
THULLULLITTUR US009772860B2

(12) United States Patent
Oney et al .

(10) Patent No . : US 9 , 772 , 860 B2
(45) Date of Patent : * Sep . 26 , 2017

(54) EFFICIENT POWER MANAGEMENT OF A
SYSTEM WITH VIRTUAL MACHINES

(52)

(71) Applicant : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

U . S . CI .
CPC G06F 9 / 442 (2013 . 01) ; G06F 1 / 28

(2013 . 01) ; G06F 1 / 30 (2013 . 01) ; G06F 1 / 329
(2013 . 01) ;

(Continued)
Field of Classification Search
??? G06F 17 / 00 ; G06F 17 / 30144 ; G06F

17 / 3015 ; G06F 9 / 455 ; G06F 9 / 50
(Continued)

(58) (72) Inventors : Adrian J . Oney , Woodinville , WA
(US) ; Bryan Mark Willman , Kirkland ,
WA (US) ; Eric P . Traut , Bellevue , WA
(US) ; Forrest Curtis Foltz ,
Woodinvile , WA (US) ; Matthew D .
Hendel , Seattle , WA (US) ; Rene
Antonio Vega , Kirkland , WA (US)

(56) References Cited
U . S . PATENT DOCUMENTS

(73) Assignee : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

5 , 179 , 680 A
5 , 317 , 705 A

1 / 1993 Colwell et al .
5 / 1994 Gannon et al .

(Continued)
(*) Notice : FOREIGN PATENT DOCUMENTS

Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 0 days .
This patent is subject to a terminal dis
claimer .

GB
WO

2376761 A
W O 03 / 090070 A2

12 / 2002
10 / 2003

OTHER PUBLICATIONS
(21) Appl . No . : 15 / 258 , 411
(22) Filed : Sep . 7 , 2016
(65) Prior Publication Data

US 2016 / 0378506 A1 Dec . 29 , 2016
(57) AD

Related U . S . Application Data
(63) Continuation of application No . 14 / 970 , 453 , filed on

Dec . 15 , 2015 , now Pat . No . 9 , 489 , 035 , which is a
(Continued)

U . S . Appl . No . 10 / 882 , 979 , filed Jun . 6 , 2004 , Vega , et al .
(Continued)

Primary Examiner — Michael J Brown
(74) Attorney , Agent , or Firm — Baker & Hostetler LLP

ABSTRACT
Efficient power management of a system with virtual
machines is disclosed . In particular , such efficient power
management may enable coordination of system - wide
power changes with virtual machines . Additionally , such
efficient power management may enable coherent power
changes in a system with a virtual machine monitor . Fur
thermore , such efficient power management may enable
dynamic control and communication of power state changes .

20 Claims , 12 Drawing Sheets

(51) Int . Ci .
G06F 1 / 28
G06F 1 / 30

(2006 . 01)
(2006 . 01)

(Continued)

Receive Notification of Impending Power Change from Root OS
900

Perform Action (s) Responsive to the Notification
902

Change System ' s Power Level
904

1001

Recelve Notification of Completed Power Change from Root OS
908

Perfom Action (s) Responsive to the Completion Notification
908

US 9 , 772 , 860 B2
Page 2

Related U . S . Application Data
continuation of application No . 14 / 563 , 986 , filed on
Dec . 8 , 2014 , now Pat . No . 9 , 218 , 047 , which is a
continuation of application No . 11 / 437 , 109 , filed on
May 18 , 2006 , now Pat . No . 8 , 909 , 946 , which is a
continuation - in - part of application No . 11 / 274 , 907 ,
filed on Nov . 15 , 2005 , now Pat . No . 7 , 434 , 003 .

NNNNNN
(51) Int . CI .

G06F 9 / 44 (2006 . 01)
G06F 21 / 53 (2013 . 01)
GO6F 21 / 57 (2013 . 01)
G06F 21 / 62 (2013 . 01)
G06F 1 / 32 (2006 . 01)
G06F 17 / 30 (2006 . 01)
G06F 17 / 00 (2006 . 01)
G06F 9 / 455 (2006 . 01)
G06F 9 / 50 (2006 . 01)

(52) U . S . CI .
CPC GO6F 1 / 3246 (2013 . 01) ; G06F 1 / 3268

(2013 . 01) ; G06F 1 / 3287 (2013 . 01) ; G06F
9 / 45545 (2013 . 01) ; G06F 9 / 45554 (2013 . 01) ;

G06F 9 / 45558 (2013 . 01) ; G06F 21 / 53
(2013 . 01) ; G06F 21 / 575 (2013 . 01) ; G06F
21 / 6245 (2013 . 01) ; G06F 9 / 455 (2013 . 01) ;

G06F 9 / 50 (2013 . 01) ; G06F 17 / 00 (2013 . 01) ;
G06F 17 / 3015 (2013 . 01) ; G06F 17 / 30144

(2013 . 01) ; G06F 2009 / 45562 (2013 . 01) ; G06F
2009 / 45579 (2013 . 01) ; G06F 2009 / 45583

(2013 . 01)
(58) Field of Classification Search

USPC . 713 / 300 , 323 , 324 ; 714 / 14
See application file for complete search history .

7 , 254 , 733 B2 8 / 2007 Nichols et al .
7 , 299 , 337 B2 11 / 2007 Traut et al .
7 , 330 , 942 B2 2 / 2008 Dinechin et al .
7 , 334 , 142 B2 2 / 2008 Hack
7 , 356 , 665 B2 4 / 2008 Rawson , III
7 , 363 , 463 B2 4 / 2008 Sheu et al .
7 , 395 , 405 B2 7 / 2008 Anderson et al .
7 , 434 , 003 B2 10 / 2008 Oney et al .
7 , 512 , 769 B13 / 2009 Lowell et al .
7 , 519 , 838 B1 4 / 2009 Suurballe
7 , 529 , 906 B2 5 / 2009 Sheets
7 , 552 , 426 B2 6 / 2009 Traut
8 , 909 , 946 B2 12 / 2014 Oney et al .
9 , 218 , 047 B2 12 / 2015 Oney et al .
9 , 489 , 035 B2 * 11 / 2016 Oney GO6F 21 / 53

2002 / 0083110 A 6 / 2002 Kozuch et al .
2003 / 0037089 A1 2 / 2003 Cota - Robles et al .
2003 / 0172305 Al 9 / 2003 Miwa
2004 / 0128670 A1 7 / 2004 Robinson et al .
2004 / 0199599 Al 10 / 2004 Nichols et al .
2005 / 0044301 Al 2 / 2005 Vasilevsky et al .
2005 / 0080934 A1 4 / 2005 Cota - Robles et al .
2006 / 0005190 A1 1 / 2006 Vega et al .
2006 / 0112212 Al 5 / 2006 Hildner
2007 / 0006227 A1 1 / 2007 Kinney et al .
2007 / 0011444 Al 1 / 2007 Grobman et al .
2008 / 0134174 Al 6 / 2008 Sheu et al .
2008 / 0215848 A19 / 2008 Sheu et al .

OTHER PUBLICATIONS

(56) References Cited
U . S . PATENT DOCUMENTS

5 , 586 , 283 A 12 / 1996 Lopez - Aguado et al .
5 , 617 , 553 A 4 / 1997 Minagawa et al .
5 , 699 , 543 A 12 / 1997 Saxena
5 , 787 , 494 A 7 / 1998 DeLano et al .
6 , 038 , 639 A 3 / 2000 O ' Brien et al .
6 , 075 , 938 A 6 / 2000 Bugnion et al .
6 , 182 , 195 B1 . 1 / 2001 Laudon et al .
6 , 308 , 231 B1 10 / 2001 Galecki et al .
6 , 442 , 666 B1 8 / 2002 Stracovsky
6 , 453 , 387 B1 9 / 2002 Lozano
6 , 496 , 847 B1 12 / 2002 Bugnion et al .
6 , 681 , 311 B2 1 / 2004 Gaskins et al .
6 , 721 , 839 B1 4 / 2004 Bauman et al .
6 , 785 , 886 B1 8 / 2004 Lim et al .
6 , 907 , 600 B2 6 / 2005 Neiger et al .
6 , 925 , 547 B2 8 / 2005 Scott et al .
6 , 993 , 453 B2 1 / 2006 Krissell
7 , 069 , 389 B2 6 / 2006 Cohen
7 , 069 , 413 B1 6 / 2006 Agesen et al .
7 , 111 , 145 B1 9 / 2006 Chen et al .
7 , 111 , 146 B1 9 / 2006 Anvin
7 , 149 , 832 B2 12 / 2006 Wieland et al .
7 , 167 , 970 B2 1 / 2007 Jacobson et al .
7 , 188 , 229 B2 3 / 2007 Lowe
7 , 209 , 994 B1 4 / 2007 Klaiber et al .
7 , 222 , 221 B1 5 / 2007 Agesen et al .
7 , 225 , 441 B2 5 / 2007 Kozuch et al .

