发明名称

集中式电流消耗功率总量管制省电方法及系统

摘要

一种集中式电流消耗功率总量管制省电方法及系统，是将电源供给区分为交流回路与直流回路，所述交流回路提供高耗能的电视、电冰箱、洗衣机、冷气机等电器设备，直流回路则供应低耗能的灯具、风扇、笔记本电脑、平板电脑、移动电话、数字相机等电器设备；直流回路设置有多个大功率的电源供应器，将市电通过所述电源供应器转换为直流电，以一个电源供应器供应多个电器设备，供应所有低耗能的电器设备，且无需经由个别电器整流 / 变压器而直接连接所述电器设备提供电能。
1. 一种集中式直流电消耗功率总量管制省电方法，其特征在于，步骤包括：
 a. 将电源供给区分为交流回路与直流回路，交流回路提供高耗能的电视、电冰箱、洗衣机、冷气机电器设备，直流回路则供应低耗能的灯具、电扇、笔记本电脑、平板电脑、移动电话、数码相机电器设备；
 b. 所述直流回路是将市电通过一个大功率的电源供应器转换为直流电，以集中供应所有低耗能的电器设备；
 c. 根据所述电源供应器的功率调整，限制同时使用电器设备的总消耗功率达到省电的目的。

2. 根据权利要求1所述的集中式直流电消耗功率总量管制省电方法，其特征在于，所述直流回路同时并联多个电源供应器。

3. 根据权利要求1所述的集中式直流电消耗功率总量管制省电方法，其特征在于，所述直流回路根据所述电源供应器与电器设备之间的距离，调整输出电压或电流以符合电器设备运作与省电的需求。

4. 根据权利要求1所述的集中式直流电消耗功率总量管制省电方法，其特征在于，所述直流回路依需求调整所述电源供应器与电器设备之间的距离，减少传输时的功率损耗。

5. 根据权利要求1所述的集中式直流电消耗功率总量管制省电方法，其特征在于，所述电源供应器输出电压为10V～60V任一电压。

6. 根据权利要求1所述的集中式直流电消耗功率总量管制省电方法，其特征在于，所述电源供应器的电源输出端连接有风力、太阳能绿色能源设备。

7. 一种集中式直流电消耗功率总量管制省电系统，是将电源供给区分为交流回路与直流回路，其特征在于，
 所述直流回路配置有一个大功率的电源供应器，以集中供应所有低耗能的灯具、电扇、笔记本电脑、移动电话、数码相机电器设备，所述电源供应器输出常用电压，直接连接所述电器设备提供电能。

8. 根据权利要求7所述的集中式直流电消耗功率总量管制省电系统，其特征在于，所述直流回路同时并联多个电源供应器。

9. 根据权利要求7所述的集中式直流电消耗功率总量管制省电系统，其特征在于，所述电源供应器根据输出电压调整与电器设备之间的距离，减少传输时的功率损耗。

10. 根据权利要求7所述的集中式直流电消耗功率总量管制省电系统，其特征在于，所述电源供应器包括有整流/变频元件以及电源控制输出单元，所述整流/变频元件将市电转换为直流电，将直流电经由所述电源控制输出单元传输到所述电器设备并限定总输出功率。

11. 根据权利要求10所述的集中式直流电消耗功率总量管制省电系统，其特征在于，所述电源供应器的电源控制输出单元连接有风力、太阳能绿色能源设备。

12. 根据权利要求11所述的集中式直流电消耗功率总量管制省电系统，其特征在于，所述电源控制输出单元连接有电池，以在电源供应饱和时，将绿色能源设备产生的电力进行储存。

13. 根据权利要求7所述的集中式直流电消耗功率总量管制省电系统，其特征在于，所述电器设备设置有限电装置，以避免所述电源供应器输出过高功率而损坏所述电器设备。
14. 根据权利要求7所述的集中式直流电消耗功率总量管制省电系统，其特征在于，所述电源供应器为输出功率可调整的电源供应器。

