

United States Patent

[15] 3,648,940

Meredith

[45] Mar. 14, 1972

[54] **METHOD AND APPARATUS FOR FILAMENT WINDING**

[72] Inventor: **Diven Meredith, 87-135 Avenue 56, Thermal, Calif. 92274**

[22] Filed: Feb. 4, 1970

[21] Appl. No.: 8,488

[52] U.S. Cl. 242/54 R, 242/35.5 R, 242/47,
242/129.8, 242/156.1, 242/170

[51] Int. Cl. B65h 75/00, B65h 49/04

[58] **Field of Search**.....B65h/59/04; 242/35.5, 54, 47,
242/128, 147, 153, 154, 156.1, 129.5, 129.8, 130,
130.1, 131, 132, 141, 146, 151, 1, 170, 171; 28/21,
725 P, 76 R

[56] References Cited

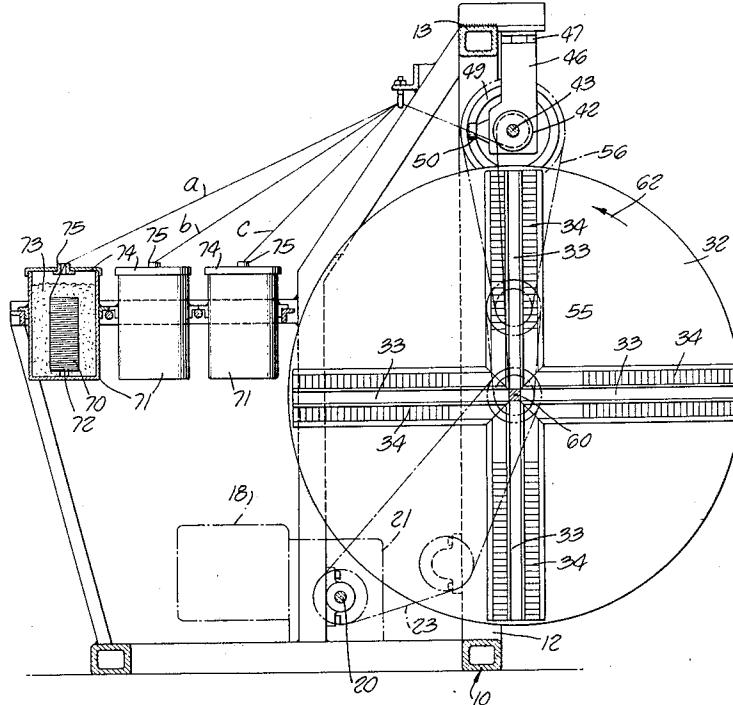
UNITED STATES PATENTS

2,041,989	5/1936	Borzykowski.....	242/130
2,253,238	8/1941	Jackson	242/130
2,761,632	9/1956	Clarkson.....	242/130
3,159,902	12/1964	Mertens	28/76 R

FOREIGN PATENTS OR APPLICATIONS

977,062	11/1950	France.....	242/130
1,227,197	2/1960	France.....	242/147

Primary Examiner—Stanley N. Gilreath


Attorney—Lyon and Lyon

[57]

ABSTRACT

This invention concerns a method and apparatus for simultaneously winding a plurality of filaments to form a mass transfer unit. A series of filaments axially spaced along a central core member are wound upon it as it is turned about a longitudinal axis to initially secure the spaced filaments thereto. Separator blocks are then placed in position one at a time while turning the core member to clamp the filaments between the separator blocks and the core member. The core member and separator blocks continue turning while additional separator blocks are added one at a time to form a plurality of radial stacks of separator blocks so that the filaments are clamped between adjacent separator blocks in each stack. Simultaneously the filaments are fed axially so that they are wound helically on the separator blocks. One aspect of the method is to insure proper action in withdrawing each filament from its supply coil without backlash or tangling; each coil is secured in a generally upright stationary position within a container, which is then filled with discrete rounded particles to a depth to surround and submerge the supply coil, and the filament is then pulled upward off the upper end of the supply coil. Apparatus particularly adapted for carrying out this method includes a pair of axially spaced supports mounted to turn on a common axis with radial guide channels on each support for receiving and supporting one end of each of the separator blocks to form plurality of radial stacks.

