

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2018266035 B2

(54) Title
Indoor unit of air conditioner

(51) International Patent Classification(s)
F24F 13/20 (2006.01) **F24F 13/15** (2006.01)

(21) Application No: **2018266035** (22) Date of Filing: **2018.04.13**

(87) WIPO No: **WO18/207554**

(30) Priority Data

(31) Number
2017-092343 (32) Date
2017.05.08 (33) Country
JP

(43) Publication Date: **2018.11.15**
(44) Accepted Journal Date: **2020.06.04**

(71) Applicant(s)
Mitsubishi Heavy Industries Thermal Systems, Ltd.

(72) Inventor(s)
Uno, Naomichi;Ito, Shingo

(74) Agent / Attorney
Phillips Ormonde Fitzpatrick, PO Box 323, Collins Street West, VIC, 8007, AU

(56) Related Art
KR 20030041926 A

(12) 特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関

国際事務局

(43) 国際公開日

2018年11月15日(15.11.2018)

(10) 国際公開番号

WO 2018/207554 A1

(51) 国際特許分類:

F24F 13/20 (2006.01) F24F 13/15 (2006.01)

(21) 国際出願番号 :

PCT/JP2018/015599

(22) 国際出願日 :

2018年4月13日(13.04.2018)

(25) 国際出願の言語 :

日本語

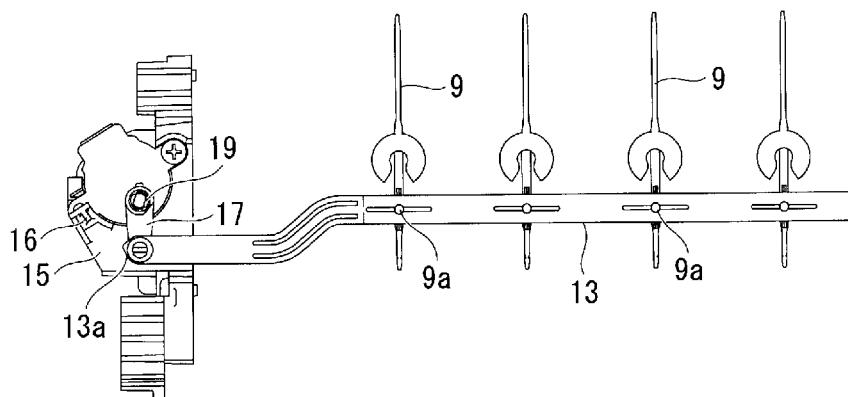
(26) 国際公開の言語 :

日本語

(30) 優先権データ :

特願 2017-092343 2017年5月8日(08.05.2017) JP

(71) 出願人: 三菱重工サーマルシステムズ株式会社 (MITSUBISHI HEAVY INDUSTRIES THERMAL SYSTEMS, LTD.) [JP/JP]; 〒1088215 東京都港区港南二丁目16番5号 Tokyo (JP).


(72) 発明者: 宇野 順道(UNO, Naomichi); 〒1088215 東京都港区港南二丁目16番5号 三菱重工サーマルシステムズ株式会社内 Tokyo (JP). 伊藤 模吾(ITO, Shingo); 〒1088215 東京都港区港南二丁目16番5号 三菱重工サーマルシステムズ株式会社内 Tokyo (JP).

(74) 代理人: 藤田 考晴 (FUJITA, Takaharu); 〒2208137 神奈川県横浜市西区みなとみらい2-2-1 横浜ランドマークタワー37F Kanagawa (JP).

(81) 指定国(表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, KE, KG, KH,

(54) Title: INDOOR UNIT OF AIR CONDITIONER

(54) 発明の名称: 空気調和装置の室内機

(57) **Abstract:** This indoor unit of an air conditioner is provided with: multiple louvers (9) which are arranged at a prescribed interval in the width direction of a blow port and which change the air flow direction; a connecting member (13) which extends in the width direction and to which the louvers (9) are rotatably attached; a ring member (17) which is rotatably attached to the connecting member (13); a motor which pivots the ring member (17); a motor bracket (15) which fixes the motor to the main body; and a stopper (16) which is provided on the motor bracket (15) and contacts the connecting member (13).