15. 根据权利要求7所述的集中式直流电消耗功率总量管制省电系统，其特征在于，所述电器设备为LED灯具，并依照所述电源供应器的功率大小，调整使用LED灯具数量或是照明亮度，同时达成省电与调光需求。
集中式直流电消耗功率总量管制省电方法及系统

技术领域

本发明涉及节能领域，特别涉及一种集中式直流电消耗功率总量管制省电方法及系统。

背景技术

现有的供电照明、电器设备或者是3C产品（电脑产品、通信产品、和消费类电子产品），均提供个别专用电源供应器（内置整流/变压器），其功用是将110/220V的市电，转换为其适用的电压，并以直流电提供给所需的电器设备使用。这些习知电器设备，制造商因为制造成本考虑，大多提供符合所述电器设备最低要求功率的电源供应器，而不考虑其转换效率，只要会亮或能够使用就好。

因此，习知电器设备的电源供应器在交、直流电源转换过程中，会产生10～60%的转换损耗，这些损耗主要被转换成热能。以60瓦的电源供应器为例，假设其电源转换效率为60%，这意味着有24瓦的电力被转换成热能，在空间中发热，除了造成电能无谓的损耗外，也制造热能增加空调的负担，结果又要更多的空调系统才能将热能带走，因此能源被严重地重复浪费。

以惯用的照明设备供电控制系统而言，其对每一照明单元均需提供一专用电源供应器，除产生前述的耗能问题外，如果要对灯具进行亮度调整，必须在每一照明单元的电源供应器安装调光单元，才能达到单一照明单元调光的目的。如果要对一个以上的照明单元同时进行调光，还必须对每一照明单元搭配调光单元，逐一配置调光控制线路，才能达到群组调光的目的。且惯用调光方式是以消耗电力来减低照明单元亮度的方式，如此，照度虽减少，但是电力消耗总功率并未随之减少，所以无法达到节省用电的目的。

如图4A所示，其照明设备包括有三个灯具8，三个灯具8的功率分别为40W、50W、60W，因是采用交流电（AC）供电装置81，只要开启便会损耗所有电力，即40+50+60=150W。

如图4B所示，其照明设备改后述LED（发光二极管）灯具7，其具有整流/变压器71，可装置在LED灯具7中或另外设置，但与图4A的传统灯具8相同，只要三个LED灯具7同时开启就会损耗所有电力150W。

因此，所述惯用的照明设备供电技术总结有下列缺点：

1. 每一照明单元提供一专用电源供应器，电源供应器功率小，功率因素（PF, Power Factor）低，电源转换效率差，增加用电成本；

2. 每一照明单元提供一专用电源供应器，重复的电源转换消耗，增加使用成本；

3. 必须对每一个照明单元设置调光单元才能达到调光目的，重复的调光单元，增加购置成本；

4. 利用电阻消耗电力来减低照明单元亮度的方式，照度虽减少，但是电力消耗总功率并未随之减少，增加用电成本。

发明内容
发明的主要目的在于提供一种交流电消耗功率总量管理省电方法。其将市电供应区分为交流电回路与直流电回路两种，交流电回路提供高耗能的电器设备如电视、电冰箱、洗衣机、冷气机等，直流电回路则供应低耗电的电器设备如灯具、电脑、笔记本电脑、平板电脑、移动电话、数字相机等，并将直流电回路以功率因素（PF）为0.99以上的电源供应器供应直流电，将交直流电源转换的损耗降至1%以下，可以节省重复的电源供应器10～20%的用电。

本发明的目的还在于提供一种交流电消耗功率总量管理省电系统，将主要以集中式直流电供应器（内置整流/变压器）供应电器设备，通过供电总消耗功率调整达到省电目的。

本发明的另一目的在于提供一种集中式交流电消耗功率总量管理省电系统，其应用于LED灯具上，以总量管制减少电源供应总消耗功率的方法，达到同时对一个或多个LED灯具实现调控达到节省用电的目的。

