of the ISA/AU Authorized officer
AUSTRALIAN PATENT OFFICE
PO BOX 200, W CT 2606, A
OX 200, WODEN ACT , AUSTRALIA DALE E. SIVER

| Telephone No : (02) 6283 2196

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.

PCT/AU00/01236
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.
Y US 5940 594 (Ali et al.) 17 August 1999 78,80,81
Abstract, detailed description, claims
Y "Mobile Computing with the Rover Toolkit" (Gschwind et al.) IEEE Trans. On 78,83
Computers, Vol. 46 No. 3, March 1997
Pages 340 and 347
A US 5 887 133 (Brown et al.) 23 March 1999 1

Abstract, figures, columns 3, line 25 to column 4, line 41

Form PCT/ISA/210 (continuation of Box C) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU00/01236

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following
1easons:

L l___] Claims Nos :

because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos :

because they relate to parts of the international application that do not comply with the prescribed requirements
to such an extent that no meaningful international search can be carried out, specifically:

3. D Claims Nos :

because they are dependent claims and are not drafted in accordance with the second and third sentences of
Rule 6.4(a)

BoxII Observations where unity of invention is lacking (Continuation of item 3 of first sheet) -

This International Searching Authority found multiple inventions in this international application, as follows:

1 Claims 1-72; Usenet system with binary object identifier.

2. Claim 73 , at least; Usenet-like system with URL for object (to locate Web object) and transparent retrieval
and Claims 83 86, at least ; URL creation for locating objects on a web server and Usenet

3. Claim 78 - 82; Caching agent intermediate WWW and Usenet

1. D As all required additional search fees were timely paid by the applicant, this international search report covers
all searchable claims

2, As all searchable claims could be searched without effort justifying an additional fee, this Authority did not
invite payment of any additional fee.

3. D As only some of the required additional search fees were timely paid by the applicant, this international search

report covers only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search
report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest l:l The additional search fees were accompanied by the applicant's protest.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet(1)) (July 1998)

INTERNATIONAL SEARCH REPORT International application No.
Information on patent family members PCT/AU00/01236

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the
above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars
which are merely given for the purpose of information.

Patent Document Cited in Search Patent Family Member
Report
Us 5815663 NO MEMBERS
WO 99/16226 AU 94972/98 EP 944982 JP 2000/506661
Us 5940594 Us 5896506
UsS 5887133 US 6023686 Us 5794219

END OF ANNEX

Form PCT/ISA/210 (citation family annex) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