U . S . Appl . No . 10 / 985 , 360 , filed Nov . 10 , 2004 , Wieland , P . et al .
U . S . Appl . No . 11 / 128 , 665 , filed May 12 , 2005 , Traut , et al .
Chang , MS et al . , “ Lazy TLB Consistency for Large - Scale Multi
processors , ” IEEE , http : / / ieeexplore . ieee . org / iel3 / 4457 / 12637 /
00581683 . pdf ? tp = & arnumbe - - 1 = 581683 & isnumber = 12637
& htry = 2 , Mar . 17 - 21 , 1997 , 308 - 315 .
King , S . et al . , " Operating System Support for Vitrual Machines , "
Proceedings of the 2003 USENIX Technical Conference , http : / /
www . eecs . umich . edu / virtual . sub . - - papers / king03 . pdf , Jun . 9 - 14 ,
2003 , 14 pages .
LeVasseur , J . et al . , “ Pre - Virtualization : Slashing the Cost of
Virtualization , ” Nat ' l ICT Australia , Oct . 2005 , 1 - 14 .
Rosenburg , B . S . , “ Low - Synchronization Translation Lookaside
Buffer Cosistency in Large - Scale Shared - Memory Multiproces
sors , ” ACM , http : / / www . logos . t . u - tokyo . ac . jp / . about . tau / os - lecture /
articles / p137 - rose - - nburg . pdf # search = % 22Translation - lookaside
% 20buffer % 20consistency % 22 , Dec . 1989 , 137 - 146 .
Taylor , G . et al . , “ The TLB Slice - A Low - Cost High - Speed
Address Translation Mechanism , ” IEEE , http : / / delivery . acm . org / 10 .
1145 / 33000 / 325161 / p355 - taylor / pdf ? keyl = 325161 & - key2 =
8514904611 & coll = GUIDE & dl = GUIDE & CFID = 4997640
& CFTOKEN = 80512607 , Jun . 1990 , 355 - 363 .
VMware , Inc . , “ vmi . sub . - - spec : Paravirtualization API Version
2 . 0 , " www . vmware . com / pdf / vmi . sub . - - cpecs . pdf , Mar . 2006 , 1 - 35 .
Barham et al . , “ Xen and the art of virtualization , " ACM Press ,
Proceedings of the Nineteenth ACM Symposuim on Operating
Systems Principles , Oct . 19 - 22 , 2003 , 164 - 177 .
Eranian , S . et al . , “ Virtualization Memory in a IA - 64 Linux kernel , " >
Prentice Hall PTR , www . phptr . com / articles / article . asp ? p + 29961
& seqNum + 4 & rl + 1 , Nov . 8 , 2002 , downloaded Aug . 31 , 2006 , 46
pages .
Uhlig , V . et al . , “ Towards Scalable Multiprocessor Virtual
Machines , ” Proceedings of the 3rd Virtual Machine Research &
Technology Symposium , San Jose , CA , http : / / 14ka . org / publica
tions / 2004 / Towards - Scalable - Multiprocessor - Virtual - - - Machines
VM04 . pdf , May 6 - 7 , 2004 , 1 - 14 .

* cited by examiner

E

*

w

* *

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

w

-

*

*

*

*

*

*

*

*

*

*

U . S . Patent

130

Www

System Memory
(ROM) 131

BIOS 133

GPU

| icle3 Memory
186

184

www www www w

110

Monitor 191

(RAM) 132
Operating System 134

Pacass??? Unit

Output Peripheral

Printer 196

Graphics Interface ,
Video ?? ate

190

120

Interface 195
12

12

w

www

Application

System Bus 121

Speakers197

Sep . 26 , 2017

Programs 135 Other Program Modules 136

Non - Removable Non - Volatile Memory Interface 140

Removable Non - Volatile Memory Interface 150

User Input Interface

?? rk Interface
170

wwwwwwwwwwwwwwwwww

Local Area Network

Program Data
137

1 121

Sheet 1 of 12

000000 JOU 0 00000010011 151
- - - - - -

www

ww ww ws

-

www
www

-

wwwwwwwwwwwwwwwwwwwwwel wwwwwwwwwww

Wide Area Network

Modem
M

AAARRRAAAAAANANANANDARAAAAAAAAAAA 173 .

172

OPERATING APPLICATION SYSTEM PROGRAMS 144
145

452
156

OTHER
PROGRAM

PROGRAMI
DATA

MODS . 146

147

REMOTE COMPUTER
180

Pointing Keyboard 162
Device 161

REMOTE APPLCATION PROGRAMS 185

181

000000 0000000100
* *

*

ISTIEKEISKEKEKET

Fig . 1

US 9 , 772 , 860 B2

U . S . Patent Sep . 26 , 2017 Sheet 2 of 12 US 9 , 772 , 860 B2

202 204

Software Application

206

Guest Operating System

208
-

-

-

-

- Guest Hardware Architecture
(Partition / Virtual Machine)

-

-

-

-

-

- - - - - - -

210

Virtualization Program
(Hypervisor / Virtual Machine Monitor)

212

Physical Hardware Architecture

Fig . 2

U . S . Patent Sep . 26 , 2017 Sheet 3 of 12 US 9 , 772 , 860 B2

308 310
- - - - - - - - - - - -

- -

- - - Partition A - - Partition B - - - - -

-

- - - - -

- - - - -

- -
- -

-

-

- - - - -

-

- - - - - 316 318 - - - - -

- - - - -

320
App B1 - - - - -

-

- - - App A1 App A2 - -

-

- - - - -

- -
-

- - - - - -
-

- -

- - - - -
-

-

- - - - -
-

- - - 312 - -

- - - - -

- - - - -

314

Guest OSB -

- - - - - Guest OS A -

- - - - -

- - - - -

-

- - - - -

-

- - - - -

-

- - -

- - - - -

- -
- - -

-

wwwwwww wwwwwww wort w ??? ? ? ????? ????? ???? ???? ???? ???? ??????? ?????? ????? ?????? ????? ???? ???? wwwwwwwwww wwww * * * * tror www www t w

304
Host Operating System with VMM Service

302

PHYSICAL COMPUTER HARDWARE

Fig . 3A

308

310

U . S . Patent

- -

-

-

-

-

- - -

- - - -

- - - -

-

- -

-

-

- -

- -

- -

-

-

-

- - - -

- - -

- -

-

- -

Partition A

Partition B

— — —

316
App A1

318
App A2

320
App B1

- - -

314

312

Guest OS A

Sep . 26 , 2017

Guest OS B

-

- - - - - - - -

- - - - - - - - - -

- - - - -

- - - - - -

304

Virtual Machine Monitor

the
304 "

Host Operating System

Sheet 4 of 12

operating

302

PHYSICAL COMPUTER HARDWARE

Fig . 3B

US 9 , 772 , 860 B2

U . S . Patent Sep . 26 , 2017 Sheet 5 of 12 US 9 , 772 , 860 B2

118 120 w

19 Resear] App A2] App By
+ + + + + + + ? . * * * * * E * * * *

PODCDOOROORDOO OO bomoo DOOMOO DOO 134 DOONIDDEDOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOODEDOODDDDDDDDDDDDDDDDDD00OOOOOOOOOOOOOOORD

WWW VM - Aware Guest OS A VM - Aware Guest OS B
+ + 0000000000000000OOOOOOOOO xxxxxxxxxx

+ . . . 0 . 1 . +

108 * * * * W

Virtual Machine A WwWwwWw Virtual Machine B
*

*

* *

* * *

* * *

Host Operating System with VMM Service

wwwwww
99999999999999999999999999999999

Y Computer Hardware Computer Hardware
221212 212221212 212 21

Fig . 4

U . S . Patent Sep . 26 , 2017 Sheet 6 of 12 US 9 , 772 , 860 B2

140 Start

PORODKOOKOOKOOKOONDOOOOOOOOOOOOOOOOOOOOOOOOK

142
WWW * Starting VM - Aware

operating system Fig . 5
144

Operating in a VM
environment ? ????????????

wwwwwww Operating in
dedicated hardware

environment 1000DOHODOOTDOHOOOO0000
Modifying behavior

to operate more
efficiently in VM

?????? ????

meren 148 · 152 WW O

Yes Yes reste
Shut down ? * Shut down ?

* MROM * ooo ooo20009200020004c09920000000000000000200992000200040099200000 . cocooo200099099 0004009920002000000 ogooogoos
*

No ON End
* * * * * · 149 parente 153
No NO

XXXXXXX Re - detect
environment ?

Re - detect
environment ?