本发明的另一目的在于提供一种集中式交流电消耗功率总量管理省电系统，是将交流电供给区分为交流回路与直流回路，所述交流回路提供高耗能的电视、电冰箱、洗衣机、冷气机等电器设备，直流回路则供应低耗电的灯具、电脑、笔记本电脑、平板电脑、移动电话、数字相机等电器设备，直流回路设置有多个或单个高功率的电源供应器，将市电通过所述电源供应器转换为直流电，供应所有低耗电的电器设备，且无需经过个别电器整流/变压器而直接连接所述电器设备供应电能。

本发明的优点如下：

1. 电源转换效率高：采取100W以上功率电源供应器，其电源转换效率高，不会有多余的损耗被转成热能，间接减少空调的使用。

2. 供应电压相对稳定：输入交流电电压范围宽，基本上可以支持全电压90V～264V，某些电源供应器还可支持到90V～305V，对某些地区电力供应不稳且高低落差比较大的场合，不会因为电压变化而影响电器设备，因为它会先吸收，同时也提供了一个稳定的直流电输出，让电器设备损坏率下降。

3. 提高电器设备寿命：电器设备本身不需安装整流/变压器因此减少发热，间接提高电器设备使用寿命。

4. 提高安全性：以直流电压24V供电为例，其在电流小于1.7安培时使用者不会有触电危险，可以透过电流功率量测找出隐患问题，减少因跳火、短路造成接点氧化的问题。

5. 与绿色能源直接并联：风电发电机与太阳能发电设备，不需经过直流转交流再转直流重复整流/变压器的转换效率损失，即可与电源供应器并联使用。

附图说明

图1为本发明集中式直流电消耗功率总量管理省电系统实施例的配置图；

图2为所述集中式直流电消耗功率总量管理省电系统实施例的工作流程图；

图3A～3D为所述集中式直流电消耗功率总量管理省电系统应用于LED灯具上的实施例示意图；及

图4A～4B为发光二极管的电源系统实施例示意图。
具体实施方式

[0039] 请参阅图1所示，为本发明所提供的一种集中式直流电消耗功率总量管控省电系统，是将市电系统1传输的电源经过变换配电盘11时，区分为交流回路2与直流回路3，所述交流回路2提供高耗能的电视41、电冰箱42、洗衣机43、冷气机44等电器设备4，所述直流回路3则通过一个大功率的电源供应器6，集中供应所有低耗能的LED灯具、电扇、笔记本电脑、平板电脑51、移动电话52、数字相机53等电器设备5。所述电源供应器6输出常用电压，无需经由整流/变压器而直接连接所述电器设备5提供电能。所述电源供应器6包括有整流/变压器单元61以及电源控制输出单元62，所述整流/变压器单元61将市电系统1的交流电转换为直流电，将直流电经由所述电源控制输出单元62传输到所述电器设备5并限定输出功率。

[0040] 交流电转直流电的所述电源供应器6负责将市电系统1传输的电源，经由所述整流/变压器单元61转换为直流电以供应所述电器设备5使用，其中预先定义交流电转直流电源供应器6额定功率为WMAX，其实际输出功率W根据额定功率WMAX由所述电源控制输出单元62进行调制，所述电源控制输出单元62以改变电压值或电流值供电方式，改变所述电源供应器6的实际输出功率W。

[0041] 按照需求所配置的一个或多多个电器设备5，且一个或多个电器设备5总消耗功率WLOAD可以小于或等于或大于所述电源供应器6额定功率WMAX，若一个或多个电器设备5总消耗功率WLOAD大于额定功率WMAX，则所述电源控制输出单元62仅供应额定功率电力，即最大供电功率总量，不因负载超过额定功率而停止供电。

[0042] 另所述电器设备5内建或另外设置有限电装置54，以避免所述电源供应器6输出过高功率而损坏所述电器设备5，所述限电装置54可以传递可调整的电阻值或电压值或任意电子讯号代表限功率值WLIMIT给电源控制输出单元62，所述电源控制输出单元62根据此讯号，以改变所述电源供应器6的电压值或电流值供电，改变实际输出功率W。