5 Claims, 6 Drawing Figures

PATENTED MAR 14 1972

3,648,940

SHEET 1 OF 2

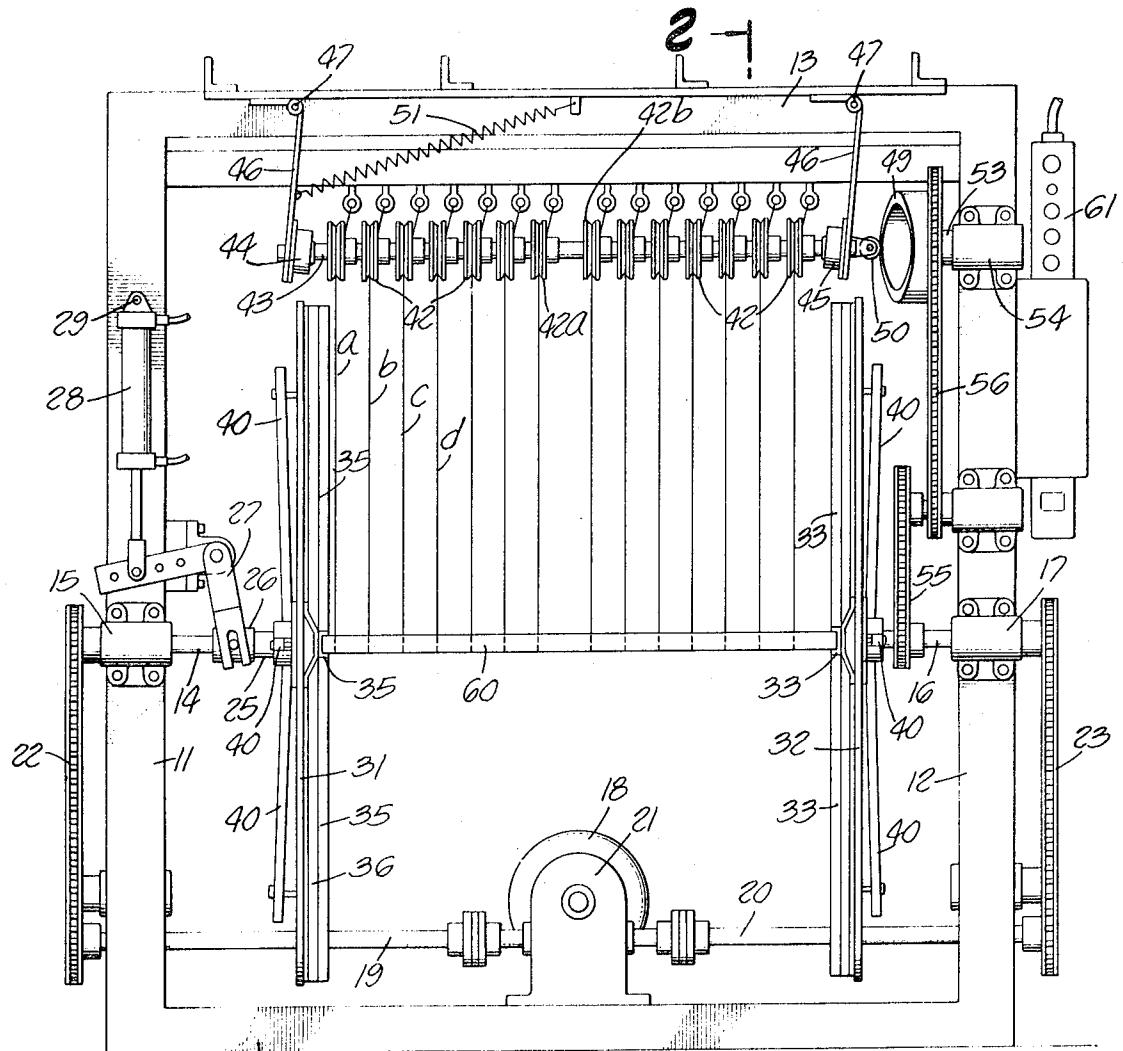