Yes Yes
Boys 99 29 29 % 29 % 99 pxxppx0X1999999999999999 %

U . S . Patent Sep . 26 , 2017 Sheet 7 of 12 US 9 , 772 , 860 B2

, 600 Fig . 6 Hypervisor informs OS of ideal /
desired behavior

Hypervisor - mediated
address - space

switching

Hypervisor - mediated
local flushing of TLB

entries

Hypervisor - mediated
remote flushing of

TLB entries

620 610 630

_ 700
Fig . 7

Hypervisor presents a TLB
model for flushing multiple TLB

entries

Flush a single range
of virtual address

space
Flush a list of

individual virtual
addresses

Flush a list of ranges

720 730

U . S . Patent Sep . 26 , 2017 Sheet 8 of 12 US 9 , 772 , 860 B2

800 Hypervisor presents TLB model
allowing the OS to specify how
TLB entries should be flushed

Local to a specified
address

Global to all address
spaces Slowly inferred

810 820 830

Fig . 8

U . S . Patent Sep . 26 , 2017 Sheet 9 of 12 US 9 , 772 , 860 B2

Receive Notification of Impending Power Change from Root OS
900

Perform Action (s) Responsive to the Notification
902

Change System ' s Power Level
904

1001

Receive Notification of Completed Power Change from Root OS
906

Perform Action (s) Responsive to the Completion Notification
908

Fig . 9

U . S . Patent Sep . 26 , 2017 Sheet 10 of 12 US 9 , 772 , 860 B2

1002 - Root OS
Collects Its Virtual

Processor (s)
1001 - For each VM
on System , Suspend
and Save State of
VM to Memory

904

1003 - VMM
Secures Confidential

Data

1004 – VMM
Unloads from Root

OS

1005 - System
Power State is

Lowered

1006 – System is
Powered on

1007 - Root OS
Reloads VMM

1008 – VMM
Retrieves

Confidential Data

1009 - Root OS
Releases Its Virtual

Processors

1010 - VM ' s Are
Relaunched &

Restored

Fig . 10

U . S . Patent Sep . 26 , 2017 Sheet 11 of 12 US 9 , 772 , 860 B2

1100 - Os determines
whether it is running in

a VM . NO
YES

1101 - OS receives
system - wide processor
usage data from VMM .

1103 - OS decides a
power state change is

required .

H - KM
1104 - OS determines
whether it has access

to VMM power
communication

interfaces ,
NO

Fig . 11 YES

1200 1105 - OS informs the
VMM of an impending
power state change .

1107 – The OS
performs the power

state change .

U . S . Patent Sep . 26 , 2017 Sheet 12 of 12 US 9 , 772 , 860 B2

1105 1200 - VMM receives
notification of an

impending power state
change .

- - Low power - - - - - - - - - - - - - -

- - - Offline

online 1201 - VMM marks
related processor
unavailable for
scheduling .

1202 - VMM marks
related processor
unavailable for
scheduling .

1204 - VMM detects
that an external

interrupt resumes the
related processor .

1203 - VMM relocates
all virtual processors

anchored on the
related processor .

Fig . 12
1205 - VMM marks
related processor

online and available
for scheduling . Fig . 12

US 9 , 772 , 860 B2

EFFICIENT POWER MANAGEMENT OF A in the host computer system as a pure software representa
SYSTEM WITH VIRTUAL MACHINES tion of the operation of one specific hardware architecture .

The terms emulator , virtual machine , and processor emula
CROSS REFERENCE TO RELATED tion are sometimes used interchangeably to denote the

APPLICATION ability to mimic or emulate the hardware architecture of an
entire computer system .

This application is a continuation of U . S . patent applica - The emulator program acts as the interchange between the
tion Ser . No . 14 / 970 , 453 , filed Dec . 15 , 2015 , which is a hardware architecture of the host machine and the instruc
continuation of U . S . patent application Ser . No . 14 / 563 , 986 , tions transmitted by the software running within the emu
filed Dec . 8 , 2014 , now U . S . Pat . No . 9 , 218 , 047 , issued on 10 lated environment . As an emulator program can also be said
Dec . 22 , 2015 , which is a continuation of U . S . patent to monitor the virtual machine , emulator programs are also
application Ser . No . 11 / 437 , 109 , filed May 18 , 2006 , now called Virtual Machine Monitors (VMMS) .
U . S . Pat . No . 8 , 909 , 946 , issued on Dec . 9 , 2014 , which is a An emulator program may be a service under control of
continuation - in - part of U . S . patent application Ser . No . a host operating system , which is an operating system
11 / 274 , 907 filed Nov . 15 , 2005 , now U . S . Pat . No . 7 , 434 , 15 running directly on the physical computer hardware , in
003 , issued on Oct . 7 , 2008 , the entirety of which is which case it is termed a Type II VMM . Alternately , the
incorporated herein by reference . emulator program might be a software layer that runs

directly above the hardware and which virtualizes all the
BACKGROUND resources of the machine by exposing interfaces that are the

20 same as the hardware (which enables the hypervisor to go
Computers include general purpose central processing unnoticed by operating system layers running above it) . In

units (CPUs) that are designed to execute a specific set of this configuration , the emulator program is termed a Type I
system instructions . A group of processors that have similar VMM , and is called a hypervisor . Lastly , a host operating
architecture or design specifications may be considered to be system and a Type II VMM service may share control over
members of the same processor family . Although a group of 25 some set of the physical hardware , a hybrid configuration in
processors may be in the same family because of their which they can be said to run side - by - side .
similar architecture and design considerations , processors In conventional OSs , certain OS activities are performed
may vary widely within a family according to their clock with an assumption that the operating system is running on
speed and other performance parameters . dedicated physical hardware . For example , operating sys

To facilitate a better understanding of the present inven - 30 tems are accustomed to running on real hardware with a
tion , this document defines applications as programs that bank of physical memory beginning at zero . They are also
interact with users while relying on services and the kernel . accustomed to owning the page tables used to translate
Services are defined as programs that interact with each virtual addresses to physical addresses , along with the
other and the kernel . Drivers are defined as a type of service responsibilities of keeping each processor ' s virtual address
that also interacts with hardware . Kernels are defined as 35 to physical address translation caches (i . e . , translation look
programs that provide features for use by services and aside buffers or TLBs) up - to - date . To run such operating
applications , such as arbitrated access to CPUs in the systems , a VMM virtualizes the page tables and TLBs . A
system . An operating system (OS) is furthermore defined as VMM manages the real hardware page tables , but populates
a product that encapsulates a kernel , some set of services , them using the contents from page tables built by the
and some set of applications . Depending on the operating 40 Operating system only after some sanitization , effectively
system , third parties may be able to create additional appli - implementing a virtual TLB in software . The VMM further
cations and services that interact with the operating system intercepts operating system usages of TLB - manipulating
product . instructions to ensure the real page tables under its control

Computer manufacturers want to maximize their market are kept up - to - sync .
share by having more rather than fewer applications run on 45 Current virtual machine software allow for virtualization ,
the microprocessor family associated with the computer including the example described above . However , there is
manufacturers ' product line . To expand the number of OSS significant performance overhead associated with virtualiza
and application programs that can run on a computer system , tion . The performance overhead can reach levels as high as
a field of technology has developed in which a given 70 % , particularly in software applications with memory - or
computer having one type of CPU , called a host , will include 50 I / O - intensive workloads (with heavy disk access or network
an emulator program that allows the host computer to communications) . This level of overhead is unacceptable in
emulate another computer system , called a guest . Thus , the applications that require maximum processor speed . What is
host computer will execute an application that will cause one needed is a way to reduce processor overhead in a virtual
or more host instructions to be called in response to a given machine environment .
guest instruction . Thus the host computer can both run 55 An unenlightened operating system is an operating system
software design for its own hardware architecture and soft - that is unaware of or indifferent to whether it is running on
ware written for computers having an unrelated hardware a VMM or not . Conventionally , the behavior of an operating
architecture . It may also be possible to use an emulator system when running on virtualized hardware provided by a
program to operate concurrently on a single CPU multiple VMM is identical to that when running on the real hardware .
incompatible operating systems . In this arrangement , 60 What is needed is a way that an operating system and a
although each operating system is incompatible with the VMM , an example of which is a hypervisor , work together
other , an emulator program can host one of the two operating and communicate with each other for efficient operation .
systems , allowing the otherwise incompatible operating In particular , such coordination between operating sys
systems to run concurrently on the same computer system . tems and VMM ’ s may provide a number of advantages
When a guest computer system is emulated on a host 65 when applied to power management procedures . For

computer system , the guest computer system is said to be a example , such coordination may enable virtual machines to
“ virtual machine ” as the guest computer system only exists take appropriate actions before and after a power change .

US 9 , 772 , 860 B2

Additionally , such coordination may provide additional bility to detect a virtual machine environment and modify its
security for data that is confidential to the virtual machines . behavior in order to improve efficiency in a virtual machine
Furthermore , such coordination may enable more efficient environment ;
and lower user of power and also provide a number of other FIG . 6 is a diagram showing example desired behavior
efficiencies and advantages . 5 indicated to the operating system by the virtual machine

monitor ;
SUMMARY FIG . 7 is a diagram showing example TLB flushing

operations ;
Systems and methods are provided for implementing an FIG . 8 is a diagram showing further example hints that

operating system that is capable of ascertaining whether it is 10 may be provided by the operating system to the virtual
operating in a virtual machine environment and is further machine monitor during flushing operations ;
capable of modifying its behavior to operate more efficiently FIG . 9 is a flowchart depicting an exemplary method for
in a virtual machine environment . According to an embodi coordination of system - wide power changes with virtual

ment , an operating system is enlightened so that it is aware machines in accordance with the present invention ;
15 FIG . 10 is a flowchart depicting an exemplary method for of VMMs or hypervisors , taking on behavior that is optimal coherent power cycling of a system with a VMM in accor to that environment . Thus , an operating system runs effi dance with the present invention ; and ciently in the presence of VMMs or hypervisors . FIGS . 11 and 12 are flowcharts depicting exemplary Several example techniques are presented to lower the methods for dynamic control and communication of power

cost of this virtualization through operating system enlight - 20 state changes in accordance with the present invention .
enments . According to an embodiment , the operating system
submits requests to the hypervisor via a mechanism called a DETAILED DESCRIPTION
virtualization device .