[0043] 所述电器设备5可依照节能或功率改变（如LED灯具调光需要）调整限电装置54，改变供电功率总量，限电装置54根据电器设备5设定传递限功率值WLIMIT给电源控制
输出单元 62；
[0044] 电源控制输出单元 62 依照限电装置 54 的限功率值 W LIMIT 控制讯号，以电流调变法
电压调变法或 PWM（脉冲宽度调制）调变法改变电源供应器 6 的电压值或电流值供电，
使实际输出功率 W 等于限功率值 W LIMIT。一个或多个电器设备 5 因实际功率 W 调整达到电
力消耗改变或功率改变的目的。
[0045] 如图 2 所示，所述集中式直流电消耗功率总量管制省电系统之实际方法如下：
[0046] 2-1 预先定义交流电转直流电的电源供应器 6 额定功率；
[0047] 2-2 根据电源供应器 6 最大功率设置一电源控制输出单元 62 用来限定总输出功
率，可以调整实际消耗功率；
[0048] 2-3 按照需求配置一个或多个电器设备 5 负载单元，且所述电器设备 5 总消耗功率
可以小于、等于或大于交流电转直流电源供应器 6 额定功率；
[0049] 2-4 若一个或多个电器设备 5 总消耗功率大于额定功率，则电源控制输出单元 62
仅供应额定功率电力；
[0050] 2-5 设置一限电装置 54，所述限电装置 54 可以供给电器设备 5 调整限电功率值，
并传递代表限电功率值讯号给电源控制输出单元 62；
[0051] 2-6 电器设备 5 依照节能或功率改变（如 LED 灯具调光需要）调整限电装置 54，
改变供电功率总量；
[0052] 2-7 限电装置 54 根据电器设备 5 设定传递限电功率值给电源控制输出单元 62；
[0053] 2-8 电源控制输出单元 62 依照限电装置 54 限功率值，改变实际消耗功率总量；
[0054] 2-9 电器设备 5 因实际消耗功率调整达到电力消耗减少或功率调整（LED 灯具调
光）的目的，然后完成工作。
[0055] 本发明主要用于低耗能直流电电器设备 5，如前述图 4B，其具有 LED 灯具 7，LED
灯具 7 是以直流电供电，因此，每个 LED 灯具 7 都需要一个电源供应器 6 将市电系统 1 的交流
电转换为直流电，供应 LED 灯具 7 发光所需电力。以一具实际消耗功率 8W 的 LED 灯具 7 为
例，在考虑电源转换损耗的前提下厂商会提供超过 8W 的电源供应器 6，以确保可以提供足
够的电力。以 40 个 8W 的 LED 灯具 7 计算实际消耗功率为 320W，厂商可能提供四十个 10W 的
电源供应器 6。此时，如图 3A～3D 所示，如果以一个 320W 的高效率可调消耗功率电源供应器
6 取代传统四十个 10W 电源供应器 6，除了可以减少电源转换的损耗以外，还可以进行消
耗功率总量管制措施，以调整电源供应器 6 总消耗功率来到省电的目的。
[0056] 假设实际照度只要 80% 就可以达到照明的需求，便可以调整电源供应器 6 供应
256W 功率电力，LED 灯具 7 于供电功率低于设计所需功率时，仅会亮度降低仍然可以被正常
驱动，LED 灯具 7 仅消耗 80% 电力便已达到省电 20% 的目的。另外因为驱动功率降低 20%，
还可以降低 LED 灯具 7 所产生的热能，可延长 LED 灯具 7 使用寿命。
[0057] 详细说明如图 3A，当我们提供与先前技术相同的 150W 电力，只是经由所述电源供应器
6 转换成直流电 (DC)，其同样配置三个 LED 灯具 7，分别消耗功率为 40W、50W、60W，若所述
三个 LED 灯具 7 同时开启，即会消耗所有电力 150W。
[0058] 请参阅图 3B 所示，当我们降低所述电源供应器 6 的功率为 100W，然后同样开启三
个 LED 灯具 7 时，三个 LED 灯具 7 共消耗 100W，但仍然能正常运作，只是亮度略减，达成对
LED 灯具 7 省电与调光需求。
请参阅图 3C 所示，同样地，当我们降低所述电源供应器 6 的功率为 50W，然后同样开启三个 LED 灯具 7 时，三个 LED 灯具 7 共消耗 50W，但仍然能正常运作，只是亮度稍减，达成对 LED 灯具 7 节电与调光需求。

