Title: CHEMICAL AND THERMAL DECOMPOSITION OF AMMONIUM SULPHATE INTO AMMONIA AND SULPHURIC ACID

Abstract: A method is described for manufacturing ammonia and sulphuric acid by decomposition of ammonium sulphate by a chemical and thermal handling process. The method concerns mixing of ammonium sulphate with concentrated sulphuric acid, where the mixture is heated to a temperature above 235 °C, whereby ammonium sulphate is melted, and thereafter by heating the mixture to above 280 °C but below the boiling point of concentrated sulphuric acid. It is hereby achieved to decompose ammonium sulphate into ammonia gas and sulphuric acid liquid simultaneously, where the produced sulphuric acid during the reaction time is mixed ideally with the concentrated sulphuric acid from the initial basis mixture.
Chemical and thermal decomposition of ammonium sulphate into ammonia and sulphuric acid

Description of invention

The present invention relates to a method for decomposition of ammonium sulphate ((NH₄)₂SO₄ into ammonia (NH₃) and sulphuric acid (H₂SO₄) by chemical and thermal treatment.

Ammonium sulphate falls out as a by-product from several different chemical processes. Ammonium sulphate was earlier used as a fertilizer component, but is later substituted by ammonium nitrate for this purpose. Ammonium sulphate is still to a certain extent used as a fertilizer component in some developing countries. However is ammonium sulphate in most processing cases considered to be an undesired by-product with limited marketing possibilities.

Ammonium sulphate is a water soluble crystalline product with a melting point at 235°C. At temperatures above 280°C ammonium sulphate decomposes into ammonia, sulphur trioxide and nitrogenous gases.

Within the different process combinations where ammonium sulphate is formed, are sulphuric acid and ammonia in most cases involved as input materials. Under these conditions there will be favorable both of environmental and economical reasons, to decompose ammonium sulphate into ammonia and sulphuric acid in order to recirculate the input materials of the process, or to obtain saleable products.

There are a some known methods concerning decomposition of ammonium sulphate described in the following documents:

2. DE 1151492
(3) DE 1160421

The above listed documents describes methodes where ammonium sulphate by thermal treatment and complete decomposition forms gases of NH₃, H₂O and SO₃/SO₂ at temperatures above 350°C. The german patent publications describes further a process involving coke, coal or charcoal as reduction materials under oxygen free conditions where it is achieved to obtain SO₂ based sulphuric acid in water solution and where ammonia is seperated out in a circuit with ammoniumhydrogen sulphate and potassium sulphate.

The present invention concerns a method for manufacturing of ammonia gas (NH₃) and sulphuric acid (H₂SO₄) characterized wherein ammonium sulphate ((NH₄)₂SO₄) is mixed with concentrated sulphuric acid, and by heating the mixture to a temperature above 235°C, whereby ammonium sulphate is melted, and thereafter by heating the mixture to above 280°C but below the boiling point of concentrated sulphuric acid (290°C-320°C), by which ammonium sulphate is decomposed into ammonia gas and sulphuric acid liquid simultaneously, and where the produced sulphuric acid during the reaction time is mixed ideally with the concentrated sulphuric acid from the initial basis mixture.

By this method it is achieved to decompose ammonium sulphate to a fully extent into ammonia gas and sulphuric acid liquid, where the ammonia gas during processing is evaporated and separated out from a rest solution consisting of sulphuric acid.

An example of manufacturing procedure is given as follows.

Example

The basis material consisting of 3-5 mmØ crystalline ammonium sulphate, is mixed with 95-97% concentrated sulphuric acid in a reactor at a weight ratio of ammonium sulphate/sulphuric acid = 1/2.
The reactor is heated up to approx. 250°C whereby ammonium sulphate melts out in a separate liquid phase above the concentrated sulphuric acid. The reactor is thereafter heated up to 285°C whereby ammonium sulphate is decomposed. During decomposition of ammonium sulphate, the ammonia gas formed is evacuated out at the top of the reactor and thereafter cooled down and stored in a separate tank. The rest product from the decomposition consisting of concentrated sulphuric acid mixes ideally with the initial sulphuric acid from the basis mixture. After completed reaction, corresponding to approx. 1 hour, the sulphuric acid in the reactor is transferred to a separate intermediate tank for dilution with a limited amount of water in order to regulate the acid concentration to about 95-97%. The produced amount of sulphuric acid from the ammonium sulphate decomposition is then transferred to a separate storage tank, while the remaining part of the sulphuric acid is cooled down to about 250°C and thereafter circulated back to the reactor in a repeating production cycle for decomposition of new ammonium sulphate rawmaterial.
Additional comments to known methods