(57) **要約:** 吹出口の幅方向に所定間隔を有して並べられ、風向を変更する複数のルーバ (9) と、幅方向に延在するとともに各ルーバ (9) が回動自在に取り付けられた連結部材 (13) と、連結部材 (13) に対して回動自在に取り付けられたリンク部材 (17) と、リンク部材 (17) を揺動させるモータと、モータを本体に対して固定するモータブラケット (15) と、モータブラケット (15) に設けられ、連結部材 (15) に当接するストッパ (16) とを備えている。

KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) 指定国(表示のない限り、全ての種類の広域保護が可能) : ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), ヨーラシア (AM, AZ, BY, KG, KZ, RU, TJ, TM), ヨーロッパ (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

添付公開書類 :

- 国際調査報告（条約第21条(3)）
- 補正された請求の範囲（条約第19条(1)）

DESCRIPTION

Title of Invention

INDOOR UNIT OF AIR CONDITIONER

Technical Field

[0001]

The present invention relates to an indoor unit of an air conditioner including a louver that changes a wind direction.

Background Art

[0002]

A reference herein to a patent document or any other matter identified as prior art, is not to be taken as an admission that the document or other matter was known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims.

[0002a]

Louvers for changing a direction of air after air conditioning are provided in an indoor unit of an air conditioner. The plurality of louvers are arranged in a predetermined interval in a lateral direction in an outlet of the indoor unit (for example, PTL 1).

Citation List

Patent Literature

[0003]

[PTL 1] Japanese Unexamined Patent Application

Publication No. 11-118186

Summary of Invention

[0004]

A connecting member to which each louver is rotatably attached is used in order to rotate the plurality of louvers in synchronization. The connecting member has a rod shape, and a link member is attached to one end thereof. By a motor oscillating the link member, the connecting member reciprocates in a longitudinal direction, and each louver is rotated, thereby controlling a wind direction.

[0005]

However, the connecting member is made long in order to connect each louver, and thereby dimension management is difficult. In addition, when a reference position of the connecting member is not accurately determined, each louver cannot be lined up to face the front, and thus a problem of the indoor unit looking bad arises.

[0006]

In view of such circumstances, it is desirable to provide an indoor unit of an air conditioner that can accurately perform positioning of a plurality of louvers.

[0007]

According to one form of the invention, there is provided an indoor unit of an air conditioner comprising: a plurality of louvers which are arranged at a predetermined interval in one direction and change a wind direction; a connecting member which extends in the one direction, to which each of the louvers is rotatably attached, and which reciprocates in a longitudinal direction; a link member which is rotatably attached to the connecting member; a motor which oscillates the link member; a motor bracket which fixes the motor to a main body; and a stopper which is provided in the motor bracket, wherein, when an abutting surface of a tip of the connecting member comes into contact with an abutting surface of the stopper, a movement of the connecting member is regulated, and positioning of each of the louvers is performed.

[0008]

When the motor oscillates the link member, the connecting member to which the link member is attached moves. When the connecting member moves, each louver attached to the connecting member rotates, and a wind direction changes.

The stopper that abuts against the connecting member is provided in the motor bracket that fixes the motor to

the main body. The movement of the connecting member is regulated when the connecting member abuts against the stopper, and thereby positioning of each of the louvers is performed. Since a position is determined by the stopper provided in the motor bracket to which the motor is

attached as described above, the positioning of each of the louvers can be accurately performed compared to a case where the stopper is provided in a member different from the motor bracket to which the motor is attached, such as other members including a casing.

[0009]

In the indoor unit of an air conditioner according to the aspect of the present invention, the stopper abuts against the connecting member at a position where the stopper faces the connecting member.

[0010]

Since the stopper abuts against the connecting member at the position where the stopper faces the connecting member, a shift of the connecting member can be suppressed after the connecting member has abutted against the stopper. Accordingly, more accurate positioning of the louvers can be performed.

[0011]

In the indoor unit of an air conditioner according to the aspect of the present invention, a control section which controls the motor is further included. The control section sets a position where the connecting member has abutted against the stopper as a reference position.

