发明名称
一种可吸收性手术缝合线及其制备方法

摘要
本发明公开了一种可吸收性手术缝合线及其制备方法，主要涉及壳聚糖手术缝合线。该制备工艺包括壳聚糖纺丝溶液的制备、纺丝及凝固、后续处理等步骤。该工艺实现了壳聚糖的湿法纺丝，使得壳聚糖手术缝合线的横截面的圆度增大，提高了此缝合线的可操作性，并且此工艺制备的缝合线具有较高的抗拉强度和弹性，满足临床需要。
1. 一种可吸收性手术缝合线的制备方法，其特征在于，包括以下步骤：
 1) 纺丝溶液的制备：将壳聚糖溶于乙酸溶液中，再分别加入尿素、甘油，经充分搅拌得到壳聚糖溶液，将此溶液进行过滤，再于真空条件下脱除气泡，得到纺丝溶液；
 2) 纺丝：将纺丝溶液用计量泵输入喷丝头，使纺丝溶液挤入凝固浴中边凝固边拉伸，得到壳聚糖丝线；
 3) 后续处理：将壳聚糖丝线经热水清洗干净后，室温干燥，表面涂甘油，再经室温干燥，灭菌包装，得到可吸收性手术缝合线。

2. 根据权利要求 1 所述的可吸收性手术缝合线的制备方法，其特征在于，所述壳聚糖是由无菌蝇蛆壳提取的，其脱乙酰度大于 85%，灰度小于 1%，粘度大于 1000MPa。

3. 根据权利要求 1 所述的可吸收性手术缝合线的制备方法，其特征在于，所述壳聚糖是由人工养殖的无菌蝇蛆壳经脱蛋白质、脱脂肪、脱无机盐，最后脱去乙酰基得到。

4. 根据权利要求 1 所述的可吸收性手术缝合线的制备方法，其特征在于，所述壳聚糖溶液的配比为：壳聚糖 3.5 wt%～7.5wt%，乙酸 3.5 wt%～7.5wt%，尿素 0.5 wt%～1.5wt%，医用甘油 1.5 wt%～3.5wt%，其余为水。

5. 根据权利要求 1 所述的可吸收性手术缝合线的制备方法，其特征在于，所述喷丝头的孔径为 0.08mm，30 孔。

6. 根据权利要求 1 所述的可吸收性手术缝合线的制备方法，其特征在于，所述凝固浴溶液的配制为 5wt%～20wt%的氢氧化钠与 95wt%医用乙醇的质量配比为 9:1，纺丝溶液挤入凝固浴的温度控制在 15℃～20℃。

7. 根据权利要求 1 所述的可吸收性手术缝合线的制备方法，其特征在于，所述步骤 3) 中壳聚糖丝线经 50℃～80℃的热水清洗。

8. 一种由权利要求 1～7 任一项所述的可吸收性手术缝合线的制备方法制得的可吸收性手术缝合线。

9. 根据权利要求 8 所述的可吸收性手术缝合线，其特征在于，所述手术缝合线单丝的强度大于 1kg/cm。

10. 根据权利要求 8 所述的可吸收性手术缝合线，其特征在于，所述手术缝合并线是将两根或两根以上单丝在加捻机上加捻而成。
一种可吸收性手术缝合线及其制备方法

技术领域
[0001] 本发明涉及一种手术缝合线及其制备方法，具体涉及一种可吸收性手术缝合线，尤其涉及用壳聚糖制备的可吸收性手术缝合线。

背景技术
[0002] 医用手术缝合线是一种用于伤口愈合、组织结扎和组织固定，对伤口的初期愈合有重要的作用。一般可分为可吸收线和不可吸收线两大类，不可吸收缝合线在体内不降解，如不取出则作为身体异物留在组织中，较容易引起组织感染；可吸收缝合线在身体组织内通过酸、碱或酶作用降解，降解速度取决于组织的温度、PH值及缝合线周围的液态环境，降解后产物转化为人体的代谢产物和排泄物，无毒无害。
[0003] 壳聚糖为含游离氨基的碱性多糖，可溶于酸性、有机酸及弱酸稀溶液或粘稠胶体，因分子用有-OH、-NH极性基团，因而具有较好的吸湿性、保湿性和增稠性。壳聚糖具有良好的生物降解性，它可以被壳聚糖酶、溶菌酶等生物降解，酶解的最终产物为氨基葡萄糖，一般对人体无毒副作用，在人体内不会有任何作用，产物不与体液反应，对组织无异物反应，因此有良好的生物相容性；同时壳聚糖还具有良好的生物活性，因而具有广普抗菌作用，可促进上皮细胞生长，促进伤口愈合；因壳聚糖带有正电荷，可促进血小板聚集而具有止血功能，因此利用上述壳聚糖的多种功能，可以制备可吸收性壳聚糖纤维，进而得到可吸收性壳聚糖手术缝合线。
[0004] 申请号为201010218130.4的专利公开了一种壳聚糖手术缝合线及其制备工艺，其制备工艺包括以下步骤：母线的制备：用醋酸溶液溶解壳聚糖，配置成一定浓度的壳聚糖溶液，将壳聚糖溶液充分搅拌后于真空条件下脱除气泡，水平放置，干燥，使之成膜，将膜在特制模具上切割成条状，然后放入NaOH与乙醇的混合溶液中加热，使回合溶液从60℃升至80℃，再降至60℃，再加热升至80℃，如此循环脉冲式加热，60～120min后，条状膜层自动脱落，即为壳聚糖手术缝合线的母线；后续还包括拉丝、涂膜的步骤。此工艺方法制备的壳聚糖缝合线是经过切割成条状，再进行拉丝，致使缝合线的横截面的圆度不够，在使用的过程中增大了摩擦阻力，给实际操作带来了不便，并且对壳聚糖缝合线的抗拉强度要求较高，很难满足实际临床的需要。