According to other embodiments , the efficient operation The inventive subject matter is described with specificity
of operating systems is applied to power management . In 25 to meet statutory requirements . However , the description
particular , in one embodiment , such efficient operation itself is not intended to limit the scope of this patent . Rather ,
enables coordination of system - wide power changes with the inventor has contemplated that the claimed subject
virtual machines . In another embodiment , such efficient matter might also be embodied in other ways , to include
operation enables coherent power changes in a system with different steps or combinations of steps similar to the ones
a VMM . In yet another embodiment , such efficient operation 30 described in this document , in conjunction with other pres
enables dynamic control and communication of power state ent or future technologies . Moreover , although the term
changes . " step " may be used herein to connote different elements of

This Summary is provided to introduce a selection of methods employed , the term should not be interpreted as
concepts in a simplified form that are further described implying any particular order among or between various
below in the Detailed Description . This Summary is not 35 steps herein disclosed unless and except when the order of
intended to identify key features or essential features of the individual steps is explicitly described .
claimed subject matter , nor is it intended to be used to limit Exemplary Computing Environment
the scope of the claimed subject matter . FIG . 1 and the following discussion are intended to

provide a brief general description of a suitable computing
BRIEF DESCRIPTION OF THE DRAWINGS 40 device in connection with which the invention may be

implemented . For example , any of the client and server
The foregoing summary , as well as the following detailed computers or devices may take this form . It should be

description of preferred embodiments , is better understood understood , however , that handheld , portable and other
when read in conjunction with the appended drawings . For computing devices and computing objects of all kinds are
the purpose of illustrating the invention , there is shown in 45 contemplated for use in connection with the present inven
the drawings exemplary constructions of the invention ; tion , i . e . , anywhere from which data may be generated ,
however , the invention is not limited to the specific methods processed , received and / or transmitted in a computing envi
and instrumentalities disclosed . In the drawings : ronment . While a general purpose computer is described

FIG . 1 provides a brief general description of a suitable below , this is but one example , and the invention may be
computing device in connection with which the invention 50 implemented with a thin client having network / bus interop
may be implemented ; erability and interaction . Thus , the invention may be imple

FIG . 2 is a block diagram representing the logical layering mented in an environment of networked hosted services in
of the hardware and software architecture for an emulated which very little or minimal client resources are implicated ,
operating environment in a computer system ; e . g . , a networked environment in which the client device

FIG . 3A is a block diagram representing a virtualized 55 serves merely as an interface to the network / bus , such as an
computing system wherein the emulation is performed by object placed in an appliance . In essence , anywhere that data
the host operating system (either directly or via a hypervi may be stored or from which data may be retrieved or
sor) ; transmitted to another computer is a desirable , or suitable ,

FIG . 3B is a block diagram representing an alternative environment for operation of the object persistence methods
virtualized computing system wherein the emulation is 60 of the invention .
performed by a virtual machine monitor running side - by - Although not required , the invention can be implemented
side with a host operating system ; via an operating system , for use by a developer of services

FIG . 4 illustrates a virtualized computing system from for a device or object , and / or included within application or
FIG . 3A further comprising a host operating system with server software that operates in accordance with the inven
VM - aware guest operating systems ; 65 tion . Software may be described in the general context of

FIG . 5 is a flowchart that illustrates a method of imple - computer executable instructions , such as program modules ,
menting a VM - aware guest operating system with the capa being executed by one or more computers , such as client

US 9 , 772 , 860 B2

workstations , servers , or other devices . Generally , program example , and not limitation , communication media include
modules include routines , programs , objects , components , wired media such as a wired network or direct - wired con
data structures and the like that perform particular tasks or n ection , and wireless media such as acoustic , RF , infrared
implement particular abstract data types . Typically , the func and other wireless media . Combinations of any of the above
tionality of the program modules may be combined or 5 should also be included within the scope of computer
distributed as desired in various embodiments . Moreover , readable media .
the invention may be practiced with other computer system The system memory 130 includes computer storage media
configurations and protocols . Other well known computing in the form of volatile and / or nonvolatile memory such as
systems , environments , and / or configurations that may be read only memory (ROM) 131 and random access memory
suitable for use with the invention include , but are not 10 (RAM) 132 . A basic input / output system 133 (BIOS) , con
limited to , personal computers (PCs) , automated teller t aining the basic routines that help to transfer information
machines , server computers , hand held or laptop devices , between elements within computer 110 , such as during
multi processor systems , microprocessor based systems , start - up , is typically stored in ROM 131 . RAM 132 typically
programmable consumer electronics , network PCs , appli - contains data and / or program modules that are immediately
ances , lights , environmental control elements , minicomput - 15 accessible to and / or presently being operated on by process
ers , mainframe computers and the like . ing unit 120 . By way of example , and not limitation , FIG . 1

FIG . 1 thus illustrates an example of a suitable computing illustrates operating system 134 , application programs 135 ,
system environment 100 in which the invention may be other program modules 136 , and program data 137 .
implemented , although as made clear above , the computing The computer 110 may also include other removable / non
system environment 100 is only one example of a suitable 20 removable , volatile / nonvolatile computer storage media . By
computing environment and is not intended to suggest any way of example only , FIG . 1 illustrates a hard disk drive 141
limitation as to the scope of use or functionality of the that reads from or writes to non - removable , nonvolatile
invention . Neither should the computing environment 100 magnetic media , a magnetic disk drive 151 that reads from
be interpreted as having any dependency or requirement or writes to a removable , nonvolatile magnetic disk 152 , and
relating to any one or combination of components illustrated 25 an optical disk drive 155 that reads from or writes to a
in the exemplary operating environment 100 . removable , nonvolatile optical disk 156 , such as a CD - RW ,
With reference to FIG . 1 , an exemplary system for imple - DVD - RW or other optical media . Other removable / non

menting the invention includes a general purpose computing removable , volatile / nonvolatile computer storage media that
device in the form of a computer 110 . Components of can be used in the exemplary operating environment
computer 110 may include , but are not limited to , a pro - 30 include , but are not limited to , magnetic tape cassettes , flash
cessing unit 120 , a system memory 130 , and a system bus memory cards , digital versatile disks , digital video tape ,
121 that couples various system components including the solid state RAM , solid state ROM and the like . The hard disk
system memory to the processing unit 120 . The system bus drive 141 is typically connected to the system bus 121
121 may be any of several types of bus structures including through a non - removable memory interface such as interface
a memory bus or memory controller , a peripheral bus , and a 35 140 , and magnetic disk drive 151 and optical disk drive 155
local bus using any of a variety of bus architectures . By way are typically connected to the system bus 121 by a remov
of example , and not limitation , such architectures include able memory interface , such as interface 150 .
Industry Standard Architecture (ISA) bus , Micro Channel The drives and their associated computer storage media
Architecture (MCA) bus , Enhanced ISA (EISA) bus , Video discussed above and illustrated in FIG . 1 provide storage of
Electronics Standards Association (VESA) local bus , and 40 computer readable instructions , data structures , program
Peripheral Component Interconnect (PCI) bus (also known modules and other data for the computer 110 . In FIG . 1 , for
as Mezzanine bus) . example , hard disk drive 141 is illustrated as storing oper

Computer 110 typically includes a variety of computer ating system 144 , application programs 145 , other program
readable media . Computer readable media can be any avail - modules 146 and program data 147 . Note that these com
able media that can be accessed by computer 110 and 45 ponents can either be the same as or different from operating
includes both volatile and nonvolatile media , removable and system 134 , application programs 135 , other program mod
non - removable media . By way of example , and not limita - ules 136 and program data 137 . Operating system 144 ,
tion , computer readable media may comprise computer application programs 145 , other program modules 146 and
storage media and communication media . Computer storage program data 147 are given different numbers here to
media include both volatile and nonvolatile , removable and 50 illustrate that , at a minimum , they are different copies . A user
nc non - removable media implemented in any method or tech may enter commands and information into the computer 110
nology for storage of information such as computer readable through input devices such as a keyboard 162 and pointing
instructions , data structures , program modules or other data . device 161 , such as a mouse , trackball or touch pad . Other
Computer storage media include , but are not limited to , input devices (not shown) may include a microphone , joy
RAM , ROM , EEPROM , flash memory or other memory 55 stick , game pad , satellite dish , scanner , or the like . These and
technology , CDROM , digital versatile disks (DVD) or other other input devices are often connected to the processing
optical disk storage , magnetic cassettes , magnetic tape , unit 120 through a user input interface 160 that is coupled to
magnetic disk storage or other magnetic storage devices , or the system bus 121 , but may be connected by other interface
any other medium which can be used to store the desired and bus structures , such as a parallel port , game port or a
information and which can be accessed by computer 110 . 60 universal serial bus (USB) . A graphics interface 182 may
Communication media typically embody computer readable also be connected to the system bus 121 . One or more
instructions , data structures , program modules or other data graphics processing units (GPUS) 184 may communicate
in a modulated data signal such as a carrier wave or other with graphics interface 182 . A monitor 191 or other type of
transport mechanism and include any information delivery display device is also connected to the system bus 121 via
media . The term “ modulated data signal ” means a signal that 65 an interface , such as a video interface 190 , which may in
has one or more of its characteristics set or changed in such turn communicate with video memory 186 . In addition to
a manner as to encode information in the signal . By way of monitor 191 , computers may also include other peripheral

US 9 , 772 , 860 B2

output devices such as speakers 197 and printer 196 , which be a standard operating system with an incorporated hyper
may be connected through an output peripheral interface visor component for performing the virtualization (not
195 . shown) .