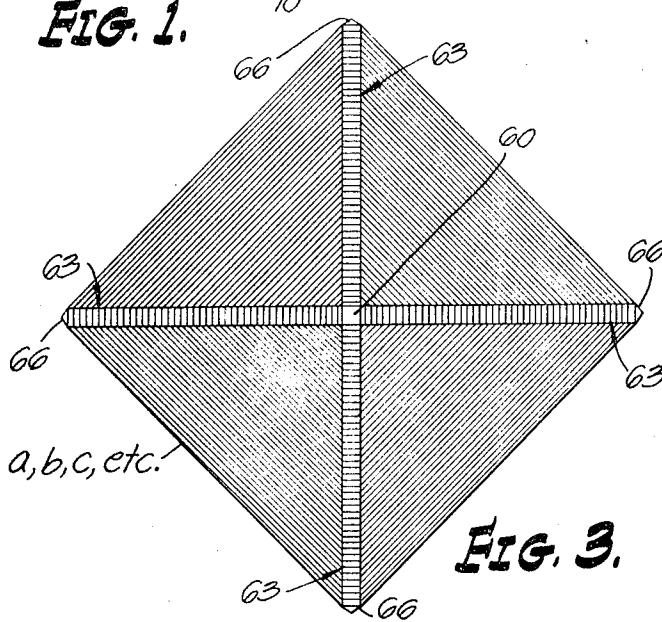
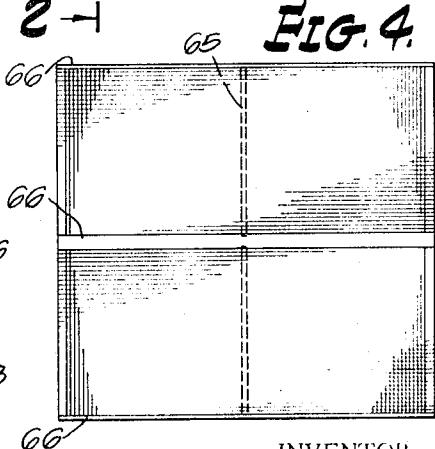