[0012]

By the control section setting the position where

the stopper has abutted against the connecting member as the reference position, a reference position of each of the louvers is accurately determined. Accordingly, a rotation angle of each of the louvers can be controlled as a desired position.

Advantageous Effects of Invention

[0013]

Since a position is determined by the stopper provided in the motor bracket to which the motor is attached, the positioning of the plurality of louvers can be accurately performed.

[0013a]

Where any or all of the terms "comprise", "comprises", "comprised" or "comprising" are used in this specification (including the claims) they are to be interpreted as specifying the presence of the stated features, integers, steps or components, but not precluding the presence of one or more other features, integers, steps or components.

Brief Description of Drawings

[0014]

Fig. 1 is a perspective view illustrating an indoor unit of an air conditioner according to an embodiment of the present invention.

Fig. 2 is a perspective view illustrating an inside of the indoor unit of Fig. 1.

Fig. 3A is a plan view illustrating a state where a connecting member is separated away from a stopper.

Fig. 3B is a partially enlarged plan view of Fig. 3A.

Fig. 4A is a plan view illustrating a state where the connecting member has abutted against the stopper.

Fig. 4B is a partially enlarged plan view of Fig. 4A.

Description of Embodiments

[0015]

Hereinafter, an embodiment according to the present invention will be described with reference to the drawings.

Fig. 1 illustrates an appearance of an indoor unit 1 of an air conditioner. The indoor unit 1 is a wall-hanging type, sucks indoor air from above, and blows air after air conditioning indoors from an outlet below. The indoor unit 1 is connected to an outdoor unit (not illustrated), receives supply of a refrigerant compressed by the outdoor unit, and adjusts indoor air so as to have a predetermined temperature by means of an indoor heat exchanger provided inside the indoor unit 1.

[0016]

Fig. 2 illustrates an inside of the indoor unit 1. As illustrated in Fig. 2, an indoor heat exchanger 5 is attached to a base plate 3 that is fixed to an indoor wall surface. An outlet 7 provided in a width direction of the indoor unit 1 is formed below the indoor heat exchanger 5. A plurality of louvers 9 that are at predetermined intervals in the width direction (one direction) are provided in the outlet 7. Each of the louvers 9 is a resin plate. Each of the louvers 9 is rotatably attached to a bearing portion 11 provided on a main body side of the indoor unit 1. An attaching pin 9a (refer to Fig. 3A)

is provided in each of the louvers 9, and the attaching pin 9a is rotatably attached to a connecting member 13.

[0017]

The connecting member 13 is made of a resin, and has a rod shape extending in the width direction of the indoor unit 1. A left end, which is one end of the connecting member, is disposed to be positioned on a motor bracket 15 side.

[0018]

A motor bracket 15 is fixed to a main body of the indoor unit 1, and accommodates a motor for driving the louvers 9.

[0019]

Figs. 3A and 3B are enlarged views of surroundings of the connecting member 13 and the motor bracket 15. One end of a link member 17 is rotatably attached to the left end of the connecting member 13. The other end of the link member 17 is attached to a motor shaft 19. Therefore, when the motor shaft 19 is rotated by the motor, the link member 17 oscillates, and accordingly the connecting member 13 reciprocates in a substantially longitudinal direction. In response to the reciprocation of the connecting member 13, a rotation angle of each of the louvers 9 changes. A rotation angle of the motor shaft 19 is transmitted to a control section (not illustrated).

[0020]

A stopper 16 is fixed to the motor bracket 15. As illustrated in Figs. 4A and 4B, the stopper 16 regulates the movement of the connecting member 13 by abutting against a tip 13a of the connecting member 13.

As seen from Figs. 3B and 4B, an abutting surface 13b of the tip 13a of the connecting member 13 comes into surface-contact with an abutting surface 16a of the stopper 16. That is, the abutting surface 16a of the stopper 16 is set to face the abutting surface 13b of the connecting member 13.

[0021]

The control section sets a position where the tip 13a of the connecting member 13 has abutted against the stopper 16 as a reference position. Then, based on the reference position, the control section controls the rotation angle of the motor shaft 19 and controls a position of each of the louvers 9.