The computer 110 may operate in a networked or distrib - Referring again to FIG . 3A , above the host OS 304 are
uted environment using logical connections to one or more 5 two partitions , partition A 308 , which may be , for example ,
remote computers , such as a remote computer 180 . The a virtualized Intel 386 processor , and partition B 310 , which
remote computer 180 may be a personal computer , a server , may be , for example , a virtualized version of one of the
a router , a network PC , a peer device or other common Motorola 680X0 family of processors . Within each partition
network node , and typically includes many or all of the 308 and 310 are guest operating systems (guest OSs) A 312
elements described above relative to the computer 110 , 1° and B 314 , respectively . Running on top of guest OS A 312
although only a memory storage device 181 has been are two applications , application A1 316 and application A2
illustrated in FIG . 1 . The logical connections depicted in 318 , and running on top of guest OS B 314 is application B1
FIG . 1 include a local area network (LAN) 171 and a wide 320 .
area network (WAN) 173 , but may also include other 15 . In regard to FIG . 3A , it is noted that that partition A 308
networks / buses . Such networking environments are com - and partition B 314 (which are shown in dashed lines) are
monplace in homes , offices , enterprise - wide computer net virtualized computer hardware representations that exist
works , intranets and the Internet . only as software constructions . They are made possible due
When used in a LAN networking environment , the com - to the execution of specialized virtualization software (s) that

puter 110 is connected to the LAN 171 through a network 20 not only presents partition A 308 and partition B 310 to guest
interface or adapter 170 . When used in a WAN networking OS A 312 and guest OS B 314 , respectively , but which also
environment , the computer 110 typically includes a modem performs all of the software steps necessary for guest OS A
172 or other means for establishing communications over 312 and guest OS B 314 to indirectly interact with the real
the WAN 173 , such as the Internet . The modem 172 , which physical computer hardware 302 .
may be internal or external , may be connected to the system 25 FIG . 3B illustrates an alternative virtualized computing
bus 121 via the user input interface 160 , or other appropriate system wherein the virtualization is performed by a VMM
mechanism . In a networked environment , program modules 304 ' running alongside the host operating system 304 " . In
depicted relative to the computer 110 , or portions thereof , certain cases , the VMM 304 ' may be an application running
may be stored in the remote memory storage device . By way above the host operating system 304 " and interacting with
of example , and not limitation , FIG . 1 illustrates remote 30 the computer hardware 302 only through the host operating
application programs 185 as residing on memory device system 304 " . In other cases , as shown in FIG . 3B , the VMM
181 . It will be appreciated that the network connections 304 ' may instead comprise a partially independent software
shown are exemplary and other means of establishing a system that on some levels interacts indirectly with the
communications link between the computers may be used . computer hardware 302 via the host operating system 304 "
Virtual Machines 35 but on other levels the VMM 304 ' interacts directly with the

FIG . 2 is a diagram representing the logical layering of the computer hardware 302 (similar to the way the host oper
hardware and software architecture for a virtualized envi - ating system interacts directly with the computer hardware) .
ronment in a computer system . In the figure , a virtualization And yet in other cases , the VMM 304 ' may comprise a fully
program 210 runs directly or indirectly on the physical independent software system that on all levels interacts
hardware architecture 212 . The virtualization program 210 40 directly with the computer hardware 302 (similar to the way
may be (a) a virtual machine monitor (VMM) that runs the host operating system interacts directly with the com
alongside a host operating system or a host operating system puter hardware) without utilizing the host operating system
with a hypervisor component wherein the hypervisor com - 304 " (although still interacting with the host operating
ponent performs the virtualization . The virtualization pro system 304 " in order to coordinate use of the computer
gram 210 virtualizes a guest hardware architecture 208 45 hardware 302 and avoid conflicts and the like) .
(shown as dashed lines to illustrate the fact that this com - All of these variations for implementing the above men
ponent is a partition or a “ virtual machine ”) , that is , hard - tioned partitions are just exemplary implementations , and
ware that does not actually exist but is instead virtualized by nothing herein should be interpreted as limiting the inven
the virtualizing program 210 . A guest operating system 206 tion to any particular virtualization aspect .
executes on the guest hardware architecture 208 , and a 50 Operating in a VM Environment
software application 204 runs on the guest operating system FIG . 4 illustrates a virtualized computing system similar
206 . In the virtualized operating environment of FIG . 2 , the to that shown in FIG . 3A , but in FIG . 4 , a VM - aware guest
software application 204 can run in a computer system 202 OS A 132 and a VM - aware guest OS B 134 have replaced
even if the software application 204 is designed to run on an guest OS A 112 and guest OS B 114 , respectively . VM - aware
operating system that is generally incompatible with a host 55 guest OS A 132 and VM - aware guest OS B 134 are
operating system and the hardware architecture 212 . operating systems that are able to ascertain whether they are

FIG . 3A illustrates a virtualized computing system com - operating in a virtual machine environment and , if so , are
prising a host operating system (host OS) software layer 304 able to modify their behavior to operate more efficiently .
running directly above physical computer hardware 302 , An example operation of VM - aware guest OS A 132 and
where the host OS 304 provides access to the resources of 60 VM - aware guest OS B 134 of FIG . 4 is described in
the physical computer hardware 302 by exposing interfaces reference to FIG . 5 , which is a flowchart that illustrates a
to partitions A 308 and B 310 for the use by operating method 140 of implementing a VM - aware operating system
systems 312 and 314 , respectively . This enables the host OS with the capability to detect a virtual machine environment
304 to go unnoticed by operating system layers 312 and 314 and modify its behavior in order to improve efficiency in a
running above it . Again , to perform the virtualization , the 65 virtual machine environment . At step 142 , the method first
host OS 304 may be a specially designed operating system comprises starting the VM - aware operating system (e . g . ,
with native virtualization capabilities or , alternately , it may VM - aware guest OS A 132 or VM - aware guest OS B 134) .

US 9 , 772 , 860 B2
10

At step 144 , the VM - aware OS determines whether it is have changed , or based on some other heuristic that decides
operating in a VM environment . The OS may make this when it is appropriate to make this determination again . If
determination upon startup , or one or more times at any step 153 is bypassed or omitted , then the method will return
point during its operation . This determination is done by any to step 150 .
of a variety of methods , including the use of synthetic 5 Some example methods and techniques described herein
instructions , as described in U . S . patent application Ser . No . have the operating system submitting requests to the VMM
10 / 685 , 051 filed on Oct . 14 , 2003 and entitled , “ SYSTEMS or hypervisor by a mechanism of submitting a request
AND METHODS FOR USING SYNTHETIC INSTRUC - termed a hypercall to a software construct termed a virtu
TIONS IN A VIRTUAL MACHINE ” (hereinafter the ' 051 alization device , as described in U . S . patent application Ser .
patent application) , incorporated herein by reference in its 10 No . 10 / 985 , 360 filed on Nov . 4 , 2004 and entitled , “ SYS
entirety . The ’ 051 patent application describes a method for TEM AND METHOD FOR INTERRUPT HANDLING ” ,
an operating system to determine whether it is running on a incorporated herein by reference in its entirety . Although the
virtualized processor or running directly on an x86 proces - examples herein may refer to hypervisors , the examples are
sor , by executing a synthetic instruction (e . g . , VMCPUID) also applicable to VMMs and should not be limited thereto .
for returning a value representing an identity for the central 15 As noted above , after the OS determines at step 144 that
processing unit . If a value is returned , the guest OS con - it is operating in a VM environment , its behavior is modified
cludes that the operating system is running on a virtualized at step 150 . According to an embodiment , behavior modi
processor ; if an exception occurs in response to the synthetic fication includes a VMM or hypervisor informing an oper
instruction , the guest OS concludes that the operating sys - ating system of ideal or desired behavior for running on a
tem is running directly on an x86 processor . Another method 20 VMM or hypervisor at step 600 as shown in FIG . 6 , and the
for determining whether the guest OS is running in a VM operating system then makes the recommended adjustments
environment include running a series of tests threads and to its behavior . A VMM or hypervisor may provide via a
comparing performance of the current environment to his - hypercall (e . g . , HvGetSystemFeature) information such as
torical results . In any event , if the VM - aware OS determines which TLB - related operations should be performed via a
that it is not operating in a VM environment , method 140 25 hypercall . Example operations that can be performed via
proceeds to step 146 . Alternatively , if the VM - aware OS virtualization device include :
determines that it is operating in a VM environment , method (1) Hypervisor - mediated address - space switching (step
140 proceeds to step 150 . Another method for determining 610) . If the hypervisor indicates this feature should be used ,
whether the guest OS is running the VM environment operating systems desirably change address spaces on vir
includes testing a feature bit returned by querying a proces - 30 tual processors by issuing a hypercall (e . g . , an HvSwitch
sor features field by executing a CPUID instruction . A Virtual AddressSpace hypercall) rather than using an archi
hitherto undefined feature bit in this field , which is set to tectural technique (e . g . , architectural “ mov cr3 , reg "
zero by the processor hardware , is set to one by the VMM technique) . Unlike the architectural method , the hypercall
when it intercepts the execution of CPUID and modifies it to does not have the side effect of flushing TLB entries .
communicate the presence of a VM environment . 35 (2) Hypervisor - mediated local flushing of TLB entries
At step 146 , the VM - aware OS operates in its “ tradi - (step 620) . If the hypervisor indicates this feature should be