FIG. 1.

2 →

INVENTOR
DIVEN MEREDITH

BY

Lyons & Lyons
ATTORNEYS

PATENTED MAR 14 1972

3,648,940

SHEET 2 OF 2

FIG. 2.

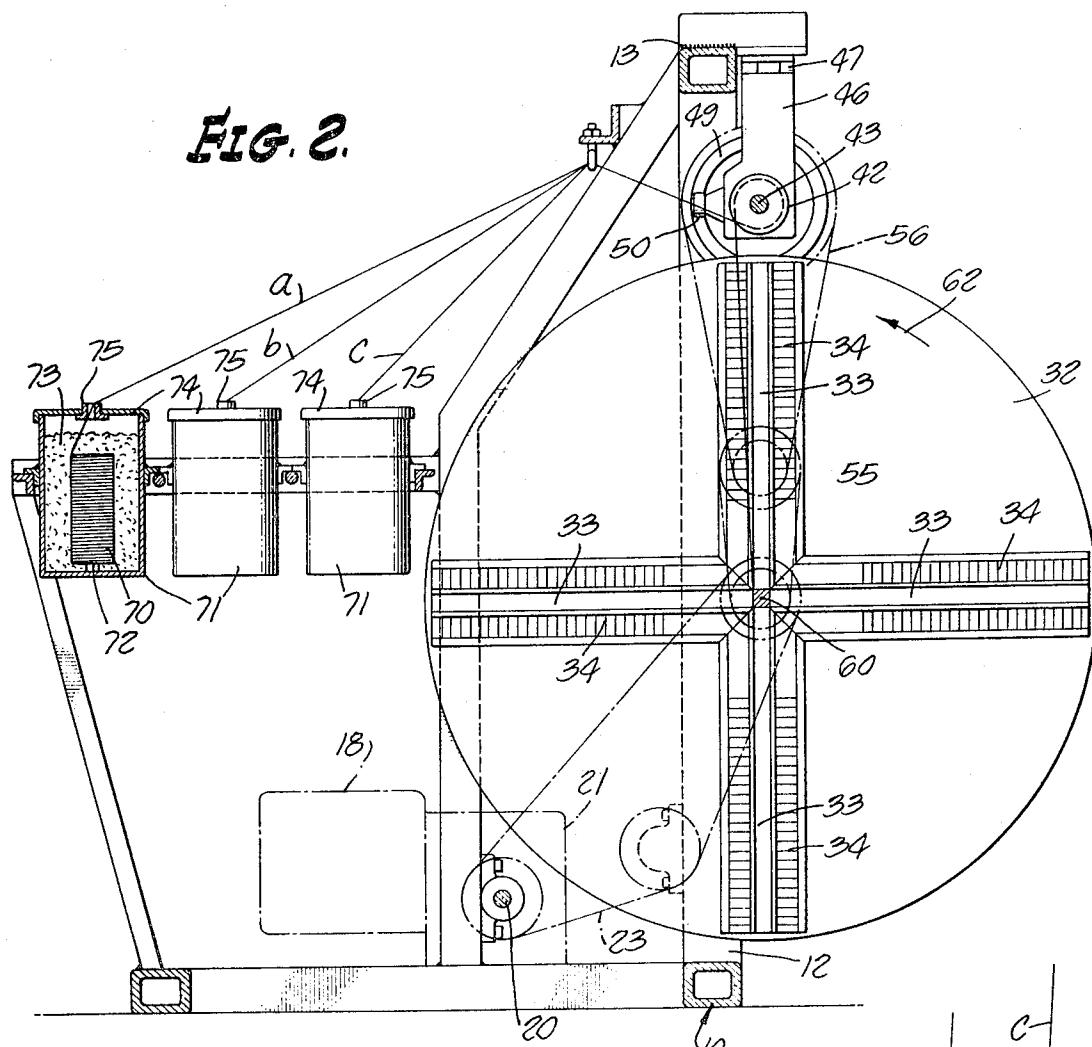


FIG. 5.

INVENTOR
DIVEN MEREDITH

BY

you & you
ATTORNEYS

filaments *a, b, c, d*, etc., are in the position shown in FIG. 1 of the drawings.

While the central core member 60 is turning in the direction of the arrow 62, one of the separator blocks 37 is placed in the guide channels 33 and 35 which are nearest the front of the machine, and the separator block 37 is moved toward the rotary axis until separator block contacts the core member 60, clamping the filaments between the separator block and the core member 60. This operation of inserting the separator block occurs while the guide channels 33 and 35 are moving toward vertical position. This operation may be performed by automatic feed equipment, not shown, or manually by the operator. As the separator block 37 turns with the core member 60, the separator block 37 is contacted by each of the filaments *a, b, c, d*, etc., and is thus held in position against the core member 60. It is prevented from dropping downward by gravity along the guide channels 33 and 35 as it moves under the central core member 60 as the rotation continues. Each time a pair of guide channels 33 and 35 approach vertical position above the core member 60, the operator manually inserts another separator block 37, and the filaments wrap around it and hold it against movement radially outward. The diagram of FIG. 6 shows the position of the core member 60 after the first two separator blocks 37 have been installed.