The present invention differs from known methods by which ammonium sulphate in crystal form is melted in a liquid consisting of concentrated sulphuric acid (95-97%) at a temperature of approx. 250°C, i.e. above the melting point of ammonium sulphate corresponding to 235°C. The melted ammonium sulphate is then floating as a separate layer upon the underlying concentrated sulphuric acid. By raising the temperature to 285°C, i.e. above the temperature of ammonium sulphate decomposition corresponding to 280°C, but below the boiling point of concentrated sulphuric acid corresponding to 290°C-320°C, it is then achieved to evaporate ammonia gas (NH3) separately while the rest part of the ammonium sulphate consisting of 100% concentrated sulphuric acid (H2SO4) is mixed ideally with the concentrated sulphuric acid from the initial basis mixture. It is hereby achieved to decompose ammonium sulphate directly to ammonia gas and sulphuric acid liquid.

This method is of substantial difference from other known methods where ammonium sulphate first is decomposed to gases consisting of NH3, H2O, SO3 and subsequent SO2, at temperatures above 350°C, and where the mixture of gases by a sequence of following processes are converted to ammonia and sulphuric acid.
Claims

We claim:

1. A method for manufacturing of ammonia gas (NH₃) and sulphuric acid (H₂SO₄) characterized wherein ammonium sulphate (NH₄)₂SO₄ is mixed with concentrated sulphuric acid, and by heating the mixture to a temperature above 235°C, whereby ammonium sulphate is melted, and thereafter by heating the mixture to above 280°C but below the boiling point of concentrated sulphuric acid, by which ammonium sulphate is decomposed into ammonia gas and sulphuric acid liquid simultaneously, and where the produced sulphuric acid during the reaction time is mixed ideally with the concentrated sulphuric acid from the initial basis mixture.

2. The method of claim 1, characterized wherein the weight ratio ammonium-sulphate/sulphuric-acid is between approx. 2.0 – 0.1 and where the melting temperature of ammoniumsulphate is kept between approx. 240°C - 270°C and where the decomposition temperature is kept at approx. 285°C.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC7: C01C 1/02, C01B 17/90 // C01C 1/242

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC7: C01C, C01B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

SE, DK, FI, NO classes as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

WPI DATA, EPO INTERNAL, PAJ, CAPLUS, BIOSIS

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DE 1151492 B (DEUTSCHE GOLDS- UND SILBER-SCHEIDEanstalt VORMALS ROESSLER), 18 July 1963 (18.07.63)</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>DE 1160421 B (CHEMIEBAU DR. A. ZIEREN G.M.B.H.), 2 January 1964 (02.01.64)</td>
<td>1-2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents

 A document defining the general state of the art which is not considered to be of particular relevance

 E earlier application or patent but published on or after the international filing date

 L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

 O document referring to an oral disclosure, use, exhibition or other means

 P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the international search: 19 December 2002

Date of mailing of the international search report: 19-12-2002

Name and mailing address of the ISA/Swedish Patent Office:

Box 5055, S-102 42 STOCKHOLM

Facsimile No. +46 8 666 02 86

Authorized officer:

Jens Waltin/Els

Telephone No. +46 8 782 25 00

Form PCT/ISA/210 (second sheet) (July 1998)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 1151492 B</td>
<td>18/07/63</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 1160421 B</td>
<td>02/01/64</td>
<td>BE 621900 A</td>
<td>00/00/00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 1332888 A</td>
<td>19/07/63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1004524 A</td>
<td>15/09/65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 132894 C</td>
<td>00/00/00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 282684 A</td>
<td>00/00/00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 3275407 A</td>
<td>27/09/66</td>
</tr>
</tbody>
</table>