请参阅图 3D 所示，如果使用可调整输出功率的电源供应器 6，便可依亮度需求自由调整输出功率，使所述 LED 灯具可以正常工作，当有调光需求时，再调整电源供应器 6 输出功率以达成调光功效。

另外，常见的直流电又分成 5V、12V、24V、36V 及 48V 等等多种电压。举例而言，太阳能即 24V，以目前的供电系统，当太阳能要使用时，需通过转换器将直流电转为交流电再传输给电器设备 5，然后所述电器设备 5 使用时则再转换为直流电，此转换过程会浪费许多不必要的能耗，采取本发明可直接供应直流电，减少不必要的损耗。此外，本发明在实际应用时，会因线材线径太小会产生压降，所以不适合长距离使用，压降公式 $V = I \times R$（I= 电流，R= 长度 / 线径）。换句话说，以线径 1mm 的电线，在 33m 距离内，压降小于 10%，大于 33m 需调整高输出电压。线径 2mm 的电线，在 120m 距离压降小于 10%，大于 120m 则需调整高输出电压即可，即根据所述电源供应器 6 与电器设备 5 之间的距离，调整输出电压，减少传输时的功率损耗。或，调整所述电源供应器 6 与电器设备 5 之间的距离，亦可减少传输时的功率损耗，以满足不同场域的应用。

又，考虑电源供应器 6 的可靠度问题，所述电源供应器 6 可使用多个并联提高可靠度，即使一个电源供应器 6 损坏仍可以供并联操作，不会影响使用。而在连接风力装置 91、太阳能装置 92 等绿色能源设备 9 时，因为所述绿色能源设备 9 产生直流电，故可直接连接所述电源供应器 6 的电源控制输出单元 62，以减少对市电的依赖，或在市电中断时仍可供应直流电。所述电源控制输出单元 62 连接有电池，以在电源供应饱合时，将绿色能源设备 9 产生的电力进行储存，以备不时之需。

上述详细说明乃针对本发明的一可行实施例进行具体说明，惟所述实施例并非用以限制本发明的专利范围，凡未脱离本发明技艺精神所为的等效实施或变更，均应包含于本案的专利范围内。
图 1
图 2

开始

2-1 定义交流电转直流电的电源供应器额定功率

2-2 根据电源供应器最大功率设置一电源控制输出单元用来限定输出功率，可以调整实际消耗功率

2-3 按照需求配置一个或多个设备并负载。设备的总消耗功率可以小于、等于或大于交流电转直流电电源供应器额定功率

2-4 若一个或多个设备的总消耗功率大于额定功率，则电源控制输出单元仅供应额定功率电力

2-5 设置一限电装置，该限电装置可以供给设备电流调整限电功率值，并传递代表限电功率值讯号给电源控制输出单元

2-6 电器设备依照节电或功率改变（如LED灯具调光需要）调整限电装置，改变供电功率总量

2-7 限电装置根据电器设备设定传递限功率值给电源控制输出单元

2-8 电源控制输出单元参照限电装置限功率值，改变实际消耗功率总量

2-9 电器设备因实际消耗功率调整达到电力消耗减少或功率调整（LED灯具调光）的目的，然后完成工作

结束
图 3A

图 3B
图 3C

图 3D