For example, the control section is configured with a central processing unit (CPU), a random access memory (RAM), a read only memory (ROM), a computer readable storage medium, and like. For example, a series of processes for realizing various types of functions are stored in a storage medium or the like in the form of a program, and the program is read by the CPU with the RAM

or the like to execute an information processing and computing process, thereby realizing the various types of functions. The program may be applied in a form of being installed in advance in the ROM or other storage media, a form of being provided in a state of being stored in the computer readable storage medium, a form of being distributed via communication means in a wired or wireless manner, and the like. The computer readable storage medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, and the like.

[0022]

Positioning of a reference position of each of the louvers 9 is performed as follows.

First, the motor is driven in accordance with a command from the control section to rotate the motor shaft 19, and thereby the link member 17 oscillates. In response to the oscillation of the link member 17, the tip 13a of the connecting member 13 moves to a stopper 16 side, and the abutting surface 13b of the connecting member 13 comes into surface-contact with the abutting surface 16a of the stopper 16. Accordingly, the movement of the connecting member 13 is regulated, and the control section sets this position as a reference position. With the reference position as reference, the control section rotates the motor shaft 19 and controls a wind direction

angle of each of the louvers 9.

[0023]

In the aforementioned indoor unit 1, the following operation effects can be achieved.

The stopper 16 that abuts against the connecting member 13 is provided in the motor bracket 15 that fixes the motor to the main body of the indoor unit 1. The movement of the connecting member 13 is regulated when the connecting member abuts against the stopper 16, and thereby positioning of each of the louvers 9 is performed. Since a position is determined by the stopper 16 provided in the motor bracket 15 to which the motor is attached as described above, the positioning of each of the louvers 9 can be accurately performed compared to a case where the stopper 16 is provided in a member different from the motor bracket 15 to which the motor is attached, such as other members including a casing.

[0024]

Since the stopper 16 abuts against and comes into surface-contact with the connecting member 13 at a position where the stopper faces the connecting member, strong frictional forces act. Thus, after the connecting member 13 has abutted against the stopper 16, a shift of the connecting member 13 can be suppressed. Accordingly, more accurate positioning of the louvers 9 can be

performed.

[0025]

By the control section setting the position where the stopper 16 has abutted against the connecting member 13 as a reference position, the reference position of each of the louvers 9 is accurately determined. Accordingly, the rotation angle of each of the louvers 9 can be controlled as a desired position.

Reference Signs List

[0026]

1: indoor unit
3: base plate
5: indoor heat exchanger
7: outlet
9: louver
11: bearing portion
13: connecting member
13a: tip
13b: abutting surface
15: motor bracket
16: stopper
16a: abutting surface
17: link member
19: motor shaft

The claims defining the invention are as follows:

1. An indoor unit of an air conditioner, comprising:
 - a plurality of louvers which are arranged at a predetermined interval in one direction and change a wind direction;
 - a connecting member which extends in the one direction, to which each of the louvers is rotatably attached, and which reciprocates in a longitudinal direction;
 - a link member which is rotatably attached to the connecting member;
 - a motor which oscillates the link member;
 - a motor bracket which fixes the motor to a main body; and
 - a stopper which is provided in the motor bracket, wherein, when an abutting surface of a tip of the connecting member comes into contact with an abutting surface of the stopper, a movement of the connecting member is regulated, and positioning of each of the louvers is performed.

2. The indoor unit of an air conditioner according to Claim 1,

wherein the stopper abuts against the connecting

member at a position where the stopper faces the connecting member.

3. The indoor unit of an air conditioner according to Claim 1 or 2, further comprising:

 a control section which controls the motor,
 wherein the control section sets a position where the connecting member has abutted against the stopper as a reference position.

4. The indoor unit of an air conditioner according to any one of Claims 1 to 3,

 wherein one end of the link member is rotatably attached to the connecting member,

 wherein the motor has a motor shaft to which the other end of the link member is attached, and oscillates the link member by rotating the motor shaft, and

 wherein the motor bracket accommodates the motor and fixes the motor to the main body.

