The invention relates generally to containers and particularly to containers for housing spray guns or the like.

It has been necessary in the past when painting with spray guns to thoroughly clean the gun each time after useage to insure proper operation when the gun was again used, as the paint used in conjunction with the guns, such as lacquer, enamel, etc., readily clog and obstruct the passages in the gun if the latter is not immediately cleaned after use. This is particularly true where the paint used is of the quick drying type, wherein the paint will harden very quickly, thus clogging the gun in relatively short periods of non-use.

The present invention, therefore, has as a most important object the production of a container in which such guns may be placed when not in use, which container is so constructed that the gun is immersed in a suitable solvent while in the container, thus preventing the nozzle and passages from being obstructed with hardened paint.

The invention has among its further objects the production of a container of the kind described which is durable, efficient and inexpensive for the purposes intended.

A further object of the invention is the construction of such a container in which the level of the fluid solvent is automatically maintained at a predetermined level.

A further object of the invention is the production of a substantially universal container in which a plurality of guns may be housed and which is so designed as to prevent evaporation of the fluid solvent as much as possible.

Many other objects and advantages of the construction herein shown and described will be obvious to those skilled in the art from the disclosure herein given.

To this end our invention consists in the novel construction, arrangement and combination of parts herein shown and described, and more particularly pointed out in the claims.

In the drawing, wherein like reference characters indicate like or corresponding parts:

Fig. 1 is a side elevational view of the container with a portion of it broken away to show the interior construction and with an ordinary spray gun illustrated in dotted lines; and

Fig. 2 is an end elevational view of the container also with a portion thereof broken away to show the interior.

Broadly speaking, the invention provides a container having a portion thereof constructed for receiving the nozzle of the spray gun, this portion being provided with means for retaining the fluid solvent therein into which the nozzle is immersed. Also a suitable reservoir is provided which will automatically maintain the fluid at a level to sufficiently protect the nozzle and associated parts of the gun.

As shown in Fig. 1, the device comprises a suitable container comprising side and end walls 2 and 3, respectively, bottom 4 and a suitable cover 5. This container may be constructed of any suitable material, and as shown is preferably constructed of metal. Mounted on the side walls 2 thereof are suitable handles 6 by means of which the container may be readily transported. The cover 5 is hinged to an end wall 2 at 7, the opposite end being provided with a handle 8 by means of which the cover may be raised.

Extending laterally across the interior of the container between the side walls 2 is a dividing wall 11 secured to the side walls and the bottom 4 to divide the container into two fluid-tight compartments 12 and 13. The wall 11 is provided with notches 14 of a size to receive a portion of a spray gun which is adapted to be placed in the container with the nozzle adjacent the bottom 4 in the compartment 12. Suitable pins 15 positioned below the notches 14 extend into the compartment 12 and are rigidly secured to the partition wall 11. These pins are of a size to enter the paint inlet in the gun and thereby support the latter on the partition 11.

Positioned adjacent the end wall 2 of the compartment 12 is a fluid container 16 supported on the brackets 17 which are secured to the end wall. The container 16 is provided with an inverted port 18 which is positioned at a height above the bottom 4 to insure a fluid level at a point above the pins 15 and above the paint inlet of the gun. Obviously, as the level of the fluid, due to the evaporation, etc., falls below the mouth of the port 18, sufficient fluid will flow from the reservoir 16 to maintain the fluid above the mouth of the port, thus insuring sufficient fluid in the compartment 12 at all times.

If several guns are put into the container at one time the displacement of fluid thereby might raise the level of the fluid to an undesirable height, and to relieve this difficulty the partition 11 is provided with a suitable overflow hole 19 at the maximum desired level, so that the excess fluid will overflow into the compartment 13, thus preventing any fluid from reaching the material used for the needle valve packing.
A suitable stop 21 is provided to limit the opening movement of the cover 5 so that the cover cannot be opened to a point where it will fail to close by gravity, thus preventing any unnecessary loss of fluid due to evaporation, etc., as the cover will always be closed except when guns are actually being put in or taken out. If desired a spring cover may be utilized. Likewise if desired, the cover 5 may be provided with a suitable gasket (not shown) which will further seal the container, although we have found this for all practical purposes to be unnecessary.

The compartment 12 is filled to the approximate level desired and the reservoir 16 filled and seated on the bracket 17 in an inverted position as shown in Figs. 1 and 2, where the level of the fluid will then be maintained at approximately the mouth of the port 18. When the gun is not in use it is merely placed in the compartment 12 and seated upon the pin 15 as shown in dotted lines in the drawing, where the nozzle and paint inlet and the passages therefor will be immersed in the fluid so that there will be no possibility of the paint hardening in the gun. It will be noted that as the guns are supported at the paint inlet and as the distances from the inlet to the end of the gun vary little with the size or proportions of the remainder of the gun, the present device readily lends itself to guns of various sizes and shapes. When the gun is to be used again it is merely removed from the container, at which time it is ready for operation. Thus the usual cleaning after each interval of use is eliminated with a consequent saving in time. The container illustrated is designed for four guns and obviously, if desired, may be constructed for a greater or fewer number of guns, thereby providing a container suitable for any sized shop.

It will be noted from the above description that we have provided a container for housing spray guns when not in use in which the paint carrying portions of the gun or guns are immersed in a suitable solvent, the level of which is automatically maintained at the proper height, which may be of a size to house a plurality of guns and designed to reduce evaporation to a minimum.

Having thus described our invention, it is obvious that various immaterial modifications may be made in the same without departing from the spirit of our invention; hence we do not wish to be understood as limiting ourselves to the exact form, construction, arrangement and combination of parts herein shown and described, or uses mentioned.

What we claim as new and desire to secure by Letters Patent is:

1. In a container of the kind described comprising side and end walls, bottom and self-closing cover, a partition member positioned in said container to form a fluid receiving compartment, a fluid reservoir positioned in said container and having an inverted port spaced from the bottom thereof and communicating with said compartment, and means on said partition member for supporting a spray gun or the like with the nozzle thereof positioned in said compartment.

2. In a container of the kind described comprising side and end walls, bottom and cover, a partition member positioned in said container to form a fluid receiving compartment, a fluid reservoir positioned in said compartment and having an inverted port spaced from the bottom thereof, and a pin extending from said partition into said compartment, said pin of a size to enter the paint inlet of a spray gun to support said gun in said container.

3. In a container of the kind described, a fluid reservoir positioned in said container, said reservoir constructed to maintain a predetermined fluid level in said container, and means in said container for supporting a spray gun, comprising a pin extending from a wall of said container, of a size to enter the paint inlet of the gun.

4. In a container of the kind described comprising side and end walls, bottom and cover, a partition member positioned in said container to form a fluid receiving compartment, a removable fluid reservoir positioned in said compartment, said reservoir constructed to maintain a predetermined fluid level in said compartment, and means in said container for supporting a spray gun or the like in said compartment, said partition member having an overflow opening therein above said means.

DAVID P. ANSCHICKS.
CHARLES R. PECK.