发明内容
[0005] 本发明要解决的技术问题是提供一种壳聚糖手术缝合线的制备工艺，此工艺制备的缝合线横截面的圆度较高，并且具有较高的强度和弹性，能满足临床的需要。
[0006] 本发明的可吸收性手术缝合线的制备方法，包括以下步骤：
1）纺丝溶液的制备：将壳聚糖溶于乙酸溶液中，再分别加入尿素、甘油，经充分搅拌得到壳聚糖溶液，将此溶液进行过滤，再于真空条件下脱除气泡，得到纺丝溶液；
2）纺丝：将纺丝溶液用计量泵输入喷丝头，使纺丝溶液挤入凝固浴中抽成丝拉伸，得到壳聚糖丝线；
3) 后续处理：将壳聚糖丝线经热水清洗干净后，室温干燥，表面涂甘油，再经室温干燥，灭菌包装，得到可吸收性手术缝合线。

[0007] 本发明制备方法中优选的壳聚糖是由无菌蛲虫壳提取的，其脱乙酰度大于 85%，灰度小于 1%，粘度大于 1000MPa。

[0008] 本发明制备方法中优选的壳聚糖是由人工养殖的无菌蛲虫壳经脱蛋白、脱脂肪、脱无机盐，最后脱去乙酰基得到。

[0009] 本发明制备方法中优选的壳聚糖溶液的配制为：壳聚糖 3.5wt%～7.5wt%，乙酸 3.5wt%～7.5wt%，尿素 0.5wt%～1.5wt%，医用甘油 1.5wt%～3.5wt%，其余为水。

[0010] 本发明制备方法中优选的纺丝为湿法纺丝，并且其喷丝头的孔径为 0.08mm，30 孔。

[0011] 本发明制备方法中优选的凝固浴溶液的配制为 5wt%～20wt%的氢氧化钠与 95wt%医用乙醇的质量配比为 9:1，纺丝溶液挤入凝固浴的温度控制在 15℃～20℃。

[0012] 本发明制备方法中优选的后续处理步骤中壳聚糖丝线经 50℃～80℃的热水清洗。

[0013] 本发明可利用上述制备方法制得可吸收性手术缝合线。

[0014] 本发明的手术缝合线单丝的强度大于 1kg/cm。

[0015] 本发明手术缝合线优选的是将两根或两根以上单丝在加力机上并加捻而成。

[0016] 本发明在壳聚糖溶液中添加了尿素和甘油，从而增加了壳聚糖的韧性，有利于壳聚糖溶液的后续成丝性能，从而实现了壳聚糖的湿法纺丝工艺；本发明中的壳聚糖是由蛲虫壳提取的，保证了壳聚糖手术缝合线的完全吸收性；并且蛲虫中提取的较其它物质中提取的壳聚糖具有更高的粘度和脱乙酰度，而且灰度低，从而提高了壳聚糖的韧性，有利于湿法纺丝工艺的实施；在本发明中壳聚糖溶液由丝时进入凝固浴中，从而实现了壳聚糖丝的凝固和拉长。由于实现了壳聚糖的湿法纺丝工艺，使得壳聚糖手术缝合线的横截面的圆度增大，提高了此缝合线的可操作性；并且此工艺制备的缝合线具有较高的抗拉强度和弹性，满足临床需要。

[0017] 具体实施方式

[0018] 以下结合实施例对本发明作进一步的说明。

[0019] 实施例 1：

纺丝溶液的制备：将 3.5wt%的壳聚糖溶于 3.5wt%乙酸溶液中，再分别加入 0.5wt%的尿素与 1.5wt%的甘油，经充分搅拌得到壳聚糖溶液，将此溶液在 2 个大气压下过 1000 目滤布进行过滤，滤去不溶物，再经过 24 小时真空条件下脱除气泡，得到纺丝溶液；

纺丝：将上述得到的纺丝溶液用计量泵输入到孔径 0.08mm，30 孔的喷丝头，使纺丝溶液挤入凝固浴中，此凝固浴溶液的配制为 5wt%的氢氧化钠与 95wt%医用乙醇的质量配比为 9:1，纺丝溶液挤入凝固浴的温度控制在 15℃～20℃，边凝固边拉伸，丝线的拉伸倍数为 1 倍，得到壳聚糖丝线；