1/3
FIG. 1

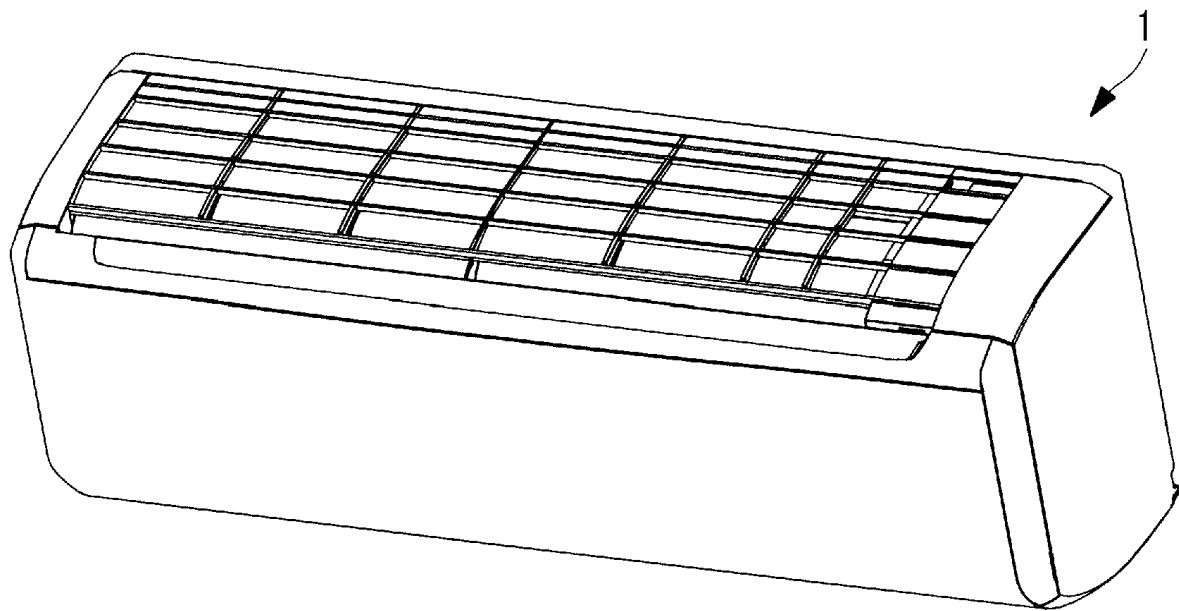


FIG. 2

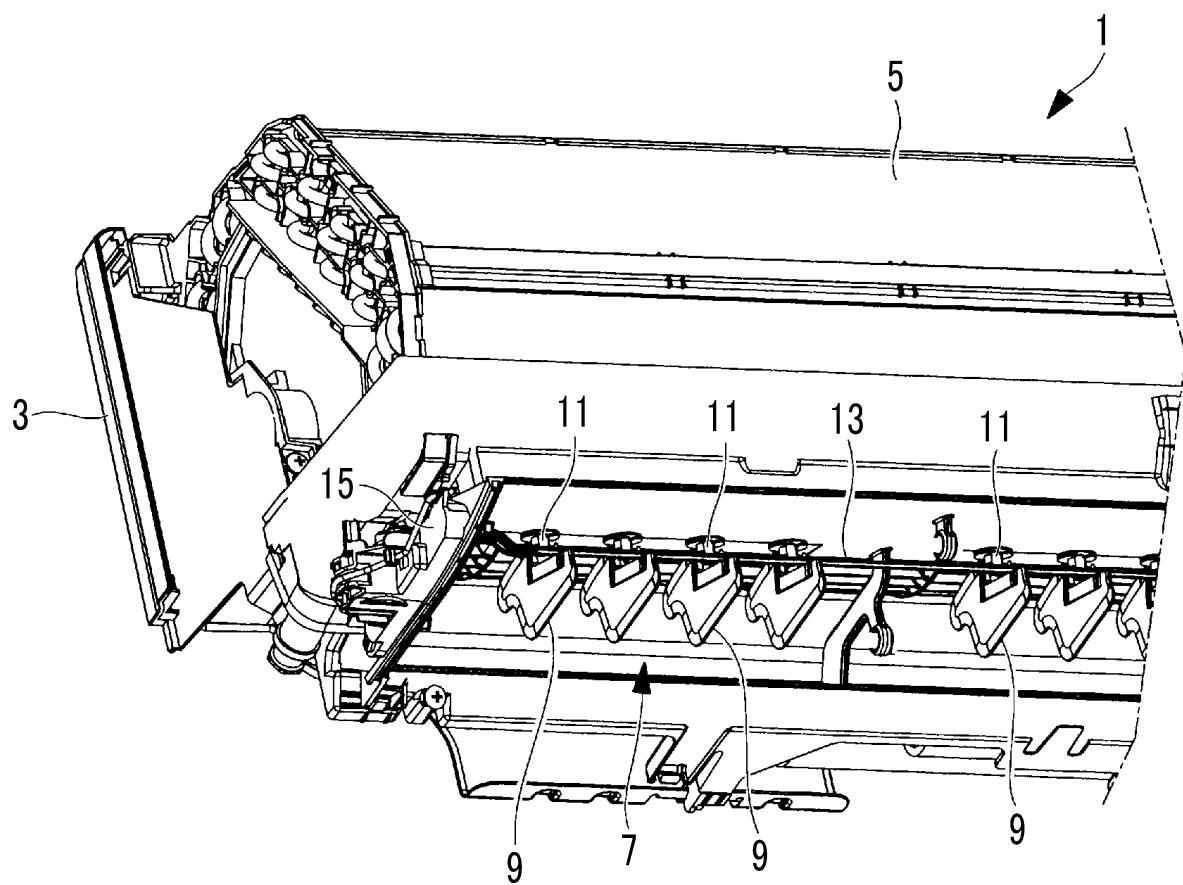