tional ” manner , because it is operating on dedicated hard - used , operating systems should flush TLBs on the current
ware and is not in a VM environment . At step 148 , the processor by issuing a hypercall (e . g . , an HvFlush VirtualAd
VM - aware operating system determines whether a “ shut d ressSpace hypercall) rather than using architectural flush
down ” command has been received . If a " shut down ” 40 ing techniques such as multiple invlpg instructions , reload
command is received , the VM - aware OS shuts down and ing cr3 , or toggling the global bit in cr4 . Unlike the
method 140 ends . If no “ shut down ” command has been architectural method , a single hypercall can specify the
received , the VM - aware OS may determine whether to specific address space (s) of interest and flush multiple
re - detect the environment at step 149 . If not , the method entries , all in one instruction . This minimizes the number of
continues to operate in the " traditional ” manner , as 45 address spaces a translation is removed from , and it mini
described in step 146 . If so , the method returns to step 144 mizes the number of transitions to the hypervisor .
to re - detect whether it is running in a VM environment . It is (3) Hypervisor - mediated remote flushing of TLBs entries
contemplated that step 149 may be optional and / or per - (step 630) . If the hypervisor indicates this feature should be
formed , on a regular basis , upon notification that the run - used , operating systems should flush TLBs on other virtual
time environment may have changed , or based on some 50 processors by issuing a hypercall (e . g . , an HvFlush Virtu
other heuristic that decides when it is appropriate to make alAddressSpace hypercall) rather than performing the tradi
this determination again . If step 149 is bypassed or omitted , tional TLB - shootdown algorithm of sending an inter - pro
then the method will return to step 146 . cessor interrupt (IPI) to each processor and having each IPI

At step 150 , the VM - aware OS modifies its behavior in flush its own processor ' s TLB . The hypercall can take a
order to operate more efficiently in a VM environment , 55 mask in which a set bit indicates the corresponding proces
described further herein . At step 152 , the VM - aware OS sor should be flushed . Alternately , groups of processors can
determines whether a “ shut down ” command has been be described by group number as well . The operating system
received . If a " shut down ” command is received , the VM - need not wait for each virtual processor to be scheduled . The
aware OS shuts down and method 140 ends . If no “ shut hypervisor can queue the work until the virtual processor is
down ” command has been received , the VM - aware OS may 60 next scheduled while simultaneously allowing the initiating
determine whether to re - detect the environment at step 153 . virtual processor to continue , safe in the knowledge that all
If not , the method continues to operate in its modified , subsequent execution will reflect the flush request . This
high - efficiency mode , as described in step 150 . If so , the avoids the potentially large cost from the OS issuing an IPI
method returns to step 144 to re - detect whether it is running to a virtual processor that may not be scheduled and waiting
in a VM environment . Like step 149 , it is contemplated that 65 for that IPI to complete .
step 153 may be optional and / or performed , on a regular Depending on the level of virtualization assistance from
basis , upon notification that the run - time environment may the underlying hardware , a hypervisor may indicate all

US 9 , 772 , 860 B2
Jy 12

features should be used (little virtualization support from the an operating system may change the transition point upon
underlying hardware) , a few , or perhaps even none to detection of a hypervisor . It may build a larger list or build
achieve the optimal or desired behavior , performance , or several smaller lists and specify each in a series of calls (e . g . ,
scalability . HvFlush VirtualAddressSpace) . An operating system may

Another embodiment includes a method in which the 5 even act as if the transition point is effectively infinity if the
hypervisor presents a TLB model that supports operations real number is so high as to be larger than almost all lists it
for flushing of multiple TLB entries (step 700) specified by will ever build .
range , by list , or by list of ranges , as shown with respect to Additionally , an operating system may efficiently build up
FIG . 7 . A method in which an operating system uses these batches of TLB entries to flush before invoking the hyper
features is also presented . 10 visor . An operating system might normally build its list of

The hypervisor can provide a hypercall (e . g . , an HvFlush - virtual addresses to be flushed on the stack of the current
VirtualAddressSpaceRange hypercall) to flush a single thread . In a hypervisor environment , however , this list may
range of virtual address space , specified by a base and limit , be larger than is safe or desirable to place on a stack , as an
or a base and length (step 710) . An operating system may use incoming interrupt service routine may not be left with
this when performing operations that affect virtually con - 15 sufficient space on the stack to execute properly .
tiguous blocks of address space , such as unloading a DLL or One solution is to use a list of ranges on the stack . Such
driver . range lists can act as a compressed intermediary form if the

The hypervisor can also provide a hypercall (e . g . , an hypervisor does not support range lists itself . Alternately , if
HvFlush Virtual AddressSpaceList hypercall) to flush a list of the lists are very large as a result of many discontiguous
individual virtual addresses (step 720) . An operating system 20 ranges , or the list is not allowed to cross a page , or the
may use this when performing operations that affect many hypervisor does not support range lists , the operating system
unrelated and noncontiguous virtual addresses . This might can construct the list on one or more per - processor pages .
happen for instance after trimming the set of least recently The operating system desirably ensures the thread stays the
used pages in a system , e . g . , backing up those pages to disk exclusive owner of the processor throughout the activity .
and monitoring any future writes . 25 The technique to do so is operating system specific , and may

Also , the hypervisor can provide a hypercall (e . g . , an include disabling all interrupts or masking off just those
HvFlush Virtual AddressSpaceRangelist hypercall) taking a interrupts used to cause rescheduling .
list of ranges , where the bits normally describing the offset Furthermore , a hypervisor may dynamically modify its
into a page are repurposed to make a page count (step 730) . behavior to be optimal for the operating system or for the
An operating system may use this when performing opera - 30 current state of the underlying hardware that may be man
tions that affect several disjoint blocks of address space . aged by the operating system . An operating system can

Another embodiment includes a method in which the inform a hypervisor , and a hypervisor can correspondingly
hypervisor presents a TLB model allowing the operating learn about behavior optimal for an operating system , using
system to specify whether TLB entries to be flushed are the following , for example : (1) an explicit notification
global to all address spaces , or local to one or more specified 35 identifying individual behavior preferences is made by the
address spaces , as shown with respect to FIG . 8 . A method operating system ; (2) an explicit notification indicating the
in which an operating system uses these features is similarly version of the hypervisor interface to use is made by the
presented . operating system ; (3) an explicit notification indicating the
Some processor architectures , such as the x86 architec version of the underlying operating system , from which the

ture , store the scope (current address space / all address 40 hypervisor infers behavior , is made by the operating system ;
spaces) of a virtual address translation in the TLB entry . On (4) detecting the desired behavior at runtime by watching the
those architectures , a flush instruction might not contain any pattern of hypercalls . For instance , if a hypervisor detected
hint as to whether the flush request specifies a local or global the use of a particular hypercall (e . g . , HvFlushVirtualAd
entry — the hardware instead infers this based on the preex - dressSpace) , it could still support existing architectural
isting TLB entry . 45 operations , but may nonetheless optimize for use of hyper

This inference is expensive for a hypervisor . Conse - calls instead , letting legacy calls take more time than would
quently , a family of virtualization devices (e . g . , the otherwise be the case . The notifications may be performed
HvFlush Virtual AddressSpace a family of virtualization via virtualization device or by writing to an MSR virtualized
devices) can take a field (step 800) indicating whether the by the hypervisor , for example .
entry is local to the specified address space (step 810) , global 50 Another embodiment includes a method in which the
to all (step 820) , or should be (slowly) inferred (step 830) . hypervisor presents a run - time execution profile to a man
Because the operating system almost always knows this agement partition allowing the operating system within it to
information , it can fill out the field with the optimum value . determine whether the physical hardware , or portions
In addition , this field may be supported in flushing an thereof , are idle , and another method in which the operating
address space or the entire TLB to enable the operating 55 system within a management partition communicates to the
system to limit the flush to only local or global entries . hypervisor its intent to change the power state of a logical
Moreover , an operating system may change the maximum processor . A method in which an operating system uses these

number of TLB entries it will flush individually before features is similarly presented .
flushing an entire address space or TLB . When an operating According to other aspects , an operating system and a
system starts building up a list of virtual addresses whose 60 redistributable hypervisor - interface driver may coordinate
TLB entries should be flushed , it may stop collecting entries on settings . A hypervisor - interface driver is a driver that
after a certain maximum value has been reached . At this interfaces with the hypervisor even on operating systems
point , it is typically more efficient for the operating system that are not hypervisor aware . In an example method , the
to issue on flush - entire - TLB call (or flush all non - global hypervisor - interface driver first checks with the operating
entries call) rather than flush multiple virtual addresses . 65 system to see if it is hypervisor - aware . If so , it routes its own