后续处理：将壳聚糖丝线经 50℃～80℃热水清洗干净后，室温干燥，表面涂甘油，再经室温干燥，灭菌包装，得到可吸收性手术缝合线，其直径为 0.06mm。
实施例 2:

纺丝溶液的制备：将 4.5 wt% 的壳聚糖溶于 5 wt% 乙酸溶液中，再分别加入 1.2 wt% 的尿素与 2.5 wt% 的甘油，经充分搅拌得到壳聚糖溶液，将此溶液在 2 个大气压下过 1000 目滤布进行过滤，滤去不溶物，再经过 24 小时降温真空条件下脱除气泡，得到纺丝溶液；

纺丝：将上述得到的纺丝溶液用计量泵输入到孔径 0.08mm，30 孔的喷丝头，使纺丝溶液挤入凝固浴中，此凝固浴溶液的配制为 14 wt% 的氢氧化钠与 95 wt% 医用乙醇的质量配比为 9:1，纺丝溶液挤入凝固浴的温度控制在 15℃～20℃，边凝固边拉伸，纤维的拉伸倍数为 1.4 倍，得到壳聚糖纤维。

后续处理：将壳聚糖纤维经 50℃～80℃热水清洗干净后，室温干燥，表面涂甘油，再经室温干燥，灭菌包装，得到可吸收性手术缝合线，其直径为 0.05mm。

实施例 3:

纺丝溶液的制备：将 7.5 wt% 的壳聚糖溶于 7.5 wt% 乙酸溶液中，再分别加入 1.5 wt% 的尿素与 3.5 wt% 的甘油，经充分搅拌得到壳聚糖溶液，将此溶液在 2 个大气压下过 1000 目滤布进行过滤，滤去不溶物，再经过 24 小时降温真空条件下脱除气泡，得到纺丝溶液；

纺丝：将上述得到的纺丝溶液用计量泵输入到孔径 0.08mm，30 孔的喷丝头，使纺丝溶液挤入凝固浴中，此凝固浴溶液的配制为 20 wt% 的氢氧化钠与 95 wt% 医用乙醇的质量配比为 9:1，纺丝溶液挤入凝固浴的温度控制在 15℃～20℃，边凝固边拉伸，纤维的拉伸倍数为 2 倍，得到壳聚糖纤维。

后续处理：将壳聚糖纤维经 50℃～80℃热水清洗干净后，室温干燥，表面涂甘油，再经室温干燥，灭菌包装，得到可吸收性手术缝合线，其直径为 0.04mm。

实施例 4:

纺丝溶液的制备：将 7.5 wt% 的壳聚糖溶于 7.5 wt% 乙酸溶液中，再分别加入 1.5 wt% 的尿素与 3.5 wt% 的甘油，经充分搅拌得到壳聚糖溶液，将此溶液在 2 个大气压下过 1000 目滤布进行过滤，滤去不溶物，再经过 24 小时降温真空条件下脱除气泡，得到纺丝溶液；

纺丝：将上述得到的纺丝溶液用计量泵输入到孔径 0.08mm，30 孔的喷丝头，使纺丝溶液挤入凝固浴中，此凝固浴溶液的配制为 20 wt% 的氢氧化钠与 95 wt% 医用乙醇的质量配比为 9:1，纺丝溶液挤入凝固浴的温度控制在 15℃～20℃，边凝固边拉伸，纤维的拉伸倍数为 2 倍，得到壳聚糖纤维。

后续处理：将壳聚糖纤维经 50℃～80℃热水清洗干净后，室温干燥，表面涂甘油，再经室温干燥，得到可吸收性手术缝合线，其直径为 0.04mm。

捻合线：将四根单丝在加捻机上加捻而成合并线，再进行灭菌包装。

壳聚糖丝线抗拉强度的测试：

壳聚糖丝线的抗拉强度在 YG021A — I 型单纱电子强力机上进行测试，测试温度为 25℃，湿度为 50%，拉伸速度为 200mm/min。每个样品测试 3 次，模拟实际使用情况，以打结处断裂为有效数据，取平均值。数据见表 1。

壳聚糖丝线伸长率的测试：

壳聚糖丝线的伸长率在 ×× 型单纱电子强力机上进行测试，测量单丝的加载强度为
0.5kg/cm时，壳聚糖丝线的伸长率，拉伸速度为200mm/min。每个样品测试3次，取平均值。数据见表1。

表1 壳聚糖丝线的机械性能测试结果

<table>
<thead>
<tr>
<th>实施例</th>
<th>直径（mm）</th>
<th>抗拉强度（kg/cm）</th>
<th>伸长率（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.06</td>
<td>1.86</td>
<td>18.2%</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>1.35</td>
<td>19.9%</td>
</tr>
<tr>
<td>3</td>
<td>0.04</td>
<td>1.05</td>
<td>23.3%</td>
</tr>
<tr>
<td>4</td>
<td>0.04×4</td>
<td>3.98</td>
<td>18.7%</td>
</tr>
</tbody>
</table>