FIG. 3A

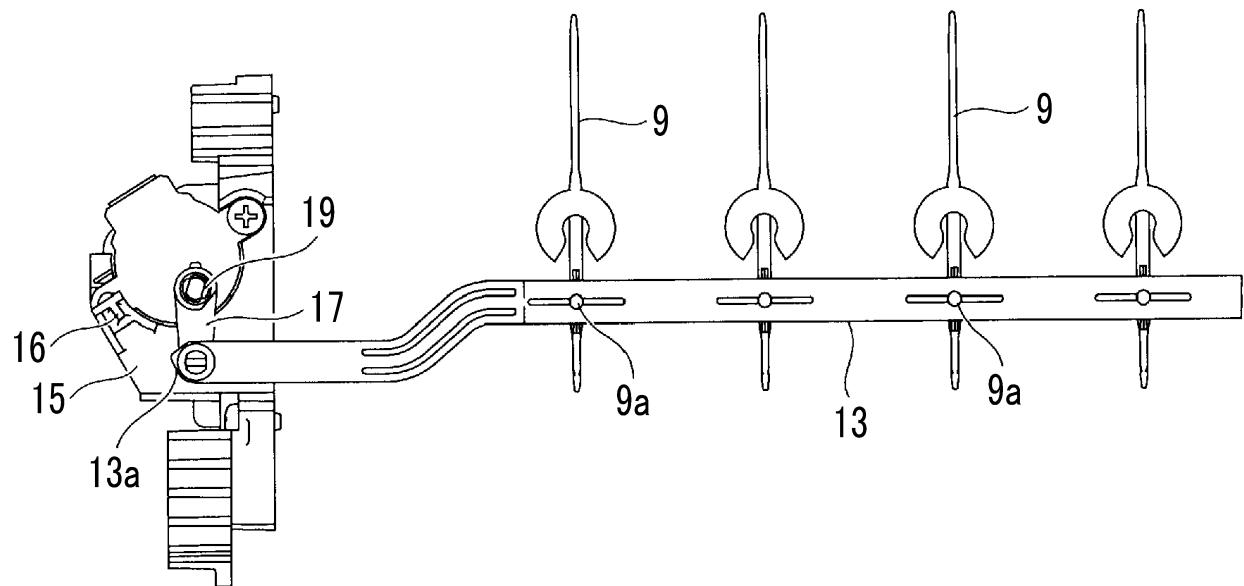


FIG. 3B

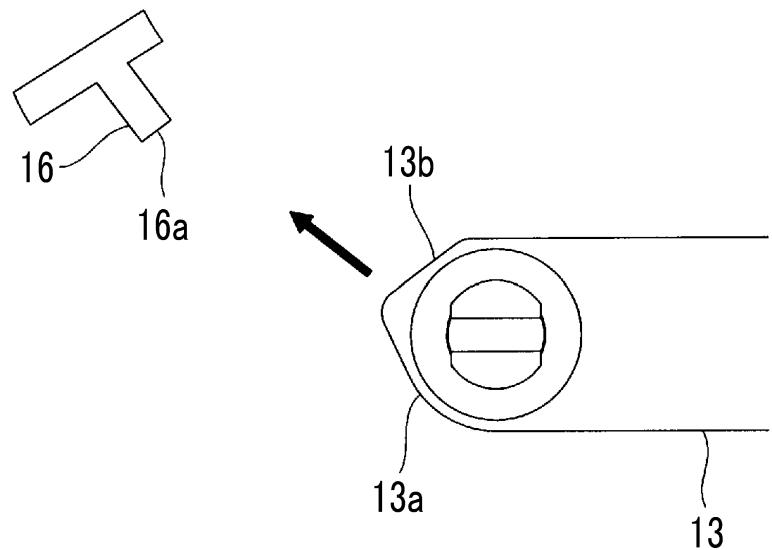