The turning motion of the flanges 31 and 32 and of the central core member 60 and separator blocks 37 continues, with the operator manually adding four separator blocks 37, one at a time, for each revolution of the flanges. Four stacks 63 of separator blocks 37 are thus built up radially from the central core member 60 along the guide channels 33 and 35. The filaments are clamped between adjacent separator blocks 37 and extend free and unsupported between the radiating stacks 63. During the rotary motion of the flanges, the pulley shaft 43 is caused to reciprocate axially by the rotary cam 49 and follower 50, and the extent of lateral movement is slightly less than the axial spacing of the guide pulleys 42 on the pulley shaft 43. The rotary cam 49 turns at a slower rate than the stub shafts 14 and 16, so that a number of revolutions of the flanges are required before the pulley shaft 43 has moved forward and back through its complete cycle of motion.

When the mass transfer packing unit (as shown in FIG. 3) has been built up to the desired size, in accordance with the above-described method, the rotation is stopped and the operator uses a jig, not shown, to drill four radial holes through the center of each stack 63 of wooden separator blocks 37. The holes are drilled deep enough to enter the central core member 60. A dowel pin 65 is then installed in each of the holes to prevent any lateral shifting of the separator blocks 37. End caps 66 are then installed and secured at the outer end of each of the stacks 63, and the filament strands are cut, to complete the assembly. The assembly may then be withdrawn from the machine by operating the power cylinder assembly 28 to cause the bellcrank 27 to retract the flange 31.

Although four stacks 63 of separator blocks have been shown and described in connection with the process and apparatus, it will be understood that a greater or lesser number of stacks may be used.

Since the required feed rate of filament strands varies widely during uniform rotation of the device being constructed, considerable difficulty may be encountered in preventing backlash and tangling of the filaments as they are being

withdrawn from their respective helically wound supply coils. It has been found that this objectionable backlash and tangling may be entirely eliminated by placing each supply coil 70 in an upright position within the container 71, and fixing the lower end 72 of the supply coil so that it remains upright within the container and does not turn. The container is then filled to a level to surround and submerge the entire supply coil 70 with discrete solid rounded particles 73. For crimped polypropylene filaments of approximately 0.010 inch nominal per cross section, it has been found that the rounded kernels of the cornlike agricultural product maize, often used as cattle feed, operate satisfactorily. The "hydraulic" head of the kernels provide an inward-directed force preventing looseness and backlash of the filament as it is being withdrawn from the supply coil. Lightweight ballbearings would work equally well. Polished rice grains have been found unsatisfactory because they are oblong rather than rounded and tend to pack together. Sand grains are too angular and also pack together to give unsatisfactory results. The depth of the discrete solid rounded particles, as well as the density thereof, controls the degree of tension required in the filament to cause unwrapping movement from the supply coil.

Each of the containers 71 is provided with a removable cover 74 having a central aperture 75 directly above the centerline of the supply coil 70 and through which the filament from the coil passes. The filament tension is maintained at the desired level and objectionable backlash and tangling are eliminated, even though the rate of feed of filaments from the supply coil is irregular.

Having fully described my invention it is to be understood that I am not to be limited to the details herein set forth but that my invention is of the full scope of the appended claims.

I claim:

1. The method of withdrawing a filament from a helically wound supply coil comprising: mounting the supply coil in a generally upright position below the level of a blanket of discrete smooth rounded particles surrounding the supply coil, to produce inward forces on the coil throughout its length preventing looseness of the coiled filament, and pulling the filament off one end of the supply coil.
2. The method set forth in claim 1 in which the particles comprise a natural agricultural seed product.
3. The method set forth in claim 1 in which the particles comprise milo maize.
4. The method of withdrawing a filament from a helically wound supply coil comprising: mounting the supply coil in a generally upright stationary position within a container, filling the container with discrete smooth rounded particles to a depth to completely surround the supply coil, to produce inward forces on the coil throughout its length preventing looseness of the coiled filament, and pulling the filament upward off the upper end of the supply coil.
5. The method of withdrawing a filament from a helically wound supply coil comprising: mounting the supply coil in a stationary position below the level of a blanket of discrete smooth rounded particles surrounding and submerging the supply coil, to produce inward forces on the coil throughout its length preventing looseness of the filament on the coil and pulling the filament through the blanket off one end of the supply coil.

* * * * *