This transition point changes when a hypervisor is pres - requests through the operating system , instead of directly
ent , possibly becoming a much large number . For example , accessing the hypervisor itself . Both the detection and the

13
US 9 , 772 , 860 B2

14
request routing can be accomplished by checking for a action in response to a completed power change . Any such
routing interface exposed by the operating system kernel . In actions may also be performed by the descendant virtual
this way , a hypervisor - aware operating system can centralize machines when they are notified of the completed power
the code for interfacing with a hypervisor , and allow a change .
hypervisor - interface driver to run on both enlightened and 5 In another power management embodiment , coherent
unenlightened operating systems . power cycling is provided in a system with a VMM . Such

According to other aspects , the efficient operation of coherent power cycling may enable confidential data that
operating systems is applied to power management . In pertains to each of the virtual machines on the system to be
particular , in one embodiment , such efficient operation secured when the system power state is changed . The term
enables coordination of system - wide power changes with 10 confidential data , as used herein , refers to sensitive data that
virtual machines . Conventional systems enable system - wide is used by the VMM to save or restore dynamic context
power changes to be successfully performed without first when the VMM switches between different virtual
notifying virtual machines of the power changes . However , machines . The confidential data may be stored in hardware
providing notification of impending and completed power registers or RAM . Such confidential data may include , for
changes to virtual machines would enable the virtual 15 example , passwords , private encryption keys , or other clear
machines to perform a number of desirable actions before text data deemed sensitive by the VMM . It is important that
and after the power changes such as will be described below . such confidential data not be made available to any operat

An exemplary method for coordination of system - wide ing system or entity other than the VMM .
power changes with virtual machines in accordance with the An exemplary method for coherent power cycling of a
present invention is shown in FIG . 9 . At act 900 , software 20 system with a VMM in accordance with the present inven
executing in a first virtual machine receives a notification of tion is shown in FIG . 10 . At act 1001 , each virtual machine
an impending power change . The notification may be pro on the system is suspended and its state is saved to memory .
vided by the root operating system in a top - down fashion . Act 1001 may be performed in a bottom - up fashion . For
Thus , the first virtual machine notified by the root operating example , each leaf virtual machine may first be suspended
system may be a direct child of the root operating system . 25 and its state may be saved to memory . Then , the direct
Additionally , if the root operating system has more than one parents of each leaf virtual machine may be suspended and
direct child virtual machines , than , at act 900 , the root their states may be saved to memory . This process may be
operating system may notify every one of its direct child repeated until finally the root operating system suspends
virtual machines . each of its direct child virtual machines and saves their states

At act 902 , the software in the first virtual machine takes 30 to memory .
at least one action in response to the notification . These At act 1002 , the root operating system collects each of its
actions may include forwarding to notification to each virtual processors . A collected virtual processor , as that term
virtual machine that is a direct child of the first virtual is used herein , is a virtual processor that is no longer capable
machine . Those child virtual machines may then , in turn , of executing arbitrary code such as arbitrary application
forward the notification on to each of their direct children , 35 code or arbitrary driver code . Such arbitrary code could
with this process repeating from the top - down until every potentially call the hypervisor , thereby interfering with
virtual machine in the system has been notified of the future acts .
impending power change . The virtual machines may also At act 1003 , the VMM secures the confidential data of
provide the notification to all of the applications and drivers each virtual machine on the system to prevent the confiden
that are executing in each of the virtual machines . 40 tial data from being made available to the root operating

The action (s) taken at act 902 may also include , for system (or any other operating system or entity) after the
example , auto - saving files to a disk , logging off an instant VMM is unloaded . To secure the confidential data , the
messaging network , or , when physical hardware is assigned VMM may , for example , delete the confidential data from
to or under the control of a virtual machine , the software can memory . The VMM may also , for example , encrypt the
turn off the device by executing the power down sequences , 45 confidential data . The VMM may notify the virtual machines
or any other action that would help prepare for the impend - to clear or secure the confidential data . Act 1003 is an
ing power change . Any such actions may also be performed optional act .
by the descendant virtual machines when they are notified of At act 1004 , the VMM unloads from the root operating
the impending power change . system . Prior to the unloading of the VMM , the root

Atact 904 , the system ' s power state is changed , and , at act 50 operating system is a virtualized operating system . How
906 , software executing in the first virtual machine receives ever , after the unloading of the VMM , the root operating
a notification of the completed power change . Once again , system is de - virtualized . Act 1004 is also an optional act .
the completion notification may be provided by the root At act 1005 , the system power state is lowered . The
operating system in a top - down fashion . At act 908 , the system may , for example , be placed into a standby state or
software in the first virtual machine takes at least one action 55 may be completely powered off . As should be appreciated ,
in response to the completion notification . Once again , these the root operating system may write memory contents to
actions may include forwarding the completion notification disk prior to the system power state being lowered . At act
to each descendant virtual machine , with this process repeat - 1006 , the system is powered on . As should be appreciated ,
ing from the top - down until every virtual machine in the when the system powers on , a basic input / output system
system has been notified of the completed power change . 60 (BIOS) may transfer control to the root operating system ,
The virtual machines may also provide the completion which may then read the stored memory contents from the
notification to all of the applications and drivers that are disk .
executing in each of the virtual machines . At act 1007 , the root operating system reloads the VMM .

The action (s) taken at act 908 may also include , for Prior to the reloading of the VMM , the root operating system
example , re - logging into a network , rereading files in case of 65 is a not a virtualized operating system . However , after the
offline changes , restoring state to a previously powered reloading of the VMM , the root operating system re - virtu
down device assigned to a virtual machine , or any other alized . Act 1007 is an optional act .

15

SS

US 9 , 772 , 860 B2
16

At act 1008 , the VMM retrieves the secured confidential power state changes to so that the VMM can schedule the
data of each virtual machine on the system . If , at act 1003 , affected processor accordingly .
the confidential data was encrypted , then , at act 1007 , the Exemplary methods for dynamic control and communi
VMM may retrieve the confidential data by decrypting it . cation of power state changes in accordance with the present
The VMM may also notify the restored virtual machine to 5 invention are shown in FIGS . 11 and 12 . In particular , FIG .
restore or reconstruct confidential data . Act 1008 is also an 11 depicts exemplary acts performed by an operating sys
optional act . tem . At act 1100 , the operating system determines whether
At act 1009 , the root operating system releases each of its it is running in a virtual machine . If not , then the operating

virtual processors . A released virtual processor , as that term system will simply perform power state changes as a con
is used herein , is a virtual processor that is capable of f 10 ventional non - virtualized operating system , obtaining pro

cessor usage data from traditional means . If the operating executing arbitrary code . system is running in a virtual machine , then , at act 1101 , the At act 1010 , each virtual machine on the system is operating system receives system - wide processor usage data
re - launched and its state is restored . Act 1010 may be from the VMM . The system - wide processor usage data may performed in a top - down fashion . For example , the root 15 include , for example , system - wide accumulated physical operating system may first re - launch and restore the state processor run - time data . The system - wide processor usage
data each of its direct child virtual machines . This process data may also include , for example , a reference global time
may be repeated from the top - down until finally each of the to assist the power management agent in determining utili
leaf virtual machines have been re - launched and their state zation throughout particular intervals .
data has been restored . 20 At act 1103 , the operating system determines , based on

In another power management embodiment , dynamic the system - wide processor usage data , that a power state
control and communication of power state changes is pro - change is required . At act 1104 , the operating system deter
vided . In conventional systems with virtual machines , the mines whether it has access to VMM power communication
VMM typically prevents all code executing in a virtual interfaces . If the operating system is not designated as the
machine from making changes to the power state of the 25 power management agent , then the operating system will not
physical processors . However , to maintain effective control have access to the VMM power communication interfaces .
over the physical thermal environment , or to increase the Thus , the operating system will not be able to communicate
operating time of battery powered systems , some processor its intent to the VMM , and , therefore , the VMM will not
management must run to minimize processor power usage schedule the affected processor accordingly . If , on the other
depending on the system activity . Although desirable , this 30 hand , the operating system is designated as the power
power management is problematic because virtual machines management agent , then the operating system will have
are isolated from each other and from the physical system , access to the VMM power communication interfaces . Thus ,
hence code running in a virtual machine is unable to at act 1105 the operating system will inform the VMM of the
determine the processor utilization of the entire system or to impending power state change , and , therefore , the VMM
effect changes to the power state . Thus , one possible solution 35 will schedule the affected processor accordingly (see FIG .
would be to allow the VMM , which can such obtain system - 12 described in detail below) . At act 1107 , the operating
wide processor utilization data , to control power state system performs the power state change .
changes . However , this solution also creates problems FIG . 12 depicts exemplary actions performed by the
because procedures for controlling processor power states VMM when it receives the power state change notification
vary across different processor models and / or vendors . 40 sent by the operating system at act 1105 . At act 1200 , the
Therefore , allowing the VMM to control power state VMM receives the power state change notification . If the
changes would require the replication of machine dependent power state change is a change to a low power state , then ,
algorithms within the VMM , thereby presenting possible at act 1201 , the VMM marks the related physical processor
security and other efficiency concerns . unavailable for scheduling virtual processors other than the