FIG. 4A

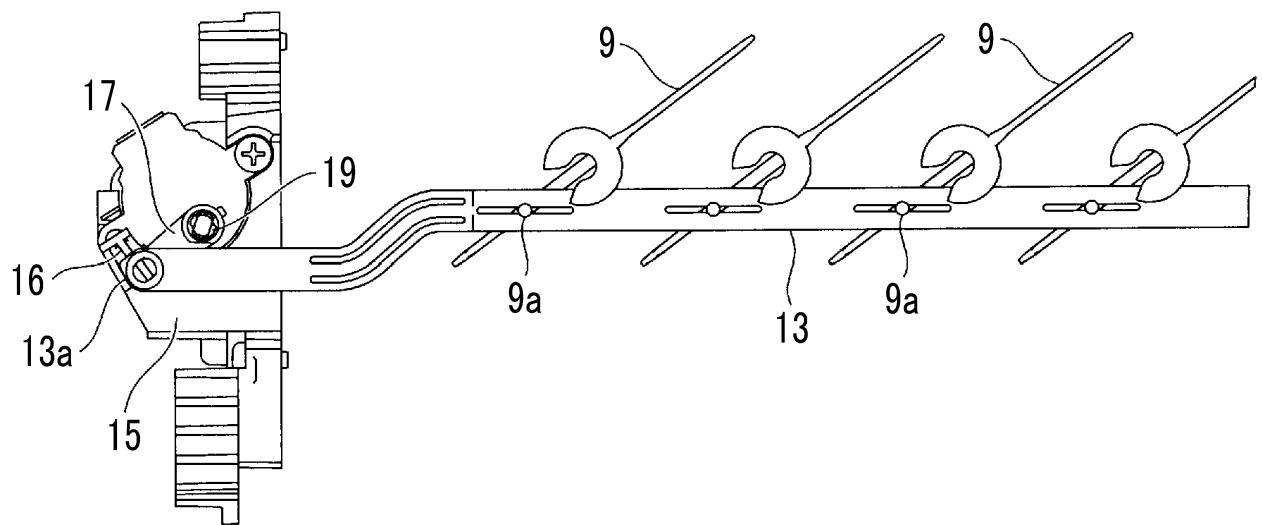
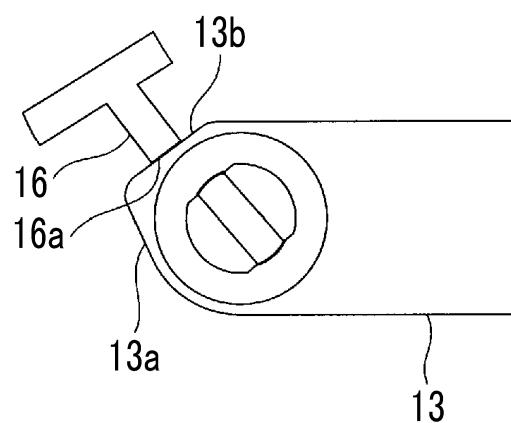



FIG. 4B