To overcome the aforementioned and other problems , this 45 notifying virtual processor . The notifying virtual processor
embodiment of the present invention enables the VMM to remains scheduled to allow the operating system to complete
designate a particular virtual machine to be a power man - its intended power state change . The related physical pro
agement agent with the authority to control power state cessor then remains in the low power state until , at act 1204 ,
changes . Such power management authorization may be the VMM detects that an external interrupt resumes the
inherited . For example , the first or root virtual machine may 50 physical processor . Upon detecting the interrupt , the VMM
be designated by default as the power management agent . marks the related physical processor online and available for
Alternatively , such power management authorization may scheduling at act 1205 .
be assigned by an authorization interface . The operating When the VMM receives an offline processor notification ,
system code for the power management agent is able to at act 1202 , it marks the related physical processor unavail
access physical processor power management controls . 55 able for scheduling virtual processors other than the notify

If the power management agent acted only on its own ing virtual processor . At act 1203 , the VMM relocates to
internal view of its utilization , it would inaccurately deter - other processors all virtual processors , except the notifying
mine the system - wide processor utilization and make inap - virtual processor , that were prepared to run on the related
propriate adjustments to the processor power states . Thus , physical processor . The related physical processors then
prior to making a power state change , the power manage - 60 remains unscheduled until a specific online notification is
ment agent will request system wide processor utilization received . When the online notification is received , the VMM
information from the VMM . Furthermore , when an operat - marks the related physical processor online and available for
ing system places a processor into a low power state , the scheduling at act 1205 .
operating system expects that the processor will be unavail - Conclusion
able for scheduling until a physical interrupt returns the 65 The various systems , methods , and techniques described
processor to a full power state . Thus , the power management herein may be implemented with hardware or software or ,
agent needs to inform the underlying VMM of impending where appropriate , with a combination of both . Thus , the

17
US 9 , 772 , 860 B2

18
methods and apparatus of the present invention , or certain than processor virtualization should be most broadly read
aspects or portions thereof , may take the form of program into the disclosures made herein .
code (i . e . , instructions) embodied in tangible media , such as Although the subject matter has been described in lan
floppy diskettes , CD - ROMs , hard drives , or any other guage specific to structural features and / or methodological
machine - readable storage medium , wherein , when the pro - 5 acts , it is to be understood that the subject matter defined in
gram code is loaded into and executed by a machine , such the appended claims is not necessarily limited to the specific
as a computer , the machine becomes an apparatus for features or acts described above . Rather , the specific features
practicing the invention . In the case of program code execu - and acts described above are disclosed as example forms of
tion on programmable computers , the computer will gener - implementing the claims .
ally include a processor , a storage medium readable by the 10
processor (including volatile and non - volatile memory and / What is claimed is :
or storage elements) , at least one input device , and at least 1 . A system comprising :
one output device . One or more programs are preferably a processor ;
implemented in a high level procedural or object oriented one or more memories in communication with the pro
programming language to communicate with a computer 15 cessor when the system is operational , the one or more
system . However , the program (s) can be implemented in memories having stored thereon instructions that upon
assembly or machine language , if desired . In any case , the execution by the processor at least cause the system to :
language may be a compiled or interpreted language , and instantiate one or more virtual machines ;
combined with hardware implementations . receive a notification of an impending system power

The methods and apparatus of the present invention may 20 change ;
also be embodied in the form of program code that is cause the one or more virtual machines to be notified of
transmitted over some transmission medium , such as over the impending power change ; and
electrical wiring or cabling , through fiber optics , or via any in response to the notification , perform one or more
other form of transmission , wherein , when the program code actions , by the one or more virtual machines , to prepare
is received and loaded into and executed by a machine , such 25 for the impending system power change .
as an EPROM , a gate array , a programmable logic device 2 . The system of claim 1 , wherein the one or more virtual
(PLD) , a client computer , a video recorder or the like , the machines are notified by a host virtual machine .
machine becomes an apparatus for practicing the invention . 3 . The system of claim 2 , wherein notifications are
When implemented on a general - purpose processor , the forwarded by virtual machines to child virtual machines .
program code combines with the processor to provide a 30 4 . The system of claim 1 , wherein the one or more actions
unique apparatus that operates to perform the indexing comprise powering down a connected device assigned to
functionality of the present invention . one of the virtual machines .

While the present invention has been described in con - 5 . The system of claim 1 , wherein the one or more actions
nection with the preferred embodiments of the various comprise saving files to a disk .
figures , it is to be understood that other similar embodiments 35 6 . The system of claim 1 , the one or more memories
may be used or modifications and additions may be made to having further stored thereon instructions that upon execu
the described embodiment for performing the same function tion by the processor at least cause the system to perform
of the present invention without deviating there from . For one of a retrieval , a restoration , and a reconstruction of
example , while exemplary embodiments of the invention are confidential data of the one or more virtual machines .
described in the context of digital devices emulating the 40 7 . The system of claim 1 the one or more memories
functionality of personal computers , one skilled in the art having further stored thereon instructions that upon execu
will recognize that the present invention is not limited to tion by the processor at least cause the system to notify a
such digital devices , as described in the present application virtual machine monitor that a power state change is
may apply to any number of existing or emerging computing required .
devices or environments , such as a gaming console , hand - 45 8 . A computer - readable storage device having stored
held computer , portable computer , etc . whether wired or thereon computer - readable instructions that upon execution
wireless , and may be applied to any number of such com - on a processor , at least cause a computing device to :
puting devices connected via a communications network , instantiate one or more virtual machines ;
and interacting across the network . Furthermore , it should be receive a notification of an impending system power
emphasized that a variety of computer platforms , including 50 change ;
handheld device operating systems and other application cause the one or more virtual machines to be notified of
specific hardware / software interface systems , are herein the impending power change ; and
contemplated , especially as the number of wireless net - in response to the notification , perform one or more
worked devices continues to proliferate . Therefore , the actions , by the one or more virtual machines , to prepare
present invention should not be limited to any single 55 for the impending system power change .
embodiment , but rather construed in breadth and scope in 9 . The computer - readable storage device of claim 8
accordance with the appended claims . wherein the one or more virtual machines are notified by a

Finally , the disclosed embodiments described herein may host virtual machine .
be adapted for use in other processor architectures , com - 10 . The computer - readable storage device of claim 9
puter - based systems , or system virtualizations , and such 60 wherein notifications are forwarded by virtual machines to
embodiments are expressly anticipated by the disclosures child virtual machines .
made herein and , thus , the present invention should not be 11 . The computer - readable storage device of claim 8 ,
limited to specific embodiments described herein but instead wherein the one or more actions comprise powering down a
construed most broadly . Likewise , the use of synthetic connected device assigned to one of the virtual machines .
instructions for purposes other than processor virtualization 65 12 . The computer - readable storage device of claim 8 ,
are also anticipated by the disclosures made herein , and any wherein the one or more actions comprise saving files to a
such utilization of synthetic instructions in contexts other disk .

US 9 , 772 , 860 B2
20

13 . The computer - readable storage device of claim 8 in response to the notification , performing one or more
having further stored thereon computer - readable instruc actions , by the one or more virtual machines , to prepare
tions that upon execution on a computing device , at least for the impending system power change .
cause the computing device to perform one of a retrieval , a 16 . The method of claim 15 wherein the one or more
restoration , and a reconstruction of confidential data of the 5 virta of the 5 virtual machines are notified by a host virtual machine . one or more virtual machines on the system .

14 . The computer - readable storage device of claim claim 8 8 17 . The method of claim 16 wherein notifications are
having further stored thereon computer - readable instruc - forwarded by virtual machines to child virtual machines .
tions that upon execution on a computing device , at least 18 . The method of claim 15 , wherein the one or more
cause the computing device to notify a virtual machine in actions comprise powering down a connected device
monitor that a power state change is required . assigned to the one or more virtual machines .

15 . A method for efficiently managing power used by one 19 . The method of claim 15 , wherein the one or more or more computing devices , comprising : actions comprise saving files to a disk . instantiating one or more virtual machines ;
receiving a notification of an impending system power 20 . The method of claim 15 further comprising notifying

change ; 15 a virtual machine monitor that a power state change is
causing the one or more virtual machines to be notified of required .

the impending power change ; and * * * * *

